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Abstract

Event-based object detection has attracted increas-
ing attention for its high temporal resolution, wide
dynamic range, and asynchronous address-event
representation. Leveraging these advantages, spik-
ing neural networks (SNNs) have emerged as
a promising approach, offering low energy con-
sumption and rich spatiotemporal dynamics. To
further enhance the performance of event-based
object detection, this study proposes a novel hy-
brid spike vision Transformer (HsVT) model. The
HsVT model integrates a spatial feature extrac-
tion module to capture local and global features,
and a temporal feature extraction module to model
time dependencies and long-term patterns in event
sequences. This combination enables HsVT to
capture spatiotemporal features, improving its
capability in handling complex event-based ob-
ject detection tasks. To support research in this
area, we developed the Fall Detection dataset as a
benchmark for event-based object detection tasks.
The Fall DVS detection dataset protects facial
privacy and reduces memory usage thanks to its
event-based representation. Experimental results
demonstrate that HsVT outperforms existing SNN
methods and achieves competitive performance
compared to ANN-based models, with fewer pa-
rameters and lower energy consumption.
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1. Introduction
Deep neural networks have garnered considerable attention
for their remarkable performance across a spectrum of tasks,
ranging from computer vision to natural language process-
ing. The exceptional performance is primarily attributed to
their intricate and specialized architectures. Notably, the
Transformer architecture (Beal et al., 2020; Carion et al.,
2020; Guo et al., 2023) has demonstrated outstanding ef-
ficacy in object detection tasks, albeit at the expense of
heightened energy consumption due to its intricate structure.
In parallel, drawing inspiration from the event-driven nature
of the human brain, spiking neural networks (SNNs) (Hu
et al., 2023a;b; Xu et al., 2023; 2024b; Xiao et al., 2025)
offer distinct advantages, including low energy consump-
tion and rich spatiotemporal dynamics. The emergence of
neuromorphic hardware such as Darwin3 (Ma et al., 2024)
further supports efficient on-chip learning with a novel in-
struction set architecture. Recent studies have also advanced
the efficiency, compressibility, and biological plausibility
of SNNs (Xu et al., 2024a; Shen et al., 2025; 2024). In this
context, our study explores the integration of Transformer-
based Artificial neural networks (ANNs) and SNNs, aiming
to combine their respective advantages in a hybrid frame-
work for efficient object detection.

Owing to their high time resolution (in the order of mi-
croseconds), high dynamic range (> 120dB), and asyn-
chronous address event representation, event cameras have
shown great potential in various vision tasks (Liu et al.,
2024a;b; 2025). In particular, event-based object detection
has attracted increasing attention. Datasets for this task
are typically collected using event cameras, such as the dy-
namic vision sensor (DVS) (Serrano-Gotarredona & Linares-
Barranco, 2013)and ATIS sensor (Posch, 2011). The visual
information of the event camera is represented in the form
of an asynchronous address event stream of {(x, y, p, t)}.
The event stream indicates log-luminosity contrast changes
at time t and position (x, y). Each produced event only ap-
pears at the time and positions of a contrast change. Hence,
event-based object detection has the advantage of avoiding
oversampling and motion blur compared with traditional
frame-based object detection. On the one hand, SNNs have
shown potential for event-based object recognition with
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event representation processing and less power consump-
tion. The spike computation in SNNs quite matches the
address-event representation of event data. On the other
hand, ANNs with convolution and self-attention structures
have shown the potential to implement event-based object
detection efficiently. Hence, we focus on event-based object
detection by considering the property of the event camera
and combining the computation of ANNs and SNNs. Mean-
while, we collect the Fall DVS object benchmark dataset as
one of the event-based object detection.

There have been some previous studies to implement event-
based object detection. Graph-based vision Transformer
(GET) is proposed in (Peng et al., 2023) with the event repre-
sentation of graph token to utilize the temporal and polarity
information of events. Graph token clusters asynchronous
events based on event timestamps and polarities. Together
with the Event Dual Self-Attention block and Group Token
Aggregation module, GET effectively integrates spatial and
temporal-polarity features. The muti-stage Recurrent Vision
Transformers (RVTs) backbone is designed in (Gehrig &
Scaramuzza, 2023) for object detection with event cameras.
Each stage incorporates convolution components, local and
sparse global attention, and recurrent feature aggregation.
The convolution component downsamples the spatial res-
olution and acts as the conditional positional embedding
for transform layers. The interleaved local and global self-
attention captures both local and global features and offers
linear complexity in the input resolution. The temporal re-
currence is captured by long short-term memory (LSTM)
cells (Hochreiter & Schmidhuber, 1997) instead of Conv-
LSTM cells (Liu et al., 2017), in order to minimize latency
while retaining temporal information. Through the above
multi-stage design, RVTs achieve fast interference and favor-
able parameter efficiency. Inspired by the architectures of
RVTs, we explore multi-stage event-based object detection
with hybrid computation based on ANNs and SNNs.

