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Abstract

We present Jet-Nemotron, a new family of hybrid-architecture language models,
which matches or exceeds the accuracy of leading full-attention models while
significantly improving generation throughput. Jet-Nemotron is developed using
Post Neural Architecture Search (PostNAS), a novel neural architecture exploration
pipeline that enables efficient model design. Unlike prior approaches, PostNAS
begins with a pre-trained full-attention model and freezes its MLP weights, allowing
efficient exploration of attention block designs. The pipeline includes four key
components: (1) learning optimal full-attention layer placement and elimination,
(2) linear attention block selection, (3) designing new attention blocks, and (4)
performing hardware-aware hyperparameter search. Our Jet-Nemotron-2B model
achieves comparable or superior accuracy to Qwen3, Qwen2.5, Gemma3, and
Llama3.2 across a comprehensive suite of benchmarks while delivering up to 53.6×
generation throughput speedup and 6.1× prefilling speedup. It also achieves higher
accuracy on MMLU and MMLU-Pro than recent advanced MoE full-attention
models, such as DeepSeek-V3-Small and Moonlight, despite their larger scale with
15B total and 2.2B activated parameters.
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Figure 1: Comparison Between Jet-Nemotron and State-of-the-Art Efficient Language Models.
The generation throughput is measured on the NVIDIA H100 GPU under a context length of 64K
tokens. Jet-Nemotron-2B delivers a higher accuracy than Qwen3-1.7B-Base on MMLU-Pro while
achieving 47× higher generation throughput. Jet-Nemotron-4B, despite its larger model size, still
achieves higher generation throughput than all full-attention models with less than 2B parameters.

1 Introduction

The rapid rise of Language Models (LMs) [1, 2, 3, 4, 5, 6, 7] marks a transformative era in artificial
intelligence, with these models demonstrating exceptional accuracy across a broad range of tasks.
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Figure 2: PostNAS Roadmap. Our pipeline starts from a pre-trained full-attention model and keeps
the MLP frozen. It then performs a coarse-to-fine search for efficient attention block designs, first
determining the optimal placement of full-attention layers, then selecting the best linear attention block
or using a new linear attention block, and finally searching for optimal architectural hyperparameters.

However, their efficiency has become a significant concern due to the substantial computational and
memory demands they impose. This issue is particularly pronounced in long-context generation and
reasoning, where the self-attention mechanism [8] incurs a computational complexity of O(n2) and
generates a large Key-Value (KV) cache2.

To address this challenge, substantial efforts have been dedicated to designing more efficient LM
architectures by developing attention mechanisms with reduced O(n) complexity [9, 10, 11, 12,
13, 14]. In parallel, significant work has focused on constructing hybrid models that combine full
and linear attention to strike a balance between accuracy and efficiency [15, 16, 17]. While these
models offer improved efficiency, their accuracy still significantly falls behind state-of-the-art (SOTA)
full-attention models, particularly on challenging benchmarks such as MMLU [18, 19], mathematical
reasoning [20, 21, 22], retrieval [23, 24, 25], coding [26, 27, 28], and long-context tasks [29].

This paper introduces Jet-Nemotron, a new family of LMs that matches the accuracy of SOTA
full-attention models while delivering exceptional efficiency. Figure 1 compares Jet-Nemotron with
previous efficient LMs. Notably, Jet-Nemotron-2B achieves higher accuracy on MMLU-Pro than
Qwen3-1.7B-Base [5], while offering 47× higher generation throughput on the NVIDIA H100 GPU
under a context length of 64K.

Jet-Nemotron is built upon Post Neural Architecture Search (PostNAS), a novel neural architecture
exploration pipeline (Figure 2) that enables the rapid design of efficient model architectures. Unlike
the mainstream LM architecture design approaches, PostNAS begins with a pre-trained full-attention
model, from which it inherits the Multi-Layer Perceptron (MLP) weights and keeps them frozen
throughout the process. This strategy significantly reduces training costs while still allowing for
comprehensive exploration of the attention block. The pipeline then proceeds through four key steps
to systematically search for optimal attention block designs.

i) Full Attention Placement and Elimination. Retaining a few full-attention layers within the model
[30] is essential for maintaining high accuracy on challenging tasks such as retrieval. However, the
optimal placement of these layers remains unclear. In Section 2.2, we introduce a novel approach that
automatically learns where to use full-attention layers by training a once-for-all super network [31]
(Figure 4). The resulting learned placement significantly outperforms the commonly used uniform
placement strategy in terms of accuracy on MMLU (Figure 5, right).

ii) Linear Attention Block Selection. After finalizing the placement of full-attention layers, we
conduct an attention block search to identify the optimal linear attention block (Section 2.3). Thanks
to the low training cost of our framework, we can systematically evaluate existing linear attention
blocks in terms of accuracy across diverse tasks, training efficiency, and inference speed. Importantly,
our approach eliminates the need to rely on small proxy tasks, such as training tiny LMs (e.g., 50M or
150M parameters), ensuring that the search results directly translate to improvements in final model
accuracy. Moreover, as new linear attention blocks are out, our framework can rapidly evaluate them
against prior designs and adopt them if they demonstrate promising results.

