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ABSTRACT

Chain-of-thought prompting has demonstrated remarkable performance on vari-
ous natural language reasoning tasks. However, it tends to perform poorly on
tasks which requires solving problems harder than the exemplars shown in the
prompts. To overcome this challenge of easy-to-hard generalization, we propose
a novel prompting strategy, least-to-most prompting. The key idea in this strat-
egy is to break down a complex problem into a series of simpler subproblems
and then solve them in sequence. Solving each subproblem is facilitated by the
answers to previously solved subproblems. Our experimental results on tasks re-
lated to symbolic manipulation, compositional generalization, and math reason-
ing reveal that least-to-most prompting is capable of generalizing to more difficult
problems than those seen in the prompts. A notable finding is that when the GPT-3
code-davinci-002 model is used with least-to-most prompting, it can solve
the compositional generalization benchmark SCAN in any split (including length
split) with an accuracy of at least 99% using just 14 exemplars, compared to only
16% accuracy with chain-of-thought prompting. This is particularly noteworthy
because neural-symbolic models in the literature that specialize in solving SCAN
are trained on the entire training set containing over 15,000 examples. We have
included prompts for all the tasks in the Appendix.

1 INTRODUCTION

Despite the great success of deep learning in the past decade, there still remain huge differences
between human intelligence and machine learning: (1) Given a new task, humans usually can learn
to accomplish it from only a few demonstration examples, while machine learning requires a large
amount of labeled data for model training; (2) Humans can clearly explain the underlying rationale
for their predictions or decisions, while machine learning is essentially a black box; (3) Humans can
solve problems more difficult than any they have seen before, while for machine learning, examples
in training and testing are typically at the same level of difficulty.

The recently proposed chain-of-thought prompting approach (Wei et al., 2022; Chowdhery et al.,
2022) has taken a significant step for narrowing the gap between human intelligence and machine in-
telligence. It combines the idea of natural language rationales (Ling et al., 2017; Cobbe et al., 2021)
with few-shot prompting (Brown et al., 2020). When further integrated with self-consistency decod-
ing (Wang et al., 2022b) rather than using the typical greedy decoding, few-shot chain-of-thought
prompting largely outperforms the state-of-the-art results in the literature on many challenging natu-
ral language processing tasks obtained from specially designed neural models trained with hundreds
of times more annotated examples, while being fully interpretable.

However, chain-of-thought prompting has a key limitation—it often performs poorly on tasks that
require generalization of solving problems harder than the demonstration examples, such as com-
positional generalization (Lake & Baroni, 2018; Keysers et al., 2020). To tackle such easy-to-hard
generalization issues, we propose least-to-most prompting. It consists of two stages: first decom-
posing a complex problem into a list of easier subproblems, and then sequentially solving these
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subproblems, whereby solving a given subproblem is facilitated by the answers to previously solved
subproblems. Both stages are implemented by few-shot prompting, so that there is no training or
finetuning in either stage. An example usage of least-to-most prompting is illustrated in Figure 1.

The term least-to-most prompting is borrowed from educational psychology (Libby et al., 2008),
where it is used to denote the technique of using a progressive sequence of prompts to help a student
to learn a new skill. Here we apply this technique for teaching humans to teach language models.
Empirical results on symbolic manipulation, compositional generalization, and math reasoning show
that least-to-most prompting can indeed generalize to problems harder than those demonstrated.

Figure 1: Least-to-most prompting solving a math word problem in two stages: (1) query the lan-
guage model to decompose the problem into subproblems; (2) query the language model to sequen-
tially solve the subproblems. The answer to the second subproblem is built on the answer to the first
subproblem. The demonstration examples for each stage’s prompt are omitted in this illustration.

2 LEAST-TO-MOST PROMPTING

Least-to-most prompting teaches language models how to solve a complex problem by decomposing
it to a series of simpler subproblems. It consists of two sequential stages:

1. Decomposition. The prompt in this stage contains constant examples that demonstrate the
decomposition, followed by the specific question to be decomposed.

2. Subproblem solving. The prompt in this stage consists of three parts: (1) constant exam-
ples demonstrating how subproblems are solved; (2) a potentially empty list of previously
answered subquestions and generated solutions, and (3) the question to be answered next.

In the example shown in Figure 1, the language model is first asked to decompose the original
problem into subproblems. The prompt that is passed to the model consists of examples that illustrate
how to decompose complex problems (which are not shown in the figure), followed by the specific
problem to be decomposed (as shown in the figure). The language model figures out that the original
problem can be solved via solving an intermediate problem “How long does each trip take?”.
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In the next phase, we ask the language model to sequentially solve the subproblems from the problem
decomposition stage. The original problem is appended as the final subproblem. The solving starts
from passing to the language model a prompt that consists of examples that illustrate how problems
are solved (not shown in the figure), followed by the first subproblem “How long does each trip
take?”. We then take the answer generated by the language model (“... each trip takes 5 minutes.”)
and construct the next prompt by appending the generated answer to the previous prompt, followed
by the next subproblem, which happens to be the original problem in this example. The new prompt
is then passed back to the language model, which returns the final answer.

Least-to-most prompting can be combined with other prompting techniques like chain-of-thought
(Wei et al., 2022) and self-consistency (Wang et al., 2022b), but does not need to be. Also, for some
tasks, the two stages in least-to-most prompting can be merged to form a single-pass prompt.

3 RESULTS

We present least-to-most prompting results for symbolic manipulation, compositional generaliza-
tion, and math reasoning tasks, and compare it with chain-of-thought prompting.

3.1 SYMBOLIC MANIPULATION

We take the last-letter-concatenation task (Wei et al., 2022). In this task, each input is a list of
words, and the corresponding output is the concatenation of the last letters of the words in the list.
For example, “thinking, machine” outputs “ge”, since the last letter of “thinking” is “g” and the
last letter of “machine” is “e”. Chain-of-thought prompting does a perfect job when the testing lists
have the same length as the lists in the prompt exemplars. However, it performs poorly when the
testing lists are much longer than the lists in the prompt exemplars. We show that least-to-most
prompting overcomes this limitation and significantly outperforms chain-of-thought prompting on
length generalization.

Q: “think, machine, learning”
A: “think”, “think, machine”, “think, machine, learning”

Table 1: Least-to-most prompt context (decomposition) for the last-letter-concatenation task. It can
decompose arbitrary long lists into sequential sublists with an accuracy of 100%.

Q: “think, machine”
A: The last letter of “think” is “k”. The last letter of “machine” is “e”. Concatenating “k”, “e” leads
to “ke”. So, “think, machine” outputs “ke”.

Q: “think, machine, learning”
A: “think, machine” outputs “ke”. The last letter of “learning” is “g”. Concatenating “ke”, “g”
leads to “keg”. So, “think, machine, learning” outputs “keg”.

Table 2: Least-to-most prompt context (solution) for the last-letter-concatenation task. The two
exemplars in this prompt actually demonstrate a base case and a recursive step.

Least-to-most prompting. The least-to-most prompt contexts for the last-letter-concatenation task
are shown in Tables 1 and 2. The exemplar in Table 1 demonstrates how to decompose a list into
a sequence of sublists. The exemplar in Table 2 demonstrates how to map an input to the desired
output. Given a new list, we first append it to the exemplar in Table 1 to construct the decomposition
prompt, which is sent to the language model to obtain the list’s decomposition. Then, we construct
for each sublist S a solution prompt, which consists of the exemplars in Table 2, followed by the
previous sublist/response pairs (if any), followed by S. We sequentially issue these prompts to the
language model and use the last response as the final solution.

It is worth a closer look at the exemplars in Table 2. Essentially, they teach language models how to
build answers to new problems using the answers to previously solved problems: (1) the list in the
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second exemplar (“think, machine, learning”) is an extension of the list in the first exemplar (“think,
machine”) rather than an entirely independent one; (2) the response to “think, machine, learning”
is built on the output of “think, machine” by starting with a sentence saying that “think, machine”
outputs “ke”. The two exemplars together illustrate a base case and a recursive step.

Chain-of-thought prompting. The chain-of-thought prompt context for the last-letter-
concatenation task is listed in Table 3. It uses the same lists as the least-to-most prompt in Ta-
ble 2. The only difference is that, in the chain-of-thought prompt, the response to the second list
(“think, machine, learning”) is built from scratch, instead of using the output of the first list (“think,
machine”).

Q: “think, machine”
A: The last letter of “think” is “k”. The last letter of “machine” is “e”. Concatenating “k”, “e” leads
to “ke”. So, “think, machine” outputs “ke”.

Q: “think, machine, learning”
A: The last letter of “think” is “k”. The last letter of “machine” is “e”. The last letter of “learning”
is “g”. Concatenating “k”, “e”, “g” leads to “keg”. So, “think, machine, learning” outputs “keg”.

Table 3: Chain-of-thought prompt context for the last-letter-concatenation task. Unlike the least-
to-most prompt in Table 2, the exemplars in the chain-of-thought prompt are independent of each
other.

We compare least-to-most prompting (Table 1 & 2) with chain-of-thought prompting (Table 3) and
the standard few-shot prompting. The prompt for the standard few-shot prompting is constructed by
removing the intermediate explanations in the chain-of-thought prompt. That is, it just consists of
these two exemplars: (1) “think, machine” outputs “ke”; and (2) “think, machine, learning” outputs
“keg”. We do not consider a training or finetuning baseline because a machine learning model based
on two examples would generalize very poorly.

Results. We randomly sample words in Wiktionary1 to construct testing lists with lengths varying
from 4 to 12. For each given length, 500 lists are constructed. The accuracies of different methods
with code-davinci-002 in GPT-3 are shown in Table 4. Standard prompting completely fails
all test cases with an accuracy of 0. Chain-of-thought prompting significantly boosts the perfor-
mance over standard prompting, but it still falls well behind least-to-most prompting, particularly
when the lists are long. Moreover, the performance of chain-of-thought prompting drops much faster
than least-to-most prompting as the length increases.

L = 4 L = 6 L = 8 L = 10 L = 12
Standard prompting 0.0 0.0 0.0 0.0 0.0
Chain-of-Thought 84.2 69.2 50.2 39.8 31.8

Least-to-Most 94.0 88.4 83.0 76.4 74.0

Table 4: Accuracies of different prompting methods on the last-letter-concatenation task. The length
of testing lists increases from 4 to 12.

In Appendices 7.2 and 7.3, we present additional experiments with different chain-of-thought
prompts and different language models. Note that in contrast to least-to-most prompting, the exem-
plars in a chain-of-thought prompt can be independent of each other. For the last-letter concatenation
task, this means that we do not need to present exemplars that are sublists of other exemplars. In
fact, a chain-of-thought prompt with independent lists tends to outperform one with dependent lists,
as the former conveys more information. Furthermore, we can enhance chain-of-thought prompting
by incorporating additional exemplars. This seems to be fair, as the least-to-most prompt contains
more words due to its extra decomposition. As shown in Table 13 (Appendix 7.3), for lists with
length 12, chain-of-thought prompting achieves an accuracy of 37.4% with 4 independent exem-
plars (Appendix 7.2.2), and 38.4% with 8 independent exemplars (Appendix 7.2.3). Although there

1https://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/PG/2006/04/
1-10000
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have been notable advancements compared to an accuracy of 31.8% by the original prompt in Table
3, chain-of-thought prompting still lags behind least-to-most prompting, which boasts an accuracy
of 74.0%.

Error analysis. While least-to-most prompting significantly outperforms chain-of-thought prompt-
ing, it is still far from achieving 100% accuracy for long lists. In Appendix 7.4, we present a detailed
error analysis. We find that only very few of them are due to incorrect last letters, while most of
them are concatenation errors (dropping or adding a letter). For example, given the list “gratified,
contract, fortitude, blew”, the model drops the last letter in the concatenation of “dte” and “w”, and
thus predicts the outcome to be “dte” instead of “dtew”. In another example “hollow, supplies, func-
tion, gorgeous”, the model somehow duplicates the last letter “s” in the concatenation of “wsn” and
“s”, and thus the prediction becomes “wsnss” instead of “wsns”.

3.2 COMPOSITIONAL GENERALIZATION

SCAN (Lake & Baroni, 2018) is probably the most popular benchmark for evaluating composi-
tional generalization. It requires mapping natural language commands to action sequences (Table 5).
Sequence-to-sequence models perform poorly under length split where the action sequences in the
training set (about 80% of the full set with over 20,000 examples) are shorter than the action se-
quences in the testing set. Many specialized neural-symbolic models have been proposed to solve
SCAN (Chen et al., 2020; Liu et al., 2020; Nye et al., 2020; Shaw et al., 2021; Kim, 2021). We
show that large language models with least-to-most prompting can solve SCAN using only a few
demonstration examples. No training or finetuning is needed.

Command Action Sequence
“look thrice after jump” JUMP LOOK LOOK LOOK
“run left and walk” TURN LEFT RUN WALK
“look opposite right” TURN RIGHT TURN RIGHT LOOK

Table 5: Example commands in SCAN and their corresponding action sequences. An agent suc-
cessfully executes a natural language command by performing its corresponding action sequence.

Least-to-most prompting. Like the last-letter-concatenation task in Section 3.1, least-to-most
prompting for SCAN is based on two kinds of prompts: (1) a command decomposition prompt
containing 8 exemplars to demonstrate how to decompose a long command to a list of short com-
mands (see Table 6 for some of these exemplars); and (2) a command mapping prompt containing 14
exemplars to demonstrate how to map natural language commands to action sequences (see Table 7
for some of these exemplars). The full prompt contexts for both decomposition and mapping are
listed in Appendix 8. The exemplars used in the command-mapping prompt are intended to fully
cover the semantics of the SCAN commands.

Q: “look opposite right thrice after walk”
A: “look opposite right thrice” can be solved by: “look opposite right”, “look opposite right
thrice”. “walk” can be solved by “walk”. So, “look opposite right thrice after walk” can be
solved by: “look opposite right”, “look opposite right thrice”, “walk”.

Q: “look around right thrice and walk”
A: “look around right thrice” can be solved by: “look right”, “look around right”, “look around
right thrice”. “walk” can be solved by “walk”. So, “look around right thrice and walk” can be
solved by: “look right”, “look around right”, “look around right thrice”, “walk”.

Table 6: Two exemplars taken from the least-to-most prompt for decomposing a long command to a
sequence of short commands.

We use Python notation to make our prompts in least-to-most prompting and the baselines (stand
few-shot prompting and chain-of-thought prompting) concise and meet the input size limit of lan-
guage models (usually up to 2048 tokens). For example, in our prompt design, we map “look twice”
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to “LOOK” * 2 rather than “LOOK LOOK”. We may have to point out that these Python expres-
sions are just intermediate representations. After obtaining responses from language models, we run
a postprocessing script to expand the Python expressions to generate the final results. However, it
should not be surprising that we can also further teach language models to correctly process expres-
sions. In Appendix 8.4, we show that with several demonstration exemplars, language models are
able to expand Python expressions with a near-perfect accuracy of 99.7%.

Q: “jump left”
A: The output of “jump left” concatenates: the output of “turn left”, the output of “jump”. “turn
left” outputs “TURN LEFT”. “jump” outputs “JUMP”. So concatenating the output of “turn
left” and the output of “jump” leads to “TURN LEFT” + “JUMP”. So the output of “jump left”
is “TURN LEFT” + “JUMP”.

Q: “run and look twice”
A: The output of “run and look twice” concatenates: the output of “run”, the output of “look
twice”. “run” outputs “RUN”. “look twice” outputs “LOOK” * 2. So concatenating the output of
“run” and the output of “look twice” leads to “RUN” + “LOOK” * 2. So the output of “run and
look twice” is “RUN” + “LOOK” * 2.

Table 7: Two exemplars taken from the least-to-most / chain-of-thought prompt for mapping com-
mands to action sequences. Python expressions are used as intermediate representations.

Chain-of-thought prompting. The chain-of-thought prompt for SCAN uses the same command-
mapping context as least-to-most prompting (see Table 7) but it does not use command decomposi-
tion, which is exclusively used for least-to-most prompting.

Results. We compare least-to-most prompting with chain-of-thought prompting and standard few-
shot prompting. The exemplars for standard few-shot prompting are derived from the chain-of-
thought prompt by removing the intermediate explanations. The accuracies of different prompting
methods with different language models are presented in Table 8. Example outputs can be found
in Appendix 8.3. Using code-davinci-002, least-to-most prompting achieves an accuracy of
99.7% under length split. We also test least-to-most prompting on all other splits and even the full
SCAN dataset. We find that its solving rate remains the same. In addition, it may be interesting
to note that code-davinci-002 consistently outperforms text-davinci-002, regardless of
the prompting method.

Method Standard prompting Chain-of-Thought Least-to-Most
code-davinci-002 16.7 16.2 99.7
text-davinci-002 6.0 0.0 76.0
code-davinci-001 0.4 0.0 60.7

Table 8: Accuracies (%) of different prompting methods on the test set of SCAN under length split.
The results of text-davinci-002 are based on a random subset of 100 commands.

Error analysis. In the test set of the length split, there are 13 failures in total from least-to-most
prompting: 6 of them incorrectly interpret “twice” and “thrice” following “around”, and the rest
incorrectly interpret “after” as “and”. Let us show a failed example for each category. In the example
“walk opposite right twice after run around right thrice”, code-davinci-002 correctly translates
the expression “run around right” to (“TURN RIGHT” + “RUN”) * 4. Then it makes a mistake
when applying “thrice” to this expression and produces (“TURN RIGHT” + “RUN”) * 9 instead
of (“TURN RIGHT” + “RUN”) * 4 * 3 or (“TURN RIGHT” + “RUN”) * 12. In the example
“run opposite left thrice after run around left twice”, code-davinci-002 produces the correct
translations for both sub-expressions that are connected by “after” but it combines them as if they
were connected by “and”. This means that the model produces (“TURN LEFT” * 2 + “RUN”) * 3 +
(“TURN LEFT” + “RUN”) * 4 * 2 instead of (“TURN LEFT” + “RUN”) * 4 * 2 + (“TURN LEFT”
* 2 + “RUN”) * 3. A detailed error analysis can be found in Appendix 8.2.
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3.3 MATH REASONING

In this section, we apply least-to-most prompting to solve math word problems in GSM8K (Cobbe
et al., 2021) and DROP (Dua et al., 2019). We are particularly interested at seeing if large language
models combined with least-to-most prompting can solve problems more difficult than those seen in
the prompts. Here, we simply measure the difficulty by the number of solving steps.

Q: Elsa has 5 apples. Anna has 2 more apples than Elsa. How many apples do they have together?
A: Let’s break down this problem: 1. How many apples does Anna have? 2. How many apples do
they have together?

1. Anna has 2 more apples than Elsa. So Anna has 2 + 5 = 7 apples.
2. Elsa and Anna have 5 + 7 = 12 apples together.

The answer is: 12.

Table 9: The least-to-most prompt for solving GSM8K. The demonstration problem is solved in
only two steps, but the prompt can handle problems that require multiple steps to be solved.

Q: Elsa has 5 apples. Anna has 2 more apples than Elsa. How many apples do they have together?
A: Anna has 2 more apples than Elsa. So Anna has 2 + 5 = 7 apples. So Elsa and Anna have 5 + 7
= 12 apples together.

The answer is: 12.

Table 10: The chain-of-thought prompt for solving GSM8K. It is derived from the least-to-most
prompt in Table 9 by removing the decomposition part.

The prompt that we design to solve GSM8K is shown in Table 9. The demonstration exemplar
consists of two parts. The first part (starting from “Let’s break down this problem . . . ”) shows how
the original problem can be decomposed into simpler subproblems, and the the second part shows
how the subproblems are solved in sequence. Note that this prompt combines decomposition and
subproblem solving into a single pass. One may instead design two different prompts respectively
for decomposition and subproblem solving, as the least-to-most prompts in the previous sections, to
further improve performance. Here, we focus on investigating how this simple least-to-most prompt
generalizes from a simple 2-step problem to more complex multi-step problems.

We also construct a chain-of-thought prompt (Table 10) as our baseline. It is derived from the least-
to-most prompt (Table 9) by removing the decomposition part. The results are shown in Table 11.
Overall, least-to-most prompting only slightly improves chain-of-thought prompting: from 60.97%
to 62.39%. However, least-to-most prompting essentially improves chain-of-thought prompting in
solving problems which need at least 5 steps to be solved: from 39.07% to 45.23% (Table 12).
We find that almost every problem in GSM8K that least-to-most prompting fails to solve can be
eventually solved by using a manually crafted decomposition. This should not be surprising. For
our humans, as long as we know how to decompose a complex problem into simpler subproblems,
we actually have solved it. For the DROP benchmark, least-to-most prompting outperforms chain-
of-thought prompting by a large margin (Table 11). That is probably because most problems in
DROP can be trivially decomposed.

Method Non-football (DROP) Football (DROP) GSM8K
Zero-Shot 43.86 51.77 16.38

Standard prompting 58.78 62.73 17.06
Chain-of-Thought 74.77 59.56 60.87

Least-to-Most 82.45 73.42 62.39

Table 11: Accuracies (%) of different prompting methods on GSM8K and DROP (only the subset
containing numerical problems). The base language model is code-davinci-002.
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Accuracy by Steps (GSM8K) All 2 Steps 3 Steps 4 steps ≥ 5 steps
Least-to-Most 62.39 74.53 68.91 59.73 45.23

Chain-of-Thought 60.87 76.68 67.29 59.39 39.07

Table 12: Accuracies (%) of least-to-most prompting and chain-of-thought prompting, broken down
by the number of reasoning steps required in the expected solution.

4 RELATED WORK

Compositional generalization. SCAN (Lake & Baroni, 2018) is a widely used benchmark to eval-
uate compositional generalization. Among all of its splits, the most challenging is the length split,
which requires a model to generalize to test sequences longer than training ones. Prior work with
good performance on SCAN mostly proposed neural-symbolic architectures (Chen et al., 2020; Liu
et al., 2020) and grammar induction techniques (Nye et al., 2020; Shaw et al., 2021; Kim, 2021).
Chen et al. (2020) proposed the neural-symbolic stack machine, which contains a neural network
as the controller to generate an execution trace for a given input, and a symbolic stack machine to
execute the trace and produce the output. The execution trace consists of domain-specific primitives
for sequence manipulation, which allows the machine to break down the input sentence into differ-
ent components, translate them separately, and compose them together. Liu et al. (2020) proposed
a framework that cooperatively learns two neural modules, a composer and a solver, to jointly learn
the input structure and the symbolic grammar rules. Both Nye et al. (2020) and Shaw et al. (2021)
inferred the symbolic grammar rules of SCAN, while Kim (2021) proposed to learn a latent neu-
ral grammar. While approaches with symbolic components are able to achieve 100% accuracy on
SCAN (Chen et al., 2020; Liu et al., 2020; Nye et al., 2020; Shaw et al., 2021), they require compli-
cated model training and grammar inference algorithms to search in a large grammar space. Another
line of work on SCAN designs data augmentation schemes (Andreas, 2020; Akyürek et al., 2021;
Lake, 2019). Both Andreas (2020) and Akyürek et al. (2021) construct synthetic training samples by
recombining fragments occurring in different training samples, and Akyürek et al. (2021) further de-
signs a sampling scheme that encourages the recombination model to produce rare samples. On the
other hand, Lake (2019) proposed a meta training algorithm, which requires a meta-grammar space
to construct training data, and the format of sampled grammars is similar to the SCAN grammar.
While these data augmentation techniques improve the performance on several compositional gener-
alization benchmarks, they fail to solve the length split of SCAN. Other prior works propose neural
network architectures to improve compositional generalization, where they encourage the model to
learn the word and span mapping (Russin et al., 2019; Li et al., 2019), the alignment of input and
output as span trees (Herzig & Berant, 2021), and the permutation equivariance of input and output
words (Gordon et al., 2020). Still, these end-to-end neural networks without symbolic components
do not generalize to longer test inputs. Unlike the existing work, we demonstrate that without model
architectures and symbolic components specially designed to improve compositional generalization,
least-to-most prompting achieves 99.7% accuracy on any split (including length split) with only a
handful of demonstration examples, and it does not require any training or finetuning.