In this paper, we propose the hybrid spiking vision Trans-
former (HsVT) to implement event-based object detection.
Firstly, we design a multi-stage vision Transformer that
integrates ANN and SNN components to leverage the com-
plementary strengths of both paradigms. Secondly, SNN
components are designed to capture the temporal feature in-
formation. The self-attention and convolutional components
are employed to capture the spatial features. This hybrid
paradigm not only enhances temporal feature extraction
through biologically spiking mechanisms but also achieves
competitive performance. Thirdly, the Fall DVS detection
benchmark dataset is collected in this paper as a new bench-
mark dataset to evaluate the performance of the proposed
HsVT. Evaluated on GEN1, HsVT surpasses prior SNN-
based approaches and achieves competitive performance of
ANN models, while offering lower power consumption and
model complexity.

2. Related Work
2.1. Event-based Object Detection Datasets

Several public datasets have been developed for event-based
object detection. The Prophesees GEN1 Automotive Detec-
tion Dataset (De Tournemire et al., 2020), collected using
the Prophesee GEN1 sensor (304240), provides 39 hours
of driving data with annotations for pedestrians and cars.
The Megapixel Automotive Detection Dataset (Perot et al.,
2020), built on the high-resolution GEN4 sensor (1280720),
covers diverse driving scenarios including day/night and
urban/highway conditions, addressing challenges such as
illumination variation and complex object classes.

The PKU-DAVIS-SOD dataset (Li et al., 2023) focuses on
high-speed motion and extreme lighting conditions, offering
long-term multimodal sequences for robust detection. The
DSEC Detection Dataset (Gehrig & Scaramuzza, 2024)
extends the original DSEC by adding labels for 60 sequences
(70379 frames, 390118 boxes). These labels, generated
by image-based tracking and manual correction, include
both bounding boxes and class information and also track
identities, for object-tracking applications.

These datasets significantly advance event-based object de-
tection in autonomous driving scenarios. Furthermore, due
to their inherent privacy-preserving nature, event cameras
are well-suited for applications in healthcare and other sen-
sitive environments.

2.2. Fall Detection Dataset

Fall detection is a technique that monitors and identifies
whether an individual has experienced a fall, often employ-
ing visual sensors. Primarily focused on providing timely
assistance, especially for the elderly or those with health
vulnerabilities, the field endeavors to mitigate the serious
consequences that fall can entail, including fractures, liga-
ment tears, and other injuries. Leveraging a diverse array of
sensors and technologies, such as cameras, depth cameras,
and infrared sensors, fall detection systems are designed to
promptly detect falls and initiate appropriate actions, such
as sounding alarms, alerting paramedics or emergency ser-
vices, and documenting incidents for further analysis. The
application of fall detection technology extends to various
domains, including healthcare, home care, and geriatric
care.

In this context, the graphical representation of output bound-
ing boxes plays a crucial role in providing users with a visual
insight into the functioning of fall detection systems, prov-
ing particularly beneficial for monitoring systems, smart
homes, and healthcare applications. Moreover, the utiliza-
tion of bounding boxes enables the concurrent tracking of
multiple targets, rendering them suitable for monitoring
multiple individuals or analyzing complex environments.
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Fall detection based on real-life datasets is very important
for the training and performance evaluation of algorithms.
However, privacy concerns can be a barrier to data shar-
ing and disclosure (Debard et al., 2012). Among different
vision sensors, the dynamic vision sensor based on spike
computation could protect the facial privacy of individuals
and reduce the necessary memory capacity of data storage.

2.3. Event-based Object Detection Methods

Early methods for event-based object detection adopt the
transformed manner to convert the event data into frame-
based sequences and then implement the object detection
by the mature object detection models such as YOLOs (Ge,
2021). Although these methods achieve competitive per-
formance in specific scenes, they ignore the properties and
advantages of event cameras. Recently, some methods have
attempted to utilize the asynchronous events directly. By em-
ploying the multi-stage backbone with spatial self-attention
and convolutional modules and temporal LSTM modules,
the recurrent vision Transformer model achieves quite fast
interference and favorable parameter efficiency (Gehrig &
Scaramuzza, 2023). Group event Transformer is proposed
by decoupling the temporal-polarity information from spa-
tial information (Peng et al., 2023). The multimodal ob-
ject detection method named SODFormer is designed to
leverage rich temporal cues from the event and frame vi-
sual streams (Li et al., 2023). Most of these methods use
Transformer-based structures to capture the spatial and tem-
poral features efficiently. To enhance multi-scale object
detection with low energy consumption, SpikSSD (Fan
et al., 2025) introduces a fully spiking backbone and a bi-
directional fusion module tailored for spiking data. Spik-
ingViT (Yu et al., 2025) introduces a transformer-based SNN
detector that retains spatiotemporal features of event data via
residual voltage memory and attention mechanisms, achiev-
ing strong performance in event-based object detection. In
this paper, we consider the hybrid manner by combining the
self-attention and convolutional modules to extract spatial
features while using the energy-efficient SNN modules to
extract the temporal features.

