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Abstract

Object navigation (ObjectNav) requires an001
agent to navigate through unseen environments002
to find queried objects. Many previous methods003
attempted to solve this task by relying on su-004
pervised or reinforcement learning, where they005
are trained on limited household datasets with006
close-set objects. However, two key challenges007
are unsolved: understanding free-form natural008
language instructions that demand open-set ob-009
jects, and generalizing to new environments in010
a zero-shot manner. Aiming to solve the two011
challenges, in this paper, we propose OpenFM-012
Nav, an Open-set Foundation Model based013
framework for zero-shot object Navigation. We014
first unleash the reasoning abilities of large lan-015
guage models (LLMs) to extract proposed ob-016
jects from natural language instructions that017
meet the user’s demand. We then leverage018
the generalizability of large vision language019
models (VLMs) to actively discover and de-020
tect candidate objects from the scene, build-021
ing a Versatile Semantic Score Map (VSSM).022
Then, by conducting common sense reasoning023
on VSSM, our method can perform effective024
language-guided exploration and exploitation025
of the scene and finally reach the goal. By026
leveraging the reasoning and generalizing abil-027
ities of foundation models, our method can028
understand free-form human instructions and029
perform effective open-set zero-shot naviga-030
tion in diverse environments. Extensive exper-031
iments on the HM3D ObjectNav benchmark032
show that our method surpasses all the strong033
baselines on all metrics, proving our method’s034
effectiveness. Furthermore, we perform real035
robot demonstrations to validate our method’s036
open-set-ness and generalizability to real-world037
environments.038

1 Introduction039

As a fundamental task in robotics and embodied040

AI, object navigation requires an agent to navi-041

gate through unseen environments to find queried042
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Figure 1: Leveraging foundation models, our proposed
OpenFMNav can follow free-form natural language in-
structions with open-set objects and achieve effective
zero-shot object navigation.

objects. Compared to other robotic tasks, it is par- 043

ticularly important because it is a prerequisite for 044

robots to interact with objects. To address this issue, 045

several household datasets and benchmarks, such 046

as MP3D (Chang et al., 2017), Gibson (Xia et al., 047

2018) and HM3D (Ramakrishnan et al., 2021) are 048

proposed. Many previous studies (Chaplot et al., 049

2020a; Ramrakhya et al., 2022; Zhang et al., 2023) 050

have attempted to solve this problem through su- 051

pervised or reinforcement learning, where they are 052

trained on particular household datasets above with 053

close-set objects and comparable environments. 054

However, there are two significant challenges 055

remaining unsolved. First, as shown in Fig 1, in 056

many scenarios, instead of only mentioning an ob- 057

ject category (e.g., “Find the bed.”), humans often 058

provide free-form instructions, either specifying 059

objects with specific characteristics (e.g., “Find the 060

bed with the blue mattress next to the window.”), 061

or expressing their demand without explicitly men- 062

tioning the object (e.g., “I’m exhausted. I need 063

to lie down and rest.”). These natural language 064

instructions may demand open-set objects not in- 065

cluded in the training vocabulary. In such cases, ex- 066

isting supervised or reinforcement learning-based 067

methods fail to understand these natural language 068
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instructions since they require specific object cat-069