Easy-to-hard generalization. In addition to compositional generalization, there are many other
tasks where the test cases require more reasoning steps to solve than the training examples, for
example, the last-letter-concatenation task where the test lists are longer than the demonstration
examples. Dong et al. (2019) propose Neural Logic Machines (NLMs) for both inductive learning
and logic reasoning. NLMs trained on small-scale tasks (such as small size block worlds) can
perfectly generalize to large-scale tasks (such as larger size block worlds). Schwarzschild et al.
(2021) show that recurrent networks trained to solve simple problems with few recurrent steps (such
as small size mazes or chess puzzles) can solve more complex problems (such as larger size mazes
or chess puzzles) by performing additional recurrences during inference. In our method, we achieve
easy-to-hard generalization by decomposing a complex problem into a series of easier problems.

Task decomposition. Perez et al. (2020) decompose a multi-hop question into a number of inde-
pendent single-hop subquestions, which are answered by an off-the-shelf question answering (QA)
model. Then those answers are aggregated to form the final answer. Both question decomposition
and answer aggregation are implemented by trained models. Wang et al. (2022a) conducts multi-hop
QA by modeling prompts as continuous virtual tokens and progressively eliciting relevant knowl-
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edge from language models via iterative prompting. Unlike these methods, our approach does not
involve any training or finetuning. Moreover, the subquestions generated in least-to-most prompting
are usually dependent and have to be sequentially solved in a specific order so that answers to some
subquestions can be used as building blocks to solve other subquestions. Yang et al. (2022) translate
natural language questions to SQL queries by decomposing a question into a sequence of slot-filling
natural language prompts corresponding to SQL clauses via a rule-based system. Wu et al. (2022)
propose chaining large language model steps such that the output of one step becomes the input for
the next and develop an interactive system for users to construct and modify chains. Least-to-most
prompting chains the processes of problem decomposition and subproblem solving.

5 LIMITATIONS

Decomposition prompts typically don’t generalize well across different domains. For instance, a
prompt that demonstrates decomposing math word problems (as seen in Table 9) isn’t effective for
teaching large language models to break down common sense reasoning problems, such as “Did
Aristotle use a laptop?” (Geva et al., 2021). A new prompt must be designed to demonstrate decom-
position for these types of problems in order to achieve optimal performance.

Generalizing decomposition can even be difficult within the same domain. We’ve observed that
nearly all problems in GSM8K can be accurately solved if the large language models are provided
with the correct decomposition of those challenging problems. This finding isn’t surprising and
aligns with our experiences in solving math problems. Whenever we successfully break down a
math problem into simpler subproblems we can solve, we’ve essentially solved the original problem.
Exceptional results are achieved on the last-letter-concatenation task and the SCAN benchmark
because decomposition in these tasks is relatively straightforward.

6 CONCLUSION AND DISCUSSION

We introduced least-to-most prompting to enable language models to solve problems that are harder
than those in the prompt. This approach entails a two-fold process: a top-down decomposition of the
problem and a bottom-up resolution generation. Our empirical findings, which encompass symbolic
manipulation, compositional generalization, and mathematical reasoning, reveal that least-to-most
prompting significantly surpasses standard prompting and chain-of-thought prompting.

In general, prompting might not be the optimal method for teaching reasoning skills to large lan-
guage models. Prompting can be viewed as a unidirectional communication form in which we in-
struct a language model without considering its feedback. A natural progression would be to evolve
prompting into fully bidirectional conversations, enabling immediate feedback to language models,
thereby facilitating more efficient and effective learning. The least-to-most prompting technique
represents a stride towards instructing language models through such bidirectional interactions.
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7 LAST-LETTER-CONCATENATION

7.1 PROMPT CONTEXT FOR DECOMPOSING A WORD LIST INTO SUBPROBLEMS

In Section 3.1 we mentioned that language model prompting can be used to decompose a word list
such as “think, machine, learning, reasoning” into a sequence of subproblems “think, machine”,
“think, machine, learning”, and “think, machine, learning, reasoning”.

The following prompt context achieves 100% accuracy on this task when using the
text-davinci-002 model. Note that it achieves perfect accuracy on lists up to size 12 (which
is the maximum that we tested for our experiment) even though it only contains one exemplar each
for lists of sizes 2 and 3.

Q: “machine, learning”
A: creating sequential sublists of the list “machine, learning”:
“machine”
“machine, learning”

Q: “machine, learning, artificial”
A: creating sequential sublists of the list “machine, learning, artificial”:
“machine”
“machine, learning”
“machine, learning, artificial”

7.2 PROMPT CONTEXTS WITH MORE AND DIFFERENT EXAMPLES

The last-letter-concatenation experiments presented in Section 3.1 are based on prompt contexts
that consists of 2 demonstration examples. To make sure that the accuracy gain achieved by least-
to-most prompting is not caused by the slight increase in example length when compared to chain-
of-thought, we also performed experiments with more context examples so that we can compare
least-to-most vs. chain-of-thought for different prompt sizes. Also, we perform experiments where
we use for chain-of-thought prompting the same prompt examples that we use for least-to-most
prompting (unlike the situation in Table ?? where we use different examples). All these prompts are
shown below, and we present and discuss the corresponding accuracies in Section 7.3.

7.2.1 STANDARD PROMPTING, 4-SHOT

Q: “think, machine”
A: “ke”

Q: “learning, reasoning, generalization”
A: “ggn”

Q: “artificial, intelligence”
A: “le”

Q: “transformer, language, vision”
A: “ren”

7.2.2 CHAIN-OF-THOUGHT PROMPTING, 4-SHOT

Q: “think, machine”
A: The last letter of “think” is “k”. The last letter of “machine” is “e”. Concatenating “k”, “e” leads to
“ke”. So, “think, machine” outputs “ke”.

Q: “learning, reasoning, generalization”
A: The last letter of “learning” is “g”. The last letter of “reasoning” is “g”. The last letter of “general-
ization” is “n”. Concatenating “g”, “g”, “n” leads to “ggn”. So, “learning, reasoning, generalization”
outputs “ggn”.
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Q: “artificial, intelligence”
A: The last letter of “artificial” is “l”. The last letter of “intelligence” is “e”. Concatenating “l”, “e” leads
to “le”. So, “artificial, intelligence” outputs “le”.

Q: “transformer, language, vision”
A: The last letter of “transformer” is “r”. The last letter of “language” is “e”. The last letter of “vi-
sion” is “n”. Concatenating “r”, “e”, “n” leads to “ren”. So, “transformer, language, vision” outputs “ren”.

7.2.3 CHAIN-OF-THOUGHT PROMPTING, 8-SHOT

Q: “think, machine”
A: The last letter of “think” is “k”. The last letter of “machine” is “e”. Concatenating “k”, “e” leads to
“ke”. So, “think, machine” outputs “ke”.

Q: “learning, reasoning, generalization”
A: The last letter of “learning” is “g”. The last letter of “reasoning” is “g”. The last letter of “general-
ization” is “n”. Concatenating “g”, “g”, “n” leads to “ggn”. So, “learning, reasoning, generalization”
outputs “ggn”.

Q: “artificial, intelligence”
A: The last letter of “artificial” is “l”. The last letter of “intelligence” is “e”. Concatenating “l”, “e” leads
to “le”. So, “artificial, intelligence” outputs “le”.

Q: “transformer, language, vision”
A: The last letter of “transformer” is “r”. The last letter of “language” is “e”. The last letter of “vi-
sion” is “n”. Concatenating “r”, “e”, “n” leads to “ren”. So, “transformer, language, vision” outputs “ren”.

Q: “school, teacher”
A: The last letter of “school” is “l”. The last letter of “teacher” is “r”. Concatenating “l”, “r” leads to “lr”.
So, “school, teacher” outputs “lr”.

Q: “art, science, department”
A: The last letter of “art” is “t”. The last letter of “science” is “e”. The last letter of “department” is “t”.
Concatenating “t”, “e”, “t” leads to “tet”. So, “art, science, department” outputs “tet”.

Q: “pen, laptop”
A: The last letter of “pen” is “n”. The last letter of “laptop” is “p”. Concatenating: “n”, “p” leads to “np”.
So, “pen, laptop” outputs “np”.

Q: “book, campus, university”
A: The last letter of “book” is “k”. The last letter of “campus” is “s”. The last letter of “university” is “y”.
Concatenating: “k”, “s”, “y” leads to “ksy”. So, “book, campus, university” outputs “ksy”.

7.2.4 CHAIN-OF-THOUGHT PROMPTING, 2-SHOT, SAME EXAMPLES AS FOR LEAST-TO-MOST

Q: “think, machine”
A: The last letter of “think” is “k”. The last letter of “machine” is “e”. Concatenating “k”, “e” leads to
“ke”. So, “think, machine” outputs “ke”.

Q: “think, machine, learning” A: The last letter of “think” is “k”. The last letter of “machine” is
“e”. The last letter of “learning” is “g”. Concatenating “k”, “e”, “g” leads to “keg”. So, “think, machine,
learning” outputs “keg”.

7.2.5 LEAST-TO-MOST PROMPTING, 4-SHOT

Q: “think, machine”
A: The last letter of “think” is “k”. The last letter of “machine” is “e”. Concatenating “k”, “e” leads to
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“ke”. So, “think, machine” outputs “ke”.

Q: “think, machine, learning”
A: “think, machine” outputs “ke”. The last letter of “learning” is “g”. Concatenating “ke”, “g” leads to
“keg”. So, “think, machine, learning” outputs “keg”.

Q: “transformer, language”
A: The last letter of “transformer” is “r”. The last letter of “language” is “e”. Concatenating: “r”, “e”
leads to “re”. So, “transformer, language” outputs “re”.

Q: “transformer, language, vision”
A: “transformer, language” outputs “re”. The last letter of “vision” is “n”. Concatenating: “re”, “n” leads
to “ren”. So, “transformer, language, vision” outputs “ren”.

7.3 DATA GENERATION AND ADDITIONAL RESULTS

Data generation. The last-letter-concatenation dataset is based on a list of the 10k most common
English words (including proper nouns) used in books that are part of project Gutenberg, as col-
lected in Wiktionary2. After eliminating profane words, we ended up with a list of 9694 words (all
lowercase). For each of the desired list sizes 2, 4, 6, 8, 10, 12, we then generated 500 examples,
each of which consists of a random sequence of these words (input) and the corresponding sequence
of last letters (output). We will release the full dataset upon publication of this paper. Below are 10
random examples of list size 6:

• IN: “narrative, celebrate, neighbouring, indebted, stove, calling” OUT: “eegdeg”

• IN: “barley, silk, thankful, kiss, logs, silent” OUT: “yklsst”

• IN: “knitting, conveyance, receives, represent, cow, shut” OUT: “gestwt”

• IN: “olive, dark, limitation, airy, pocket, wondered” OUT: “eknytd”

• IN: “apprehensive, exclamation, perspiration, trusting, destiny, tactics” OUT: “enngys”

• IN: “qualified, envoy, disciple, exert, witnesses, plane” OUT: “dyetse”

• IN: “decidedly, dome, france, chris, knowing, peaceful” OUT: “yeesgl”

• IN: “deceit, refinement, tips, cord, princes, discovery” OUT: “ttsdsy”

• IN: “drops, paste, defective, bohemia, requested, convenient” OUT: “seeadt”

• IN: “diverse, christopher, homely, agreeable, fright, suspended” OUT: “eryetd”

Complete results. Table 13 summarizes all the experiments we performed for the last-letter-
concatenation task. In addition to the experiments where prompt contexts contain 2 demonstration
examples presented in Section 3.1, this includes experiments where the prompts contain 4 and 8
demonstration examples (see above).

While more prompt examples have no effect for standard prompting (the accuracy remains at 0), they
increase the accuracy across the board for chain-of-thought and least-to-most prompting. However,
least-to-most prompting consistently outperforms chain-of-thought prompting. In fact, even if we
compare 2-shot least-to-most (prompt size 123 GPT3 tokens) to 8-shot chain-of-thought (prompt
size 573 GPT3 tokens), the accuracy for least-to-most prompting is much higher than for chain-
of-thought prompting. The difference is especially pronounced for long sequences (e.g., for L =
12, we have least-to-most at 74.0% vs. chain-of-thought at 38.4%). This shows that least-to-most
prompting is much more data-efficient than chain-of-thought prompting for this problem.

Comparing the first two rows for chain-of-thought prompting shows that chain-of-thought achieves
higher accuracy if we use two independent examples (see prompt in Table ??) instead of the two
dependent examples that we use for least-to-most prompting. This demonstrates that the accuracy
advantage of least-to-most prompting over chain-of-thought prompting remains even if the use the
same examples for both of them.

2https://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/PG/2006/04/
1-10000
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Prompting method # Examples Model L = 4 L = 6 L = 8 L = 10 L = 12
Standard Any Any 0.0 0.0 0.0 0.0 0.0

Chain-of-Thought

2 code-002 89.4 75.0 51.8 39.8 33.6
2 (L2M) code-002 84.2 69.2 50.2 39.8 31.8

4 code-002 88.6 77.0 53.4 44.0 37.4
8 code-002 91.0 79.8 56.8 46.8 38.4
4 text-002* 87.0 64.0 46.0 25.0 14.0
4 code-001 13.0 1.8 0.0 0.0 0.0

Least-to-Most

2 code-002 94.0 88.4 83.0 76.4 74.0
4 code-002 96.0 92.0 84.6 80.2 76.6
4 text-002* 94.0 90.0 84.0 72.0 66.0
4 code-001 19.6 8.4 4.0 1.0 0.1

Table 13: Accuracy of different prompting methods, prompt sizes, and GPT3 models on the last-
letter-concatenation task with the length of lists increasing from 4 to 12. We use code-002 to de-
note the model code-davinci-002, text-002 to denote the model text-davinci-002,
and code-001 to denote the model code-davinci-001. The results in the second row for
chain-of-thought prompting correspond to the experiment where we use for chain-of-thought the
same prompt examples that we use for least-to-most. The results of text-davinci-002 are
based on a subset of 100 random examples (rather than the full set of 500 exammples).

The table also contains the results from running against two additional GPT-3 models:
text-davinci-002 and codex-davinci-001. While text-davinci-002 shows simi-
lar accuracy to code-davinci-002 on small list sizes, the accuracy drops off much faster when
moving to larger list sizes, both for chain-of-thought prompting as well as for least-to-most prompt-
ing. This indicates that the code-davinci-002model has an advantage when it comes to dealing
with iteration and recursion.

The code-davinci-001 model performs much worse than code-davinci-002 across all
dimensions. Even for the shortest list size (L = 4), the accuracy for least-to-most prompting is only
19.6% compared to 96% for code-davinci-002. This indicates that there is a large potential
for improvement when using the exact same configuration with new model generations.

7.4 ERROR ANALYSIS: LEAST-TO-MOST PROMPTING

Error type 2 examples 4 examples
L = 4 L = 12 L = 4 L = 12

Concatenation error 13 19 21 20
- Dropping a letter 8 12 15 15
- Adding a letter 4 7 4 3
- Wrong order 1 0 2 2

Wrong template 7 1 0 0
Incorrect last letter 2 1 1 2
Copy error 0 0 1 0

Table 14: Least-to-most prompting error analysis of 20 random failures of the
code-davinci-002 model on list lengths 4 and 12 for prompt contexts consisting of 2
and 4 examples. Note that for some examples, the model made more than one type of error (e.g.,
dropping and adding a letter during concatenation).

For least-to-most prompting, we analyzed 20 random failures of the code-davinci-002 model
on list lengths 4 and 12 for prompt contexts consisting of 2 and 4 examples. The results are shown in
Table 14. Concatenation errors may either be due to dropping a letter, adding a letter or outputting
the letters in the wrong order. Wrong template means that the model used the extension template
instead of the base template to concatenate the last letter of the first two words of the list. Incorrect
last letter means that the model got the last letter of a word wrong, and copy error means that the
error was due to making a mistake when copying an intermediate result.
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We observe that for the prompt consisting of 2 examples, the fraction of concatenation errors in-
creases as we go from length 4 to length 12 while the fraction of wrong template errors go down.
This makes sense because the number of concatenations grows with the length of the list, while the
number of times the model needs to use the base template stays constant. Note that the template
errors disappear when we move to the double prompt, which means that adding two more examples
helps the model recognize which template to use. As a consequence, the double prompt has a similar
distribution of errors for both list lengths.

Examples of concatenation errors. In the example “gratified, contract, fortitude, blew”, the model
drops the last letter in the concatenation of “dte” and “w”, which means that it predicts the last letter
sequence to be “dte” instead of “dtew”.

In the example “hollow, supplies, function, gorgeous”, the model duplicates the last letter “s” in the
concatenation of “wsn” and “s”, which means that it predicts the last letter sequence “wsnss” instead
of “wsns”.

In the example “madly, vengeance, cowardice, monk”, the model drops the last letter “k” in the
concatenation of “yee” and ”k” and instead adds the letter “g”. Consequently, the model predicts
“yeeg” instead of “yeek”.

In the example “slender, lash, throng, scheme”, the model breaks the order of the letters “h” and
“g” in the concatenation of “rh” and “g”, which means that it predicts the last letter sequence “rghe”
instead of “rhge”.

Example of incorrect last letter. In the example “modification, introducing, schools, lunch”, the
model determines the last letter of the word “modification” to be “g”. Consequently, the predicted
last letter sequence is “ggsh” instead of “ngsh”.

Example of wrong template application. In the example “upper, unexpectedly, specifically, con-
nection”, the model uses the extension template to determine the output of the first two words “upper,
unexpectedly”. I.e., it produces:

• “upper” outputs “er”. The last letter of “unexpectedly” is “y”. Concatenating “er”, “y”
leads to “ery”. So, “upper, unexpectedly” outputs “ery”.

when it should have produced:

• The last letter of “upper” is “r”. The last letter of “unexpectedly” is “y”. Concatenating
“r”, “y” leads to “ry”.

As a consequence, the model predicts the sequence “eryyn” instead of “ryyn”.

Example of copy error. In the example “displeased, hawk, healing, anchor”, the model correctly
computes the final concatenation “dkgr” but then makes a mistake when copying the result to the
final output and drops the final “r”, which leads to the prediction “dkg” instead of “dkgr”:

• “displeased, hawk, healing” outputs “dkg”. The last letter of “anchor” is “r”. Concatenat-
ing: “dkg”, “r” leads to “dkgr”. So, “displeased, hawk, healing, anchor” outputs “dkg”.

7.5 EXAMPLE OUTPUTS FROM CODE-DAVINCI-002

In this section, we present 5 examples (one example for lengths 4, 6, 8, 10, 12) of successes and
failures of the code-davinci-002 model for standard prompting, chain-of-thought prompting,
and least-to-most prompting. They are all based on the prompt contexts containing 4 demonstration
examples.

7.5.1 STANDARD PROMPTING: FAILURE

“witnesses, arkansas, remaining, privileged”

Golden:
“ssgd”

18



Published as a conference paper at ICLR 2023

Solution:
Q: “witnesses, arkansas, remaining, privileged”
A: “n”

“clan, noun, roy, nicholas, relish, liking”

Golden:
“nnyshg”

Solution:
Q: “clan, noun, roy, nicholas, relish, liking”
A: “nicholas”

“franklin, temporarily, high, origin, rapidly, diversion, firmament, promptly”

Golden:
“nyhnynty”

Solution:
Q: “franklin, temporarily, high, origin, rapidly, diversion, firmament, promptly”
A: “n”

“conquered, owed, enclosure, indeed, shattered, beads, increased, provided, weak, grind”

Golden:
“ddeddsddkd”

Solution:
Q: “conquered, owed, enclosure, indeed, shattered, beads, increased, provided, weak, grind”
A: “d”

“hope, alison, mirrors, benefits, altered, curve, keen, portuguese, distance, interfaces, proof,
seamus”

Golden:
“enssdeneesfs”

Solution:
Q: “hope, alison, mirrors, benefits, altered, curve, keen, portuguese, distance, interfaces, proof,
seamus”
A: “hope”

7.5.2 CHAIN-OF-THOUGHT PROMPTING: SUCCESS

“geese, rogers, benefactor, version”

Golden:
“esrn”

Solution:
Q: “geese, rogers, benefactor, version”
A: The last letter of “geese” is “e”. The last letter of “rogers” is “s”. The last letter of “benefactor” is “r”.
The last letter of “version” is “n”. Concatenating “e”, “s”, “r”, “n” leads to “esrn”. So, “geese, rogers,
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benefactor, version” outputs “esrn”.

“amply, bestow, maryland, edited, blowing, prosperous”

Golden:
“ywddgs”

Solution:
Q: “amply, bestow, maryland, edited, blowing, prosperous”
A: The last letter of “amply” is “y”. The last letter of “bestow” is “w”. The last letter of “maryland” is
“d”. The last letter of “edited” is “d”. The last letter of “blowing” is “g”. The last letter of “prosperous” is
“s”. Concatenating “y”, “w”, “d”, “d”, “g”, “s” leads to “ywddgs”. So, “amply, bestow, maryland, edited,
blowing, prosperous” outputs “ywddgs”.

“needless, courts, reflected, curly, glowing, asp, chronicles, anthony”

Golden:
“ssdygpsy”

Solution:
Q: “needless, courts, reflected, curly, glowing, asp, chronicles, anthony”
A: The last letter of “needless” is “s”. The last letter of “courts” is “s”. The last letter of “reflected” is
“d”. The last letter of “curly” is “y”. The last letter of “glowing” is “g”. The last letter of “asp” is “p”.
The last letter of “chronicles” is “s”. The last letter of “anthony” is “y”. Concatenating “s”, “s”, “d”, “y”,
“g”, “p”, “s”, “y” leads to “ssdygpsy”. So, “needless, courts, reflected, curly, glowing, asp, chronicles,
anthony” outputs “ssdygpsy”.

“nigel, alaska, rent, hospital, newspaper, medical, nation, dave, associated, rumour”

Golden:
“latlrlnedr”

Solution:
Q: “nigel, alaska, rent, hospital, newspaper, medical, nation, dave, associated, rumour”
A: The last letter of “nigel” is “l”. The last letter of “alaska” is “a”. The last letter of “rent” is “t”. The
last letter of “hospital” is “l”. The last letter of “newspaper” is “r”. The last letter of “medical” is “l”. The
last letter of “nation” is “n”. The last letter of “dave” is “e”. The last letter of “associated” is “d”. The
last letter of “rumour” is “r”. Concatenating “l”, “a”, “t”, “l”, “r”, “l”, “n”, “e”, “d”, “r” leads to “latlrlnedr”.
So, “nigel, alaska, rent, hospital, newspaper, medical, nation, dave, associated, rumour” outputs
“latlrlnedr”.

“brightness, preparatory, intense, accumulated, reluctantly, nets, inquiries, grip, inquisition,
alley, innocent, herbert”

Golden:
“syedysspnytt”

Solution:
Q: “brightness, preparatory, intense, accumulated, reluctantly, nets, inquiries, grip, inquisition, alley,
innocent, herbert”
A: The last letter of “brightness” is “s”. The last letter of “preparatory” is “y”. The last letter of “intense”
is “e”. The last letter of “accumulated” is “d”. The last letter of “reluctantly” is “y”. The last letter
of “nets” is “s”. The last letter of “inquiries” is “s”. The last letter of “grip” is “p”. The last letter of
“inquisition” is “n”. The last letter of “alley” is “y”. The last letter of “innocent” is “t”. The last letter of

20



Published as a conference paper at ICLR 2023

“herbert” is “t”. Concatenating “s”, “y”, “e”, “d”, “y”, “s”, “s”, “p”, “n”, “y”, “t”, “t” leads to “syedysspnytt”.
So, “brightness, preparatory, intense, accumulated, reluctantly, nets, inquiries, grip, inquisition, alley,
innocent, herbert” outputs “syedysspnytt”.