3. Event-based FALL Detection Benchmark
Dataset

Event cameras have significant advantages over frame-based
cameras in high dynamic range, low latency, and low power
consumption. Event-based object detection is well-suited
for applications such as autonomous driving. However,
event cameras also have some disadvantages compared to
frame-based cameras, such as the lack of grayscale and
texture information. Therefore, we consider that the lack of
grayscale information precisely protects the privacy of the
subject being photographed. Many existing fall detection

datasets are either fake falls or not publicly available due
to privacy concerns. We explore a new approach to fall
detection datasets by using event stream data on existing fall
datasets. The dataset is publicly available at: our Dropbox
repository

3.1. Sample Processing

We convert the frame-based fall detection dataset into event-
based fall detection dataset through the event camera simu-
lator. Rebecq et al. (Rebecq et al., 2018) proposed ESIM,
the first event camera simulator capable of generating large-
scale and reliable synthetic event data. Unlike conventional
methods that simply threshold the difference between two
consecutive frames, their approach relies on tight integra-
tion with a rendering engine. Consequently, it dynamically
and adaptively queries visual sample frames to accurately
generate events. The basic frame-based fall dataset of Le2i
fall detection dataset (Charfi et al., 2013) is employed. Each
frame of the video is annotated to manually identify body
positions using bounding boxes and labels the start and end
frames of falls.

Hence, we utilize the event camera simulator to convert the
video dataset into an event stream dataset, with the generated
event data stored in ’bag’ format. Each video file produces
an event stream file, from which we extracted data content
and converted it into an ’h5’ format file.

3.2. Label Processing

The original dataset comprises a corresponding TXT an-
notation file for each video, annotating every frame of the
video. The annotations include frame index, the direction
of the fall, and Bounding Box (BBox) to specify the po-
sition of objects. Bbox representation follows the format
(x1, y1, x2, y2), where (x1, y1) denotes the coordinates of
the top-left corner of the bbox, and (x2, y2)denotes the coor-
dinates of the bottom-right corner of the BBox. Additionally,
the frame numbers marking the onset and cessation of a fall
event are annotated.

We utilize the data architectural framework of the GEN1
dataset (De Tournemire et al., 2020) and embrace a numpy
schema, wherein boxes encapsulate timestamp t, as well
as the Cartesian coordinatesxand y, denoting the location,
along with the parameters w and h, representing the width
and height respectively, of the BBox. Additionally, these
boxes incorporate the categorical identifier class id, the
confidence measure class confidence, and the tracking
identifier track id. In this context, the bounding box is
delineated as (x, y, w, h), wherein (x, y) denotes the coor-
dinates of the top-left vertex of the BBox,w signifies the
width of the BBox, and h signifies the height of the box.
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4. Methodology
4.1. Event Stream Representation

Event cameras operate distinctively from frame-based cam-
eras, yielding different data formats. Unlike frame-based
cameras that produce static images, event cameras generate
event stream data. An event stream comprises a sequence
of triplets, each representing an event, consisting of times-
tamps, pixel coordinates, and polarity information. The
interplay between event flow and events, as well as the com-
position of events, is illustrated in Fig. 1 as depicted below:

0
�����:  �, < �, � > , � 

time

event stream

∆t

Figure 1. Event Stream Representation with Time Intervals. Each
vertical line represents an event occurrence, while equidistant red
lines represent the time intervals. Each event is represented by a
triplet (t, 〈x, y〉, p), denoting its spatial and temporal coordinates.

where t represents the timestamp; x and y represent the
pixel coordinates; p represents the polarity. The timestamp
signifies the time of the event, pixel coordinates denote the
event’s location, and polarity indicates the event’s nature,
with +1 for bright events and -1 for dark events. The accu-
mulation of events that occur within a period ∆t is called
a sequence E. As shown in Eq.(1), data is input into the
network in the form of sequence E.