egories and were trained to perform close-set ob-070

ject detection. Second, due to the data scarcity of071

embodied navigation (Gu et al., 2022), these meth-072

ods are typically trained on limited datasets that073

only cover household environments, which causes074

severe overfitting issues and prevents them from075

generalizing to unseen and diverse environments,076

let alone performing zero-shot navigation.077

To address the first challenge, some initial078

progress has been made in understanding free-form079

natural language instructions with open-set objects.080

For instance, demand-driven navigation (DDN)081

was proposed by Wang et al. (2023) to map hu-082

man instructions to a demand-conditioned attribute083

space. However, it is still limited to household084

settings and cannot be generalized to various envi-085

ronments. Another approach was suggested by Ma-086

jumdar et al. (2023), which involves finding objects087

with specific attributes and eliminating distractors.088

However, it needs 2D occupancy maps and pre-089

exploration of the scene in the beginning, which090

are unavailable in unseen environments.091

On the second challenge, recent years have wit-092

nessed progress in Zero-Shot Object Navigation093

(ZSON) (Majumdar et al., 2022; Gadre et al., 2023;094

Yokoyama et al., 2023; Zhou et al., 2023; Dorbala095

et al., 2023; Yu et al., 2023; Shah et al., 2023; Cai096

et al., 2023). However, some of these works (Ma-097

jumdar et al., 2022; Yu et al., 2023; Cai et al., 2023)098

require data to train specific modules such as lo-099

comotion planning, and hence are not real “Zero-100

Shot”. More importantly, these methods cannot101

conduct explicit and comprehensive reasoning on102

free-form natural language instructions, leading to103

their low performance and preventing them from104

being applied to many downstream robotic tasks.105

To better address the aforementioned two key106

challenges, in this paper, we propose OpenFMNav,107

a novel framework based on foundation models to108

achieve effective open-set zero-shot navigation. To109

this end, we utilize foundation models to leverage110

their reasoning abilities and generalizability to in-111

terpret human instructions and actively explore the112

environment. To be more specific, we first lever-113

age large language models to extract initially pro-114

posed objects from natural language instructions115

and merge them with user-defined prior objects116

and objects discovered by vision language mod-117

els. We then construct an object prompt to detect118

and segment objects from the observation image,119

leveraging large vision language models. By using120

depth images to project the segmentation masks to 121

the space, we can build a 2D top-down Versatile 122

Semantic Score Map (VSSM) of the whole scene, 123

on which we sample frontiers with semantic in- 124

formation for a large language model to conduct 125

common sense reasoning and wisely choose fron- 126

tiers to guide navigation. This way, we can per- 127

form language-guided exploration and exploitation 128

of the scene and achieve effective open-set zero- 129

shot object navigation without prior training on 130

any household datasets. Moreover, unlike previous 131

map-based methods such as Zhou et al. (2023); Yu 132

et al. (2023); Shah et al. (2023); Yokoyama et al. 133

(2023), the VSSM produced by our method will 134

keep updating during the navigation, which bet- 135

ter adapts to changing environments and can be 136

further used in downstream robotic tasks, such as 137

multi-goal navigation and mobile manipulation. 138

We conduct extensive experiments on the HM3D 139

ObjectNav benchmark (Yadav et al., 2022a). Re- 140

sults show that our method outperforms the State- 141

of-the-Art open-set zero-shot object navigation 142

method (Zhou et al., 2023) by over 15% on success 143

rate and surpasses all the strong baselines on all 144

metrics, validating the effectiveness and superior- 145

ity of our framework. Additionally, our method 146

has been proven to understand free-form natural 147

language instructions with open-set objects and 148

generalize well to real-world environments through 149

real robot demonstrations. 150

2 Related Work 151

2.1 Embodied Navigation 152

Embodied navigation is a fundamental yet chal- 153

lenging task in robotics and embodied AI since it 154

is the precursor to many downstream robotic tasks, 155

such as object manipulation and teleoperation. In 156

such scenarios, given a specific goal and egocen- 157

tric observations, agents are required to move to a 158

desired location within a maximum timestep. 159

Due to the importance of embodied navigation, 160

recent years have witnessed several branches of 161

navigation tasks with different goal specifications. 162

For instance, point goal navigation (PointNav) (Wi- 163

jmans et al., 2019; Savva et al., 2019) uses point 164

coordinates in the space as the goal; image goal 165

navigation (ImageNav) (Chaplot et al., 2020b; Savi- 166

nov et al., 2018) requires the agent to move where 167

the given image is taken; and vision-language nav- 168

igation (VLN) (Anderson et al., 2018; Ku et al., 169

2020) requires the agent to follow step-by-step in- 170
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Figure 2: The framework of our proposed OpenFMNav. Based on the natural language instruction and observations,
we utilize foundation models to interpret human instructions and construct a Versatile Semantic Score Map (VSSM),
on which we perform common sense reasoning and scoring to conduct language-guided frontier-based exploration.