2We refer to the standard O(n2) attention as full attention, and O(n) attention as linear attention.
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Figure 3: PostNAS Accuracy Improvement Breakdown. By applying PostNAS to the baseline
model, we achieve significant accuracy improvements across all benchmarks.

iii) New Attention Block Design. PostNAS also facilitates the rapid design of new attention blocks.
Adding convolutions is a widely used strategy to enhance the capacity of linear attention [32].
However, prior methods rely solely on static convolution kernels, lacking the ability to dynamically
adapt convolution kernels’ feature extraction patterns. In Section 2.4, we introduce a new linear
attention block, JetBlock (Figure 2, #3). JetBlock uses a kernel generator to produce dynamic
convolution kernels conditioned on the inputs, which are then applied to the value (V) tokens.
Additionally, it removes redundant static convolutions on the query (Q) and key (K). Compared to
prior linear attention blocks, JetBlock shows improved accuracy with a small overhead (Table 1).

iv) Hardware-Aware Architecture Search. Last, in Section 2.5, we introduce a hardware-aware
architecture search to identify optimal architectural hyperparameters. Traditionally, the number
of parameters has been used as a proxy for LM efficiency. However, parameter count does not
directly correlate with generation efficiency on actual hardware. Our hardware-aware search discovers
architectural hyperparameters that deliver similar generation throughput, while using more parameters
to achieve better accuracy (Table 2).

We evaluate Jet-Nemotron across a comprehensive suite of benchmarks, including MMLU(-Pro)
[18, 19], commonsense reasoning [33, 34, 35, 36, 37, 38], mathematical reasoning [20, 21, 22, 39],
retrieval [23, 24, 25], coding [26, 27, 28, 40], and long-context tasks [29]. Our Jet-Nemotron-
2B model matches or surpasses SOTA full-attention models, such as Qwen2.5 [4], Qwen3 [5],
Gemma3 [41, 42] and Llama3.2 [2], across all benchmarks, while achieving significantly higher
generation throughput. Furthermore, the throughput gains are even more substantial in long-context
settings (Figure 6). For example, with a 256K context length, Jet-Nemotron-2B delivers a 6.14×
prefilling speedup and a 53.6× decoding speedup compared to Qwen3-1.7B-Base. We hope that our
efficient LM family (Jet-Nemotron), our new linear attention block (JetBlock), and our architecture
design pipeline (PostNAS) will benefit the community and accelerate the development and deployment
of next-generation efficient LMs. We summarize our main contributions below:

• We introduce PostNAS, a novel model architecture exploration paradigm for LMs. By reusing
pre-trained LLMs, PostNAS reduces the cost and risk associated with LLM architecture
exploration, enabling faster and more efficient innovation in the architecture design of LMs.

• We offer novel insights into the architecture design of efficient LMs, such as the task-specific
importance of attention layers and the finding that KV cache size is a more critical factor than
parameter count for generation throughput.

• We introduce a novel linear attention block, JetBlock, which integrates linear attention with
dynamic convolution and hardware-aware architecture search. It consistently delivers accuracy
improvements over previous linear attention blocks while maintaining comparable efficiency.

• We introduce Jet-Nemotron, a novel hybrid-architecture LM family that achieves superior
accuracy across a wide range of tasks and offers significantly higher generation throughput
than prior SOTA full-attention models (e.g., Qwen2.5, Qwen3, Gemma3, and Llama3.2). With
its strong accuracy and exceptional inference efficiency, Jet-Nemotron offers practical benefits
for various applications requiring efficient LMs.

2 Method

2.1 PostNAS Motivation and Roadmap

Designing new language model architectures is challenging and risky due to the high cost of pre-
training. Moreover, the significant gap in computational resources and training data makes it difficult
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Figure 4: Learning to Place Full Attention with PostNAS. We train a once-for-all super network
and perform beam search to identify the optimal placement of full attention layers.
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for researchers outside of major organizations to match the accuracy of state-of-the-art full-attention
models developed by large industry players [4, 41, 2]. This disparity hinders innovation in language
model architecture design.