E = {eventi | eventi occurs within ∆t}Ii=1 (1)

In this study, we utilize three distinct datasets: GEN1, FALL
Detection, and AIR Detection datasets. For the GEN1
dataset, the time interval ∆tGEN1 is set to 50ms, aligning
with recommendations from reference (Gehrig & Scara-
muzza, 2023). For the fall dataset, ∆tFALL is set to be
200ms based on our visualization and experimentation de-
tailed in Section 5.1, as illustrated in Fig 2. Finally, for the
air dataset, ∆tAIR is set to 10ms, taking into account the la-
beling frequency of 100Hz. To be specific, the configuration
of ∆t in different datasets was as follows:

For the GEN1 dataset:

∆tGEN1 = 50ms (2)

For the FALL dataset:

∆tfall = 200ms (3)

For the AIR dataset:

∆tair = 10ms (4)

Here, the labeling frequency is fair = 100Hz. Hence, we
set ∆tair to be 10ms to ensure the sufficient feature capture
of dense event data.

4.2. Design of HsVT

The architecture of the proposed HsVT consists of four
blocks, each comprising spatial feature extraction and tem-
poral feature extraction components. The network architec-
ture is illustrated in Figure 2.

First, the network performs vertical propagation across
stages, where each block receives input from the previous
stage. Specifically, each block not only accepts input from
the previous stage but also incorporates output from the tem-
poral feature extraction module at adjacent time steps. This
design enables information flow and accumulation across
time, allowing the network to better capture temporal de-
pendencies. By facilitating information sharing between
neighboring time steps, the network enhances its capability
to model sequential patterns in the data.

BLOCK1

BLOCK2

BLOCK1

BLOCK2

BLOCK3

BLOCK4

FPN+Head FPN+Head

BLOCK3

BLOCK4

t
t t+1

Downsample

Spatial 
Feature 

Extraction

Temporal
Feature 

Extraction

Figure 2. Architecture of the HsVT Network. The architecture of
the proposed HsVT network consists of four blocks, each incor-
porating spatial feature extraction and temporal feature extraction
components.

4.3. Spatial Feature Extraction

In each block, spatial feature extraction is composed of
MaxViT (Tu et al., 2022) and SpikingMLP (Spiking Multi-
layer Perceptron), as illustrated in Figure 3. These compo-
nents work collaboratively to extract spatial representations
from the input data, enabling the network to capture both
local and global spatial dependencies more effectively. The
MaxViT module includes two types of self-attention mecha-
nisms:

Block-SA (Block-level Self-Attention). Block-SA per-
forms self-attention operations within local regions, captur-
ing fine-grained spatial correlations and structural patterns.
This allows the network to model spatial dependencies based
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on local positional relationships, enhancing its ability to un-
derstand intra-block structures.

Grid-SA (Grid-level Self-Attention). Grid-SA operates
across the entire feature map to model long-range dependen-
cies and global spatial structures. Unlike Block-SA, which
focuses on local features, Grid-SA integrates contextual
information over larger spatial extents, enabling comprehen-
sive global feature representation.

SpikingMLP utilises multiple layers of spiking neurons
and nonlinear activation functions to further process the
attention-enhanced features. By combining outputs from
both Block-SA and Grid-SA, SpikingMLP extracts deeper
and more abstract spatial features, thus improving the net-
work’s representational capacity.

To visualise the attention mechanisms, we present attention
heatmaps generated by Block-SA and Grid-SA, respectively.
Additionally, we overlay these heatmaps on the original
input images for enhanced interpretability, as shown in Fig-
ure 4. The visualisations reveal that Block-SA predomi-
nantly focuses on local fine-grained regions, while Grid-SA
captures broader global structures. Together, they provide
complementary spatial attention patterns.

Grid-SA

SpikingMLP

SpikingMLP

Block-SA

Spatial Feature

Extraction

Figure 3. Spatial Feature Extraction in the HsVT Architecture.
This figure illustrates the process of spatial feature extraction
within the HsVT architecture. The components, including Block-
SA, SpikingMLP, Grid-SA, and a second SpikingMLP, collabora-
tively work to extract spatial features from the input data.

4.4. Temporal Feature Extraction

In this section, we describe the utilization of LSTM and
Spiking Temporal Feature Extraction (STFE) models for
temporal feature extraction within the HsVT architecture,
as illustrated in Figure 5.