structions to reach the location; and in object navi-171

gation (ObjectNav) (Batra et al., 2020), the agent172

is required to find objects of specified categories.173

Compared to vision-language navigation (VLN),174

which offers detailed and step-by-step instructions,175

object navigation is particularly challenging since176

the agent needs to do semantic recognition to177

find the goal and needs more efficient exploration178

than VLN since there are no step-by-step instruc-179

tions (Chen et al., 2023). It is also more common180

in real life that humans will give ambiguous de-181

mands (Wang et al., 2023) rather than detailed in-182

structions in VLN. Additionally, VLN datasets (An-183

derson et al., 2018; Ku et al., 2020) are typically dis-184

cretized into checker-like waypoint graphs, which185

makes it difficult to deploy algorithms in the real186

world, while on the other hand, ObjectNav is con-187

tinuous and more object-centric so that it can be188

easily deployed and extended to many downstream189

robotic tasks like object manipulation.190

To take a step further, in this paper, we propose a191

solution to the problem of open-set-ness in Object-192

Nav by introducing a framework that transforms193

the paradigm of ObjectNav from given close-set194

category names to free-form natural language in-195

structions with open-set objects. This transforma-196

tion will help bridge the interaction between hu-197

mans and embodied agents, making it more useful198

in real-world applications. Compared to existing199

works (Majumdar et al., 2023; Wang et al., 2023),200

our method doesn’t need prior occupancy maps201

and pre-exploration in the beginning and thus can 202

navigate in unseen environments. Furthermore, our 203

method addresses the overfitting issue in embodied 204

navigation and easily generalizes to the real world 205

in a zero-shot manner, enabling intelligent robot 206

agents to navigate in more diverse environments. 207

2.2 Zero-Shot Object Navigation 208

As Gu et al. (2022) elaborates, embodied naviga- 209

tion faces a severe challenge of data scarcity, lim- 210

iting the amount and distribution of available data 211

for training. Methods directly supervised on these 212

limited data cannot generalize to diverse real-world 213

environments. 214

Therefore, recent years have witnessed great 215

progress in Zero-Shot Object Navigation (ZSON). 216

Methods proposed by Majumdar et al. (2022); 217

Gadre et al. (2023); Yokoyama et al. (2023) lever- 218

age CLIP (Radford et al., 2021) or BLIP-2 (Li et al., 219

2023) embedded features to compute similarities 220

between object goal and input image and construct 221

an implicit map for certain goal objects to guide 222

navigation. Other methods, such as those proposed 223

by Zhou et al. (2023); Dorbala et al. (2023); Yu et al. 224

(2023); Shah et al. (2023), leverage object detectors 225

to construct metric maps and use large language 226

models to conduct reasoning. Cai et al. (2023) 227

leverages foundation models to perform basic im- 228

age processing and trains a locomotion module to 229

navigate to certain chosen pixel points. 230
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2.3 Foundation Models231

Foundation models (Bommasani et al., 2022) are232

large-scale models that are pre-trained on vast233

amounts of data and can perform general tasks. The234

sheer volume of pretraining data endows them with235

exceptional generalizability, which allows them to236

perform zero-shot inference. Moreover, the exten-237

sive training data helps foundation models acquire238

common sense about our physical world, making239

them ideal for real-world applications.240

Foundation models, particularly the large lan-241

guage models (LLMs), also have an intriguing fea-242

ture — In-Context Learning (ICL) (Dong et al.,243

2023). This feature enables these models to follow244

pre-defined instructions to ground their output into245

certain patterns. By combining ICL with common246

sense learned from the large-scale data, foundation247

models can effectively perform semantic reason-248

ing and guesswork to provide intuitions of possible249

exploration directions like human beings, as illus-250

trated in Zhou et al. (2023); Yu et al. (2023); Shah251

et al. (2023). For example, if the goal is a “toilet”,252

from common sense it is highly possible to find it253

around an area that contains a “bathtub”.254

According to different modalities, foundation255

models can be mainly divided into Visual Foun-256

dation Models (VFM), such as SAM (Kirillov257

et al., 2023), Large Language Models (LLM),258

such as GPT-3.5/GPT-4 (Ouyang et al., 2022; Ope-259

nAI, 2023) and LLaMA/LLaMA-2 (Touvron et al.,260

2023a,b), and Vision Language Models (VLM),261

such as GPT-4V (Yang et al., 2023b), CLIP (Rad-262

ford et al., 2021), Grounded-SAM (Liu et al., 2023),263

etc. There are also foundation models covering264

other modalities, such as audio (Yang et al., 2023a)265

and video (Xu et al., 2021). In this paper, we use266

VLMs and LLMs since our setting only involves267

vision and language modalities.268

3 Method269

3.1 Problem Statement and Method Overview270

Problem Statement. As shown in Fig. 1, in an271

unfamiliar environment, given a natural language272

instruction I , an embodied agent needs to explore273

the environment in search of a certain queried ob-274

ject. At timestep t, the agent is provided with ego-275

centric RGBD observation ot and should output276

an action at such as move_forward, turn_left,277

stop, etc. A successful navigation is defined as278

finding the queried object within the maximum279

navigation timestep.280

Method Overview. As shown in Fig. 2, given a 281

starting point and human instruction I , the agent 282

first utilizes the ProposeLLM to propose possible 283

objects to meet the instruction. At timestep t, the 284

agent can leverage the DiscoverVLM to discover 285

new objects from the scene and check whether they 286

can meet the instruction. Along with prior defined 287

objects and proposal objects, the full object list is 288

then converted into an object prompt pt for founda- 289

tion models to reason. Given current RGBD obser- 290

vation ot, the PerceptVLM will detect and segment 291

object masks based on pt, constructing a Versatile 292

Semantic Score Map (VSSM) Mt, on which possi- 293

ble exploration frontiers are sampled. Finally, the 294

ReasonLLM will conduct common sense reasoning 295

based on the semantic information of frontiers and 296

give the next frontier goal Gt to explore, which 297

will be executed by an underlying control policy 298

to output low-level actions. The whole process is 299

looped until the object is found or the agent fails. 300

3.2 Discovery and Perception 301

Discovery. Given a free-form human instruction I 302

that may contain open-set objects, we first leverage 303

a ProposeLLM to get all possible proposal objects 304

Opro that can satisfy the instruction. Each proposal 305

object contains attributes such as color, location, 306

etc, to satisfy fine-grained instructions. At timestep 307

t, given egocentric RGBD and pose observations ot, 308

we propose a DiscoverVLM using GPT-4V (Yang 309

et al., 2023b) that actively discovers novel objects 310

Odis from the RGB image. Meanwhile, the Discov- 311

erVLM also conducts reasoning on the instruction, 312

trying to discover objects that potentially meet the 313

instruction and update Opro. Extracting novel ob- 314

jects from the environment is essential for open-set 315

navigation since they may contain scene-specific 316

information that helps to find the goal. To save time 317

and cost, the DiscoverVLM is randomly activated 318

by a frequency parameter σfreq. 319

Perception. After getting proposal objects Opro 320

and discovered objects Odis, we merge them with 321

prior objects Opri to construct an object prompt pt 322

to feed into our PerceptVLM based on Grounded- 323

SAM (Liu et al., 2023) to detect and segment all the 324

appearing objects in pt from the RGB image of ot. 325

Note that due to the BERT encoder (Devlin et al., 326

2019) and powerful SAM backbone (Kirillov et al., 327

2023) in the PerceptVLM, it can achieve open-set 328

object detection in high granularities. This process 329

will output object masks with confidence scores for 330

further mapping and reasoning. 331
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3.3 Mapping and Reasoning332