7.5.3 CHAIN-OF-THOUGHT PROMPTING: FAILURE

“pattern, vote, afterwards, solemn”

Golden:
“nesn”

Solution:
Q: “pattern, vote, afterwards, solemn”
A: The last letter of “pattern” is “n”. The last letter of “vote” is “e”. The last letter of “afterwards” is “s”.
The last letter of “solemn” is “n”. Concatenating “n”, “e”, “s”, “n” leads to “ness”. So, “pattern, vote,
afterwards, solemn” outputs “ness”.

“disappointment, troublesome, respectfully, monstrous, worry, politics”

Golden:
“teysys”

Solution:
Q: “disappointment, troublesome, respectfully, monstrous, worry, politics”
A: The last letter of “disappointment” is “t”. The last letter of “troublesome” is “e”. The last letter of
“respectfully” is “y”. The last letter of “monstrous” is “s”. The last letter of “worry” is “y”. The last
letter of “politics” is “s”. Concatenating “t”, “e”, “y”, “s”, “y”, “s” leads to “teyssy”. So, “disappointment,
troublesome, respectfully, monstrous, worry, politics” outputs “teyssy”.

“drawing, changes, purified, basic, others, send, chimney, vice”

Golden:
“gsdcsdye”

Solution:
Q: “drawing, changes, purified, basic, others, send, chimney, vice”
A: The last letter of “drawing” is “g”. The last letter of “changes” is “s”. The last letter of “purified” is
“d”. The last letter of “basic” is “c”. The last letter of “others” is “s”. The last letter of “send” is “d”.
The last letter of “chimney” is “y”. The last letter of “vice” is “e”. Concatenating “g”, “s”, “d”, “c”, “s”,
“d”, “y”, “e” leads to “gsdcsyde”. So, “drawing, changes, purified, basic, others, send, chimney, vice”
outputs “gsdcsyde”.

“sensitive, pray, wreath, betwixt, golden, regions, loyalty, interval, hunting, ranch”

Golden:
“eyhtnsylgh”

Solution:
Q: “sensitive, pray, wreath, betwixt, golden, regions, loyalty, interval, hunting, ranch”
A: The last letter of “sensitive” is “e”. The last letter of “pray” is “y”. The last letter of “wreath” is
“h”. The last letter of “betwixt” is “t”. The last letter of “golden” is “n”. The last letter of “regions” is
“s”. The last letter of “loyalty” is “y”. The last letter of “interval” is “l”. The last letter of “hunting” is
“g”. The last letter of “ranch” is “h”. Concatenating “e”, “y”, “h”, “t”, “n”, “s”, “y”, “l”, “g”, “h” leads to
“eyhtsynslgh”. So, “sensitive, pray, wreath, betwixt, golden, regions, loyalty, interval, hunting, ranch”
outputs “eyhtsynslgh”.
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“freezing, arduous, pushing, vitality, hue, generosity, white, motto, matthew, preferred,
hounds, breast”

Golden:
“gsgyeyeowdst”

Solution:
Q: “freezing, arduous, pushing, vitality, hue, generosity, white, motto, matthew, preferred, hounds,
breast”
A: The last letter of “freezing” is “g”. The last letter of “arduous” is “s”. The last letter of “pushing” is
“g”. The last letter of “vitality” is “y”. The last letter of “hue” is “e”. The last letter of “generosity” is
“y”. The last letter of “white” is “e”. The last letter of “motto” is “o”. The last letter of “matthew” is “w”.
The last letter of “preferred” is “d”. The last letter of “hounds” is “s”. The last letter of “breast” is “t”.
Concatenating “g”, “s”, “g”, “y”, “e”, “y”, “e”, “o”, “w”, “d”, “s”, “t” leads to “gsgyeyowdst”. So, “freezing,
arduous, pushing, vitality, hue, generosity, white, motto, matthew, preferred, hounds, breast” outputs
“gsgyeyowdst”.

7.5.4 LEAST-TO-MOST PROMPTING: SUCCESS

“worm, jackson, widow, car”

Golden:
“mnwr”

Solution:
Q: “worm, jackson”
A: The last letter of “worm” is “m”. The last letter of “jackson” is “n”. Concatenating: “m”, “n” leads to
“mn”. So, “worm, jackson” outputs “mn”.

Q: “worm, jackson, widow”
A: “worm, jackson” outputs “mn”. The last letter of “widow” is “w”. Concatenating: “mn”, “w” leads to
“mnw”. So, “worm, jackson, widow” outputs “mnw”.

Q: “worm, jackson, widow, car”
A: “worm, jackson, widow” outputs “mnw”. The last letter of “car” is “r”. Concatenating: “mnw”, “r”
leads to “mnwr”. So, “worm, jackson, widow, car” outputs “mnwr”.

“twinkle, blushed, pale, fast, irony, tearing”

Golden:
“edetyg”

Solution:
Q: “twinkle, blushed”
A: The last letter of “twinkle” is “e”. The last letter of “blushed” is “d”. Concatenating: “e”, “d” leads to
“ed”. So, “twinkle, blushed” outputs “ed”.

Q: “twinkle, blushed, pale”
A: “twinkle, blushed” outputs “ed”. The last letter of “pale” is “e”. Concatenating: “ed”, “e” leads to
“ede”. So, “twinkle, blushed, pale” outputs “ede”.

Q: “twinkle, blushed, pale, fast”
A: “twinkle, blushed, pale” outputs “ede”. The last letter of “fast” is “t”. Concatenating: “ede”, “t” leads
to “edet”. So, “twinkle, blushed, pale, fast” outputs “edet”.

Q: “twinkle, blushed, pale, fast, irony”
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A: “twinkle, blushed, pale, fast” outputs “edet”. The last letter of “irony” is “y”. Concatenating: “edet”,
“y” leads to “edety”. So, “twinkle, blushed, pale, fast, irony” outputs “edety”.

Q: “twinkle, blushed, pale, fast, irony, tearing”
A: “twinkle, blushed, pale, fast, irony” outputs “edety”. The last letter of “tearing” is “g”. Concatenat-
ing: “edety”, “g” leads to “edetyg”. So, “twinkle, blushed, pale, fast, irony, tearing” outputs “edetyg”.

“colonists, empty, fowl, intend, diligent, reluctantly, seed, gentry”

Golden:
“syldtydy”

Solution:
Q: “colonists, empty”
A: The last letter of “colonists” is “s”. The last letter of “empty” is “y”. Concatenating: “s”, “y” leads to
“sy”. So, “colonists, empty” outputs “sy”.

Q: “colonists, empty, fowl”
A: “colonists, empty” outputs “sy”. The last letter of “fowl” is “l”. Concatenating: “sy”, “l” leads to “syl”.
So, “colonists, empty, fowl” outputs “syl”.

Q: “colonists, empty, fowl, intend”
A: “colonists, empty, fowl” outputs “syl”. The last letter of “intend” is “d”. Concatenating: “syl”, “d”
leads to “syld”. So, “colonists, empty, fowl, intend” outputs “syld”.

Q: “colonists, empty, fowl, intend, diligent”
A: “colonists, empty, fowl, intend” outputs “syld”. The last letter of “diligent” is “t”. Concatenating:
“syld”, “t” leads to “syldt”. So, “colonists, empty, fowl, intend, diligent” outputs “syldt”.

Q: “colonists, empty, fowl, intend, diligent, reluctantly”
A: “colonists, empty, fowl, intend, diligent” outputs “syldt”. The last letter of “reluctantly” is “y”.
Concatenating: “syldt”, “y” leads to “syldty”. So, “colonists, empty, fowl, intend, diligent, reluctantly”
outputs “syldty”.

Q: “colonists, empty, fowl, intend, diligent, reluctantly, seed”
A: “colonists, empty, fowl, intend, diligent, reluctantly” outputs “syldty”. The last letter of “seed” is “d”.
Concatenating: “syldty”, “d” leads to “syldtyd”. So, “colonists, empty, fowl, intend, diligent, reluctantly,
seed” outputs “syldtyd”.

Q: “colonists, empty, fowl, intend, diligent, reluctantly, seed, gentry”
A: “colonists, empty, fowl, intend, diligent, reluctantly, seed” outputs “syldtyd”. The last letter of
“gentry” is “y”. Concatenating: “syldtyd”, “y” leads to “syldtydy”. So, “colonists, empty, fowl, intend,
diligent, reluctantly, seed, gentry” outputs “syldtydy”.

“leo, observations, power, thou, dart, emergency, notorious, indulging, consume, provoke”

Golden:
“osrutysgee”

Solution:
Q: “leo, observations”
A: The last letter of “leo” is “o”. The last letter of “observations” is “s”. Concatenating: “o”, “s” leads
to “os”. So, “leo, observations” outputs “os”.

Q: “leo, observations, power”
A: “leo, observations” outputs “os”. The last letter of “power” is “r”. Concatenating: “os”, “r” leads to
“osr”. So, “leo, observations, power” outputs “osr”.

Q: “leo, observations, power, thou”
A: “leo, observations, power” outputs “osr”. The last letter of “thou” is “u”. Concatenating: “osr”, “u”

23



Published as a conference paper at ICLR 2023

leads to “osru”. So, “leo, observations, power, thou” outputs “osru”.

Q: “leo, observations, power, thou, dart”
A: “leo, observations, power, thou” outputs “osru”. The last letter of “dart” is “t”. Concatenating:
“osru”, “t” leads to “osrut”. So, “leo, observations, power, thou, dart” outputs “osrut”.

Q: “leo, observations, power, thou, dart, emergency”
A: “leo, observations, power, thou, dart” outputs “osrut”. The last letter of “emergency” is “y”.
Concatenating: “osrut”, “y” leads to “osruty”. So, “leo, observations, power, thou, dart, emergency”
outputs “osruty”.

Q: “leo, observations, power, thou, dart, emergency, notorious”
A: “leo, observations, power, thou, dart, emergency” outputs “osruty”. The last letter of “notorious”
is “s”. Concatenating: “osruty”, “s” leads to “osrutys”. So, “leo, observations, power, thou, dart,
emergency, notorious” outputs “osrutys”.

Q: “leo, observations, power, thou, dart, emergency, notorious, indulging”
A: “leo, observations, power, thou, dart, emergency, notorious” outputs “osrutys”. The last letter of
“indulging” is “g”. Concatenating: “osrutys”, “g” leads to “osrutysg”. So, “leo, observations, power,
thou, dart, emergency, notorious, indulging” outputs “osrutysg”.

Q: “leo, observations, power, thou, dart, emergency, notorious, indulging, consume”
A: “leo, observations, power, thou, dart, emergency, notorious, indulging” outputs “osrutysg”. The last
letter of “consume” is “e”. Concatenating: “osrutysg”, “e” leads to “osrutysge”. So, “leo, observations,
power, thou, dart, emergency, notorious, indulging, consume” outputs “osrutysge”.

Q: “leo, observations, power, thou, dart, emergency, notorious, indulging, consume, provoke”
A: “leo, observations, power, thou, dart, emergency, notorious, indulging, consume” outputs “osru-
tysge”. The last letter of “provoke” is “e”. Concatenating: “osrutysge”, “e” leads to “osrutysgee”. So,
“leo, observations, power, thou, dart, emergency, notorious, indulging, consume, provoke” outputs
“osrutysgee”.

“niece, greedy, anything, retain, moisture, jest, adrian, attic, hugo, accurate, wet, howard”

Golden:
“eygnetncoetd”

Solution:
Q: “niece, greedy”
A: The last letter of “niece” is “e”. The last letter of “greedy” is “y”. Concatenating: “e”, “y” leads to
“ey”. So, “niece, greedy” outputs “ey”.

Q: “niece, greedy, anything”
A: “niece, greedy” outputs “ey”. The last letter of “anything” is “g”. Concatenating: “ey”, “g” leads to
“eyg”. So, “niece, greedy, anything” outputs “eyg”.

Q: “niece, greedy, anything, retain”
A: “niece, greedy, anything” outputs “eyg”. The last letter of “retain” is “n”. Concatenating: “eyg”, “n”
leads to “eygn”. So, “niece, greedy, anything, retain” outputs “eygn”.

Q: “niece, greedy, anything, retain, moisture”
A: “niece, greedy, anything, retain” outputs “eygn”. The last letter of “moisture” is “e”. Concatenating:
“eygn”, “e” leads to “eygne”. So, “niece, greedy, anything, retain, moisture” outputs “eygne”.

Q: “niece, greedy, anything, retain, moisture, jest”
A: “niece, greedy, anything, retain, moisture” outputs “eygne”. The last letter of “jest” is “t”. Concate-
nating: “eygne”, “t” leads to “eygnet”. So, “niece, greedy, anything, retain, moisture, jest” outputs
“eygnet”.

Q: “niece, greedy, anything, retain, moisture, jest, adrian”
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A: “niece, greedy, anything, retain, moisture, jest” outputs “eygnet”. The last letter of “adrian” is “n”.
Concatenating: “eygnet”, “n” leads to “eygnetn”. So, “niece, greedy, anything, retain, moisture, jest,
adrian” outputs “eygnetn”.

Q: “niece, greedy, anything, retain, moisture, jest, adrian, attic”
A: “niece, greedy, anything, retain, moisture, jest, adrian” outputs “eygnetn”. The last letter of “attic” is
“c”. Concatenating: “eygnetn”, “c” leads to “eygnetnc”. So, “niece, greedy, anything, retain, moisture,
jest, adrian, attic” outputs “eygnetnc”.

Q: “niece, greedy, anything, retain, moisture, jest, adrian, attic, hugo”
A: “niece, greedy, anything, retain, moisture, jest, adrian, attic” outputs “eygnetnc”. The last letter
of “hugo” is “o”. Concatenating: “eygnetnc”, “o” leads to “eygnetnco”. So, “niece, greedy, anything,
retain, moisture, jest, adrian, attic, hugo” outputs “eygnetnco”.

Q: “niece, greedy, anything, retain, moisture, jest, adrian, attic, hugo, accurate”
A: “niece, greedy, anything, retain, moisture, jest, adrian, attic, hugo” outputs “eygnetnco”. The last
letter of “accurate” is “e”. Concatenating: “eygnetnco”, “e” leads to “eygnetncoe”. So, “niece, greedy,
anything, retain, moisture, jest, adrian, attic, hugo, accurate” outputs “eygnetncoe”.

Q: “niece, greedy, anything, retain, moisture, jest, adrian, attic, hugo, accurate, wet”
A: “niece, greedy, anything, retain, moisture, jest, adrian, attic, hugo, accurate” outputs “eygnetncoe”.
The last letter of “wet” is “t”. Concatenating: “eygnetncoe”, “t” leads to “eygnetncoet”. So, “niece,
greedy, anything, retain, moisture, jest, adrian, attic, hugo, accurate, wet” outputs “eygnetncoet”.

Q: “niece, greedy, anything, retain, moisture, jest, adrian, attic, hugo, accurate, wet, howard”
A: “niece, greedy, anything, retain, moisture, jest, adrian, attic, hugo, accurate, wet” outputs “eygnet-
ncoet”. The last letter of “howard” is “d”. Concatenating: “eygnetncoet”, “d” leads to “eygnetncoetd”.
So, “niece, greedy, anything, retain, moisture, jest, adrian, attic, hugo, accurate, wet, howard” outputs
“eygnetncoetd”.

7.5.5 LEAST-TO-MOST PROMPTING: FAILURE

“supper, procession, region, ruby”

Golden:
“rnny”

Solution:
Q: “supper, procession”
A: The last letter of “supper” is “r”. The last letter of “procession” is “n”. Concatenating: “r”, “n” leads
to “rn”. So, “supper, procession” outputs “rn”.

Q: “supper, procession, region”
A: “supper, procession” outputs “rn”. The last letter of “region” is “n”. Concatenating: “rn”, “n” leads
to “rnn”. So, “supper, procession, region” outputs “rnn”.

Q: “supper, procession, region, ruby”
A: “supper, procession, region” outputs “rnn”. The last letter of “ruby” is “y”. Concatenating: “rnn”, “y”
leads to “rnnn”. So, “supper, procession, region, ruby” outputs “rnnn”.

“release, appeared, endure, field, render, monk”

Golden:
“ededrk”

Solution:
Q: “release, appeared”
A: The last letter of “release” is “e”. The last letter of “appeared” is “d”. Concatenating: “e”, “d” leads
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to “ed”. So, “release, appeared” outputs “ed”.

Q: “release, appeared, endure”
A: “release, appeared” outputs “ed”. The last letter of “endure” is “e”. Concatenating: “ed”, “e” leads
to “ede”. So, “release, appeared, endure” outputs “ede”.

Q: “release, appeared, endure, field”
A: “release, appeared, endure” outputs “ede”. The last letter of “field” is “d”. Concatenating: “ede”,
“d” leads to “eded”. So, “release, appeared, endure, field” outputs “eded”.

Q: “release, appeared, endure, field, render”
A: “release, appeared, endure, field” outputs “eded”. The last letter of “render” is “r”. Concatenating:
“eded”, “r” leads to “ededer”. So, “release, appeared, endure, field, render” outputs “ededer”.

Q: “release, appeared, endure, field, render, monk”
A: “release, appeared, endure, field, render” outputs “ededer”. The last letter of “monk” is “k”.
Concatenating: “ededer”, “k” leads to “edederk”. So, “release, appeared, endure, field, render, monk”
outputs “edederk”.

“mentally, uncomfortable, amount, straight, whatsoever, deference, channel, integrity”

Golden:
“yettrely”

Solution:
Q: “mentally, uncomfortable”
A: The last letter of “mentally” is “y”. The last letter of “uncomfortable” is “e”. Concatenating: “y”, “e”
leads to “ye”. So, “mentally, uncomfortable” outputs “ye”.

Q: “mentally, uncomfortable, amount”
A: “mentally, uncomfortable” outputs “ye”. The last letter of “amount” is “t”. Concatenating: “ye”, “t”
leads to “yet”. So, “mentally, uncomfortable, amount” outputs “yet”.

Q: “mentally, uncomfortable, amount, straight”
A: “mentally, uncomfortable, amount” outputs “yet”. The last letter of “straight” is “t”. Concatenating:
“yet”, “t” leads to “yett”. So, “mentally, uncomfortable, amount, straight” outputs “yett”.

Q: “mentally, uncomfortable, amount, straight, whatsoever”
A: “mentally, uncomfortable, amount, straight” outputs “yett”. The last letter of “whatsoever” is
“r”. Concatenating: “yett”, “r” leads to “yettar”. So, “mentally, uncomfortable, amount, straight,
whatsoever” outputs “yettar”.

Q: “mentally, uncomfortable, amount, straight, whatsoever, deference”
A: “mentally, uncomfortable, amount, straight, whatsoever” outputs “yettar”. The last letter of
“deference” is “e”. Concatenating: “yettar”, “e” leads to “yettare”. So, “mentally, uncomfortable,
amount, straight, whatsoever, deference” outputs “yettare”.

Q: “mentally, uncomfortable, amount, straight, whatsoever, deference, channel”
A: “mentally, uncomfortable, amount, straight, whatsoever, deference” outputs “yettare”. The last
letter of “channel” is “l”. Concatenating: “yettare”, “l” leads to “yettarel”. So, “mentally, uncomfortable,
amount, straight, whatsoever, deference, channel” outputs “yettarel”.

Q: “mentally, uncomfortable, amount, straight, whatsoever, deference, channel, integrity”
A: “mentally, uncomfortable, amount, straight, whatsoever, deference, channel” outputs “yettarel”.
The last letter of “integrity” is “y”. Concatenating: “yettarel”, “y” leads to “yettarely”. So, “mentally,
uncomfortable, amount, straight, whatsoever, deference, channel, integrity” outputs “yettarely”.

“complexion, criminal, assume, seven, driver, hero, horse, purpose, zeus, joint”

Golden:
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“nlenroeest”

Solution:
Q: “complexion, criminal”
A: The last letter of “complexion” is “n”. The last letter of “criminal” is “l”. Concatenating: “n”, “l” leads
to “nl”. So, “complexion, criminal” outputs “nl”.

Q: “complexion, criminal, assume”
A: “complexion, criminal” outputs “nl”. The last letter of “assume” is “e”. Concatenating: “nl”, “e”
leads to “nle”. So, “complexion, criminal, assume” outputs “nle”.

Q: “complexion, criminal, assume, seven”
A: “complexion, criminal, assume” outputs “nle”. The last letter of “seven” is “n”. Concatenating:
“nle”, “n” leads to “nlen”. So, “complexion, criminal, assume, seven” outputs “nlen”.

Q: “complexion, criminal, assume, seven, driver”
A: “complexion, criminal, assume, seven” outputs “nlen”. The last letter of “driver” is “r”. Concatenat-
ing: “nlen”, “r” leads to “nlenr”. So, “complexion, criminal, assume, seven, driver” outputs “nlenr”.

Q: “complexion, criminal, assume, seven, driver, hero”
A: “complexion, criminal, assume, seven, driver” outputs “nlenr”. The last letter of “hero” is “o”.
Concatenating: “nlenr”, “o” leads to “nlenro”. So, “complexion, criminal, assume, seven, driver, hero”
outputs “nlenro”.

Q: “complexion, criminal, assume, seven, driver, hero, horse”
A: “complexion, criminal, assume, seven, driver, hero” outputs “nlenro”. The last letter of “horse”
is “e”. Concatenating: “nlenro”, “e” leads to “nlenroe”. So, “complexion, criminal, assume, seven,
driver, hero, horse” outputs “nlenroe”.

Q: “complexion, criminal, assume, seven, driver, hero, horse, purpose”
A: “complexion, criminal, assume, seven, driver, hero, horse” outputs “nlenroe”. The last letter
of “purpose” is “e”. Concatenating: “nlenroe”, “e” leads to “nlenroee”. So, “complexion, criminal,
assume, seven, driver, hero, horse, purpose” outputs “nlenroee”.

Q: “complexion, criminal, assume, seven, driver, hero, horse, purpose, zeus”
A: “complexion, criminal, assume, seven, driver, hero, horse, purpose” outputs “nlenroee”. The last
letter of “zeus” is “s”. Concatenating: “nlenroee”, “s” leads to “nlenroees”. So, “complexion, criminal,
assume, seven, driver, hero, horse, purpose, zeus” outputs “nlenroees”.

Q: “complexion, criminal, assume, seven, driver, hero, horse, purpose, zeus, joint”
A: “complexion, criminal, assume, seven, driver, hero, horse, purpose, zeus” outputs “nlenroees”.
The last letter of “joint” is “t”. Concatenating: “nlenroees”, “t” leads to “nlenroeast”. So, “complexion,
criminal, assume, seven, driver, hero, horse, purpose, zeus, joint” outputs “nlenroeast”.

“provoked, columbia, sir, principal, seven, extreme, timothy, submitted, considered, spies,
dost, treasury”

Golden:
“darlneyddsty”

Solution:
Q: “provoked, columbia”
A: The last letter of “provoked” is “d”. The last letter of “columbia” is “a”. Concatenating: “d”, “a” leads
to “da”. So, “provoked, columbia” outputs “da”.

Q: “provoked, columbia, sir”
A: “provoked, columbia” outputs “da”. The last letter of “sir” is “r”. Concatenating: “da”, “r” leads to
“dar”. So, “provoked, columbia, sir” outputs “dar”.

Q: “provoked, columbia, sir, principal”
A: “provoked, columbia, sir” outputs “dar”. The last letter of “principal” is “l”. Concatenating: “dar”, “l”
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leads to “darl”. So, “provoked, columbia, sir, principal” outputs “darl”.

Q: “provoked, columbia, sir, principal, seven”
A: “provoked, columbia, sir, principal” outputs “darl”. The last letter of “seven” is “n”. Concatenating:
“darl”, “n” leads to “darln”. So, “provoked, columbia, sir, principal, seven” outputs “darln”.

Q: “provoked, columbia, sir, principal, seven, extreme”
A: “provoked, columbia, sir, principal, seven” outputs “darln”. The last letter of “extreme” is “e”.
Concatenating: “darln”, “e” leads to “darle”. So, “provoked, columbia, sir, principal, seven, extreme”
outputs “darle”.

Q: “provoked, columbia, sir, principal, seven, extreme, timothy”
A: “provoked, columbia, sir, principal, seven, extreme” outputs “darle”. The last letter of “timothy”
is “y”. Concatenating: “darle”, “y” leads to “darley”. So, “provoked, columbia, sir, principal, seven,
extreme, timothy” outputs “darley”.