LSTM-Based Temporal Encoding in Initial Blocks. In
this study, LSTM serves as a crucial element for capturing
both temporal dependencies and long-term dependencies
within input sequences across the first three blocks. Con-
cretely, LSTM is integrated into the architecture of each of
the first three blocks. Here, it receives a fusion of spatial

(a) Block-SA Attention Heatmap

(b) Grid-SA Attention Heatmap

(c) Overlay of Attention Maps and Input Image

Figure 4. Visual comparison of attention patterns from Block-SA
and Grid-SA. (a) Block-SA captures local fine-grained spatial
correlations. (b) Grid-SA highlights broader, long-range dependen-
cies. (c) The overlay illustrates how these mechanisms complement
each other in spatial understanding.

feature representations from the preceding block and tem-
poral feature representations from the current block as its
input. The output generated by LSTM subsequently feeds
into the subsequent block, thereby enabling the propagation
of temporal information throughout the entire network.

LSTM employs gating mechanisms including input gates,
forget gates, and output gates to regulate the flow of in-
formation within its units. These gates control the flow of
information within LSTM units, enabling them to memorize
both short-term and long-term information, thus effectively
handling sequential data. In the HsVT model, LSTM dynam-
ically captures the temporal dynamics of input sequences,
providing richer and more accurate temporal information
during the event-based object detection process.

Final Feature Fusion with STFE. In the last block, we
introduce the STFE model as a novel approach for temporal
feature extraction. The STFE model combines the charac-
teristics of spiking neurons and LSTM networks to capture
temporal features within input sequences. Specifically, the
STFE model comprises spiking neurons, convolutional lay-
ers, batch normalization layers, and a time feature extraction
section similar to the traditional LSTM structure.

In the forward propagation process, the input data is ex-
tracted through the convolutional layer, and then normalized
through the batch normalization layer to enhance the sta-
bility of the network. Subsequently, the normalized feature
representation is fed into the spike neuron to generate a
time-spike signal. Then, these spiking signals are trans-
mitted to the STFE module for time feature extraction and
propagation, in order to provide richer and more accurate
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LSTM
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Figure 5. Spiking Temporal Feature Extraction in the HsVT Archi-
tecture. This figure illustrates the process of temporal feature ex-
traction within the HsVT architecture, where the first three blocks
employ the LSTM model and the final block utilizes the STFE
model. This architecture integrates these models to capture the
temporal dependencies in event data, facilitating the extraction
of rich temporal features crucial for event-based object detection
tasks.

time information for the object detection task.

In summary, we design the application of LSTM and STFE
modules in temporal feature extraction and illustrate their
integration and extraction of temporal information within
the network. The adoption of these methods enhances the
ability of the proposed model of HsVT for robust temporal
feature extraction, thereby improving the performance and
effectiveness of object detection tasks.

5. Experiments
We evaluate the proposed HsVT model through a series of
experiments. First, we describe the datasets and experimen-
tal setup. Second, we perform ablation studies to validate
the effectiveness of the proposed components. Third, we
compare the performance of HsVT with other methods on
multiple datasets. Following RVT (Table 1), we adopt the
same parameters and architectural changes. Specifically,
’Channels’ denotes the number of channels in each block,
’Size’ represents the feature map size, ’Kernel’ indicates the
convolution kernel size, and ’Stride’ defines the convolution
stride.

Table 1. Parameters and Architectural Changes.
Channels

Block Size Kernel Stride Tiny Small Base
B1 1/4 7 4 32 48 64
B2 1/8 3 2 64 96 128
B3 1/16 3 2 128 192 256
B4 1/32 3 2 256 384 512

5.1. Datasets

The above experimental evaluations are based on three
Event-Based datasets, which include those dedicated to air-
craft detection, fall detection, and GEN1 Dataset.

The Aircraft Detection Dataset. The The Aircraft De-
tection Dataset consist of aircraft flighting event streams
collected by DVS camera. The flighting event streams con-
tain four different kinds of aircraft models: F1, F2, F3, and
F4. This dataset is not available to the public for security
reasons. Figure 6 visualizes the flighting event streams of
two aircraft.

Prophesee GEN1 Automotive Detection Dataset. As de-
scribed in section 2.1, the GEN1 dataset is collected in the
autonomous driving tasks using event cameras, to detect
two object categories of pedestrians and cars.

The Fall Detection Dataset. As described in section 2.3,
The Fall Detection Dataset is generated with the event simu-
lator by converting the original fall video dataset into event
stream data. This dataset contains two different situations of
fall or not fall behavior, the object detection model should
predict the bounding box of humans and recognize whether
fall or not.

To investigate the impact of event accumulation intervals on
detection performance, we visualised reconstructed frames
at three temporal resolutions: 40, 200 and 1000 ms, as
shown in Figure 7. Each frame is generated by integrating
events over the respective duration. As illustrated in Fig-
ure 7(a), a shorter interval of 40ms preserves finer motion
details but results in sparser frames, which may limit the
ability to perceive complete human contours. Conversely,
Figure 7(c) with a 1000ms interval produces more cluttered
representations due to excessive temporal integration, po-
tentially leading to motion blur and ambiguity. The 200ms
setting, shown in Figure 7(b), strikes a balance between
temporal resolution and event density, offering clearer fall
motion patterns. Quantitatively, as reported in Table 2, the
model achieves the highest detection performance at 200ms,
with a mean Average Precision (mAP) of 0.487.