Mapping. At timestep t, based on the confidence333

scores of object masks produced by PerceptVLM334

and the depth image and pose in ot, we project335

the masks to the top-down 2D space and con-336

struct a Versatile Semantic Score Map (VSSM)337

Mt ∈ RH×W×(C+2), which contains C channels338

of object semantics, and two channels of the oc-339

cupied area and explored area, with a resolution340

of H ×W . Each element in the map is a score in341

[0, 1] instead of binary labels. Since we continu-342

ously discover novel objects from the environment,343

the C is versatile so that we can keep updating the344

map, enabling life-long learning and downstream345

robotic tasks. Also, instead of filling binary la-346

bels into semantic channels, we fill each semantic347

channel with confidence scores, with which we can348

easily update the map if there is a change in the349

environment.350

Reasoning. Based on Mt, we can sample fron-351

tiers {Fi} with semantic information in unexplored352

areas for further exploration. To choose the next353

frontier to explore, we leverage ReasonLLM by354

unleashing the power of LLM’s common sense rea-355

soning. Specifically, given the semantic informa-356

tion around each frontier, we construct a query tem-357

plate in the form of “This area contains A, B358

and C.”. Combined with the thought T produced359

by Chain-of-Thought (Wei et al., 2022) prompting360

from ProposeLLM and the object prompt pt, the361

ReasonLLM will conduct common sense reasoning362

and rate these frontiers to pick one frontier goal Gt363

which is most likely to find the goal. This frontier364

goal Gt will guide the agent for further exploration365

and produce low-level actions to control the agent.366

Instead of just asking the LLM which frontier367

to go to, we introduce another reasoning process,368

which prompts LLMs to rate these frontiers {Fi}369

to scores {Si}, in which Si ∈ [0, 1], indicating370

the likelihood to find the goal. Then, the frontier371

with the highest score will be picked out for further372

exploration. By introducing this rating process,373

ReasonLLM can map its common sense to concrete374

numbers that reflect the actual ranking, leading to375

better reasoning. We verified its effectiveness in376

Section 4.5. It’s also worth mentioning that to377

balance exploration and exploitation, ReasonLLM378

is activated at regular timestep intervals δ to update379

Gt. At other timesteps, the frontier goal Gt remains380

unchanged to fully explore the previously chosen381

frontier Gt−δ.382

Algorithm 1: Pseudo-Code of the Overall
Algorithm for OpenFMNav

Data: Natural Language Instruction I , Prior Objects
Opri, Discovery Frequency σfreq , Frontier
Goal Update Interval δ

t← 0;
done← False;
G0, M0, Odis ← None;
Opro, T ← ProposeLLM(I);
while not done do

ot ← getObservation();
if toDiscover(σfreq) then

Odis, Opro ← DiscoverVLM(ot, I);
end
pt ← getPrompt(Opro, Odis, Opri);
Masks← PerceptVLM(ot, pt);
Mt ← semanticMapping(Mt−1, Masks, ot);
if Opro in Mt then

Gt ← getLocation(Mt, Opro);
else

if t % δ == 0 then
{Fi} ← sampleFrontiers(Mt);
{Si} ← ReasonLLM({Fi}, pt, T );
Gt ← getLocation(Mt, argmax({Si}));

else
Gt ← Gt−1;

end
end
Opri ← updateObj(Opro, Odis, Opri);
at ← FMMPlanner(Mt, Gt);
done← stepAction(at, t);
t← t+ 1;

end

After obtaining the frontier goal and the oc- 383

cupancy channel in Mt, we utilize a control 384

policy based on the Fast Marching Method 385

(FMM) (Sethian, 1999) to output a low-level action 386

at to control the agent. This closes the loop and 387

goes to the next timestep t+ 1. 388

We present the whole process of our OpenFM- 389

Nav algorithm in Algorithm 1. 390

4 Experiments 391

In this section, we evaluate our method comprehen- 392

sively in simulation to show our method’s effec- 393

tiveness compared to baseline methods. We also 394

conducted ablation studies to validate the effective- 395

ness of our framework design. 396

4.1 Experimental Setup 397

In the simulation, we evaluate on the HM3D Ob- 398

jectNav benchmark based on the Habitat Matter- 399

port 3D Semantics Dataset (Yadav et al., 2022b), 400

which contains 80 train scenes and 20 validation 401

scenes. We utilize the validation scenes for evalua- 402

tion. There are, in total, 2000 episodes and six goal 403
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Method Open-Set Zero-Shot SR (%) ↑ SPL ↑
FBE (Gervet et al., 2023) × ✓ 23.7 0.123