This paper proposes an alternative strategy for developing new language model architectures. Rather
than pre-training models from scratch, we explore novel architectures by building on top of existing
full-attention models. This approach dramatically reduces both training costs and data requirements.

While architectures designed within this framework may not yield optimal results when trained
from scratch, we argue that they remain highly valuable. First, as demonstrated in Figure 1, they
can deliver immediate gains in efficiency and accuracy over state-of-the-art full-attention models,
translating to practical benefits such as improved services and reduced operational costs. Second, our
framework serves as a rapid testbed for architectural innovation. If a new design fails to perform well
in this setting, it will be unlikely to succeed in full pre-training [43]. This filtering mechanism helps
researchers avoid wasting substantial computational resources on unpromising designs.

Figure 2 illustrates the roadmap of PostNAS. Starting from a pre-trained full-attention model, it
freezes the MLP weights and explores attention block designs in a coarse-to-fine manner through
four key steps: full attention placement and elimination (Section 2.2), linear attention block selection
(Section 2.3), new attention block design (Section 2.4), and hardware-aware architecture search
(Section 2.5). Figure 3 shows the accuracy improvement breakdown from these steps. We observe
substantial accuracy improvements across all benchmarks: +5.3 on MMLU, +8.4 on math, +7.8 on
retrieval, and +3.2 on commonsense reasoning.

2.2 Full Attention Placement and Elimination

Incorporating a few full-attention layers has become a common strategy for improving accuracy
[30, 16, 44, 17]. The standard approach applies full attention uniformly across a fixed subset of
layers, with the remaining layers using linear attention. However, this uniform strategy is suboptimal,
especially in our setting, where we begin with a pre-trained full-attention model.

To address this, we propose an automatic method for efficiently determining the placement of full-
attention layers. The overall approach is illustrated in Figure 4. We construct a once-for-all super
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network [45, 31] by augmenting the pre-trained full-attention model with alternative linear attention
paths. During training, we randomly sample an active path at each step, forming a subnetwork, which
is trained using feature distillation loss [46, 47, 48].

After training, we perform beam search [49] to determine the optimal placement of full-attention
layers under a given constraint (e.g., two full-attention layers). The search objective is task-dependent:
for MMLU, we select the configuration with the lowest loss on the correct answer (i.e., maximizing
−loss), while for mathematical and retrieval tasks, we choose the one with the highest accuracy. As
shown in Figure 5(b), PostNAS significantly outperforms uniform placement in terms of accuracy.

Figure 5(a) presents the search results for Qwen2.5-1.5B. For each layer, we extract the corresponding
subnetwork from the super network by configuring that layer as full attention while setting all
remaining layers to linear attention. We evaluate the accuracy or loss of each subnetwork on a given
task and visualize the results using a heatmap. Our analysis reveals three key findings:

Key Finding 1: In the pre-trained full-attention model, not all attention layers contribute
equally. For MMLU, only two layers exhibit critical importance, while for retrieval tasks,
just two to three layers are particularly crucial.

Key Finding 2: Different attention layers contribute to different capabilities. Layers that are
critical for MMLU accuracy are not necessarily important for retrieval tasks.

Key Finding 3: The pattern of attention importance becomes more intricate for complex tasks
like mathematical reasoning. Fortunately, the combined set of top critical layers identified for
MMLU and retrieval already encompasses most of the key layers needed for math.

In addition to these key findings, we observe that the search results remain consistent when using
different linear attention operations. In our final experiments, we use GLA [11] in the once-for-all
super network training for simplicity and slightly improved training throughput.

2.3 Linear Attention Block Selection

Building on the discovered full-attention layer placement, we conduct an attention block search
to identify the most suitable linear attention block for our setup. In our experiments, we evaluate
six SOTA linear attention blocks, including RWKV7 [10], RetNet [12], Mamba2 [50], GLA [11],
Deltanet [51], and Gated DeltaNet [32].

After initial efficiency profiling, we observe that RWKV7 exhibits significantly lower training through-
put compared to other linear attention blocks, possibly due to suboptimal kernel implementation.
Consequently, we exclude it from our training experiments. The results, summarized in Table 1,
indicate that Gated DeltaNet achieves the best overall accuracy among the evaluated linear attention
blocks. This is attributed to the combination of two factors: (1) the Data-Dependent Gating Mecha-
nism [52], which dynamically controls whether the model should focus more on the current token or
the history state, and (2) the Delta Rule [53], which updates the history state with the information
increment from the current token, to save the limited state memory. Therefore, we proceed with
Gated DeltaNet in our experiments.