Q: “provoked, columbia, sir, principal, seven, extreme, timothy, submitted”
A: “provoked, columbia, sir, principal, seven, extreme, timothy” outputs “darley”. The last letter of
“submitted” is “d”. Concatenating: “darley”, “d” leads to “darleyd”. So, “provoked, columbia, sir,
principal, seven, extreme, timothy, submitted” outputs “darleyd”.

Q: “provoked, columbia, sir, principal, seven, extreme, timothy, submitted, considered”
A: “provoked, columbia, sir, principal, seven, extreme, timothy, submitted” outputs “darleyd”. The
last letter of “considered” is “d”. Concatenating: “darleyd”, “d” leads to “darleydd”. So, “provoked,
columbia, sir, principal, seven, extreme, timothy, submitted, considered” outputs “darleydd”.

Q: “provoked, columbia, sir, principal, seven, extreme, timothy, submitted, considered, spies”
A: “provoked, columbia, sir, principal, seven, extreme, timothy, submitted, considered” outputs
“darleydd”. The last letter of “spies” is “s”. Concatenating: “darleydd”, “s” leads to “darleydds”. So,
“provoked, columbia, sir, principal, seven, extreme, timothy, submitted, considered, spies” outputs
“darleydds”.

Q: “provoked, columbia, sir, principal, seven, extreme, timothy, submitted, considered, spies,
dost”
A: “provoked, columbia, sir, principal, seven, extreme, timothy, submitted, considered, spies” outputs
“darleydds”. The last letter of “dost” is “t”. Concatenating: “darleydds”, “t” leads to “darleyddst”.
So, “provoked, columbia, sir, principal, seven, extreme, timothy, submitted, considered, spies, dost”
outputs “darleyddst”.

Q: “provoked, columbia, sir, principal, seven, extreme, timothy, submitted, considered, spies,
dost, treasury”
A: “provoked, columbia, sir, principal, seven, extreme, timothy, submitted, considered, spies, dost”
outputs “darleyddst”. The last letter of “treasury” is “y”. Concatenating: “darleyddst”, “y” leads to
“darleyddsty”. So, “provoked, columbia, sir, principal, seven, extreme, timothy, submitted, considered,
spies, dost, treasury” outputs “darleyddsty”.

8 SCAN

8.1 PROMPT CONTEXTS

In this section we present the prompt contexts used for the SCAN benchmark in Section 3.2. It
includes one context for each of standard prompting, least-to-most prompting, and chain-of-thought
prompting.
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8.1.1 STANDARD PROMPTING

The context for standard prompting consist of a set of commands together with the corresponding
action sequences.

Q: “turn left”
A: “TURN LEFT”

Q: “turn right”
A: “TURN RIGHT”

Q: “jump left”
A: “TURN LEFT” + “JUMP”

Q: “run right”
A: “TURN RIGHT” + “RUN”

Q: “look twice”
A: “LOOK” * 2

Q: “run and look twice”
A: “RUN” + “LOOK” * 2

Q: “jump right thrice”
A: (“TURN RIGHT” + “JUMP”) * 3

Q: “walk after run”
A: “RUN” + “WALK”

Q: “turn opposite left”
A: “TURN LEFT” * 2

Q: “turn around left”
A: “TURN LEFT” * 4

Q: “turn opposite right”
A: “TURN RIGHT” * 2

Q: “turn around right”
A: “TURN RIGHT” * 4

Q: “walk opposite left”
A: “TURN LEFT” * 2 + “WALK”

Q: “walk around left”
A: (“TURN LEFT” + “WALK”) * 4

8.1.2 LEAST-TO-MOST PROMPTING

For least-to-most prompting, we need 2 different prompt contexts: one to decompose commands
into a sequence of components and one to map commands to actions.

Command mapping. The command mapping prompt context consists of a set of commands to-
gether with the corresponding action sequences and explanations of how they were obtained.

Q: “turn left”
A: “turn left” outputs “TURN LEFT”.

Q: “turn right”
A: “turn right” outputs “TURN RIGHT”.
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Q: “jump left”
A: The output of “jump left” concatenates: the output of “turn left”, the output of “jump”. “turn left”
outputs “TURN LEFT”. “jump” outputs “JUMP”. So concatenating the output of “turn left” and the out-
put of “jump” leads to “TURN LEFT” + “JUMP”. So the output of “jump left” is “TURN LEFT” + “JUMP”.

Q: “run right”
A: The output of “run right” concatenates: the output of “turn right”, the output of “run”. “turn right”
outputs “TURN RIGHT”. “run” outputs “RUN”. So concatenating the output of “turn right” and the
output of “run” leads to “TURN RIGHT” + “RUN”. So the output of “run right” is “TURN RIGHT” +
“RUN”.

Q: “look twice”
A: The output of “look twice” concatenates: the output of “look”, the output of “look”. “look” outputs
“LOOK”. So repeating the output of “look” two times leads to “LOOK” * 2. So the output of “look
twice” is “LOOK” * 2.

Q: “run and look twice”
A: The output of “run and look twice” concatenates: the output of “run”, the output of “look twice”.
“run” outputs “RUN”. “look twice” outputs “LOOK” * 2. So concatenating the output of “run” and the
output of “look twice” leads to “RUN” + “LOOK” * 2. So the output of “run and look twice” is “RUN” +
“LOOK” * 2.

Q: “jump right thrice”
A: The output of “jump right thrice” concatenates: the output of “jump right”, the output of “jump
right”, the output of “jump right”. “jump right” outputs “TURN RIGHT” + “JUMP”. So repeating the
output of “jump right” three times leads to (“TURN RIGHT” + “JUMP”) * 3. So the output of “jump
right thrice” is (“TURN RIGHT” + “JUMP”) * 3.

Q: “walk after run”
A: The output of “walk after run” concatenates: the output of “run”, the output of “walk”. “run” outputs
“RUN”. “walk” outputs “WALK”. So concatenating the output of “run” and the output of “walk” leads to
“RUN” + “WALK”. So the output of “walk after run” is “RUN” + “WALK”.

Q: “turn opposite left”
A: The output of “turn opposite left” concatenates: the output of “turn left”, the output of “turn left”.
“turn left” outputs “TURN LEFT”. So repeating the output of “turn left” twice leads to “TURN LEFT” *
2. So the output of “turn opposite left” is “TURN LEFT” * 2.

Q: “turn around left”
A: The output of “turn around left” concatenates: the output of “turn left”, the output of “turn left”, the
output of “turn left”, the output of “turn left”. “turn left” outputs “TURN LEFT”. So repeating the output
of “turn left” four times leads to “TURN LEFT” * 4. So the output of “turn around left” is “TURN LEFT”
* 4.

Q: “turn opposite right”
A: The output of “turn opposite right” concatenates: the output of “turn right”, the output of “turn
right”. “turn right” outputs “TURN RIGHT”. So repeating the output of “turn right” twice leads to
“TURN RIGHT” * 2. So the output of “turn opposite right” is “TURN RIGHT” * 2.

Q: “turn around right”
A: The output of “turn around right” concatenates: the output of “turn right”, the output of “turn right”,
the output of “turn right”, the output of “turn right”. “turn right” outputs “TURN RIGHT”. So repeating
the output of “turn right” four times leads to “TURN RIGHT” * 4. So the output of “turn around right”
is “TURN RIGHT” * 4.

Q: “walk opposite left”
A: The output of “walk opposite left” concatenates: the output of “turn opposite left”, the output of
“walk”. “turn opposite left” outputs “TURN LEFT” * 2. “walk” outputs “WALK”. So concatenating the
output of “turn opposite left” and the output of “walk” leads to “TURN LEFT” * 2 + “WALK”. So the
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output of “walk opposite left” is “TURN LEFT” * 2 + “WALK”.

Q: “walk around left”
A: The output of “walk around left” concatenates: the output of “walk left”, the output of “walk left”,
the output of “walk left”, the output of “walk left”. “walk left” outputs “TURN LEFT” + “WALK”. So
repeating the output of “walk around left” four times leads to (“TURN LEFT” + “WALK”) * 4. So the
output of “walk around left” is (“TURN LEFT” + “WALK”) * 4.

Command decomposition. The command decomposition prompt context consists of a set of com-
mands together with the corresponding sequence of decomposed commands.

Q: “look right after look twice”
A: “look right after look twice” can be solved by: “look right”, “look twice”.

Q: “jump opposite right thrice and walk”
A: “jump opposite right thrice” can be solved by: “jump opposite right”, “jump opposite right thrice”.
“walk” can be solved by: “walk”. So, “jump opposite right thrice and walk” can be solved by: “jump
opposite right”, “jump opposite right thrice”, “walk”.

Q: “run left twice and run right”
A: “run left twice” can be solved by: “run left”, “run left twice”. “run right” can be solved by “run right”.
So, “run left twice and run right” can.be solved by: “run left”, “run left twice”, “run right”.

Q: “run opposite right”
A: “run opposite right” can be solved by “run opposite right”.

Q: “look opposite right thrice after walk”
A: “look opposite right thrice” can be solved by: “look opposite right”, “look opposite right thrice”.
“walk” can be solved by “walk”. So, “look opposite right thrice after walk” can be solved by: “look
opposite right”, “look opposite right thrice”, “walk”.

Q: “jump around right”
A: “jump around right” can be solved by: “jump right”, “jump around right”. So, “jump around right”
can be solved by: “jump right”, “jump around right”.

Q: “look around right thrice and walk”
A: “look around right thrice” can be solved by: “look right”, “look around right”, “look around right
thrice”. “walk” can be solved by “walk”. So, “look around right thrice and walk” can be solved by:
“look right”, “look around right”, “look around right thrice”, “walk”.

Q: “turn right after run right thrice”
A: “turn right” can be solved by: “turn right”. “run right thrice” can be solved by: “run right”, “run
right thrice”. So, “turn right after run right thrice” can be solved by: “turn right”, “run right”, “run right
thrice”.

8.1.3 CHAIN-OF-THOUGHT PROMPTING

We reuse the command mapping prompt context from least-to-most prompting shown above.

8.2 ERROR ANALYSIS: LEAST-TO-MOST PROMPTING

For least-to-most prompting, we analyzed 20 random failures for the models
code-davinci-001 and text-davinci-002, and we analyzed all 13 errors for the
model code-davinci-002. The results are shown in Table 15. Errors may either occur during
command decomposition or during command translation. The translation errors are further split
into the following types. Incorrect interpretation of “twice” and “thrice” means that the model made
an error when applying “twice” and “thrice” to an expression. “After” interpreted as “and” means
that the model translated an expression containing “after” as if it instead contained “and”. Copy
error means that the model made a mistake when copying an intermediate result.
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Error type code-002 code-001 text-002
Decomposition error 0 7 1
Incorrect interpretation of “twice” and “thrice” 6 10 16

- Following “around” 6 3 15
- Following “opposite” 0 3 1
- Other 0 4

“after” interpreted as “and” 7 4 0
Incorrect interpretation of “left” and ”right” 0 0 4
Copy error 0 4 0

Table 15: Least-to-most prompting error analysis of 20 random failures for the mod-
els code-davinci-001 and text-davinci-002 and all 13 errors for the model
code-davinci-002. Note that for some examples, the model made more than one type of
error.

We observe that the best model text-davinci-002 made only 2 types of mistakes: it some-
times makes a mistake when applying “twice” and “thrice” to an expression containing “around”,
and it sometimes interprets “after” as “and”. For text-davinci-001, which is the older ver-
sion of the same model, the errors are spread across all types. In particular, it’s worth noting that
text-davinci-001 makes a significant number of decomposition errors and copy errors that
were completely eliminated by its successor.

The model text-davinci-002 made most of its mistakes when interpreting “twice” and
“thrice” following “around”. In addition, it sometimes made a mistake when translating “left” and
“right”, which is something we did not observe with the other models. In some cases, it dropped
the command entirely, whereas in other cases it invented a new action such as “LOOK LEFT” (see
examples below).

Examples of decomposition errors. In the example “run around left twice after jump around right
thrice”, the code-davinci-001 model does not properly decompose the sub-expression “run
around left twice”. Instead of decomposing it to the sequence [“run left”, “run around left”, “run
around left twice”], it skips “run around left” and decomposes it to [“run left”, “run around left
twice”]. Consequently, the model translates this sub-expression to (“TURN LEFT” + “RUN”) * 2
instead of (“TURN LEFT” + “RUN”) * 4 * 2.

In the example “look around right twice after jump around left twice”, the code-davinci-001
model does not properly decompose the sub-expression “jump around left twice”. Instead of decom-
posing it to the sequence [“jump left”, “jump around left”, “jump around left twice”], it skips “jump
around left” and decomposes it to [“jump left”, “jump around left twice”]. Interestingly, the model
is able to recover from this mistake and correctly translates the sub-expression to (“TURN LEFT”
+ “JUMP”) * 4 * 2, but still produces the wrong final action sequence because it interprets “after”
like “and”.

Examples of incorrect interpretation of “twice” and “thrice”. In the example “walk opposite
right twice after run around right thrice”, the code-davinci-002 model correctly translates
the expression “run around right” to (“TURN RIGHT” + “RUN”) * 4. Then it makes a mistake
when applying “thrice” to this expression and produces (“TURN RIGHT” + “RUN”) * 9 instead of
(“TURN RIGHT” + “RUN”) * 4 * 3 or (“TURN RIGHT” + “RUN”) * 12.

In the example “jump opposite right twice and jump around right thrice”, the
code-davinci-002 model correctly translates the expression “jump around right” to
(“TURN RIGHT” + “JUMP”) * 4. Then it makes a mistake when applying “thrice” to this expres-
sion and produces (“TURN RIGHT” + “JUMP”) * 8 instead of (“TURN RIGHT” + “JUMP”) * 4
* 3 or (“TURN RIGHT” + “JUMP”) * 12.

In the example “walk around left thrice after run opposite left thrice”, the code-davinci-001
model correctly translates the expression “run opposite left” to “TURN LEFT” * 2 + “RUN”. Then
it makes a mistake when applying “thrice” to this expression and produces “TURN LEFT” * 2 +
“RUN” * 3 instead of (“TURN LEFT” * 2 + “RUN”) * 3.

32



Published as a conference paper at ICLR 2023

In the example “walk around left thrice after look right twice”, the code-davinci-001 model
correctly translates the expression “look right” to “TURN RIGHT” + “LOOK”. Then it makes a
mistake when applying “twice” to this expression and produces “TURN RIGHT” + “LOOK” * 2
rather than (“TURN RIGHT” + “LOOK”) * 2.

In the example “walk left and run around right thrice”, the code-davinci-001 model interprets
“thrice” as ‘twice”. This means that it produces “TURN LEFT” + “WALK” + (“TURN RIGHT” +
“RUN”) * 4 * 2 instead of “TURN LEFT” + “WALK” + (“TURN RIGHT” + “RUN”) * 4 * 3.

In the example “jump right twice and look around left thrice”, the text-davinci-002 model
correctly translates the sub-expression “look around left” to (“TURN LEFT” + “LOOK”) * 4. But
when applying “thrice”, it produces the incorrect translation (“TURN LEFT” + “LOOK”) * 3 in-
stead of (“TURN LEFT” + “LOOK”) * 4 * 3.

Example of interpreting “after” as “and”. In the example “run opposite left thrice after run
around left twice”, the code-davinci-002 model produces the correct translations for both
sub-expressions that are connected by “after”, but it combines them as if they were connected by
“and”. This means that the model produces (“TURN LEFT” * 2 + “RUN”) * 3 + (“TURN LEFT”
+ “RUN”) * 4 * 2 instead of (“TURN LEFT” + “RUN”) * 4 * 2 + (“TURN LEFT” * 2 + “RUN”) *
3.

In the example “walk around left thrice after walk twice”, the code-davinci-002 model pro-
duces the correct translations for both sub-expressions that are connected by “after”, but it combines
them as if they were connected by “and”. This means that the model produces (“TURN LEFT” +
“WALK”) * 4 * 3 + “WALK” * 2 instead of “WALK” * 2 + (“TURN LEFT” + “WALK”) * 4 * 3.

In the example “look around right twice after jump around left twice”, the code-davinci-001
model produces the correct translations for both sub-expressions that are connected by “after”,
but it combines them as if they were connected by “and”. This means that the model pro-
duces (“TURN RIGHT” + “LOOK”) * 4 * 2 + (“TURN LEFT” + “JUMP”) * 4 * 2 instead of
(“TURN LEFT” + “JUMP”) * 4 * 2 + (“TURN RIGHT” + “LOOK”) * 4 * 2.

Examples of incorrect interpretation of “left” and “right”. In the example “look opposite right
thrice after look around left thrice”, the text-davinci-002 model translates the component
“look left” to “LOOK” instead of “TURN LEFT LOOK”. As a consequence, the whole command
is translated to “LOOK” * 4 * 3 + (“TURN RIGHT” * 2 + “LOOK”) * 3 instead of (“TURN LEFT”
+ “LOOK”) * 4 * 3 + (“TURN RIGHT” * 2 + “LOOK”) * 3.

In the example “turn around right thrice after look around left twice”, the text-davinci-002
model makes up the new action “LOOK LEFT” as the translation of the component “look left”. As
a consequence, it translates the whole command to (“LOOK LEFT” * 4) * 2 + (“TURN RIGHT” *
4) * 3 instead of (“TURN LEFT” + “LOOK”) * 4 * 2 + (“TURN RIGHT” * 4) * 3.

Example of copy error. In the example “walk opposite right twice after look around left thrice”,
the code-davinci-001 model produces the correct translations for both sub-expressions that
are connected with “after”. In particular, it correctly translates “walk opposite right twice” to
(“TURN RIGHT” * 2 + “WALK”) * 2. Then it makes two mistakes when combining them: it treats
“after” like an “and”, and it omits the parenthesis when copying the expression (“TURN RIGHT”
* 2 + “WALK”) * 2. This means that the model produces the translation “TURN RIGHT” * 2 +
“WALK” * 2 + (“TURN LEFT” + “LOOK”) * 4 * 3” instead of (“TURN LEFT” + “LOOK”) * 4 *
3 + (“TURN RIGHT” * 2 + “WALK”) * 2.

8.3 EXAMPLE OUTPUTS FROM CODE-DAVINCI-002

In this section, we present 5 examples of successes and failures of the code-davinci-002model
for chain-of-thought prompting and least-to-most prompting.

8.3.1 CHAIN-OF-THOUGHT PROMPTING: SUCCESS

“jump around left twice after walk opposite left thrice”

Golden:
TURN LEFT TURN LEFT WALK TURN LEFT TURN LEFT WALK TURN LEFT TURN LEFT WALK
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TURN LEFT JUMP TURN LEFT JUMP TURN LEFT JUMP TURN LEFT JUMP TURN LEFT JUMP
TURN LEFT JUMP TURN LEFT JUMP TURN LEFT JUMP

Solution:
Q: “jump around left twice after walk opposite left thrice”
A: The output of “jump around left twice after walk opposite left thrice” concatenates: the output of
“walk opposite left thrice”, the output of “jump around left twice”. “walk opposite left thrice” outputs
(“TURN LEFT” * 2 + “WALK”) * 3. “jump around left twice” outputs (“TURN LEFT” + “JUMP”) * 4 * 2.
So concatenating the output of “walk opposite left thrice” and the output of “jump around left twice”
leads to (“TURN LEFT” * 2 + “WALK”) * 3 + (“TURN LEFT” + “JUMP”) * 4 * 2. So the output of “jump
around left twice after walk opposite left thrice” is (“TURN LEFT” * 2 + “WALK”) * 3 + (“TURN LEFT”
+ “JUMP”) * 4 * 2.

“walk around left twice and turn around right thrice”

Golden:
TURN LEFT WALK TURN LEFT WALK TURN LEFT WALK TURN LEFT WALK TURN LEFT
WALK TURN LEFT WALK TURN LEFT WALK TURN LEFT WALK TURN RIGHT TURN RIGHT
TURN RIGHT TURN RIGHT TURN RIGHT TURN RIGHT TURN RIGHT TURN RIGHT
TURN RIGHT TURN RIGHT TURN RIGHT TURN RIGHT

Solution:
Q: “walk around left twice and turn around right thrice”
A: The output of “walk around left twice and turn around right thrice” concatenates: the output of
“walk around left”, the output of “walk around left”, the output of “turn around right”, the output of “turn
around right”, the output of “turn around right”. “walk around left” outputs (“TURN LEFT” + “WALK”) *
4. “turn around right” outputs “TURN RIGHT” * 4. So concatenating the output of “walk around left”,
the output of “walk around left”, the output of “turn around right”, the output of “turn around right”, the
output of “turn around right” leads to (“TURN LEFT” + “WALK”) * 4 + (“TURN LEFT” + “WALK”) * 4
+ “TURN RIGHT” * 4 + “TURN RIGHT” * 4 + “TURN RIGHT” * 4. So the output of “walk around left
twice and turn around right thrice” is (“TURN LEFT” + “WALK”) * 4 + (“TURN LEFT” + “WALK”) * 4 +
“TURN RIGHT” * 4 + “TURN RIGHT” * 4 + “TURN RIGHT” * 4.

“jump around right thrice after run left thrice”

Golden:
TURN LEFT RUN TURN LEFT RUN TURN LEFT RUN TURN RIGHT JUMP TURN RIGHT JUMP
TURN RIGHT JUMP TURN RIGHT JUMP TURN RIGHT JUMP TURN RIGHT JUMP TURN RIGHT
JUMP TURN RIGHT JUMP TURN RIGHT JUMP TURN RIGHT JUMP TURN RIGHT JUMP
TURN RIGHT JUMP

Solution:
Q: “jump around right thrice after run left thrice”
A: The output of “jump around right thrice after run left thrice” concatenates: the output of “run left
thrice”, the output of “jump around right thrice”. “run left thrice” outputs (“TURN LEFT” + “RUN”) *
3. “jump around right thrice” outputs (“TURN RIGHT” + “JUMP”) * 12. So concatenating the output
of “run left thrice” and the output of “jump around right thrice” leads to (“TURN LEFT” + “RUN”) * 3
+ (“TURN RIGHT” + “JUMP”) * 12. So the output of “jump around right thrice after run left thrice” is
(“TURN LEFT” + “RUN”) * 3 + (“TURN RIGHT” + “JUMP”) * 12.

“run around left twice and walk around left thrice”

Golden:
TURN LEFT RUN TURN LEFT RUN TURN LEFT RUN TURN LEFT RUN TURN LEFT RUN
TURN LEFT RUN TURN LEFT RUN TURN LEFT RUN TURN LEFT WALK TURN LEFT WALK
TURN LEFT WALK TURN LEFT WALK TURN LEFT WALK TURN LEFT WALK TURN LEFT WALK
TURN LEFT WALK TURN LEFT WALK TURN LEFT WALK TURN LEFT WALK TURN LEFT WALK
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Solution:
Q: “run around left twice and walk around left thrice”
A: The output of “run around left twice and walk around left thrice” concatenates: the output of
“run around left twice”, the output of “walk around left thrice”. “run around left twice” outputs
(“TURN LEFT” + “RUN”) * 4 * 2. “walk around left thrice” outputs (“TURN LEFT” + “WALK”) * 4 *
3. So concatenating the output of “run around left twice” and the output of “walk around left thrice”
leads to (“TURN LEFT” + “RUN”) * 4 * 2 + (“TURN LEFT” + “WALK”) * 4 * 3. So the output of “run
around left twice and walk around left thrice” is (“TURN LEFT” + “RUN”) * 4 * 2 + (“TURN LEFT” +
“WALK”) * 4 * 3.