SemExp (Chaplot et al., 2020a) × × 37.9 0.188
ZSON (Majumdar et al., 2022) ✓ × 25.5 0.126

GoW (Gadre et al., 2023) ✓ ✓ 32.0 0.181
ESC (Zhou et al., 2023) ✓ ✓ 38.5 0.220

L3MVN (Yu et al., 2023) × ✓ 50.4 0.231
PixNav (Cai et al., 2023) ✓ × 37.9 0.205

OpenFMNav (Ours) ✓ ✓ 54.9 0.244

Table 1: Comparison between different methods on the HM3D ObjectNav benchmark. Our method outperforms all
the baseline methods on all metrics and achieves open-set zero-shot object navigation.

classes (chair, couch, potted plant, bed, toilet, and404

tv) in the dataset. The action space of the robot405

agent is {stop, move_forward, turn_left,406

turn_right, look_up, look_down}. The for-407

ward distance is set to 0.25m, and the rotation angle408

is set to 30 degrees.409

Following previous works (Zhou et al., 2023;410

Cai et al., 2023), we utilize Success Rate (SR)411

metric to measure whether an agent can find our412

desired objects. We also report results of Success413

weighted by Path Length (SPL) to measure the414

navigation efficiency.415

4.2 Implementation Details416

In our method, the foundation models we use417

are: GPT-4 (text-only) (OpenAI, 2023) for Pro-418

poseLLM and ReasonLLM, and GPT-4V (Yang419

et al., 2023b) for DiscoverVLM. For PerceptVLM,420

we utilize Grounded-SAM, which first leverages421

Grounding DINO (Liu et al., 2023) to produce422

bounding boxes given the RGB image in ot and423

object prompt pt, and then leverages Segment Any-424

thing Model (SAM) (Kirillov et al., 2023) for each425

bounding box to produce high-granularity object426

masks for semantic mapping.427

Moreover, we utilize the Chain-of-Thought428

(CoT) (Wei et al., 2022) prompting technique to429

fully exploit the reasoning abilities of ProposeLLM,430

ReasonLLM and DiscoverVLM. The prompts we431

used can be found in Appendix C.432

In the simulation, we set the update interval δ433

to 20 timesteps, discovery frequency σfreq to 0.01,434

and the initial prior objects to a subset of HM3D ob-435

ject categories, which can be found in Appendix B.436

4.3 Baseline Methods437

We compare our method with several recent works,438

with a focus on open-set and zero-shot object nav-439

igation baselines to verify our framework’s effec-440

tiveness. We classify these baseline methods into 441

“Open-Set” and “Zero-Shot” or not. Here, we define 442

“Open-Set” as that the method can find whatever 443

object category we want, and define “Zero-Shot” 444

as that the agent hasn’t been trained or finetuned 445

on any of the data previously, including images, 446

episodes, and locomotion planning. The baseline 447

methods are as follows: 448

• FBE (Gervet et al., 2023). This baseline 449

method employs a classical robotics pipeline 450

for mapping and a frontier-based exploration 451

algorithm. 452

• SemExp (Chaplot et al., 2020a). A method 453

that explores and searches for the target using 454

close-set semantic maps and reinforcement 455

learning. 456

• ZSON (Majumdar et al., 2022). An RGB- 457

based zero-shot object navigation baseline us- 458

ing CLIP (Radford et al., 2021) to embed 459

scene features. It is trained on ImageNav and 460

directly transferred to ObjectNav. 461

• GoW (Gadre et al., 2023). A modification 462

of CoW (Gadre et al., 2023) implemented 463

by Zhou et al. (2023) that uses GLIP (Li* 464

et al., 2022) for object detection and the 465

vanilla fronter-based exploration method. 466

• ESC (Zhou et al., 2023). A map-based 467

zero-shot object navigation baseline that uses 468

GLIP (Li* et al., 2022) to detect objects and 469

rooms, and combines LLM with soft common- 470

sense constraints for planning. 471

• L3MVN (Yu et al., 2023). An LLM-based 472

baseline that uses a close-set object detec- 473

tor (Jiang et al., 2018) and LLMs to conduct 474

frontier-based exploration. 475
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Method SR (%) ↑ SPL ↑
w/o GPT-4 53.6 0.230
w/o CoT 51.8 0.208

w/o Discovery 50.0 0.222
w/o Scoring 50.0 0.208

Ours 55.4 0.239

Table 2: Ablation studies on different components of
our method. Experiments are conducted under the same
uniformly sampled episodes.