2.4 New Attention Block Design

We propose a new linear attention block, JetBlock, designed to enhance the model’s expressive power
by incorporating dynamic convolution [54, 55] into linear attention. Convolution has been shown to
be essential for achieving strong accuracy in many linear attention blocks [32, 56]. However, prior
works typically use static convolution kernels, which cannot adapt their feature extraction patterns
based on the input.

To address this limitation, we introduce a kernel generator module that dynamically produces
convolution kernels based on the input features. The overall structure is shown in Figure 2 (#3).
This module shares the same input as the Q/K/V projection layer and begins with a linear reduction
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Attention Block Data-Depend Delta Throughput ↑ Accuracy ↑
Gating Rule Training Inference MMLU Math Retreival Common.

RWKV7 [10] ✓ ✓ 123 2,542 - - - -
RetNet [12] 269 2,535 53.6 29.9 63.7 58.1
Mamba2 [50] 273 3,220 51.5 26.0 68.9 57.5
GLA [11] ✓ 265 3,079 55.8 31.2 66.6 58.5
Deltanet [51] ✓ 254 2,955 48.9 27.4 67.9 56.6
Gated DeltaNet [32] ✓ ✓ 247 2,980 55.6 32.3 69.3 58.7

JetBlock ✓ ✓ 233 2,885 56.3 32.8 69.9 58.5
+ Hardware-Aware Search ✓ ✓ 227 2,883 58.1 34.9 70.4 59.5

Table 1: Accuracy and Efficiency of JetBlock. JetBlock is designed through Linear Attention
Block Selection, New Attention Block Design, and Hardware-Aware Search. It achieves higher
accuracy than previous linear attention blocks while has comparable training and inference efficiency.

dK dV nhead
Params

(B)
Cache Size

(MB)
Throughput

(token/s) ↑ Retrieval
Accuracy ↑ Math

Accuracy ↑

256 288 4 1.62 154 2,969 67.6 31.3
192 384 4 1.64 154 2,961 69.3 32.3
128 576 4 1.70 154 2,979 69.5 32.5

256 144 8 1.66 154 2,986 68.3 32.1
192 192 8 1.70 154 2,970 70.6 32.8
128 288 8 1.74 154 2,971 69.6 33.2

128 192 12 1.78 154 2,959 68.8 32.9
96 256 12 1.84 154 2,955 69.6 34.8
64 384 12 1.98 154 2,952 70.1 34.2

Table 2: Detailed Results of Hardware-Aware Architecture Search. The gray row is the original
design [32], while the blue row shows the design produced by hardware-aware architecture search.

layer to improve efficiency, using a reduction ratio of 8. A SiLU activation function [57] is applied,
followed by a final linear layer that outputs the convolution kernel weights. We adopt Gated DeltaNet
for time-mixing, as it performs best compared with other designs as discussed in Section 2.3.

We apply the dynamic convolution kernels to the value (V) tokens, as applying them to the query
(Q) or key (K) tokens offers little benefit. Furthermore, we find that static convolutions on Q and
K can be removed with negligible impact on the final model accuracy once dynamic convolution
is applied to V. We adopt this design in our final experiments for its slightly improved efficiency.
Table 1 compares JetBlock with previous linear attention blocks. It provides better accuracy on math
reasoning and retrieval tasks than Gated DeltaNet while maintaining similar efficiency.

2.5 Hardware-Aware Architecture Search

After finalizing the macro architecture, specifically the placement of full-attention layers, and se-
lecting the linear attention block, we perform a hardware-aware architecture search to optimize core
architectural hyperparameters, including key/value dimension and the number of attention heads.

Conventionally, parameter size is the primary efficiency metric used to guide model architecture
design. However, this approach is suboptimal, as parameter count does not directly correlate with
hardware efficiency. We address this limitation by using the generation throughput as a direct target
for selecting architectural hyperparameters. We find that:

Key Finding 4: KV cache size is the most critical factor influencing long-context and long-
generation throughput. When the KV cache size is constant, models with different parameter
counts exhibit similar generation throughput (Table 2).