Table 2. Different time intervals of Fall datasets.
Time Interval(ms) mAP50:95

40 0.445
200 0.487

1000 0.405

5.2. Experimental Settings

We employ a series of optimization methods and training
techniques to ensure the training effectiveness and perfor-
mance of the model. Specifically, we used the RVT model
combined with the YOLOX framework and maintained the
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Figure 6. Visualization of Aircraft Detection Dataset.

(a) 40ms Integration

(b) 200ms Integration

(c) 1000ms Integration

Figure 7. Event Frame Visualizations at Different Temporal Inte-
gration Intervals.

consistency of the following experimental Settings:

Optimizers and Learning Rate Scheduling Strategies.
We adopted the popular ADAM optimizer (Kingma & Ba,
2014) and utilized the OneCycle learning rate scheduling
strategy (Smith & Topin, 2019). This strategy starts from
the maximum learning rate and linearly decays during train-
ing, effectively accelerating the training speed of neural
networks.

Mixed Precision Training (Micikevicius et al., 2017). To
speed up training time and reduce memory usage without
sacrificing model accuracy, we utilize mixed precision train-
ing techniques. This approach enhances training efficiency
by simultaneously using low-precision and high-precision
floating-point numbers, particularly suitable for handling
large-scale data problems.

We train HsVT on two NVIDIA GeForce RTX 4090 GPUs,
using batch size of 8 for the tiny model, and batch sizes of 4
for the basic and small model. Through these experimental
settings, we train the proposed HsVT model and record the
mAP value on different event-based object detection tasks.

5.3. Ablation Study

To validate the effectiveness of the proposed HsVT model,
we conduct the ablation study to study the effect of spiking
network modules with different settings in HsVT. The exper-
iments aim to reveal the contribution of different factors of
HsVT and provide important references for optimizing and
improving our model. For convenience, all ablation studies

employ tiny model as the backbone of HsVT.

Comparison of Spiking Neurons and Surrogate Func-
tions within SpikingMLP. As shown in Table 3, the per-
formances of HsVT model with different spiking neuron
models in the SpikingMLP component are presented. We
found that the HsVT with LIF neurons performs better than
IF neuron model on the AIR and FALL detection datasets.
This suggests the advantage of LIF to utilize the nonlinear
property to capture the spatiotemporal features in HsVT
model. These findings hold practical significance for guid-
ing the following model design and optimization processes.
Hence, we employ the LIF model in the following experi-
ments.

Table 3. The performance of SpikingMLP with different spike neu-
rons.

mAP50:95

SpikingMLP FALL AIR
LIFNode 0.476 0.630
IFNode 0.441 0.587

We further investigate the effects of two surrogate gradient
functions, ATan and Sigmoid, on the FALL and Aircraft
Detection Dataset (Table 4). These functions replace the
non-differentiable components of the LIF activation func-
tion, facilitating backpropagation in SNNs.

Table 4. The performance of Fall dataset and Air dataset with dif-
ferent Surrogate gradient functions.

Surrogate mAP50:95

function FALL(1000ms) FALL(200ms) AIR
ATan 0.476 0.490 0.630

Sigmoid 0.482 0.473 0.603

Impact of Different SNN Components. To explore the
effectiveness of different SNN components, we evaluate sev-
eral alternatives based on their parameters, computational
complexity (FLOPs), and performance metrics, particularly
mAP.

The considered SNN components and their corresponding
characteristics are summarized in Tab. 5. Among the eval-
uated components, ConvBnNode(STFE) is adopted as the
preferred choice due to its optimal balance between param-
eter efficiency and computational overhead. The combina-
tion of STFE with LIFNode neurons achieves a competitive
mAP score of 0.64 with parameter counts of 0.20 and 101.19
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Table 5. The performance of different SNN components on the
Aircraft Detection Dataset.

SNN Component Params(M) FLOPs(M) Neuron mAP50:95

STFE 0.20 101.19 IFNode 0.595
LIFNode 0.640

PlainNet 0.13 67.11 IFNode 0.594
LIFNode 0.614

FeedBackNet 0.13 134.22 IFNode 0.607
LIFNode 0.593

StatefulSynapse 0.13 67.11 IFNode 0.605
LIFNode 0.604

LSTM 0.53 268.44 - 0.604

FLOPs, respectively. While other alternatives such as Plain-
Net, FeedBackNet, and StatefulSynapseNet also present
promising performance, STFE stands out for its superior
parameter efficiency and computational efficacy.