• PixNav (Cai et al., 2023). A recent work476

solely using foundation models to pick out477

navigation pixels and train a locomotion mod-478

ule to navigate to chosen pixels.479

4.4 Results and Analysis480

We report the main results in Table 1. Our method481

surpasses all the baselines on both Success Rate482

(SR) and Success weighted by Path Length (SPL),483

especially compared with open-set zero-shot meth-484

ods. Our method surpasses the previous State-of-485

the-Art method on open-set zero-shot object nav-486

igation (Zhou et al., 2023) by over 15% on the487

success rate metric, suggesting that our framework488

is indeed effective.489

First, we compare our method with previous se-490

mantic map based methods, such as SemExp (Chap-491

lot et al., 2020a), ESC (Zhou et al., 2023) and492

L3MVN (Yu et al., 2023). The results show that493

our method performs better since we utilize Dis-494

coverVLM to construct VSSM with versatile out-495

of-vocabulary class labels, such as “marble statue”496

and “range hood”, which helps to alleviate the is-497

sue of limited categories and enriches the semantic498

information of the environment. Also, compared to499

these methods, our method achieves open-set navi-500

gation, which better adapts to complex situations501

and real-world applications.502

Compared with other open-set baselines, such as503

PixNav (Cai et al., 2023), ZSON (Majumdar et al.,504

2022) and GoW (Gadre et al., 2023), our method505

constructs an explicit map where all discovered ob-506

jects are presented. Therefore, we can boost LLMs’507

reasoning abilities to balance between exploration508

and exploitation and make the agent move to where509

the goal is most likely to be. Also, the map con-510

structed by our method is maintained and updated,511

which is perfect for life-long learning, enabling512

downstream robotic tasks with further natural lan-513

guage instructions, while methods like Gadre et al.514

15.2
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10.7 10.7

14.3

19.6
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15.2

0

5

10

15

20

25

w/o GPT-4 w/o CoT w/o Discovery w/o Scoring Ours

Collision Exploration Detection

Figure 3: Types and percentages of failure cases in
ablation methods.

(2023); Yokoyama et al. (2023) only construct im- 515

plicit maps for a certain goal, which is useless after 516

the navigation. 517

4.5 Ablation Studies 518

Probing deeper into our method design, we also 519

performed ablation studies on various components 520

of our pipeline. Note that to save time and cost, 521

we test all the ablation methods on a subset of 522

the full dataset under the same uniformly sampled 523

episodes so that there can be slight differences in 524

the result of our method. Table 2 shows that modi- 525

fying multiple components of our framework leads 526

to significantly worse performance. We also cat- 527

egorized the failure cases into different types and 528

report their percentages in Fig. 3, in which Colli- 529

sion refers to the situation where the agent cannot 530

avoid colliding with the environment, Exploration 531

means the agent times out while trying to find the 532

goal, and Detection means the agent mistakenly 533

identifies a wrong object as the goal. 534

Effectiveness of using larger models. First, we 535

analyze the usage of GPT-4 for LLMs. Compared 536

to only using GPT-3.5, using larger GPT-4 achieves 537

better performance (+1.8%), reducing failure cases 538

of Collision and Detection. However, the percent- 539

age of Exploration is slightly higher, showing that 540

larger models have more diverse answers that en- 541

courage more exploration, which potentially causes 542

more time out. 543

Effectiveness of our joint reasoning pipeline. 544

Then, we analyze different foundation model com- 545

ponents. We found that using CoT prompting 546

(+3.6%) and scoring prompting (+5.4%) are es- 547

sential to the strong performance of OpenFMNav 548

since they generate more reasoning chains that 549

elicit the common sense of large language mod- 550
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Find a red chair.

ProposeLLM

Thought: The instruction 
contains a specific object goal, 
which is "red chair". I will 
directly output "red chair".
𝑂!"#: [red chair]

PerceptVLM

𝑂$%&: [computer 
monitor, 

whiteboard]

𝒐𝒕

𝑂!"#: [red chair]
𝑂$%&: [computer monitor, 

whiteboard]
𝑂!"%: [couch, desk…]

DiscoverVLM

Can you get a 
robot arm?

ProposeLLM

Thought: The instruction is 
specific, indicating a need for a 
"robot arm". I will directly 
output "robot arm".
𝑂!"#: [robot arm]

PerceptVLM

𝑂$%&: [cart, 
cables, button]

𝑂!"#: [robot arm]
𝑂$%&: [cart, cables, button]
𝑂!"%: [couch, desk…]

DiscoverVLM

𝒐𝒕

I need to wash 
my hands!

ProposeLLM

Thought: The instruction is general and 
indicates a need related to hand washing. 
Common objects associated with hand 
washing in an indoor environment 
include a sink, soap, and a towel for 
drying hands. I will list these objects.
𝑂!"#: [sink, soap, towel]

PerceptVLM

𝑂$%&: [3D 
printer, 

keyboard, tap]

𝑂!"#: [sink, soap, towel, tap]
𝑂$%&: [3D printer, keyboard]
𝑂!"%: [cabinet, desk…]

DiscoverVLM

𝒐𝒕

(a) Robust to distractors (b) Robust to open-set objects (c) Robust to free-form demands

Figure 4: Qualitative studies in the real world. Text marked in red indicates objects that potentially satisfy the
instruction. Results show that our method is robust to natural language instructions, including distractors, open-set
objects and free-form demands.