This is because the decoding stage is typically memory-bandwidth-bound rather than compute-bound.
In long-context scenarios, the KV cache often consumes more memory than the model weights.
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Params Cache Size Throughput MMLU MMLU-Pro BBHType Model (B) (MB) (token/s) ↑ Acc. ↑ Acc. ↑ Acc. ↑
Qwen2.5-1.5B [4] 1.5 1,792 241 59.5 28.9 44.1
Qwen3-1.7B-Base [5] 1.7 7,168 61 60.3 37.8 54.2
Llama3.2-3B [2] 3.0 7,168 60 54.9 25.0 47.1
MiniCPM-2B-128K [58] 2.8 23,040 18 46.0 18.0 36.5
MobileLLM-1.5B [59] 1.5 4,320 101 26.0 9.4 27.2
Smollm2-1.7B [60] 1.7 12,288 32 48.5 18.3 35.1

DeepSeek-V3-Small@1.3T [6] 2.2/15 - - 53.3 - -

O(n2)

Moonlight@1.2T [61] 2.2/15 - - 60.4 28.1 43.2

Mamba2-2.7B [50] 2.7 80 2,507 25.1 8.6 25.7
RWKV7-1.5B [10] 1.5 24 3,050 41.0 13.4 15.9O(n)
Rec.Gemma-2B [62] 2.0 16 2,355 28.6 12.8 33.3

Gemma3n-E2B [42] 2.0 768 701 53.9 24.3 45.1
Hymba-1.5B [44] 1.5 240 180 49.7 17.4 29.8
Zamba2-1.2B [16] 1.2 6,114 71 43.1 14.2 19.6

Jet-Nemotron-2B 2.0 154 2,885 60.8 39.0 58.3

Hybrid

Jet-Nemotron-4B 4.0 258 1,271 65.2 44.2 65.0

Table 3: Results on MMLU and BBH. DeepSeek-V3-Small@1.3T and Moonlight@1.2T are MoE
models with 2.2B activated and 15B total parameters, trained on 1.3T and 1.2T tokens, respectively.

Throughput Accuracy ↑
Type Model (token/s) ↑ Avg. GSM8K MATH MathQA MMLU-Stem GPQA

Qwen2.5-1.5B [4] 241 38.4 62.4 13.1 34.4 52.7 29.4
Qwen3-1.7B-Base [5] 61 42.3 62.8 16.7 46.0 50.8 27.9
Llama3.2-3B [2] 60 28.8 25.8 8.6 34.2 45.3 30.1
MiniCPM-2B-128K [58] 18 27.6 39.2 5.9 28.5 36.3 28.1

O(n2)

Smollm2-1.7B [60] 32 28.9 30.3 9.2 33.7 41.3 30.1

Mamba2-2.7B [50] 2,507 16.6 3.0 3.9 24.3 26.6 25.3
RWKV7-1.5B [10] 2,669 18.3 5.6 0.8 27.2 34.9 23.0O(n)
Rec.Gemma-2B [62] 2,355 20.8 13.9 7.6 25.3 28.5 28.6

Gemma3n-E2B [42] 701 28.3 24.9 10.1 31.1 45.7 31.8
Hymba-1.5B [44] 180 23.1 17.9 0.8 28.0 40.9 27.9
Zamba2-1.2B [16] 71 24.8 28.1 5.9 26.0 36.5 27.7

Jet-Nemotron-2B 2,885 49.6 76.2 23.3 53.8 62.7 32.1

Hybrid

Jet-Nemotron-4B 1,271 51.3 78.7 25.2 52.5 65.6 34.6

Table 4: Results on Math Tasks.

Reducing its size decreases memory transfer time per decoding step and enables a larger batch size,
thereby improving the generation throughput.

Based on Finding 4, we fix the KV cache size to match the original design and conduct a grid search
over the key dimension, value dimension, and number of attention heads. Table 2 summarizes the
results, where all variants use the same linear attention block (i.e., Gated DeltaNet) but have different
configurations. The blue and gray rows represent our final design and the original one, respectively.
Our final design achieves a generation throughput comparable to the original while incorporating
more parameters and improving accuracy. From Table 1, we can see that hardware-aware search in
PostNAS boosts the JetBlock’s accuracy, while maintaining training and inference throughput.

3 Experiments

3.1 Setup

Jet-Nemotron Model Family. We construct two versions of Jet-Nemotron with different parameter
sizes: Jet-Nemotron-2B and Jet-Nemotron-4B. We use the Retrieval task to guide the placement of
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full attention layers and the MMLU task to guide the placement of sliding window attention (SWA)
layers. Jet-Nemotron-2B is built upon Qwen2.5-1.5B [4], incorporating two full-attention layers
(No. 15 and 20) for retrieval tasks and two sliding window attention (SWA) layers (No. 21 and 22) for
multiple-choice tasks like MMLU. We find multiple-choice tasks mainly rely on the pattern-matching
property of the softmax operation to route the knowledge of answers to their options. SWA effectively
preserves the accuracy on such tasks. The remaining attention layers are replaced with JetBlock.
Similarly, Jet-Nemotron-4B is based on Qwen2.5-3B and includes three full-attention layers (No. 18,
21, 33) and seven SWA layers (No. 6, 17, 20, 22, 23, 26, and 28). We summarize the final model
architectures in Appendix A.1.