These findings underscore the importance of selecting SNN
components judiciously to strike the right balance between
model complexity, computational cost, and performance
metrics, ultimately contributing to the effectiveness and
efficiency of the overall HsVT architecture.

Impact of SNN Component Placement in Network Ar-
chitecture. Tab. 6 presents the results of ablation studies
of SNN blocks with different configurations in the network
structure, focusing on the influence of SNN component
placement. Each row represents a different arrangement
of the SNN components in the four blocks of the network
structure. The mAP column shows the average accuracy of
each configuration on the Air dataset. The results highlight
the variation in the performance of STFE components at
their location in the network structure, with mAP scoring
highest when STFE components are placed entirely in the
fourth block.

These results highlight the importance of placing SNN com-
ponents in network architectures. Specifically, integrating
STFE components into later modules tends to result in better
performance, which is reflected in higher mAP scores. Inter-
estingly, configurations with multiple STFE modules also
exhibit competitive performance, indicating the potential
advantages of utilizing time feature extraction at multiple
stages of information processing. Taken together, these find-
ings provide valuable insights to help optimize event-based
tasks and improve SNN-based architectures.

5.4. Comparison with the State-of-the-art

In this section, we compare our proposed HsVT model with
a wide range of state-of-the-art methods, covering different
network types including CNNs, RNNs, GNNs, Transform-
ers, SNNs, and hybrid models. Tab. 7 presents the per-
formance comparison on the GEN1 dataset. Transformer-
based methods such as ERGO-12 and STAT achieve the
highest mAP50:95 scores of 0.504 and 0.499, respectively.

Table 6. Ablation study on the Aircraft Detection Dataset.
BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4 mAP50:95

LSTM LSTM LSTM LSTM 0.595
STFE LSTM LSTM LSTM 0.599
LSTM STFE LSTM LSTM 0.610
LSTM LSTM STFE LSTM 0.609
LSTM LSTM LSTM STFE 0.640
LSTM LSTM STFE STFE 0.621
LSTM STFE STFE STFE 0.602
STFE STFE STFE STFE 0.602

Among SNN-based methods, our proposed HsVT achieves
0.478, outperforming all previous SNN, including SpikSSD
(0.408), EAS-SNN (0.409), and SFOD (0.321). Although
RVT (RNNs + Transformer) achieves strong performance
(0.472), HsVT-B exceeds it while maintaining a smaller
parameter size compared to some other large models.

As shown in Tab. 8, we further compare HsVT with RVT
on the FALL dataset, as RVT represents a strong non-SNN
hybrid baseline. Across all model variants (tiny, small,
base), HsVT consistently outperforms RVT on both AIR
and FALL categories, demonstrating superior generalization
in event-based fall detection. Interestingly, we observe that
increasing the model size on the FALL and Aircraft Detec-
tion datasets does not always yield performance gains, and
in some cases slightly degrades accuracy. We speculate that
this may be due to the limited size and diversity of these
datasets, which can lead to overfitting in larger models and
hinder their generalization.

6. Discussion and Conclusion
In this study, we propose a novel hybrid model, HsVT,
which leverages the strengths of ANN and SNN for event-
based object detection. We evaluated the model on the
GEN1, FALL, and Aircraft Detection Dataset, demonstrat-
ing its effectiveness and efficiency.

For the GEN1 dataset, the HsVT model achieves compara-
ble performance to the pure SNN model in terms of mAP,
while requiring fewer parameters. This highlights its ad-
vantage in parameter efficiency and capability for accurate
object detection. On the FALL Detection and AIR Detec-
tion datasets, the performance of the HsVT model does not
strictly follow the expected Base>Small>Tiny pattern. We
attribute this to dataset size limitations, which may lead to
overfitting in larger models. Despite this, the HsVT model
consistently outperforms the RVT model on both datasets,
further validating its robustness and adaptability.