“jump around left thrice after turn around left thrice”

Golden:
TURN LEFT TURN LEFT TURN LEFT TURN LEFT TURN LEFT TURN LEFT TURN LEFT
TURN LEFT TURN LEFT TURN LEFT TURN LEFT TURN LEFT TURN LEFT JUMP TURN LEFT
JUMP TURN LEFT JUMP TURN LEFT JUMP TURN LEFT JUMP TURN LEFT JUMP TURN LEFT
JUMP TURN LEFT JUMP TURN LEFT JUMP TURN LEFT JUMP TURN LEFT JUMP TURN LEFT
JUMP

Solution:
Q: “jump around left thrice after turn around left thrice”
A: The output of “jump around left thrice after turn around left thrice” concatenates: the output of
“turn around left thrice”, the output of “jump around left thrice”. “turn around left thrice” outputs
“TURN LEFT” * 4 * 3. “jump around left thrice” outputs (“TURN LEFT” + “JUMP”) * 4 * 3. So
concatenating the output of “turn around left thrice” and the output of “jump around left thrice” leads
to “TURN LEFT” * 4 * 3 + (“TURN LEFT” + “JUMP”) * 4 * 3. So the output of “jump around left thrice
after turn around left thrice” is “TURN LEFT” * 4 * 3 + (“TURN LEFT” + “JUMP”) * 4 * 3.

8.3.2 CHAIN-OF-THOUGHT PROMPTING: FAILURE

“look around right and look around right thrice”

Golden:
TURN RIGHT LOOK TURN RIGHT LOOK TURN RIGHT LOOK TURN RIGHT LOOK TURN RIGHT
LOOK TURN RIGHT LOOK TURN RIGHT LOOK TURN RIGHT LOOK TURN RIGHT LOOK
TURN RIGHT LOOK TURN RIGHT LOOK TURN RIGHT LOOK TURN RIGHT LOOK TURN RIGHT
LOOK TURN RIGHT LOOK TURN RIGHT LOOK

Solution:
Q: “look around right and look around right thrice”
A: The output of “look around right and look around right thrice” concatenates: the output of “look
around right”, the output of “look around right thrice”. “look around right” outputs “TURN RIGHT” * 4
+ “LOOK”. “look around right thrice” outputs (“TURN RIGHT” * 4 + “LOOK”) * 3. So concatenating
the output of “look around right” and the output of “look around right thrice” leads to “TURN RIGHT”
* 4 + “LOOK” + (“TURN RIGHT” * 4 + “LOOK”) * 3. So the output of “look around right and look
around right thrice” is “TURN RIGHT” * 4 + “LOOK” + (“TURN RIGHT” * 4 + “LOOK”) * 3.

“run around left thrice and run left twice”

Golden:
TURN LEFT RUN TURN LEFT RUN TURN LEFT RUN TURN LEFT RUN TURN LEFT RUN
TURN LEFT RUN TURN LEFT RUN TURN LEFT RUN TURN LEFT RUN TURN LEFT RUN
TURN LEFT RUN TURN LEFT RUN TURN LEFT RUN TURN LEFT RUN

Solution:
Q: “run around left thrice and run left twice”
A: The output of “run around left thrice and run left twice” concatenates: the output of “run around

35



Published as a conference paper at ICLR 2023

left thrice”, the output of “run left twice”. “run around left thrice” outputs (“TURN LEFT” + “RUN”) *
3. “run left twice” outputs “TURN LEFT” + “RUN” * 2. So concatenating the output of “run around
left thrice” and the output of “run left twice” leads to (“TURN LEFT” + “RUN”) * 3 + “TURN LEFT” +
“RUN” * 2. So the output of “run around left thrice and run left twice” is (“TURN LEFT” + “RUN”) * 3
+ “TURN LEFT” + “RUN” * 2.

“walk and walk around left thrice”

Golden:
WALK TURN LEFT WALK TURN LEFT WALK TURN LEFT WALK TURN LEFT WALK TURN LEFT
WALK TURN LEFT WALK TURN LEFT WALK TURN LEFT WALK TURN LEFT WALK TURN LEFT
WALK TURN LEFT WALK TURN LEFT WALK

Solution:
Q: “walk and walk around left thrice”
A: The output of “walk and walk around left thrice” concatenates: the output of “walk”, the output of
“walk around left thrice”. “walk” outputs “WALK”. “walk around left thrice” outputs (“TURN LEFT” +
“WALK”) * 4. So concatenating the output of “walk” and the output of “walk around left thrice” leads
to “WALK” + (“TURN LEFT” + “WALK”) * 4. So the output of “walk and walk around left thrice” is
“WALK” + (“TURN LEFT” + “WALK”) * 4.

“jump around right thrice after turn opposite left twice”

Golden:
TURN LEFT TURN LEFT TURN LEFT TURN LEFT TURN RIGHT JUMP TURN RIGHT JUMP
TURN RIGHT JUMP TURN RIGHT JUMP TURN RIGHT JUMP TURN RIGHT JUMP TURN RIGHT
JUMP TURN RIGHT JUMP TURN RIGHT JUMP TURN RIGHT JUMP TURN RIGHT JUMP
TURN RIGHT JUMP

Solution:
Q: “jump around right thrice after turn opposite left twice”
A: The output of “jump around right thrice after turn opposite left twice” concatenates: the output
of “turn opposite left twice”, the output of “jump around right thrice”. “turn opposite left twice”
outputs “TURN LEFT” * 2. “jump around right thrice” outputs (“TURN RIGHT” + “JUMP”) * 4. So
concatenating the output of “turn opposite left twice” and the output of “jump around right thrice”
leads to “TURN LEFT” * 2 + (“TURN RIGHT” + “JUMP”) * 4. So the output of “jump around right
thrice after turn opposite left twice” is “TURN LEFT” * 2 + (“TURN RIGHT” + “JUMP”) * 4.

“run opposite right after walk around right thrice”

Golden:
TURN RIGHT WALK TURN RIGHT WALK TURN RIGHT WALK TURN RIGHT WALK TURN RIGHT
WALK TURN RIGHT WALK TURN RIGHT WALK TURN RIGHT WALK TURN RIGHT WALK
TURN RIGHT WALK TURN RIGHT WALK TURN RIGHT WALK TURN RIGHT TURN RIGHT RUN

Solution:
Q: “run opposite right after walk around right thrice”
A: The output of “run opposite right after walk around right thrice” concatenates: the output of
“walk around right thrice”, the output of “run opposite right”. “walk around right thrice” outputs
(“TURN RIGHT” + “WALK”) * 3. “run opposite right” outputs “TURN RIGHT” * 2 + “RUN”. So
concatenating the output of “walk around right thrice” and the output of “run opposite right” leads to
(“TURN RIGHT” + “WALK”) * 3 + “TURN RIGHT” * 2 + “RUN”. So the output of “run opposite right
after walk around right thrice” is (“TURN RIGHT” + “WALK”) * 3 + “TURN RIGHT” * 2 + “RUN”.
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8.3.3 LEAST-TO-MOST PROMPTING: SUCCESS

“jump around left thrice and walk opposite right”

Golden:
TURN LEFT JUMP TURN LEFT JUMP TURN LEFT JUMP TURN LEFT JUMP TURN LEFT JUMP
TURN LEFT JUMP TURN LEFT JUMP TURN LEFT JUMP TURN LEFT JUMP TURN LEFT JUMP
TURN LEFT JUMP TURN LEFT JUMP TURN RIGHT TURN RIGHT WALK

Decomposition:
Q: “jump around left thrice and walk opposite right”
A: “jump around left thrice” can be solved by: “jump left”, “jump around left”, “jump around left thrice”.
“walk opposite right” can be solved by: “walk opposite right”. So, “jump around left thrice and walk
opposite right” can be solved by: “jump left”, “jump around left”, “jump around left thrice”, “walk
opposite right”.

Solution:
Q: “jump left”
A: The output of “jump left” concatenates: the output of “turn left”, the output of “jump”. “turn left”
outputs “TURN LEFT”. “jump” outputs “JUMP”. So concatenating the output of “turn left” and the out-
put of “jump” leads to “TURN LEFT” + “JUMP”. So the output of “jump left” is “TURN LEFT” + “JUMP”.

Q: “jump around left”
A: The output of “jump around left” concatenates: the output of “jump left”, the output of “jump left”,
the output of “jump left”, the output of “jump left”. “jump left” outputs “TURN LEFT” + “JUMP”. So
repeating the output of “jump around left” four times leads to (“TURN LEFT” + “JUMP”) * 4. So the
output of “jump around left” is (“TURN LEFT” + “JUMP”) * 4.

Q: “jump around left thrice”
A: The output of “jump around left thrice” concatenates: the output of “jump around left”, the output
of “jump around left”, the output of “jump around left”. “jump around left” outputs (“TURN LEFT” +
“JUMP”) * 4. So repeating the output of “jump around left” three times leads to (“TURN LEFT” +
“JUMP”) * 4 * 3. So the output of “jump around left thrice” is (“TURN LEFT” + “JUMP”) * 4 * 3.

Q: “walk opposite right”
A: The output of “walk opposite right” concatenates: the output of “turn opposite right”, the output of
“walk”. “turn opposite right” outputs “TURN RIGHT” * 2. “walk” outputs “WALK”. So concatenating
the output of “turn opposite right” and the output of “walk” leads to “TURN RIGHT” * 2 + “WALK”. So
the output of “walk opposite right” is “TURN RIGHT” * 2 + “WALK”.

Q: “jump around left thrice and walk opposite right”
A: The output of “jump around left thrice and walk opposite right” concatenates: the output of
“jump around left thrice”, the output of “walk opposite right”. “jump around left thrice” outputs
(“TURN LEFT” + “JUMP”) * 4 * 3. “walk opposite right” outputs “TURN RIGHT” * 2 + “WALK”. So
concatenating the output of “jump around left thrice” and the output of “walk opposite right” leads to
(“TURN LEFT” + “JUMP”) * 4 * 3 + “TURN RIGHT” * 2 + “WALK”. So the output of “jump around left
thrice and walk opposite right” is (“TURN LEFT” + “JUMP”) * 4 * 3 + “TURN RIGHT” * 2 + “WALK”.

“turn around left thrice after run around right thrice”

Golden:
TURN RIGHT RUN TURN RIGHT RUN TURN RIGHT RUN TURN RIGHT RUN TURN RIGHT RUN
TURN RIGHT RUN TURN RIGHT RUN TURN RIGHT RUN TURN RIGHT RUN TURN RIGHT
RUN TURN RIGHT RUN TURN RIGHT RUN TURN LEFT TURN LEFT TURN LEFT TURN LEFT
TURN LEFT TURN LEFT TURN LEFT TURN LEFT TURN LEFT TURN LEFT TURN LEFT
TURN LEFT

Decomposition:
Q: “turn around left thrice after run around right thrice”
A: “turn around left thrice” can be solved by: “turn left”, “turn around left”, “turn around left thrice”.
“run around right thrice” can be solved by: “run right”, “run around right”, “run around right thrice”.
So, “turn around left thrice after run around right thrice” can be solved by: “turn left”, “turn around
left”, “turn around left thrice”, “run right”, “run around right”, “run around right thrice”.
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Solution:
Q: “turn around left”
A: The output of “turn around left” concatenates: the output of “turn left”, the output of “turn left”, the
output of “turn left”, the output of “turn left”. “turn left” outputs “TURN LEFT”. So repeating the output
of “turn left” four times leads to “TURN LEFT” * 4. So the output of “turn around left” is “TURN LEFT”
* 4.

Q: “turn around left thrice”
A: The output of “turn around left thrice” concatenates: the output of “turn around left”, the output of
“turn around left”, the output of “turn around left”. “turn around left” outputs “TURN LEFT” * 4. So
repeating the output of “turn around left” three times leads to (“TURN LEFT” * 4) * 3. So the output
of “turn around left thrice” is (“TURN LEFT” * 4) * 3.

Q: “run right”
A: The output of “run right” concatenates: the output of “turn right”, the output of “run”. “turn right”
outputs “TURN RIGHT”. “run” outputs “RUN”. So concatenating the output of “turn right” and the
output of “run” leads to “TURN RIGHT” + “RUN”. So the output of “run right” is “TURN RIGHT” +
“RUN”.

Q: “run around right”
A: The output of “run around right” concatenates: the output of “run right”, the output of “run right”,
the output of “run right”, the output of “run right”. “run right” outputs “TURN RIGHT” + “RUN”. So
repeating the output of “run right” four times leads to (“TURN RIGHT” + “RUN”) * 4. So the output of
“run around right” is (“TURN RIGHT” + “RUN”) * 4.

Q: “run around right thrice”
A: The output of “run around right thrice” concatenates: the output of “run around right”, the output
of “run around right”, the output of “run around right”. “run around right” outputs (“TURN RIGHT” +
“RUN”) * 4. So repeating the output of “run around right” three times leads to ((“TURN RIGHT” +
“RUN”) * 4) * 3. So the output of “run around right thrice” is ((“TURN RIGHT” + “RUN”) * 4) * 3.

Q: “turn around left thrice after run around right thrice”
A: The output of “turn around left thrice after run around right thrice” concatenates: the output of
“run around right thrice”, the output of “turn around left thrice”. “run around right thrice” outputs
((“TURN RIGHT” + “RUN”) * 4) * 3. “turn around left thrice” outputs (“TURN LEFT” * 4) * 3. So
concatenating the output of “run around right thrice” and the output of “turn around left thrice” leads
to ((“TURN RIGHT” + “RUN”) * 4) * 3 + (“TURN LEFT” * 4) * 3. So the output of “turn around left
thrice after run around right thrice” is ((“TURN RIGHT” + “RUN”) * 4) * 3 + (“TURN LEFT” * 4) * 3.

“turn left after look around left thrice”

Golden:
TURN LEFT LOOK TURN LEFT LOOK TURN LEFT LOOK TURN LEFT LOOK TURN LEFT LOOK
TURN LEFT LOOK TURN LEFT LOOK TURN LEFT LOOK TURN LEFT LOOK TURN LEFT LOOK
TURN LEFT LOOK TURN LEFT LOOK TURN LEFT

Decomposition:
Q: “turn left after look around left thrice”
A: “turn left” can be solved by: “turn left”. “look around left thrice” can be solved by: “look left”, “look
around left”, “look around left thrice”. So, “turn left after look around left thrice” can be solved by:
“turn left”, “look left”, “look around left”, “look around left thrice”.

Solution:
Q: “look left”
A: The output of “look left” concatenates: the output of “turn left”, the output of “look”. “turn left”
outputs “TURN LEFT”. “look” outputs “LOOK”. So concatenating the output of “turn left” and the
output of “look” leads to “TURN LEFT” + “LOOK”. So the output of “look left” is “TURN LEFT” +
“LOOK”.

Q: “look around left”
A: The output of “look around left” concatenates: the output of “look left”, the output of “look left”, the
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output of “look left”, the output of “look left”. “look left” outputs “TURN LEFT” + “LOOK”. So repeating
the output of “look left” four times leads to (“TURN LEFT” + “LOOK”) * 4. So the output of “look
around left” is (“TURN LEFT” + “LOOK”) * 4.

Q: “look around left thrice”
A: The output of “look around left thrice” concatenates: the output of “look around left”, the output
of “look around left”, the output of “look around left”. “look around left” outputs (“TURN LEFT” +
“LOOK”) * 4. So repeating the output of “look around left” three times leads to ((“TURN LEFT” +
“LOOK”) * 4) * 3. So the output of “look around left thrice” is ((“TURN LEFT” + “LOOK”) * 4) * 3.

Q: “turn left after look around left thrice”
A: The output of “turn left after look around left thrice” concatenates: the output of “look around left
thrice”, the output of “turn left”. “look around left thrice” outputs ((“TURN LEFT” + “LOOK”) * 4) * 3.
“turn left” outputs “TURN LEFT”. So concatenating the output of “look around left thrice” and the
output of “turn left” leads to ((“TURN LEFT” + “LOOK”) * 4) * 3 + “TURN LEFT”. So the output of
“turn left after look around left thrice” is ((“TURN LEFT” + “LOOK”) * 4) * 3 + “TURN LEFT”.

“turn around left thrice and jump around left thrice”

Golden:
TURN LEFT TURN LEFT TURN LEFT TURN LEFT TURN LEFT TURN LEFT TURN LEFT
TURN LEFT TURN LEFT TURN LEFT TURN LEFT TURN LEFT TURN LEFT JUMP TURN LEFT
JUMP TURN LEFT JUMP TURN LEFT JUMP TURN LEFT JUMP TURN LEFT JUMP TURN LEFT
JUMP TURN LEFT JUMP TURN LEFT JUMP TURN LEFT JUMP TURN LEFT JUMP TURN LEFT
JUMP

Decomposition:
Q: “turn around left thrice and jump around left thrice”
A: “turn around left thrice” can be solved by: “turn left”, “turn around left”, “turn around left thrice”.
“jump around left thrice” can be solved by: “jump left”, “jump around left”, “jump around left thrice”.
So, “turn around left thrice and jump around left thrice” can be solved by: “turn left”, “turn around
left”, “turn around left thrice”, “jump left”, “jump around left”, “jump around left thrice”.

Solution:
Q: “turn around left”
A: The output of “turn around left” concatenates: the output of “turn left”, the output of “turn left”, the
output of “turn left”, the output of “turn left”. “turn left” outputs “TURN LEFT”. So repeating the output
of “turn left” four times leads to “TURN LEFT” * 4. So the output of “turn around left” is “TURN LEFT”
* 4.

Q: “turn around left thrice”
A: The output of “turn around left thrice” concatenates: the output of “turn around left”, the output of
“turn around left”, the output of “turn around left”. “turn around left” outputs “TURN LEFT” * 4. So
repeating the output of “turn around left” three times leads to (“TURN LEFT” * 4) * 3. So the output
of “turn around left thrice” is (“TURN LEFT” * 4) * 3.

Q: “jump left”
A: The output of “jump left” concatenates: the output of “turn left”, the output of “jump”. “turn left”
outputs “TURN LEFT”. “jump” outputs “JUMP”. So concatenating the output of “turn left” and the out-
put of “jump” leads to “TURN LEFT” + “JUMP”. So the output of “jump left” is “TURN LEFT” + “JUMP”.

Q: “jump around left”
A: The output of “jump around left” concatenates: the output of “jump left”, the output of “jump left”,
the output of “jump left”, the output of “jump left”. “jump left” outputs “TURN LEFT” + “JUMP”. So
repeating the output of “jump left” four times leads to (“TURN LEFT” + “JUMP”) * 4. So the output of
“jump around left” is (“TURN LEFT” + “JUMP”) * 4.

Q: “jump around left thrice”
A: The output of “jump around left thrice” concatenates: the output of “jump around left”, the output
of “jump around left”, the output of “jump around left”. “jump around left” outputs (“TURN LEFT” +
“JUMP”) * 4. So repeating the output of “jump around left” three times leads to ((“TURN LEFT” +
“JUMP”) * 4) * 3. So the output of “jump around left thrice” is ((“TURN LEFT” + “JUMP”) * 4) * 3.
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Q: “turn around left thrice and jump around left thrice”
A: The output of “turn around left thrice and jump around left thrice” concatenates: the output of
“turn around left thrice”, the output of “jump around left thrice”. “turn around left thrice” outputs
(“TURN LEFT” * 4) * 3. “jump around left thrice” outputs ((“TURN LEFT” + “JUMP”) * 4) * 3. So
concatenating the output of “turn around left thrice” and the output of “jump around left thrice” leads
to (“TURN LEFT” * 4) * 3 + ((“TURN LEFT” + “JUMP”) * 4) * 3. So the output of “turn around left
thrice and jump around left thrice” is (“TURN LEFT” * 4) * 3 + ((“TURN LEFT” + “JUMP”) * 4) * 3.

“walk around right twice after walk around right twice”

Golden:
TURN RIGHT WALK TURN RIGHT WALK TURN RIGHT WALK TURN RIGHT WALK TURN RIGHT
WALK TURN RIGHT WALK TURN RIGHT WALK TURN RIGHT WALK TURN RIGHT WALK
TURN RIGHT WALK TURN RIGHT WALK TURN RIGHT WALK TURN RIGHT WALK TURN RIGHT
WALK TURN RIGHT WALK TURN RIGHT WALK

Decomposition:
Q: “walk around right twice after walk around right twice”
A: “walk around right twice” can be solved by: “walk right”, “walk around right”, “walk around right
twice”. “walk around right twice” can be solved by: “walk right”, “walk around right”, “walk around
right twice”. So, “walk around right twice after walk around right twice” can be solved by: “walk right”,
“walk around right”, “walk around right twice”, “walk right”, “walk around right”, “walk around right
twice”.

Solution:
Q: “walk right”
A: The output of “walk right” concatenates: the output of “turn right”, the output of “walk”. “turn right”
outputs “TURN RIGHT”. “walk” outputs “WALK”. So concatenating the output of “turn right” and the
output of “walk” leads to “TURN RIGHT” + “WALK”. So the output of “walk right” is “TURN RIGHT” +
“WALK”.

Q: “walk around right”
A: The output of “walk around right” concatenates: the output of “walk right”, the output of “walk
right”, the output of “walk right”, the output of “walk right”. “walk right” outputs “TURN RIGHT”
+ “WALK”. So repeating the output of “walk around right” four times leads to (“TURN RIGHT” +
“WALK”) * 4. So the output of “walk around right” is (“TURN RIGHT” + “WALK”) * 4.

Q: “walk around right twice”
A: The output of “walk around right twice” concatenates: the output of “walk around right”, the output
of “walk around right”. “walk around right” outputs (“TURN RIGHT” + “WALK”) * 4. So repeating the
output of “walk around right” twice leads to (“TURN RIGHT” + “WALK”) * 4 * 2. So the output of “walk
around right twice” is (“TURN RIGHT” + “WALK”) * 4 * 2.

Q: “walk around right twice after walk around right twice”
A: The output of “walk around right twice after walk around right twice” concatenates: the output of
“walk around right twice”, the output of “walk around right twice”. “walk around right twice” outputs
(“TURN RIGHT” + “WALK”) * 4 * 2. So repeating the output of “walk around right twice” twice leads
to (“TURN RIGHT” + “WALK”) * 4 * 2 * 2. So the output of “walk around right twice after walk around
right twice” is (“TURN RIGHT” + “WALK”) * 4 * 2 * 2.

8.3.4 LEAST-TO-MOST PROMPTING: FAILURE

“jump opposite right twice and jump around right thrice”

Golden:
TURN RIGHT TURN RIGHT JUMP TURN RIGHT TURN RIGHT JUMP TURN RIGHT JUMP
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TURN RIGHT JUMP TURN RIGHT JUMP TURN RIGHT JUMP TURN RIGHT JUMP TURN RIGHT
JUMP TURN RIGHT JUMP TURN RIGHT JUMP TURN RIGHT JUMP TURN RIGHT JUMP
TURN RIGHT JUMP TURN RIGHT JUMP

Decomposition:
Q: “jump opposite right twice and jump around right thrice”
A: “jump opposite right twice” can be solved by: “jump opposite right”, “jump opposite right twice”.
“jump around right thrice” can be solved by: “jump right”, “jump around right”, “jump around right
thrice”. So, “jump opposite right twice and jump around right thrice” can be solved by: “jump opposite
right”, “jump opposite right twice”, “jump right”, “jump around right”, “jump around right thrice”.

Solution:
Q: “jump opposite right”
A: The output of “jump opposite right” concatenates: the output of “turn opposite right”, the output of
“jump”. “turn opposite right” outputs “TURN RIGHT” * 2. “jump” outputs “JUMP”. So concatenating
the output of “turn opposite right” and the output of “jump” leads to “TURN RIGHT” * 2 + “JUMP”. So
the output of “jump opposite right” is “TURN RIGHT” * 2 + “JUMP”.

Q: “jump opposite right twice”
A: The output of “jump opposite right twice” concatenates: the output of “jump opposite right”, the
output of “jump opposite right”. “jump opposite right” outputs “TURN RIGHT” * 2 + “JUMP”. So
repeating the output of “jump opposite right” twice leads to (“TURN RIGHT” * 2 + “JUMP”) * 2. So
the output of “jump opposite right twice” is (“TURN RIGHT” * 2 + “JUMP”) * 2.

Q: “jump right”
A: The output of “jump right” concatenates: the output of “turn right”, the output of “jump”. “turn right”
outputs “TURN RIGHT”. “jump” outputs “JUMP”. So concatenating the output of “turn right” and the
output of “jump” leads to “TURN RIGHT” + “JUMP”. So the output of “jump right” is “TURN RIGHT”
+ “JUMP”.