els. Also, compared to restricting the object set,551

leveraging DiscoverVLM not only enables more552

free-form natural language instructions from users’553

input but also enriches the scene’s semantics, which554

helps the reasoning for frontier-based exploration555

and improves performance (+5.4%). These efforts556

reduce failure cases of all categories.557

5 Navigation in the Real World558

We further conduct real robot demonstrations to559

show our method’s ability to understand free-form560

natural language instructions and perform open-set561

zero-shot navigation in the real world.562

5.1 Real Robot Setup563

For robots, we use a TurtleBot3 Burger robot with564

scalable structures to navigate on the ground. We565

limit its action space to {stop, move_forward,566

turn_left, turn_right}. As in the simulation,567

we set the forward distance to 0.25m and the rota-568

tion angle to 30 degrees. For robotic perception,569

we use an Intel RealSense SR300 depth camera to570

capture RGBD images.571

For real-world environments, we select an office572

with sufficient space and various objects for the573

robot to navigate. The office contains not only com-574

mon objects like “chair”, “desk”, “computer” and575

“cabinet”, but also less common ones like “robot576

arm” and “3D printer”.577

5.2 Qualitative Studies578

We conduct qualitative studies on our OpenFM-579

Nav in the real world, as shown in Fig. 4. The580

results show that our method can perform effective581

zero-shot navigation in the real world given free-582

form natural language instructions. Especially, our583

method is robust to distractors, open-set objects584

and free-form demands.585

For distractors, rather than object categories, our 586

proposed ProposeLLM can extract the attributes 587

in the instruction (“red chair”), which can be fur- 588

ther detected and segmented by PerceptVLM. In 589

Fig. 4(a), we can see that, among the three chairs 590

in the observation, only the red chair is masked. 591

For open-set objects, due to the large-scale train- 592

ing data of foundation models, our method can also 593

navigate to objects that are uncommon and out-of- 594

vocabulary, such as the “robot arm” in Fig. 4(b). 595

Another intriguing feature of our method is that 596

our method can adaptively add up goals in the navi- 597

gation. This happens when the instruction is a free- 598

form demand for ambiguous objects. For example, 599

in Fig. 4(c), when the user needs to wash hands, 600

the ProposeLLM first proposed “sink”, “soap” and 601

“towel”, but they are not necessarily present in the 602

scene. When the agent explores the environment, 603

the DiscoverVLM can actively discover what’s new 604

in the environment and reason about whether they 605

can potentially fulfill the user’s demand. In this 606

case, a “tap” is discovered and identified as a goal 607

so that the agent can directly navigate to it without 608

further exploration. This is extremely helpful when 609

the humans are also unaware of the scene details. 610

6 Conclusions 611

In this paper, we presented a novel framework, 612

OpenFMNav, for open-set zero-shot object naviga- 613

tion. By leveraging foundation models, our method 614

could understand free-form natural language in- 615

structions, conduct reasoning, and perform effec- 616

tive zero-shot object navigation. Extensive exper- 617

iments showed the superiority of our framework. 618

Finally, we conducted real robot demonstrations to 619

validate our method’s open-set-ness and generaliz- 620

ability to real-world environments. 621
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Ethics Statement622

In this paper, we present a method for open-set623

zero-shot object navigation. This method can be624

used for zero-shot robotic navigation in diverse625

scenarios, such as home robots, warehouse robots,626

and so on. Our work further addresses the issue of627

ambiguous or free-form natural language instruc-628

tions, benefitting the interaction between humans629

and robots. However, foundation models can have630

safety issues and risks such as privacy leaks and631

jailbreaking (Deng et al., 2023; Chao et al., 2023),632

which need to be further addressed.633

Limitations634

While extensive experiments validate the effective-635

ness of our method design, there exist a number of636

limitations in our work. First, our method requires637

relatively accurate depth sensors to build the 2D638

map, while the observed depths may have much639

noise in reality, causing performance degradation.640

Moreover, we acknowledge that our method re-641

quires stable Internet connections to get responses642

from APIs of foundation models, limiting the po-643

tential of large-scale deployment in harsh environ-644

ments. We hope future works on depth sensing,645

LLM quantization, and edge computing can miti-646

gate such limitations.647
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A API Usage949

Model Name API Name
ProposeLLM gpt-4-1106-preview
DiscoverVLM gpt-4-vision-preview
ReasonLLM gpt-4-1106-preview

Table 3: API usage

B Hyperparameters950

Parameter Value
Discovery Frequency σfreq 0.01

Frontier Goal Update Interval δ 20
Confidence Score Threshold 0.55

LLM/VLM Temperature 0
Initial Prior Objects Opri See Fig. 5

Table 4: Hyperparameters

chair, bed, plant, toilet, tv, couch, desk,
refrigerator, sink, bathtub, shower, towel,
painting, trashcan, stairs

Figure 5: Initial prior objects Opri

C Prompts951

C.1 Prompts for ProposeLLM952

The prompts for ReasonLLM are shown in Fig. 6.953

SYSTEM_PROMPT="""You are an intelligent embodied agent called
ProposeLLM that follows an instruction to navigate in a real indoor
environment. Your goal is to propose a list of objects that can
satisfy the user's need.

You are firstly given an instruction that indicates the user's need.

If the instruction contains a specific goal object, like "go to the
bed" or "find the red bottle", you should directly output the goal
object with its possible attributes, like "bed" or "red bottle".