Training Details. The training consists of two stages. In the first stage, we freeze the MLPs and
train the model using a distillation loss. In the second stage, we perform full-model training. At the
first stage, we use a combination of Nemotron-CC [63] and Redstone-QA [64] as our pre-training
corpus and train Jet-Nemotron models for 50B tokens. This is also the setting in Section 2 where
we perform PostNAS. At the second stage, we include more high-quality data from math [65] and
coding [66, 67] domains into our data mixture. The models are then trained on 350B tokens. We
summarize the experimental costs in Appendix A.2.

Evaluation Details. We evaluate Jet-Nemotron across mainstream benchmark settings: MMLU(-
Pro) [18, 19], mathematical reasoning [18, 20, 21, 22], commonsense reasoning [33, 34, 35, 36, 37,
38], retrieval [23, 24, 25], coding [26, 27, 28, 40], and long-context tasks [29]. We compare our
models against state-of-the-art full-attention models [2, 4, 5], linear attention models [10, 50], and
hybrid models [41, 44]. We adopt 4-shot evaluation for GSM8K [22] and MATH [18] and 5-shot
evaluation for GPQA [20] and MMLU-Pro [19]. We use the official implementation of EvalPlus [40]
and CRUXEval [28] for coding tasks. For all other tasks, we use the zero-shot setting. All evaluations
are based on LM-Evaluation-Harness [68].

Throughput Testbed. Our throughput evaluation was performed on a DGX H100 server, featuring
8 NVIDIA H100 GPUs, 2 Intel Xeon Platinum 8480C (112 cores) CPUs, and 2TB of RAM. For
fair and consistent comparisons, we employ the latest available software versions. Specifically, our
environment include Pytorch 2.7.0 and Triton 3.3.0. We implement the full-attention block with
FlashAttention 2.7.4 [69] and linear attention blocks with Flash-Linear-Attention 0.2.1 [70]. Model
inference is based on the Transformers 4.52.0 implementation [71]. The context length is 64K, except
stated explicitly, and each model is tested on a single H100 GPU. We report the cache sizes for a 64K
input context in Table 3. When testing the throughput, we adopt chunk-prefilling [72] and search for
the chunk sizes to maximize the batch size for each model under the constraint of the GPU memory.
In this way, we measure the highest achievable decoding throughput on the device. We list the batch
sizes used for each model in Appendix A.3.

3.2 Main Results on Accuracy

Results on MMLU(-Pro) and BBH. Table 3 compares Jet-Nemotron with the most advanced
efficient language models. Jet-Nemotron-2B achieves 47× higher throughput and has 47× smaller
cache size than Qwen3-1.7B-Base, while delivering significantly better accuracy on MMLU, MMLU-
Pro, and BBH. Jet-Nemotron-2B even outperforms recent MoE models like DeepSeek-V3-Small [6]
and Moonlight [61] with larger activated parameters (2.2B) and much larger total parameters (15B).
When scaled to 4B parameters, Jet-Nemotron-4B still maintains a 21× throughput advantage against
Qwen3-1.7B-Base. Compared to other linear attention and hybrid models, Jet-Nemotron also achieves
substantially higher accuracy.

Results on Math Tasks. Table 4 reports our results on math tasks. Jet-Nemotron-2B achieves an
average accuracy of 49.6, surpassing Qwen3-1.7B-Base by 6.3 while being 47× faster. In contrast,
prior linear attention and hybrid models are far behind Qwen3 on math tasks.

Results on Commonsense Reasoning Tasks. Table 5 summarizes the results on commonsense
reasoning tasks. Qwen2.5 and Qwen3 are relatively weak in this domain. Nevertheless, Jet-Nemotron-
2B, which uses Qwen2.5-1.5B as the starting point, still demonstrates strong results, achieving an
average accuracy of 62.0, outperforming all baseline models.