Q: “jump around right”
A: The output of “jump around right” concatenates: the output of “jump right”, the output of “jump
right”, the output of “jump right”, the output of “jump right”. “jump right” outputs “TURN RIGHT”
+ “JUMP”. So repeating the output of “jump around right” four times leads to (“TURN RIGHT” +
“JUMP”) * 4. So the output of “jump around right” is (“TURN RIGHT” + “JUMP”) * 4.

Q: “jump around right thrice”
A: The output of “jump around right thrice” concatenates: the output of “jump right”, the output of
“jump right”, the output of “jump right”, the output of “jump right”, the output of “jump right”, the
output of “jump right”, the output of “jump right”, the output of “jump right”. “jump right” outputs
“TURN RIGHT” + “JUMP”. So repeating the output of “jump around right” eight times leads to
(“TURN RIGHT” + “JUMP”) * 8. So the output of “jump around right thrice” is (“TURN RIGHT” +
“JUMP”) * 8.

Q: “jump opposite right twice and jump around right thrice”
A: The output of “jump opposite right twice and jump around right thrice” concatenates: the output
of “jump opposite right twice”, the output of “jump around right thrice”. “jump opposite right twice”
outputs (“TURN RIGHT” * 2 + “JUMP”) * 2. “jump around right thrice” outputs (“TURN RIGHT” +
“JUMP”) * 8. So concatenating the output of “jump opposite right twice” and the output of “jump
around right thrice” leads to (“TURN RIGHT” * 2 + “JUMP”) * 2 + (“TURN RIGHT” + “JUMP”) * 8.
So the output of “jump opposite right twice and jump around right thrice” is (“TURN RIGHT” * 2 +
“JUMP”) * 2 + (“TURN RIGHT” + “JUMP”) * 8.

“walk around left thrice after walk around right twice”

Golden:
TURN RIGHT WALK TURN RIGHT WALK TURN RIGHT WALK TURN RIGHT WALK TURN RIGHT
WALK TURN RIGHT WALK TURN RIGHT WALK TURN RIGHT WALK TURN LEFT WALK
TURN LEFT WALK TURN LEFT WALK TURN LEFT WALK TURN LEFT WALK TURN LEFT WALK
TURN LEFT WALK TURN LEFT WALK TURN LEFT WALK TURN LEFT WALK TURN LEFT WALK
TURN LEFT WALK
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Decomposition:
Q: “walk around left thrice after walk around right twice”
A: “walk around left thrice” can be solved by: “walk left”, “walk around left”, “walk around left thrice”.
“walk around right twice” can be solved by: “walk right”, “walk around right”, “walk around right twice”.
So, “walk around left thrice after walk around right twice” can be solved by: “walk left”, “walk around
left”, “walk around left thrice”, “walk right”, “walk around right”, “walk around right twice”.

Solution:
Q: “walk left”
A: The output of “walk left” concatenates: the output of “turn left”, the output of “walk”. “turn left”
outputs “TURN LEFT”. “walk” outputs “WALK”. So concatenating the output of “turn left” and the out-
put of “walk” leads to “TURN LEFT” + “WALK”. So the output of “walk left” is “TURN LEFT” + “WALK”.

Q: “walk around left”
A: The output of “walk around left” concatenates: the output of “walk left”, the output of “walk left”,
the output of “walk left”, the output of “walk left”. “walk left” outputs “TURN LEFT” + “WALK”. So
repeating the output of “walk around left” four times leads to (“TURN LEFT” + “WALK”) * 4. So the
output of “walk around left” is (“TURN LEFT” + “WALK”) * 4.

Q: “walk around left thrice”
A: The output of “walk around left thrice” concatenates: the output of “walk around left”, the output
of “walk around left”, the output of “walk around left”. “walk around left” outputs (“TURN LEFT” +
“WALK”) * 4. So repeating the output of “walk around left” three times leads to (“TURN LEFT” +
“WALK”) * 4 * 3. So the output of “walk around left thrice” is (“TURN LEFT” + “WALK”) * 4 * 3.

Q: “walk right”
A: The output of “walk right” concatenates: the output of “turn right”, the output of “walk”. “turn right”
outputs “TURN RIGHT”. “walk” outputs “WALK”. So concatenating the output of “turn right” and the
output of “walk” leads to “TURN RIGHT” + “WALK”. So the output of “walk right” is “TURN RIGHT” +
“WALK”.

Q: “walk around right”
A: The output of “walk around right” concatenates: the output of “walk right”, the output of “walk
right”, the output of “walk right”, the output of “walk right”. “walk right” outputs “TURN RIGHT”
+ “WALK”. So repeating the output of “walk around right” four times leads to (“TURN RIGHT” +
“WALK”) * 4. So the output of “walk around right” is (“TURN RIGHT” + “WALK”) * 4.

Q: “walk around right twice”
A: The output of “walk around right twice” concatenates: the output of “walk around right”, the output
of “walk around right”. “walk around right” outputs (“TURN RIGHT” + “WALK”) * 4. So repeating the
output of “walk around right” twice leads to (“TURN RIGHT” + “WALK”) * 4 * 2. So the output of “walk
around right twice” is (“TURN RIGHT” + “WALK”) * 4 * 2.

Q: “walk around left thrice after walk around right twice”
A: The output of “walk around left thrice after walk around right twice” concatenates: the output of
“walk around left thrice”, the output of “walk around right twice”. “walk around left thrice” outputs
(“TURN LEFT” + “WALK”) * 4 * 3. “walk around right twice” outputs (“TURN RIGHT” + “WALK”)
* 4 * 2. So concatenating the output of “walk around left thrice” and the output of “walk around
right twice” leads to (“TURN LEFT” + “WALK”) * 4 * 3 + (“TURN RIGHT” + “WALK”) * 4 * 2. So the
output of “walk around left thrice after walk around right twice” is (“TURN LEFT” + “WALK”) * 4 * 3 +
(“TURN RIGHT” + “WALK”) * 4 * 2.

“run around left thrice after run around right twice”

Golden:
TURN RIGHT RUN TURN RIGHT RUN TURN RIGHT RUN TURN RIGHT RUN TURN RIGHT
RUN TURN RIGHT RUN TURN RIGHT RUN TURN RIGHT RUN TURN LEFT RUN TURN LEFT
RUN TURN LEFT RUN TURN LEFT RUN TURN LEFT RUN TURN LEFT RUN TURN LEFT RUN
TURN LEFT RUN TURN LEFT RUN TURN LEFT RUN TURN LEFT RUN TURN LEFT RUN

Decomposition:
Q: “run around left thrice after run around right twice”
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A: “run around left thrice” can be solved by: “run left”, “run around left”, “run around left thrice”. “run
around right twice” can be solved by: “run right”, “run around right”, “run around right twice”. So, “run
around left thrice after run around right twice” can be solved by: “run left”, “run around left”, “run
around left thrice”, “run right”, “run around right”, “run around right twice”.

Solution:
Q: “run left”
A: The output of “run left” concatenates: the output of “turn left”, the output of “run”. “turn left” outputs
“TURN LEFT”. “run” outputs “RUN”. So concatenating the output of “turn left” and the output of “run”
leads to “TURN LEFT” + “RUN”. So the output of “run left” is “TURN LEFT” + “RUN”.

Q: “run around left”
A: The output of “run around left” concatenates: the output of “run left”, the output of “run left”, the
output of “run left”, the output of “run left”. “run left” outputs “TURN LEFT” + “RUN”. So repeating
the output of “run around left” four times leads to (“TURN LEFT” + “RUN”) * 4. So the output of “run
around left” is (“TURN LEFT” + “RUN”) * 4.

Q: “run around left thrice”
A: The output of “run around left thrice” concatenates: the output of “run around left”, the output of
“run around left”, the output of “run around left”. “run around left” outputs (“TURN LEFT” + “RUN”) *
4. So repeating the output of “run around left” three times leads to (“TURN LEFT” + “RUN”) * 4 * 3.
So the output of “run around left thrice” is (“TURN LEFT” + “RUN”) * 4 * 3.

Q: “run right”
A: The output of “run right” concatenates: the output of “turn right”, the output of “run”. “turn right”
outputs “TURN RIGHT”. “run” outputs “RUN”. So concatenating the output of “turn right” and the
output of “run” leads to “TURN RIGHT” + “RUN”. So the output of “run right” is “TURN RIGHT” +
“RUN”.

Q: “run around right”
A: The output of “run around right” concatenates: the output of “run right”, the output of “run right”,
the output of “run right”, the output of “run right”. “run right” outputs “TURN RIGHT” + “RUN”. So
repeating the output of “run around right” four times leads to (“TURN RIGHT” + “RUN”) * 4. So the
output of “run around right” is (“TURN RIGHT” + “RUN”) * 4.

Q: “run around right twice”
A: The output of “run around right twice” concatenates: the output of “run around right”, the output of
“run around right”. “run around right” outputs (“TURN RIGHT” + “RUN”) * 4. So repeating the output
of “run around right” twice leads to (“TURN RIGHT” + “RUN”) * 4 * 2. So the output of “run around
right twice” is (“TURN RIGHT” + “RUN”) * 4 * 2.

Q: “run around left thrice after run around right twice”
A: The output of “run around left thrice after run around right twice” concatenates: the output of
“run around left thrice”, the output of “run around right twice”. “run around left thrice” outputs
(“TURN LEFT” + “RUN”) * 4 * 3. “run around right twice” outputs (“TURN RIGHT” + “RUN”) * 4 *
2. So concatenating the output of “run around left thrice” and the output of “run around right twice”
leads to (“TURN LEFT” + “RUN”) * 4 * 3 + (“TURN RIGHT” + “RUN”) * 4 * 2. So the output of “run
around left thrice after run around right twice” is (“TURN LEFT” + “RUN”) * 4 * 3 + (“TURN RIGHT”
+ “RUN”) * 4 * 2.

“jump opposite right twice after jump around right thrice”

Golden:
TURN RIGHT JUMP TURN RIGHT JUMP TURN RIGHT JUMP TURN RIGHT JUMP TURN RIGHT
JUMP TURN RIGHT JUMP TURN RIGHT JUMP TURN RIGHT JUMP TURN RIGHT JUMP
TURN RIGHT JUMP TURN RIGHT JUMP TURN RIGHT JUMP TURN RIGHT TURN RIGHT JUMP
TURN RIGHT TURN RIGHT JUMP

Decomposition:
Q: “jump opposite right twice after jump around right thrice”
A: “jump opposite right twice” can be solved by: “jump opposite right”, “jump opposite right twice”.
“jump around right thrice” can be solved by: “jump right”, “jump around right”, “jump around right
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thrice”. So, “jump opposite right twice after jump around right thrice” can be solved by: “jump
opposite right”, “jump opposite right twice”, “jump right”, “jump around right”, “jump around right
thrice”.

Solution:
Q: “jump opposite right”
A: The output of “jump opposite right” concatenates: the output of “turn opposite right”, the output of
“jump”. “turn opposite right” outputs “TURN RIGHT” * 2. “jump” outputs “JUMP”. So concatenating
the output of “turn opposite right” and the output of “jump” leads to “TURN RIGHT” * 2 + “JUMP”. So
the output of “jump opposite right” is “TURN RIGHT” * 2 + “JUMP”.

Q: “jump opposite right twice”
A: The output of “jump opposite right twice” concatenates: the output of “jump opposite right”, the
output of “jump opposite right”. “jump opposite right” outputs “TURN RIGHT” * 2 + “JUMP”. So
repeating the output of “jump opposite right” twice leads to (“TURN RIGHT” * 2 + “JUMP”) * 2. So
the output of “jump opposite right twice” is (“TURN RIGHT” * 2 + “JUMP”) * 2.

Q: “jump right”
A: The output of “jump right” concatenates: the output of “turn right”, the output of “jump”. “turn right”
outputs “TURN RIGHT”. “jump” outputs “JUMP”. So concatenating the output of “turn right” and the
output of “jump” leads to “TURN RIGHT” + “JUMP”. So the output of “jump right” is “TURN RIGHT”
+ “JUMP”.

Q: “jump around right”
A: The output of “jump around right” concatenates: the output of “jump right”, the output of “jump
right”, the output of “jump right”, the output of “jump right”. “jump right” outputs “TURN RIGHT”
+ “JUMP”. So repeating the output of “jump around right” four times leads to (“TURN RIGHT” +
“JUMP”) * 4. So the output of “jump around right” is (“TURN RIGHT” + “JUMP”) * 4.

Q: “jump around right thrice”
A: The output of “jump around right thrice” concatenates: the output of “jump right”, the output of
“jump right”, the output of “jump right”, the output of “jump right”, the output of “jump right”, the
output of “jump right”, the output of “jump right”, the output of “jump right”. “jump right” outputs
“TURN RIGHT” + “JUMP”. So repeating the output of “jump around right” eight times leads to
(“TURN RIGHT” + “JUMP”) * 8. So the output of “jump around right thrice” is (“TURN RIGHT” +
“JUMP”) * 8.

Q: “jump opposite right twice after jump around right thrice”
A: The output of “jump opposite right twice after jump around right thrice” concatenates: the output
of “jump around right thrice”, the output of “jump opposite right twice”. “jump around right thrice”
outputs (“TURN RIGHT” + “JUMP”) * 8. “jump opposite right twice” outputs (“TURN RIGHT” * 2
+ “JUMP”) * 2. So concatenating the output of “jump around right thrice” and the output of “jump
opposite right twice” leads to (“TURN RIGHT” + “JUMP”) * 8 + (“TURN RIGHT” * 2 + “JUMP”) *
2. So the output of “jump opposite right twice after jump around right thrice” is (“TURN RIGHT” +
“JUMP”) * 8 + (“TURN RIGHT” * 2 + “JUMP”) * 2.

“walk around left thrice after walk right twice”

Golden:
TURN RIGHT WALK TURN RIGHT WALK TURN LEFT WALK TURN LEFT WALK TURN LEFT
WALK TURN LEFT WALK TURN LEFT WALK TURN LEFT WALK TURN LEFT WALK TURN LEFT
WALK TURN LEFT WALK TURN LEFT WALK TURN LEFT WALK TURN LEFT WALK

Decomposition:
Q: “walk around left thrice after walk right twice”
A: “walk around left thrice” can be solved by: “walk left”, “walk around left”, “walk around left thrice”.
“walk right twice” can be solved by: “walk right”, “walk right twice”. So, “walk around left thrice after
walk right twice” can be solved by: “walk left”, “walk around left”, “walk around left thrice”, “walk
right”, “walk right twice”.

Solution:
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Q: “walk left”
A: The output of “walk left” concatenates: the output of “turn left”, the output of “walk”. “turn left”
outputs “TURN LEFT”. “walk” outputs “WALK”. So concatenating the output of “turn left” and the out-
put of “walk” leads to “TURN LEFT” + “WALK”. So the output of “walk left” is “TURN LEFT” + “WALK”.

Q: “walk around left”
A: The output of “walk around left” concatenates: the output of “walk left”, the output of “walk left”,
the output of “walk left”, the output of “walk left”. “walk left” outputs “TURN LEFT” + “WALK”. So
repeating the output of “walk around left” four times leads to (“TURN LEFT” + “WALK”) * 4. So the
output of “walk around left” is (“TURN LEFT” + “WALK”) * 4.

Q: “walk around left thrice”
A: The output of “walk around left thrice” concatenates: the output of “walk around left”, the output
of “walk around left”, the output of “walk around left”. “walk around left” outputs (“TURN LEFT” +
“WALK”) * 4. So repeating the output of “walk around left” three times leads to (“TURN LEFT” +
“WALK”) * 4 * 3. So the output of “walk around left thrice” is (“TURN LEFT” + “WALK”) * 4 * 3.

Q: “walk right”
A: The output of “walk right” concatenates: the output of “turn right”, the output of “walk”. “turn right”
outputs “TURN RIGHT”. “walk” outputs “WALK”. So concatenating the output of “turn right” and the
output of “walk” leads to “TURN RIGHT” + “WALK”. So the output of “walk right” is “TURN RIGHT” +
“WALK”.

Q: “walk right twice”
A: The output of “walk right twice” concatenates: the output of “walk right”, the output of “walk right”.
“walk right” outputs “TURN RIGHT” + “WALK”. So repeating the output of “walk right” twice leads to
(“TURN RIGHT” + “WALK”) * 2. So the output of “walk right twice” is (“TURN RIGHT” + “WALK”) * 2.

Q: “walk around left thrice after walk right twice”
A: The output of “walk around left thrice after walk right twice” concatenates: the output of “walk
around left thrice”, the output of “walk right twice”. “walk around left thrice” outputs (“TURN LEFT”
+ “WALK”) * 4 * 3. “walk right twice” outputs (“TURN RIGHT” + “WALK”) * 2. So concatenating
the output of “walk around left thrice” and the output of “walk right twice” leads to (“TURN LEFT” +
“WALK”) * 4 * 3 + (“TURN RIGHT” + “WALK”) * 2. So the output of “walk around left thrice after walk
right twice” is (“TURN LEFT” + “WALK”) * 4 * 3 + (“TURN RIGHT” + “WALK”) * 2.

8.4 EXPANDING PYTHON EXPRESSIONS USING PROMPTING

In Section 3.2, we mention that expanding the Python expressions that we use as an intermediate
representation can be done either with a simple postprocessing script or by prompting a language
model. In the following, we present a prompt that achieves 99.7% accuracy on a random sample
of 1000 Python expressions that are outputted by our solution (using the code-davinci-002
model). This demonstrates that the L2M method can solve SCAN with a combined accuracy more
than 99% (99.7% accuracy for generating the intermediate Python expressions and 99.7% for ex-
panding these expressions), even if we do not use the Python executor and instead perform the
expansion of the intermediate representation via prompting.

Q: “JUMP” * 3
Rewrite: “JUMP” * 3
A: 1 JUMP 2 JUMP 3 JUMP

Q: “RUN” * 4 * 2
Rewrite: “RUN” * 8
A: 1 RUN 2 RUN 3 RUN 4 RUN 5 RUN 6 RUN 7 RUN 8 RUN

Q: “TURN RIGHT” + “WALK”
Rewrite: “TURN RIGHT” + “WALK”
A: TURN RIGHT WALK
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Q: (“TURN LEFT” + “LOOK”) * 2 + “TURN LEFT” + “LOOK”
Rewrite: (“TURN LEFT” + “LOOK”) * 2 + “TURN LEFT” + “LOOK”
A: 1 (TURN LEFT LOOK) 2 (TURN LEFT LOOK) TURN LEFT LOOK

Q: (“TURN RIGHT” * 2 + “JUMP”) * 4
Rewrite: (“TURN RIGHT” * 2 + “JUMP”) * 4
A: 1 (1 TURN RIGHT 2 TURN RIGHT JUMP) 2 (1 TURN RIGHT 2 TURN RIGHT JUMP) 3 (1
TURN RIGHT 2 TURN RIGHT JUMP) 4 (1 TURN RIGHT 2 TURN RIGHT JUMP)

Q: “TURN LEFT” * 2 + (“TURN RIGHT” + “WALK”) * 4 * 2
Rewrite: “TURN LEFT” * 2 + (“TURN RIGHT” + “WALK”) * 8
A: 1 TURN LEFT 2 TURN LEFT 1 (TURN RIGHT WALK) 2 (TURN RIGHT WALK) 3 (TURN RIGHT
WALK) 4 (TURN RIGHT WALK) 5 (TURN RIGHT WALK) 6 (TURN RIGHT WALK) 7 (TURN RIGHT
WALK) 8 (TURN RIGHT WALK)

Discussion. The prompt consists of 6 examples, each of which illustrates part of the knowledge
needed for this task. Note that we add numbers and parentheses when we unfold multiplication to
make it easier for the model to keep track of the repetitions.

1. Multiplication

2. Sequential multiplication

3. Addition

4. Avoid commutativity / associativity in addition

5. Nested multiplication

6. Addition of two multiplications

9 DROP

9.1 RESULTS WITH TEXT-DAVINCI-002 AND LM-540B

We reported the results using code-davinci-002. Here, we report results using the
text-davinci-002 model and a language model with 540 billion parameters (LM-540B).

text-davinci-002
Prompting method Non-football (500 cases) Football (500 cases)

Zero-Shot 27.00 31.60
Standard prompting 49.40 54.40
Chain-of-Thought 60.80 57.40

Least-to-Most 74.20 63.40

Table 16: Accuracies (%) of zero-shot and prompting methods with the GPT-3
text-davinci-002 model on the numerical reasoning subset of DROP. We evaluate on
500 randomly sampled non-football/football examples. Compared to Table ??, we observe that
text-davinci-002 is consistently worse than code-davinci-002.

9.2 NON-FOOTBALL SUBSET

9.2.1 ZERO-SHOT PROMPTING

For zero-shot, the prompt format is as follows:

Q: {question}
A: The answer is

Notice that we add “The answer is” at the beginning of the answer section.
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lm-540b
Prompting method Non-football (3988 cases) Football (1862 cases)

Zero-Shot 48.42 44.95
Standard prompting 56.54 60.47
Chain-of-Thought 63.84 67.35

Least-to-Most 79.24 69.98

Table 17: Accuracies (%) of zero-shot and prompting methods with a pretrained language model
with 540 billion parameters (lm-540).

9.2.2 STANDARD PROMPTING WITH 3 EXAMPLES

Q: Since the 1970s, U.S. governments have negotiated managed-trade agreements, such as the North
American Free Trade Agreement in the 1990s, the Dominican Republic-Central America Free Trade
Agreement in 2006, and a number of bilateral agreements. In Europe, six countries formed the
European Coal and Steel Community in 1951 which became the European Economic Community
in 1958. Two core objectives of the EEC were the development of a common market, subsequently
renamed the single market, and establishing a customs union between its member states. How many
years did the European Coal and Steel Community exist?
A: The answer is 7.

Q: In the county, the population was spread out with 23.50% under the age of 18, 8.70% from 18 to
24, 29.70% from 25 to 44, 24.70% from 45 to 64, and 13.30% who were 65 years of age or older.
How many more percent are under the age of 18 compared to the 18 to 24 group?
A: The answer is 14.8.

Q: Playing in their second straight Thanksgiving game, the Eagles struggled especially on defense,
where they were unable to stop the much-hyped Lions offense. The worst of it all was how unproven
rookie Eric Rowe was tasked with covering wide receiver Calvin Johnson, leading to Johnson catch-
ing 3 touchdowns. Stafford’s five passing touchdowns, including three of them to Johnson was too
much for the Eagles to overcome and for the second consecutive time this season, the Eagles gave
up 45 points in a game. With the loss, the Eagles drop to 4-7 on the season and 6-1 when playing on
Thanksgiving. How many TD passes did Stafford throw other than to Johnson?
A: The answer is 2.

9.2.3 CHAIN-OF-THOUGHT PROMPTING WITH 3 EXAMPLES

Q: Since the 1970s, U.S. governments have negotiated managed-trade agreements, such as the North
American Free Trade Agreement in the 1990s, the Dominican Republic-Central America Free Trade
Agreement in 2006, and a number of bilateral agreements. In Europe, six countries formed the
European Coal and Steel Community in 1951 which became the European Economic Community
in 1958. Two core objectives of the EEC were the development of a common market, subsequently
renamed the single market, and establishing a customs union between its member states. How many
years did the European Coal and Steel Community exist?
A: According to the passage, the European Coal and Steel Community was established in 1951 and
became the EEC in 1958. 1958 - 1951 = 7. So the answer is 7.

Q: In the county, the population was spread out with 23.50% under the age of 18, 8.70% from 18 to
24, 29.70% from 25 to 44, 24.70% from 45 to 64, and 13.30% who were 65 years of age or older.
How many more percent are under the age of 18 compared to the 18 to 24 group?
A: According to the passage, 23.5% are under the age of 18, and 8.7% are from ages 18 to 24. 23.5%
- 8.7% = 14.8%. So the answer is 14.8.