In summary, our findings underscore the effectiveness and
competitiveness of the HsVT model in event-based object
detection. By integrating the complementary strengths of
ANN and SNN, the model achieves high performance while
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Table 7. Performance comparison with the state-of-the-art methods on GEN1 dataset.
Model Network Type Params(M) mAP50:95

Inception+SSD (Iacono et al., 2018) CNNs - 0.301
Asynet (Messikommer et al., 2020) GNNs 11.4 0.145
MatrixLSTM (Cannici et al., 2020) RNNs+CNNs 61.5 0.310

RED (Perot et al., 2020) RNNs+CNNs 24.1 0.400
AEGNN (Schaefer et al., 2022) GNNs 20.0 0.163

ASTMNet (Li et al., 2022) RNNs+CNNs >100 0.467
RVT (Gehrig & Scaramuzza, 2023) RNNs+Transformer 18.5 0.472

TAF (Liu et al., 2023) CNNs 14.8 0.454
ERGO-12 (Zubić et al., 2023) Transformer - 0.504

STAT (Guo et al., 2024) Transformer - 0.499
MobileNet-64+SSD (Cordone et al., 2022) SNNs 24.3 0.147

VGG-11+SSD (Cordone et al., 2022) SNNs 12.6 0.174
DenseNet121-24+SSD (Cordone et al., 2022) SNNs 8.2 0.189

LT-SNN (Hasssan et al., 2023) SNNs - 0.298
EMS-ResNet34 (Su et al., 2023) SNNs 14.4 0.310

SFOD (Fan et al., 2024) SNNs 11.9 0.321
EAS-SNN (Wang et al., 2024) SNNs 25.3 0.409
SpikeFPN (Zhang et al., 2024) SNNs 22.0 0.223
KD-SNN (Bodden et al., 2024) SNNs 12.97 0.229

SpikSSD (Fan et al., 2025) SNNs 19.0 0.408
SpikingViT (Yu et al., 2025) SpikingTransformer 21.5 0.394

HsVT-T(ours) RNNs+SNNs+Transformer 4.1 0.449
HsVT-S(ours) RNNs+SNNs+Transformer 9.1 0.465
HsVT-B(ours) RNNs+SNNs+Transformer 17.2 0.478

Table 8. The performance comparison on Fall dataset.
Method Variant AIR FALL

RVT
tiny 0.613 0.487

small 0.600 0.466
base 0.604 0.469

HsVT
tiny 0.641 0.491

small 0.616 0.492
base 0.618 0.486

maintaining parameter efficiency. This work provides valu-
able information on the roles of ANN and SNN in object
detection and serves as an important reference for future
research in this field.
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A. Theoretical Energy Estimation
Following the methodology described in (Zhou et al., 2022), we estimate the theoretical energy consumption of each HsVT
under a 45nm process technology. For the ANN components, the energy is estimated as:

EANN = 4.6 pJ× FLOPs (5)

For the SNN components, the estimation incorporates spike sparsity by introducing Spike Operations (SOPs):

ESNN = 0.9 pJ× SOPs = 0.9 pJ× fr × T × FLOPs (6)

where fr denotes the average firing rate and T is the total number of timesteps.

The total energy consumption of HsVT is then given by:

EHsVT = EANN + ESNN (7)

The experimental results of HsVT-backbone on the GEN1 dataset are shown in Table 9.

Table 9. Energy Consumption Analysis of the HsVT Backbone.
HsVT-backbone FLOPs(M) EANN (mJ) SOP(M) ESNN (mJ) EHsV T (mJ)

Tiny 4199.59 19.32 1156.00 0.017 19.34
Small 8485.64 39.03 2413.10 2.172 41.20
Base 14229.15 65.45 3771.60 3.394 68.84

To analyze the energy distribution within the HsVT-based detection framework, we divide the network into three key
components: the backbone, the feature pyramid network (FPN), and the detection head. We compute the theoretical energy
consumption for each component individually. The results are presented in Table 10.

Table 10. Theoretical energy consumption (mJ) of different network components on the GEN1 dataset.
Module Tiny Small Base

Backbone 19.34 41.20 68.84
FPN+Head 14.57 32.64 65.66

Backbone +FPN+Head 33.91 73.84 134.50

We present the theoretical energy consumption of our HsVT-B model and compare it with other SNN-based detectors,
including SFOD and EAS-SNN-M. As summarized in Table 11, HsVT-B demonstrates a total estimated energy of 134.5 mJ,
which is higher than SFOD and EAS-SNN-M. This increase is primarily attributed to the hybrid ANN-SNN structure, which
integrates high-capacity ANN modules. In particular, the ANN backbone contributes 68.84 mJ, and the FPN+Head modules
add 65.66 mJ. Despite the increased energy cost, the hybrid architecture achieves superior detection performance.

Table 11. Theoretical energy consumption comparison (mJ) on GEN1 dataset.

Module HsVT-B SFOD (Fan et al., 2024) EAS-SNN-M (Wang et al., 2024)

Architecture Type ANN-SNN SNN SNN
Energy (Backbone) 68.84 – 7.52(Embeding) + 14.12
Energy (FPN + Head) 65.66 – 6.46
Energy (Total) 134.5 7.26 28.10
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