Otherwise, if the instruction is more general, like "I'm so
thirsty", you should inference via common sense which objects are
feasible and output a list of objects that can satisfy the user's
need, like "bottle", "cup", "refrigerator", etc.

Notice that your output should be a list of objects with their
possible attributes, even if there is only one object in the
list."""

USER1="""go to the bed"""

ASSISTANT1="""Thought: The instruction contains a specific object
goal, so I will directly output "bed".

Answer: ["bed"]"""

USER2="""I have been standing for hours. I need some place to sit
down and rest."""

ASSISTANT2="""Thought: The instruction is quite general, so I will
use my common sense. The user needs some place to sit down, so
candidate objects in an indoor scene can be chair, couch, etc. I
will output a list of these objects.

Answer: ["chair", "couch"]"""

Figure 6: Prompts for ProposeLLM

C.2 Prompts for DiscoverVLM954

The prompts for ReasonLLM are shown in Fig. 7.955

SYSTEM_PROMPT="""You are an intelligent assistant called DiscoverVLM
that can understand natural language and scene images. Given a list
of objects and an image, your goal is to discover new objects in the
image that are not in the list.

You should consider the following rules when discovering new
objects:

(1) You should first consider, what's in the image? Note that you
should only include objects in the house, and avoid things that are
part of the house, like ceiling, wall, floor, window etc and avoid
room names, like bedroom, kitchen, etc.

(2) Considering the given object list, you should only output things
that are not in the list or are not similar to things in the list
because your duty is to discover new things. For example, if the
given object list contains "couch" or "tv", you should not output
"sofa" or "television" because they are similar.

(3) Confirm that the objects you output are in the image. For
example, if the image is a bedroom, you should not output "bathtub"
because it is impossible to find a bathtub in a bedroom. And also
confirm the objects you output don't violate rule (1).

(4) Avoid objects are common everywhere. For example, objects like
light switch and door are present in every room, so you should not
output them.

Your output should be in the form of "Answer: <list of objects>"
such as:

Answer: ["chair", "bed", "bottle"]
"""

USER="""What objects can you see in the image?"""

Figure 7: Prompts for DiscoverVLM

C.3 Prompts for PerceptVLM 956

For PerceptVLM, given the current object list, 957

we use dots to separate each object as the object 958

prompt pt. 959

For example, if the object list is [chair, bed, 960

plant, toilet, tv, couch], the object prompt 961

is “chair.bed.plant.toilet.tv.couch”. 962

C.4 Prompts for ReasonLLM 963

The prompts for ReasonLLM are shown in Fig. 8. 964
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SYSTEM_PROMPT="""You are an intelligent embodied agent called ReasonLLM that follows an instruction to navigate in an indoor environment. You are firstly given
an object goal class for you to find, which is called the goal.

Then, at each step, your task is to take several descriptions of what an area contains to output scores for these areas to contain the goal. Each score is a
floating point number between 0 and 1.

Your output should be a list of scores.

At each step, you should consider:

(1) For each description, according to what the area contains, is it possible that the goal is also in this area? To better do reasoning, you can imagine what
kind of room the area is in, for example, a bedroom, a living room, a bathroom, etc. Based on the common sense, you can judge the possibility that the goal to
be in this area.

(2) If the goal class is already in the description, the score should be 1 without any hesitation.

(3) If one area contains nothing, it is still possible that the goal is in that area. Give a score of 0.4 to 0.6. Score the area higher in that case when other
areas are not likely to contain the goal.

(4) If there are no current frontiers, skip the thought and output 'No frontiers'."""

USER1="""Goal: toilet

- Description 0: The area contains a towel, a bathtub and a sink.

- Description 1: The area contains a bed and a plant.

- Description 2: The area contains a sofa, a TV and a table.

"""

ASSISTANT1="""Thought: Let's analyze each description.

- Description 0: this area contains a bathtub and a sink, so it is possibly a bathroom, and the goal is toilet, so it is possible that the goal is in this area,
I will give a score of 0.9

- Description 1: this area contains a bed and a plant, so it is possibly a bedroom, and the goal is toilet, so it is not likely that the goal is in this area. I
will give it a 0.2

- Description 2: this area contains a sofa, a TV and a table, so it is possibly a living room, and the goal is toilet, so it is also not likely that the goal is
in this area. I will give it a 0.3

Answer: [0.9, 0.2, 0.3]"""

USER2="""Goal: bed

- Description 0: The area contains a towel, a bathtub and a sink.

- Description 1: The area contains a bed and a plant.

- Description 2: The area contains a sofa, a TV and a table.

"""

ASSISTANT2="""Thought: Let's analyze each description.

- Description 0: this area contains a bathtub and a sink, so it is possibly a bathroom, and the goal is bed, so it is not possible that the goal is in this
area. My score is 0.1

- Description 1: this area contains a bed, which is the goal, so the score is 1

- Description 2: this area contains a sofa, a TV and a table, so it is possibly a living room. The goal is a bed, so it can be near this area. I will give it a
0.5

Answer: [0.1, 1, 0.5]"""

Figure 8: Prompts for ReasonLLM
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