Q: Playing in their second straight Thanksgiving game, the Eagles struggled especially on defense,
where they were unable to stop the much-hyped Lions offense. The worst of it all was how unproven
rookie Eric Rowe was tasked with covering wide receiver Calvin Johnson, leading to Johnson catch-
ing 3 touchdowns. Stafford’s five passing touchdowns, including three of them to Johnson was too
much for the Eagles to overcome and for the second consecutive time this season, the Eagles gave
up 45 points in a game. With the loss, the Eagles drop to 4-7 on the season and 6-1 when playing on
Thanksgiving. How many TD passes did Stafford throw other than to Jhonson?
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A: According to the passage, Stafford threw 5 TD passes, 3 of which were to Johnson. 5 - 3 = 2. So
the answer is 2.

9.2.4 LEAST-TO-MOST PROMPTING I: PROBLEM DECOMPOSITION (5 EXAMPLES)

Q: The median age in the city was 22.1 years. 10.1% of residents were under the age of 18; 56.2%
were between the ages of 18 and 24; 16.1% were from 25 to 44; 10.5% were from 45 to 64; and 7%
were 65 years of age or older. Which age group is larger: under the age of 18 or 18 and 24?
A: To answer the question “Which age group is larger: under the age of 18 or 18 and 24?”, we need
to know: “How many percent were under the age of 18?”, “How many percent were between the
ages of 18 and 24?”.

Q: Old age pensions were raised by 300 francs per month to 1,700 francs for a single person and
to 3,700 francs for a couple, while health insurance benefits were made more widely available to
unemployed persons and part-time employees. How many francs were the old age pensions for a
single person before they were raised?
A: To answer the question “How many francs were the old age pensions for a single person before
they were raised?”, we need to know: “How many francs were the old age pensions for a single
person?”, “How many francs were old age pensions raised for a single person?”.

Q: In April 2011, the ECB raised interest rates for the first time since 2008 from 1% to 1.25%, with
a further increase to 1.50% in July 2011. However, in 2012-2013 the ECB lowered interest rates to
encourage economic growth, reaching the historically low 0.25% in November 2013. Soon after the
rates were cut to 0.15%, then on 4 September 2014 the central bank reduced the rates from 0.15%
to 0.05%, the lowest rates on record. How many percentage points did interest rates drop between
April 2011 and September 2014?
A: To answer the question “How many percentage points did interest rates drop between April 2011
and September 2014?”, we need to know: “What was the interest rate in April 2011?”, “What was
the interest rate in September 2014?”.

Q: Non-nationals make up more than half of the population of Bahrain. According to government
statistics dated between 2005-2009 roughly 290,000 Indians, 125,000 Bangladeshis, 45,000 Pakista-
nis, 45,000 Filipinos, and 8,000 Indonesians. How many Pakistanis and Indonesians are in Bahrain?
A: To answer the question “How many Pakistanis and Indonesians are in Bahrain?”, we need to
know: “How many Pakistanis are in Bahrain?”, “How many Indonesians are in Bahrain?”.

Q: The Census Bureaus 2006-2010 American Community Survey showed that (in 2010 inflation
adjustment dollars) median household income was $52,056 and the median family income was
$58,942. How many years did the Census Bureaus American Community Survey last?
A: To answer the question “How many years did the Census Bureaus American Community Sur-
vey last?”, we need to know: “When did the Census Bureaus American Community Survey start?”,
“When did the Census Bureaus American Community Survey end?”.

9.2.5 LEAST-TO-MOST PROMPTING II: PROBLEM SOLVING (3 EXAMPLES)

The city of Bangkok has a population of 8,280,925. The census showed that it is home to 81,570
Japanese and 55,893 Chinese nationals, as well as 117,071 expatriates from other Asian countries,
48,341 from Europe, 23,418 from the Americas.
Q: How many Chinese nationals are there?
A: “The census showed that it is home to 81,570 Japanese and 55,893 Chinese nationals”. So the
answer is 55,893 Chinese nationals.

Q: How many European nationals are there?
A: “48,341 from Europe”. So the answer is 48,341.

Q: How many more Chinese nationals are there than European nationals?
A: We know that there are 55,893 Chinese nationals. We also know that there are 48,341 European
nationals. So there are 55,893 - 48,341 = 7552 more Chinese nationals than European nationals. So
the answer is 7552.

The gender distribution of the population was 50.2% male and 49.8% female. Of the adult popula-
tion, 29 people or 14.6% of the population are between 20 and 29 years old. 28 people or 14.1% are
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30 to 39, 36 people or 18.2% are 40 to 49, and 31 people or 15.7% are 50 to 59.
Q: What is the percentage of people between 40 to 49?.
A: “36 people or 18.2% are 40 to 49”. So the answer is 18.2

Q: How many percent of people were not 40 to 49?
A: We know that 18.2% are 40 to 49. So 100% - 18.2% = 81.8% are not 40 to 49. So the answer is
81.8%.

During the 1970s the oil shocks (1973 oil crisis and 1979 energy crisis) hit Iceland hard. Inflation
rose to 43% in 1974 and 59% in 1980, falling to 15% in 1987 but rising to 30% in 1988. Iceland
experienced moderately strong GDP growth (3% on average) from 1995 to 2004. Growth slowed
between 2000 and 2002, but the economy expanded by 4.3% in 2003 and grew by 6.2% in 2004.
Growth in 2005 exceeded 6%.
Q: When did the oil crisis occur?
A: “1973 oil crisis and 1979 energy crisis”. So the answer is 1973.

Q: When did the energy crisis occur?
A: “1979 energy crisis”. So the answer is 1979.

Q: How many years passed between the oil and energy crises?
A: We know that the oil crisis occurred in 1973. We also know that the energy crisis occurred in
1979. So 1979 - 1973 = 6 years passed between the oil and energy crises. So the answer is 6.

9.3 FOOTBALL SUBSET

9.3.1 ZERO-SHOT PROMPTING

For zero-shot, the prompt format is as follows:

Q: {question}
A: The answer is

Notice that we add “The answer is” at the beginning of the answer section.

9.3.2 STANDARD PROMPTING WITH 3 EXAMPLES

Q: The Seahawks played the San Francisco 49ers. In the first quarter, the Hawks RB Julius Jones
got a 27-yard TD run, along with DT Craig Terrill returning a fumble 9 yards for a touchdown. In
the third quarter, the 49ers almost rallied as RB H. J. Torres made a 12-yard TD pass to Lucas Nelly,
along with Mare kicking a 32-yard field goal. In the final quarter, Julius Jones got another 11-yard
TD. How many yards do the shortest touchdown run and the longest touchdown pass combine for?
A: The answer is 21.

Q: The Steelers went home for a duel with the Baltimore Ravens. Pittsburgh would deliver the
opening punch in the first quarter with a 1-yard touchdown from running back Rashard Mendenhall.
The Ravens would make it even as running back Willis McGahee got a 9-yard TD. The Ravens
kicker Billy Cundiff got a 45-yard field goal in the second quarter, concluding the first half with a
10-7 lead. The Steelers brought the game into overtime with a 38-yard field goal by Andrew Foster.
The Ravens Billy Cundiff pulled off a winning 33-yard field goal in overtime. How many points did
the Ravens have at halftime?
A: The answer is 10.

Q: The Vikings flew to Bank of America Stadium to face the Carolina Panthers. After a scoreless
first quarter, Carolina got on the board with quarterback Matt Moore finding fullback Brad Hoover
on a 1-yard TD pass. After yet another scoreless quarter, Carolina sealed the game as Matt Moore
completed a 42-yard touchdown pass to wide receiver Steve Smith. How many scoreless quarters
were there?
A: The answer is 2.

9.3.3 CHAIN-OF-THOUGHT PROMPTING WITH 3 EXAMPLES

Q: The Seahawks played the San Francisco 49ers. In the first quarter, the Hawks RB Julius Jones
got a 27-yard TD run, along with DT Craig Terrill returning a fumble 9 yards for a touchdown. In
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the third quarter, the 49ers almost rallied as RB H. J. Torres made a 12-yard TD pass to Lucas Nelly,
along with Mare kicking a 32-yard field goal. In the final quarter, Julius Jones got another 11-yard
TD. How many yards do the shortest touchdown run and the longest touchdown pass combine for?
A: All the touchdown runs are: a 27-yard touchdown run, a 9-yard touchdown run, a 11-yard touch-
down run. The smallest number among 27, 9, 11 is 9. So the shortest touchdown run was 9 yards.
All the touchdown passes are: a 12-yard touchdown pass. So the longest touchdown pass was 12
yards. So the shortest touchdown run and the longest touchdown pass combine for 9 + 12 = 21
yards. So the answer is 21 yards.

Q: The Steelers went home for a duel with the Baltimore Ravens. Pittsburgh would deliver the
opening punch in the first quarter with a 1-yard touchdown from running back Rashard Mendenhall.
The Ravens would make it even as running back Willis McGahee got a 9-yard TD. The Ravens
kicker Billy Cundiff got a 45-yard field goal in the second quarter, concluding the first half with a
10-7 lead. The Steelers brought the game into overtime with a 38-yard field goal by Andrew Foster.
The Ravens Billy Cundiff pulled off a winning 33-yard field goal in overtime. How many points did
the Ravens have at halftime?
A: The Ravens kicker Billy Cundiff got a 45-yard field goal in the second quarter, concluding the
first half with a 10-7 lead. So the Ravens had 10 points at halftime. So the answer is 10 points.

Q: The Vikings flew to Bank of America Stadium to face the Carolina Panthers. After a scoreless
first quarter, Carolina got on the board with quarterback Matt Moore finding fullback Brad Hoover
on a 1-yard TD pass. After yet another scoreless quarter, Carolina sealed the game as Matt Moore
completed a 42-yard touchdown pass to wide receiver Steve Smith. How many scoreless quarters
were there?
A: The first and third quarters were the scoreless quarters. So there are 2 scoreless quarters. So the
answer is 2.

9.3.4 LEAST-TO-MOST PROMPTING I: PROBLEM DECOMPOSITION (6 EXAMPLES)

Q: The Seahawks played the San Francisco 49ers. In the first quarter, the ’Hawks RB Julius Jones
got a 27-yard TD run, along with DT Craig Terrill returning a fumble 9 yards for a touchdown. In
the third quarter, the 49ers almost rallied as RB T. J. Duckett made a 12-yard TD pass to Lucas
Nelly, along with Mare kicking a 32-yard field goal. How many yards do the shortest touchdown
run and the longest touchdown pass combine for?
A: To answer the question “How many yards do the shortest touchdown run and the longest touch-
down pass combine for?”, we need to know: “How many yards was the shortest touchdown run?”,
“How many yards was the longest touchdown pass?”.

Q: The Steelers went home for an AFC North duel with the Baltimore Ravens. Pittsburgh would de-
liver the opening punch in the first quarter with a 1-yard touchdown run from running back Rashard
Mendenhall. The Ravens would make it even in the second quarter as running back Willis McGahee
got a 9-yard touchdown run. The Ravens kicker Billy Cundiff got a 45-yard field goal in the second
quarter and a 33-yard field goal in the third quarter. Game ended with a scoreless fourth quarter.
How many points did the Ravens have at halftime?
A: To answer the question “How many points did the Ravens have at halftime?”, we need to know:
“What were all the scores the Ravens had at halftime?”.

Q: In 1995, the Kings overcame a 3-4 start to win eight of their final nine games and finished with
a record, the second-best in the AFC. Quarterback Neil ODonnell, who completed 246 out of 416
passes for 2,970 yards and 17 touchdowns, with only seven interceptions led their offense. The
Kings finished their 1995 season having lost how many games difference to the number of games
they had won?
A: To answer the question “The Kings finished their 1995 season having lost how many games
difference to the number of games they had won?”, we need to know: “How many games the Kings
had lost in their 1995 season?”, “How many games the Kings had won in their 1995 season?”.

Q: The Broncos traveled to Sun Life Stadium to face the Miami Dolphins. The Dolphins grabbed the
lead in the second quarter, with field goals of 35 and 45 yards by kicker Dan Carpenter. In the final
quarter, the Dolphins quarterback Matt Moore threw a 16-yard touchdown pass to tight end Anthony
Fasano (with a failed two-point conversion attempt), followed by a 35-yard field goal by Carpenter,
giving Miami a 15-0 lead. Finally, the Broncos answered with Alex Jake kicking a 48-yard field
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goal, ending the game with 15-3. How many yards was Dan Carpenter’s longest field goal?
A: To answer the question “How many yards was Dan Carpenter’s longest field goal?”, we need to
know: “What were all Dan Carpenter’s field goals?”.

Q: The Cardinals flew to Gillette Stadium for a duel with the New England Patriots. In the fourth
quarter, New England ended the boring game with Gostkowski’s 30-yard field goal. Original starting
quarterback Kurt Warner (6/18 for 30 yards) was pulled in the third quarter via coach’s decision.
How many incomplete passes did Kurt Warner have?
A: To answer the question “How many incomplete passes did Kurt Warner have?”, we need to know:
“How many passes did Kurt Warner attempt?”, “How many passes did Kurt Warner complete?”.

Q: The Vikings flew to Bank of America Stadium to face the Carolina Panthers. After a scoreless
first quarter, Carolina got on the board with quarterback Matt Moore finding fullback Brad Hoover
on a 1-yard touchdown pass. After yet another scoreless quarter, Carolina sealed the game as Matt
Moore completed a 42-yard TD pass to wide receiver Steve Smith. How many scoreless quarters
were there?
A: To answer the question “How many scoreless quarters were there?”, we need to know: “What
were all the scoreless quarters?”.

9.3.5 LEAST-TO-MOST PROMPTING II: PROBLEM SOLVING (3 EXAMPLES)

The Seahawks played the San Francisco 49ers. In the first quarter, the ’Hawks RB Julius Jones got
a 27-yard TD run, along with DT Craig Terrill returning a fumble 9 yards for a touchdown. In the
third quarter, the 49ers almost rallied as RB H. J. Torres made a 12-yard TD pass to Lucas Nelly,
along with Mare kicking a 32-yard field goal. In the final quarter, Julius Jones got another 11-yard
TD.
Q: How many yards was the shortest touchdown run?
A: All the touchdown runs are: a 27-yard touchdown run, a 9-yard touchdown run, a 11-yard touch-
down run. The smallest number between 27, 9, 11 is 9. The shortest touchdown run was 9 yards.
The answer is 9.

Q: How many yards was the longest touchdown pass?
A: All the touchdown passes are: a 12-yard touchdown pass. The longest touchdown pass was 12
yards. The answer is 12.

Q: How many yards do the shortest touchdown run and the longest touchdown pass combine for?
A: We know that the shortest touchdown run was 9-yard. We also know that the longest touchdown
pass was 12-yard. 9 + 12 = 21. The answer is 21.

The Steelers went home for a duel with the Baltimore Ravens. Pittsburgh would deliver the opening
punch in the first quarter with a 1-yard touchdown from running back Rashard Mendenhall. The
Ravens would make it even as running back Willis McGahee got a 9-yard TD. The Ravens kicker
Billy Cundiff got a 45-yard field goal in the second quarter, concluding the first half. The Steelers
brought the game into overtime with a 38-yard field goal by Andrew Foster. The Ravens Billy
Cundiff pulled off a winning 33-yard field goal in overtime.
Q: What were all the scores the Ravens had at halftime?
A: The answer is: a 9-yard touchdown run, a 45-yard field goal.

Q: How many points did the Ravens have at halftime?
A: We know that the Ravens had a touchdown and a field goal at halftime. We also know that a
touchdown is worth 7 points and a field goal is worth 3 points. 7 + 3 = 10. The answer is 10.

The Vikings flew to Bank of America Stadium to face the Carolina Panthers. After a scoreless first
quarter, Carolina got on the board with quarterback Matt Moore finding fullback Brad Hoover on
a 1-yard TD pass. After yet another scoreless quarter, Carolina sealed the game as Matt Moore
completed a 42-yard touchdown pass to wide receiver Steve Smith.
Q: What were all the scoreless quarters?
A: The answer is: the first quarter and the third quarter.

Q: How many scoreless quarters were there?
A: We know that the first and third quarters were all the scoreless quarters. The answer is 2.
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9.4 EXAMPLES WHERE LEAST-TO-MOST SUCCEEDED BUT CHAIN-OF-THOUGHT FAILED

9.4.1 CASE 1

Q: The first two Buick automobiles were made in 1899 and 1900 at the “Buick Auto-Vim and Power
Company” by chief-engineer Walter Lorenzo Marr, but company owner David Dunbar Buick was
reluctant to begin making automobiles, being satisfied with stationary and marine engine production,
so Marr left Buick in 1901 to found Marr (automobile) under his own name. His replacement was
Eugene Richard, who applied for a patent in 1902 for Marrs valve-in-head (Overhead valve engine)
engine, which patent, number 771,095, was awarded to Richard in the name of Buick in 1904.
In 1903, the third Buick automobile was made, this time by Richard, but in 1904 Buick, whose
company was now called “Buick Motor Company,” moved to Flint, Michigan, and Richard stayed
behind. Marr was rehired in Flint as chief engineer, to begin making automobiles in production. That
year, 37 Buick automobiles were made, production increasing to 750 in 1905, 1,400 in 1906, 4,641
in 1907, and 8,800 in 1908, taking the number one spot away from close competitors Oldsmobile,
Ford Motor Company, and Maxwell automobile. How many Buick automobiles were built between
1904 and 1905?

Chain-of-thought by code-davinci-002 A: According to the passage, 37 Buick automobiles
were made in 1904, and 750 were made in 1905. 750 - 37 = 713. So the answer is 713.

Least-to-most by code-davinci-002 Q: How many Buick automobiles were built in 1904?
A: “In 1903, the third Buick automobile was made, this time by Richard, but in 1904 Buick, whose
company was now called “Buick Motor Company,” moved to Flint, Michigan, and Richard stayed
behind. Marr was rehired in Flint as chief engineer, to begin making automobiles in production.
That year, 37 Buick automobiles were made”. So the answer is 37.

Q: How many Buick automobiles were built in 1905?
A: “production increasing to 750 in 1905”. So the answer is 750.

Q: How many Buick automobiles were built between 1904 and 1905?
A: We know that 37 Buick automobiles were built in 1904. We also know that 750 Buick automo-
biles were built in 1905. So 37 + 750 = 787 Buick automobiles were built between 1904 and 1905.
So the answer is 787.

Analysis Chain-of-thought failed because it computed “750 - 37 = 713”, which is wrong. The
correct answer is “37 + 750 = 787”.

9.4.2 CASE 2

Q: The Guatemalan authorities were unaware of ongoing contacts between the colonial authorities in
Yucatán and the Itza. In the second half of 1695 President Barrios began planning another expedition
against the Itza from Verapaz, following harsh criticism of Juan Dı́az de Velasco’s retreat from near
Lake Petén Itzá in April of that year. Barrios died in November, and oidor José de Escals became
acting head of the Guatemalan colonial administration. He appointed oidor Bartolomé de Amésqueta
to lead the next expedition against the Itza. Amésqueta marched his men through torrential rain
from Cahabón to Mopán, arriving on 25 February 1696; the Guatemalans were still unaware of the
clashes between Garcı́a’s forces and the Itza. Amésqueta’s expedition was suffering from shortages
of native labour and supplies. Twenty-five of his 150 men were sick, and his advance stalled as the
force rested up at Mopán. Captain Dı́az de Velasco volunteered to lead a party of 25 men ahead to
the lake; he was accompanied by Dominican friars Cristóbal de Prada and Jacinto de Vargas. He was
also accompanied by AjK’ixaw, the Itza nobleman who had been taken prisoner on Dı́az’s previous
expedition, who served as a trusted guide, scout and translator. They set out from Mopán on 7 March
and left some sick soldiers with some supplies after five days, they then caught up with an advance
party of roadbuilders and their military escort at Rı́o Chakal. The two forces combined, giving Dı́az
a force of 49 soldiers and 34 porters and archers from Verapaz. Once they arrived at IxB’ol, near the
shore of Lake Petén Itzá, AjK’ixaw was sent ahead as an emissary to Nojpetén. How many months
after Juan Dı́az de Velasco’s retreat did President Barrios die?
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Chain-of-thought by code-davinci-002 A: According to the passage, President Barrios
died in November, and the expedition against the Itza was led by Bartolomé de Amésqueta in Febru-
ary. So the answer is 3.

Least-to-most by code-davinci-002 Q: When did Juan Dı́az de Velasco’s retreat?
A: “April of that year”. So the answer is April.

Q: When did President Barrios die?
A: “November”. So the answer is November.

Q: How many months after Juan Dı́az de Velasco’s retreat did President Barrios die?
A: We know that Juan Dı́az de Velasco’s retreat was in April. We also know that President Barrios
died in November. So November - April = 7 months after Juan Dı́az de Velasco’s retreat did President
Barrios die. So the answer is 7.

Analysis Chain-of-thought generated the wrong final answer because one fact it used, “the expe-
dition against the Itza was led by Bartolomé de Amésqueta in February”, is unrelated.

9.4.3 CASE 3

Q: Peele was christened on 25 July 1556 at St James Garlickhythe in the City of London. His father,
James Peele (d. Dec 30, 1585), who appears to have belonged to a Devonshire family, was clerk
of Christs Hospital, a school which was then situated in central London, and wrote two treatises on
bookkeeping, The Maner and Fourme How to Kepe a Perfecte Reconyng (1553) and The Pathe Waye
to Perfectnes (1569). The latter depicts James Peele in a woodcut on the title page. No contemporary
likeness of George is known, although he was said to be short-legged, dark complected, red haired,
and squinting, although not necessarily from reliable sources. Georges mother, Anne, died July 1,
1580, and his father married Christian Widers (d. 1597 in St. Christopher le Stocks) on November 3,
1580. She became a nurse on the Hospital payroll, where she remained five years after James Peeles
death, when she married Ralph Boswell. His siblings included Anne (d. Jan 10, 1568/9), Isabel,
Judith (d. Apr. 16, 1582), and James (b. Jan 3, 1563/4). Anne married John Alford on May 14, 1565,
and had one son, Robert (October 9, 1567- c. March 12, 1654/5). Judith married John Jackman on
June 19, 1575, and had three children, Susan (b. June 3, 1576), William (April 30, 1577-July 1,
1577), and Sarah (d. May 24, 1578). On Feb. 5, 1568/9, Isabel married Mathew Shakespeare, with
whom she had eight children. Many scholars believe that this was a cousin of William Shakespeare,
but this has not been verified. James Peele also wrote the Ironmongers Pageants of 1566 and 1569,
which may have led to Georges writing of two Lord Mayors pageants. How many years after her
marriage to James Peele did Christian Widers die?

Chain-of-thought by code-davinci-002 A: According to the passage, Christian Widers died
in 1597. James Peele died in 1585. 1597 - 1585 = 12. So the answer is 12.

Least-to-most by code-davinci-002 Q: When did Christian Widers marry James Peele?
A: “She became a nurse on the Hospital payroll, where she remained five years after James Peeles
death, when she married Ralph Boswell”. So the answer is 1580.

Q: When did Christian Widers die?
A: “She became a nurse on the Hospital payroll, where she remained five years after James Peeles
death, when she married Ralph Boswell”. So the answer is 1597.

Q: How many years after her marriage to James Peele did Christian Widers die?
A: We know that Christian Widers married James Peele in 1580. We also know that Christian Widers
died in 1597. So 1597 - 1580 = 17 years after her marriage to James Peele did Christian Widers die.
So the answer is 17.

Analysis Chain-of-thought generated the wrong final answer because one fact it used, “James
Peele died in 1585”, is unrelated.
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9.4.4 CASE 4

Q: Among the other denominations there are approximately 93,000 Mormons in 253 congregations,
25,000 Jewish adherents in 21 synagogues, 12,000 Muslims in 39 masjids, 7,000 Buddhists in 34
temples, 7,000 Hindus in 17 temples, 2,500 Unitarian Universalism in 9 congregations, 2,000 Bahai
in 17 temples, 5 Sikh temples, a Zoroastrian temple, a Jain temple and an uncounted number of
neopagans. How many more Mormons were there compared to Muslims?