Results on Long-Context Tasks. A common concern with linear and hybrid architectures is their
accuracy on long-context tasks. In Table 6, we evaluate this on LongBench [29] up to a 64K
context length. Our findings show that Jet-Nemotron-2B, with two full-attention layers, achieves
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Throughput Accuracy ↑
Model (token/s) ↑ Avg. ARC-c ARC-e PIQA Wino. OBQA BoolQ TruthQA

Qwen2.5-1.5B [4] 241 59.4 45.4 71.2 75.8 63.8 40.2 72.8 46.6
Qwen3-1.7B-Base [5] 61 60.0 44.9 68.6 75.5 63.8 39.0 79.0 48.8
Llama3.2-3B [2] 60 59.9 46.6 72.0 78.0 69.3 40.4 73.9 39.3
MiniCPM-2B-128K [58] 18 57.6 41.0 69.4 75.5 63.8 40.6 74.7 38.3
Smollm2-1.7B [60] 32 59.7 47.0 73.3 77.7 66.2 44.6 72.5 36.7

Mamba2-2.7B [50] 2,507 57.2 42.1 70.5 76.1 62.7 41.4 71.5 36.1
RWKV7-1.5B [10] 3,050 59.7 46.3 75.7 77.4 67.6 45.4 70.5 34.7
Rec.Gemma-2B [62] 2,355 46.5 29.4 41.5 66.6 54.1 27.0 72.0 34.7

Gemma3n-E2B [42] 701 58.6 43.2 73.1 77.0 60.8 40.8 76.0 39.1
Hymba-1.5B [44] 180 61.2 46.9 76.9 77.7 66.2 41.0 80.8 39.0
Zamba2-1.2B [16] 71 58.0 44.4 66.8 77.4 65.6 42.8 70.8 38.5

Jet-Nemotron-2B 2,885 62.0 48.6 74.8 75.4 65.8 40.6 81.2 47.8
Jet-Nemotron-4B 1,271 64.7 51.7 79.2 78.1 70.5 43.6 83.0 46.6

Table 5: Results on Commonsense Tasks.

Type Model Throughput Accuracy ↑
(token/s) ↑ Avg. Few-Shot Code Sum. Single-Doc Multi-Doc

Qwen2.5-1.5B [4] 241 39.1 63.9 57.2 26.3 28.3 19.9
Qwen3-1.7B-Base [5] 61 42.2 68.8 48.1 26.8 36.6 30.6
Llama3.2-3B [2] 60 39.9 65.2 58.0 24.3 27.6 24.6
MiniCPM-2B-128K [58] 18 41.1 57.3 59.6 25.7 33.4 29.6

O(n2)

Smollm2-1.7B [60] 32 21.3 38.9 28.6 16.0 13.2 9.8

Mamba2-2.7B [50] 2,507 10.3 6.4 30.2 9.1 3.5 2.5
RWKV7-1.5B [10] 3,050 14.2 10.6 21.1 18.1 12.8 8.7O(n)
Rec.Gemma-2.6B [62] 2,355 24.1 31.8 56.7 12.9 9.2 9.6

Gemma2-2.6B [73] 388 22.9 28.7 52.0 12.6 13.9 7.3
Gemma3n-E2B [73] 701 40.4 56.4 67.2 25.6 29.3 28.6
Hymba-1.5B [44] 180 28.0 36.1 53.5 51.8 14.0 19.8
Zamba2-1.2B [16] 71 9.2 10.0 20.1 10.2 3.8 1.7

Jet-Nemotron-2B 2,885 41.1 68.7 58.1 26.0 30.8 21.9

Hybrid

Jet-Nemotron-4B 1,271 43.9 69.7 63.2 26.4 32.5 27.5

Table 6: Results on Long-Context Tasks.

performance comparable to leading models like Qwen2.5-1.5B and Gemma3n-E2B, which feature
considerably more such layers. Furthermore, our Jet-Nemotron-4B outperforms Qwen3-1.7B-Base
while delivering a 21× speedup in generation throughput. These results substantially advance the
frontier of the efficiency-accuracy trade-off in long-context tasks.

Results on Retrieval and Coding Tasks We present the retrieval and coding results in Table 15 and
Table 16 in Appendix B.4. On these tasks, Jet-Nemotron-2B performs comparably to Qwen3-1.7B-
base. Jet-Nemotron-4B achieves a higher accuracy across all coding tasks while still delivering a
large advantage on generation throughput against leading LMs like Qwen3-1.7B-Base.

Summary. Jet-Nemotron-2B and Jet-Nemotron-4B perform comparably with or even better than the
advanced full-attention model (Qwen3-1.7B-Base) across all six evaluation domains. With signifi-
cantly fewer full-attention layers and smaller KV cache size, Jet-Nemotron-2B and Jet-Nemotron-4B
deliver 47× and 21× higher generation throughput than Qwen3-1.7B-Base, respectively.