Chain-of-thought by code-davinci-002 A: According to the passage, there are 93,000 Mor-
mons and 25,000 Muslims. 93,000 - 25,000 = 68,000. So the answer is 68,000.

Least-to-most by code-davinci-002 Q: How many Mormons were there?
A: “93,000 Mormons”. So the answer is 93,000.

Q: How many Muslims were there?
A: “12,000 Muslims”. So the answer is 12,000.

Q: How many more Mormons were there compared to Muslims?
A: We know that there were 93,000 Mormons. We also know that there were 12,000 Muslims. So
there were 93,000 - 12,000 = 81,000 more Mormons than Muslims. So the answer is 81,000.

Analysis Chain-of-thought failed because it got one intermediate fact (the number of Muslims)
wrong.

9.4.5 CASE 5

Q: Killigrew lived in Hanworth in Middlesex and Falmouth in Cornwall. On 4 November 1566
Killigrew married in the church of St Peter Le Poer, London, Catherine, fourth daughter of Sir
Anthony Cooke. He thus became Cecil’s brother-in-law. His wife died in 1583, and on 7 November
1590 he was married in the same church to Jaél de Peigne, a French Hugenot. She was naturalised
in June 1601. After Henry’s death she remarried on 19 April 1617 George Downham, Bishop of
Derry, and died c.1632. By his first wife, Killigrew had four daughters: How many years after here
marriage to Killigrew did Catherine die?

Chain-of-thought by code-davinci-002 A: According to the passage, Catherine died in
1583, and Killigrew married Jaél de Peigne in 1590. 1590 - 1583 = 7. So the answer is 7.

Least-to-most by code-davinci-002 Q: When did Catherine marry Killigrew?
A: “On 4 November 1566 Killigrew married in the church of St Peter Le Poer, London, Catherine”.
So the answer is 4 November 1566.

Q: When did Catherine die?
A: “His wife died in 1583”. So the answer is 1583.

Q: By his first wife, Killigrew had four daughters: How many years after here marriage to Killigrew
did Catherine die?
A: We know that Catherine married Killigrew in 1566. We also know that Catherine died in 1583.
So 1583 - 1566 = 17 years after here marriage to Killigrew did Catherine die. So the answer is 17.

Analysis Chain-of-thought generated the wrong final answer because one fact it used, “Killigrew
married Jaél de Peigne in 1590”, is unrelated.

9.5 ERROR ANALYSIS: LEAST-TO-MOST PROMPTING

We randomly picked 20 failure cases, and found that out of those 20 failure cases:

• 4 are due to wrong problem decomposition – the decomposed problems do not make sense,
or there is no decomposition at all.

• 13 are due to wrong problem solving – it gave the wrong answer for a decomposed problem.
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• 3 are due to wrong “ground truth” – the given label is wrong regardless whether the pre-
diction is correct or not (although, the model predictions for the sampled 4 cases are all
correct).

9.5.1 EXAMPLE OF WRONG PROBLEM DECOMPOSITION

In the following example, the decomposed question is just a rephrase of the original question.

Q: Then, in 1544, five French galleys under Polin, including the superb Réale, accompanied Bar-
barossa’s fleet, on a diplomatic mission to Suleiman. The French fleet accompanied Barbarossa
during his attacks on the west coast of Italy on the way to Constantinople, as he laid waste to the
cities of Porto Ercole, Giglio, Talamona, Lipari and took about 6,000 captives, but separated in
Sicily from Barbarossa’s fleet to continue alone to the Ottoman capital. Jerôme Maurand, a priest
of Antibes who accompanied Polin and the Ottoman fleet in 1544, wrote a detailed account in
Itinéraire d’Antibes à Constantinople. They arrived in Constantinople on 10 August 1544 to meet
with Suleiman and give him an account of the campaign. Polin was back to Toulon on 2 October
1544. On his way to Constantinople, how many cities did Polin laid waste to?

A: To answer the question ”On his way to Constantinople, how many cities did Polin laid waste to?”,
we need to know: ”How many cities did Polin laid waste to on his way to Constantinople?”.

9.5.2 EXAMPLE OF WRONG PROBLEM SOLVING

In the following example, the answer to the decomposed question, “How many percent of people
were from 2 or more races in 2000?” is wrong.

As of 2011 the 88,112 residents of Orem had a racial and ethnic composition of 89.3% White
American, 0.9% black or African American, 0.9% Native Americans of the United States, 1.6%
Asian American, 0.5% Pacific Islanders, 4% non-Hispanics reporting some other race, 2.9% two
or more races reported and 14.8% Hispanic, as Orem has a large Mexican American community
with other Latinos residing in the city. This contrasts with the census of 2000, which showed a
racial makeup of 90.80% White (U.S. Census), 0.33% African American (U.S. Census), 0.73%
Native American (U.S. Census), 1.45% Asian (U.S. Census), 0.86% Pacific Islander (U.S. Census),
3.64% from Race (United States Census), and 2.18% from two or more races. Hispanic (U.S.
Census) or Latino (U.S. Census) of any race were 8.56% of the population. The 2000 Census
counted 84,324 people, 23,382 households, and 19,079 families. The population density at that time
was 4,572.6 people per square mile (1,765.6/km2). There were 24,166 housing units at an average
density of 1,310.4 per square mile (506.0/km2). There were 23,382 households out of which 48.8%
had children under the age of 18 living with them, 69.0% were Marriage living together, 9.5% had a
female householder with no husband present, and 18.4% were non-families. 12.4% of all households
were made up of individuals and 5.1% had someone living alone who was 65 years of age or older.
The average household size was 3.57 and the average family size was 3.93.

Q: How many percent of people were from 2 or more races in 2000?
A: “3.64% from Race (United States Census), and 2.18% from two or more races”. So the answer
is 3.64% + 2.18% = 5.82%.

Q: How many percent of people were not from 2 or more races in 2000?
A: We know that 5.82% were from 2 or more races. So 100% - 5.82% = 94.18% were not from 2 or
more races. So the answer is 94.18%.

9.5.3 EXAMPLE OF WRONG GIVEN LABEL

In the example below, the given label is 417, which is incorrect. The correct ground truth should be
418. The model gives the correct answer via least-to-most prompting.

There were 20,928 births in 2006. Of these, 19,757 (94.40% of the births, 95.19% of the population)
were to Non-Hispanic Whites. There were 22 births to American Indians (0.11% of the births and
0.54% of the population), 177 births to Asians (0.85% of the births and 0.68% of the population),
219 births to Hispanics (1.05% of the births and 0.88% of the population) and 753 births to Blacks
and others (3.60% of the births and 3.56% of the population).
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Q: How many births were there for Asians?
A: “177 births to Asians”. So the answer is 177.

Q: How many births were there for Native Americans?
A: “22 births to American Indians”. So the answer is 22.

Q: How many births were there for Hispanics?
A: “219 births to Hispanics”. So the answer is 219.

Q: How many total births were there for Asians, Native Americans and Hispanics?
A: We know that there were 177 births for Asians. We also know that there were 22 births for Native
Americans. We also know that there were 219 births for Hispanics. So 177 + 22 + 219 = 418 total
births for Asians, Native Americans and Hispanics. So the answer is 418.

10 GSM8K

10.1 EXPERIMENT RESULTS: ONE-SHOT PROMPTS

We compare here the effectiveness on compositional generalization of least-to-most prompting vs.
chain-of-thought prompting by constructing for each prompting method a simple prompt context that
contains a single example that is solvable with just 2 reasoning steps. We then evaluate accuracy
on examples that may involve larger numbers of reasoning steps. The same example is used for
both prompting methods. For the least-to-most prompting prompt, we adopt a simplified approach
in which the problem decomposition and solution stages are merged into a single pass, with just one
follow-up request being made to the language model to solicit the final answer.

The accuracy (%) of the two prompting methods with the GPT-3 code-davinci-002 model,
with breakdown by number of steps in the expected solution, are listed in Table 18.

Accuracy numbers for all prompting methods are calculated after applying the same post-processing
as described in Section 3.3 for DROP.

While the least-to-most prompting accuracy is overall only moderately higher than that of chain-of-
thought prompting, the accuracy breakdown by number of steps shows that least-to-most prompting
significantly outperforms chain-of-thought prompting as the number of reasoning steps increases
beyond what was illustrated in the prompt.

Accuracy by Steps All 2 3 4 5+
Least-to-Most (1-shot): aL 62.39 74.53 68.91 59.73 45.23
Chain-of-Thought (1-shot): aC 60.87 76.68 67.29 59.39 39.07
Accuracy change: (aL/aC)− 1 +2.49 -2.80 +2.40 +0.58 +15.77

Table 18: Accuracy (%) of a simple 1-shot least-to-most prompt with the GPT-3
code-davinci-002 model on GSM8K, compared to that of a corresponding chain-of-thought
prompt, broken down by number of reasoning steps required in the expected solution. Examples
with 3 or more reasoning steps would require generalizing to more steps than were shown in the
demonstration example in the prompt (which contains just 2 steps).

10.2 EXPERIMENT RESULTS: ENGINEERED PROMPTS

We compare here the overall accuracy of the above-reported “Chain-of-Thought (1-shot)” and
“Least-to-Most (1-shot)” methods with alternative existing prompting methods, as well as with vari-
ants of chain-of-thought and least-to-most prompting in which the prompts were engineered using
multiple in-domain examples taken from the GSM8K train set.

The evaluated prompting methods are as follows (see Appendices 10.3 and 10.4 for the exact prompt
contexts):

• Zero-Shot: Simple zero-shot prompting.
• Standard prompting: Standard few-shot prompting, using the same 4 examples as in the

“problem solving” prompt context of “Least-to-Most (best)”.
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• Chain-of-Thought (original): Chain-of-thought prompting, using the original 8-shot
prompt context described in Wei et al. (2022).
• Chain-of-Thought (1-shot): The simple 1-shot chain-of-thought prompting method de-

scribed in Appendix 10.1 above.
• Least-to-Most (1-shot): The simple 1-shot least-to-most prompting method described in

Appendix 10.1 above.
• Chain-of-Thought (best): Chain-of-thought prompting, using the same 4 examples as in

the “problem solving” prompt context of “Least-to-Most (best)”, with the solutions ad-
justed to chain-of-thought format.
• Least-to-Most (best): Least-to-most prompting using separate prompts for the “problem

decomposition” and “problem solution” steps and with multiple examples selected from
the GSM8K train set. The “problem decomposition” prompt context contains 7 examples,
with hand-crafted problem decompositions. The “problem solution” prompt contains 4
examples, with hand-crafted solutions for each step.

The accuracies (%) of these prompting methods with the GPT-3 code-davinci-002 model are
listed in Table 19.

It can be noted first that, although the “Chain-of-Thought (1-shot)” prompt context is considerably
simpler than the 8-shot prompt context proposed in the original chain-of-thought paper, we find the
overall accuracy achieved to be quite close (60.87% for the 1-shot prompt, compared to 61.18% for
the original 8-shot prompt). This suggests that “Chain-of-Thought (1-shot)” is indeed a reasonable
chain-of-thought baseline to analyze in comparison to “Least-to-Most (1-shot)”.

Further, while we find the proposed 1-shot prompt attractive due to its simplicity and lack of dataset-
specific content, we do find that further improvements in overall accuracy of both chain-of-thought
and least-to-most prompting can be achieved if additional prompt engineering is applied, using
multiple in-domain examples of arbitrary complexity from the GSM8K train set, as seen in the ac-
curacies of “Chain-of-Thought (best)” and “Least-to-Most (best)”. We do not observe improvement
in overall accuracy from least-to-most prompting compared to chain-of-thought prompting in this
setting, where most of the test questions do not require more steps more steps to solve than the
demonstration examples.

Prompting method Accuracy
Zero-Shot 16.38
Standard prompting 17.063

Chain-of-Thought (original) 61.18
Chain-of-Thought (1-shot) 60.88
Least-to-Most (1-shot) 62.39
Chain-of-Thought (best) 68.613

Least-to-Most (best) 68.01

Table 19: Accuracies (%) of various prompting methods with the GPT-3 code-davinci-002
model on GSM8K.

10.3 PROMPT CONTEXTS: ONE-SHOT PROMPTS

We include here the prompt contexts used in the experiments reported in Appendix 10.1.

In this section and in the following one, the placeholder “{question}” indicates the place where the
original question is to be inserted, in cases where the format would not be obvious (e.g., where

3Note that in two of the prompt contexts used in an earlier pre-print of this paper, one of the examples
had contained a mistake, which has been corrected in this version of the paper. Specifically, in the “Chain-of-
Thought (best)” context, the last example had mistakenly omitted the final step, such that it ended incorrectly
with “The answer is 17.” rather than “which means that sandy will get $20 - $17 = $3 as change. The answer
is 3.” Similarly, the “Standard prompting” context incorrectly stated the answer as “17” rather than “3” for this
example. The earlier versions of the prompts yielded the following accuracies: Standard prompting = 18.65,
Chain-of-Thought (best) = 62.77.
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instead of simply ending the prompt with “A:”, we include some additional prompt text like “A: The
answer is”).

In the case of “Least-to-Most (1-shot)”, the prompt prefix for the initial request ends in “Let’s break
down this problem:”. We then append to that prompt the initial reply that was received from the
language model, followed by a newline and the string “The answer is:”, which we then use as the
prompt in a second request, whose reply we treat as the final answer.

10.3.1 CHAIN-OF-THOUGHT (1-SHOT)

Q: Elsa has 5 apples. Anna has 2 more apples than Elsa. How many apples do they have together?
A: Anna has 2 more apples than Elsa, so Anna has 2 + 5 = 7 apples. Elsa and Anna have 5 + 7 = 12
apples together. The answer is 12.

10.3.2 LEAST-TO-MOST (1-SHOT)

Q: Elsa has 5 apples. Anna has 2 more apples than Elsa. How many apples do they have together?
A: Let’s break down this problem: 1. How many apples does Anna have? 2. How many apples do
Elsa and Anna have together?
1. Anna has 2 more apples than Elsa. So Anna has 2 + 5 = 7 apples.
2. Elsa and Anna have 5 + 7 = 12 apples together.

Q: {question}
A: Let’s break down this problem:
—–
The answer is:

10.4 PROMPT CONTEXTS: ENGINEERED PROMPTS

We include here the additional prompt templates used in the experiments reported in Appendix 10.2,
with the exception of “Chain-of-Thought (original)“, which is the same as the “Prompt for Math
Word Problems” reported in Appendix G of Wei et al. (2022).

10.4.1 ZERO-SHOT

Q: {question}
A: The answer is

10.4.2 STANDARD PROMPTING: 4 EXAMPLES

Q: Four years ago, Kody was only half as old as Mohamed. If Mohamed is currently twice 30 years
old, how old is Kody?
A: The answer is 32.

Q: Carla bought 2 bags of mini peanut butter cups on clearance. Each bag was $6.00 but
was 75% off. How much did she spend on 2 bags of candy?
A: The answer is 3.

Q: If Pam is currently twice as young as Rena is, and in 10 years Rena will be 5 years older
than her, how old is Pam now?
A: The answer is 5.

Q: Cappuccinos cost $2, iced teas cost $3, cafe lattes cost $1.5 and espressos cost $1 each.
Sandy orders some drinks for herself and some friends. She orders three cappuccinos, two iced teas,
two cafe lattes, and two espressos. How much change does she receive back for a twenty-dollar
bill?
A: The answer is 3.
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10.4.3 CHAIN-OF-THOUGHT (BEST): 4 EXAMPLES

Q: Four years ago, Kody was only half as old as Mohamed. If Mohamed is currently twice 30 years
old, how old is Kody?
A: We were told that Mohamed is currently twice 30 years old, so he is currently 30 * 2 = 60 years
old. That means that four years ago he must have been 60 - 4 = 56 years old. Four years ago, Kody
was half as old as Mohamed, so Kody must have been 56 / 2 = 28 years old then. Since Kody was
28 years old four years ago, she must now be 28 + 4 = 32 years old. The answer is 32.

Q: Carla bought 2 bags of mini peanut butter cups on clearance. Each bag was $6.00 but
was 75% off. How much did she spend on 2 bags of candy?
A: Each bag was $6.00 but was 75% off. So each bag cost $6.00 * (1 - 0.75) = $6.00 * 0.25 = $1.50.
Carla bought 2 bags. So she spent $1.50 * 2 = $3.00. The answer is 3.

Q: If Pam is currently twice as young as Rena is, and in 10 years Rena will be 5 years older
than her, how old is Pam now?
A: Since Rena will be 5 years older than Pam in 10 years, she must be 5 years older than Pam now
as well. If Pam is currently twice as young as Rena, that means that Rena is currently twice as old
as Pam is. So if P stands for Pam’s age now and R stands for Rena’s age now, then we know that R
= 2 * P And since Rena is 5 years older than Pam now, we know that R = P + 5. By substitution, we
have P + 5 = 2 * P, which means that P = 5. The answer is 5.

Q: Cappuccinos cost $2, iced teas cost $3, cafe lattes cost $1.5 and espressos cost $1 each.
Sandy orders some drinks for herself and some friends. She orders three cappuccinos, two iced teas,
two cafe lattes, and two espressos. How much change does she receive back for a twenty-dollar
bill?
A: Sandy ordered three cappuccinos, which cost $2 each, so she spent $2 * 3 = $6 on cappuccinos.
She ordered two iced teas, which cost $3 each, so she spent $3 * 2 = $6 dollars on ice teas. She
ordered two cafe lattes, which cost $1.5 each, so she spent $1.5 * 2 = $3 on cafe lattes. She ordered
two espressos, which cost $1 each, so she spent $1 * 2 = $2 on espressos. So altogether, Sandy
spent $6 + $6 + $3 + $2 = $17 on drinks, which means that sandy will get $20 - $17 = $3 as change.
The answer is 3.

10.4.4 LEAST-TO-MOST (BEST) I - PROBLEM DECOMPOSITION: 7 EXAMPLES

Q: Four years ago, Kody was only half as old as Mohamed. If Mohamed is currently twice 30 years
old, how old is Kody?
A: To answer the question “How old is Kody?”, we need to know: “How old is Mohamed?”, “How
old was Mohamed four years ago?”, “How old was Kody four years ago?”.

Q: If Pam is currently twice as young as Rena is, and in 10 years Rena will be 5 years older
than her, how old is Pam now?
A: To answer the question “How old is Pam now?”, we need to know: “How much older is Rena
than Pam currently?”.

Q: As a freelancer, Baylor is paid for every finished work of a client he does on a freelance
marketplace. Currently, he has $4000 on his dashboard from previous work done. He is currently
working for three clients, with the first client paying him half the amount of money he currently
has on his dashboard once the job is done. The second client will pay him 2/5 times more money
than the first client once Baylor finishes his work. The third client will pay him twice the amount of
money the first and second clients pay him together once he finishes the job. How much money will
Baylor have in his dashboard after all the clients pay him for his work?
A: To answer the question “How much money will Baylor have in his dashboard after all the clients
pay him for his work?”, we need to know: “How much will Baylor’s first client pay him for his
work?”, “How much more will Baylor’s second client pay him for his work compared to the first
client?”, “How much will Baylor’s second client pay him for his work?”, “How much will the
first and second clients pay him together once he finishes the job?”, “How much will Baylor’s
third client pay him for his work?”, “How much money will all the clients pay Baylor for his work?”.
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Q: Cappuccinos cost $2, iced teas cost $3, cafe lattes cost $1.5 and espressos cost $1 each.
Sandy orders some drinks for herself and some friends. She orders three cappuccinos, two iced teas,
two cafe lattes, and two espressos. How much change does she receive back for a twenty-dollar
bill?
A: To answer the question “How much change does she receive back for a twenty-dollar bill?”, we
need to know: “How much did the cappuccinos cost in total?”, “How much did the iced teas cost in
total?”, “How much did the cafe lattes cost in total?”, “How much did the espressos cost in total?”,
“How much did the drinks cost in total?”.

Q: Betty & Paige are raising money for their kids’ little league team by hosting a bake sale.
Betty has baked 4 dozen chocolate chip cookies, 6 dozen oatmeal raisin cookies and 2 dozen regular
brownies. Paige baked 6 dozen sugar cookies, 3 dozen blondies and 5 dozen cream cheese swirled
brownies. If they sell the cookies for $1.00 apiece and the blondies/brownies at $2.00 apiece, how
much money will they raise?
A: To answer the question “How much money will they raise?”, we need to know: “How many
dozen cookies did they bake (not including blondies/brownies)?”, “How many cookies did they
bake (not including blondies/brownies)?”, “How many dozen blondies/brownies did they bake
(not including cookies)?”, “How many blondies/brownies did they bake (not including cookies)?”,
“How much money will they raise from the cookies (not including blondies/brownies)?”, “How
much money will they raise from the blondies/brownies (not including cookies)?”.

Q: On a moonless night, three fireflies danced in the evening breeze. They were joined by
four less than a dozen more fireflies, before two of the fireflies flew away. How many fireflies
remained?
A: To answer the question “How many fireflies remained?”, we need to know: “How many fireflies
joined?”.

Q: Sam, Sid, and Steve brought popsicle sticks for their group activity in their Art class.
Sam has thrice as many as Sid, and Sid has twice as many as Steve. If Steve has 12 popsicle sticks,
how many popsicle sticks can they use for their Art class activity?
A: To answer the question “How many popsicle sticks can they use for their Art class activity?”, we
need to know: “How many popsicle sticks does Sid have?”, “How many popsicle sticks does Sam
have?”.

10.4.5 LEAST-TO-MOST (BEST) II - PROBLEM SOLVING: 4 EXAMPLES

Four years ago, Kody was only half as old as Mohamed. If Mohamed is currently twice 30 years
old, how old is Kody?

Q: How old was Mohamed four years ago?
A: We were told that Mohamed is currently twice 30 years old, so he is currently 30 * 2 = 60 years
old. That means that four years ago he must have been 60 - 4 = 56 years old. The answer is 56.

Q: How old is Kody?
A: Four years ago, Kody was half as old as Mohamed, so Kody must have been 56 / 2 = 28 years
old then. Since Kody was 28 years old four years ago, she must now be 28 + 4 = 32 years old. The
answer is 32.

Carla bought 2 bags of mini peanut butter cups on clearance. Each bag was $6.00 but was
75% off. How much did she spend on 2 bags of candy?

Q: How much did she spend on 2 bags of candy?
A: Each bag was $6.00 but was 75% off. So each bag cost $6.00 * (1 - 0.75) = $6.00 * 0.25 = $1.50.
Carla bought 2 bags. So she spent $1.50 * 2 = $3.00. The answer is 3.

If Pam is currently twice as young as Rena is, and in 10 years Rena will be 5 years older
than her, how old is Pam now?
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Q: How much older is Rena than Pam currently?
A: Since Rena will be 5 years older than Pam in 10 years, she must be 5 years older than Pam now
as well. The answer is 5.

Q: How old is Pam now?
A: If Pam is currently twice as young as Rena, that means that Rena is currently twice as old as
Pam is. So if P stands for Pam’s age now and R stands for Rena’s age now, then we know that R =
2 * P And since Rena is 5 years older than Pam now, we know that R = P + 5. By substitution, we
have P + 5 = 2 * P, which means that P = 5. The answer is 5.

Cappuccinos cost $2, iced teas cost $3, cafe lattes cost $1.5 and espressos cost $1 each.
Sandy orders some drinks for herself and some friends. She orders three cappuccinos, two iced teas,
two cafe lattes, and two espressos. How much change does she receive back for a twenty-dollar
bill?

Q: How much did Sandy spend on drinks?
A: Sandy ordered three cappuccinos, which cost $2 each, so she spent $2 * 3 = $6 on cappuccinos.
She ordered two iced teas, which cost $3 each, so she spent $3 * 2 = $6 dollars on ice teas. She
ordered two cafe lattes, which cost $1.5 each, so she spent $1.5 * 2 = $3 on cafe lattes. She ordered
two espressos, which cost $1 each, so she spent $1 * 2 = $2 on espressos. So altogether, Sandy
spent $6 + $6 + $3 + $2 = $17 on drinks. The answer is 17.
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