3.3 Efficiency Benchmark Results

Figure 6 shows the throughput comparison between Qwen3-1.7B-Base and Jet-Nemotron-2B across
various context lengths. During the prefilling stage, Jet-Nemotron-2B is initially 1.14 and 1.15 times
faster than Qwen3-1.7B-Base at shorter context lengths (4K and 8K). This can be further improved by
designing a better optimized kernel implementation of the JetBlock. As the context length increases,
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Figure 6: Efficiency Comparison Across Different Context Lengths. Jet-Nemotron-2B achieves
up to a 6.14× speedup in prefilling and a 53.6× speedup in decoding compared to Qwen3-1.7B-Base.

the benefits of linear attention become prominent, making Jet-Nemotron-2B achieve 6.14× speedup
at a 256K context length.

During the decoding stage, Jet-Nemotron-2B consistently outperforms Qwen3-1.7B-Base by a large
margin. Since Jet-Nemotron-2B includes 2 full-attention layers with 2 groups of key-value states,
its theoretical maximum speedup is 14 × 4 = 56 times compared to Qwen3-1.7B-Base with 28
full-attention layers, where each layer contains 8 groups of key-value states. In our throughput testbed,
Jet-Nemotron-2B achieves a 15.6× speedup at a 4K context length and up to a 53.6× speedup at a
256K context length, almost reaching the theoretical upper bound.

4 Related Work

Large language models (LLMs) are powerful but computationally intensive, motivating many works
to build efficient model architectures for LLMs. One line of research focuses on designing efficient
linear attention blocks [9, 10, 11, 12, 32, 50, 51, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 82, 84] or log-
linear attention [85] blocks to replace full attention blocks. Orthogonally, another line of research tries
to combine full attention and linear attention to build hybrid models [13, 15, 16, 17, 44, 86, 87, 88].
These works typically focus on the pre-training setting, and their accuracy lags behind leading full-
attention models. Recently, there are some efforts on linearizing LLMs with full attention replaced
with linear attention [89, 90, 91, 92, 93, 94, 95, 96]. However, their model architecture are poorly
optimized due to the large overhead of evaluating specific configuration, and thus their results are
still inferior to SOTA full-attention models.

Our work is also related to neural architecture search (NAS) [45, 97, 98, 99, 100], a powerful
technique for exploring the architectural design space and discovering novel model structures. In
particular, hardware-aware neural architecture search [45] enables the development of specialized
model architectures optimized for target hardware by training a once-for-all super-network [31],
or leveraging layer-wise distillation [101, 102], etc. However, NAS has been rarely applied in the
era of large language models (LLMs) due to the prohibitive cost of pretraining. Recent efforts
have primarily focused on building flexible LLM architectures [103, 104], which can generate a
range of subnetworks with varying depths and widths to accommodate different hardware platforms.
Nevertheless, the architectural backbone of these subnetworks remains unchanged, relying entirely
on full-attention layers.

5 Conclusion

We introduce Jet-Nemotron, a new family of hybrid-architecture language models that outperform
state-of-the-art full-attention models — including Qwen3, Qwen2.5, Gemma3, and Llama3.2 —
while delivering substantial efficiency gains, with up to 53.6× higher generation throughput on H100
GPUs (256K context length, maximum batch size). Jet-Nemotron is enabled by two key innovations:
(1) Post Neural Architecture Search, a highly efficient post-training architecture adaptation pipeline
applicable to any pre-trained Transformer model; and (2) the JetBlock, a novel linear attention
block that significantly outperforms prior designs such as Mamba2, GLA, and Gated DeltaNet.
Extensive empirical results show that Jet-Nemotron achieves major efficiency improvements without
compromising accuracy across a broad range of benchmarks. Additionally, Jet-Nemotron significantly
reduces the cost and risk associated with LLM architecture exploration, enabling faster and more
efficient innovation in language model design.
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A Experimental Details

A.1 Final Model Architecture

The final Jet-Nemotron models are composed of a stack of blocks, each containing a Multi-Layer
Perceptron (MLP) layer and an attention layer. The attention layer is selected from one of three types:
full attention, sliding window attention, or JetBlock. The detailed architecture configurations are
presented in Table 7.

Jet-Nemotron-2B Jet-Nemotron-4B

Total blocks 28 36
Full Attention Layers No. 15, 20 No. 18, 21, 22, 28, 33
Sliding Window Attention Layers No. 21, 22 No. 17, 20, 23, 24, 26
Vocabulary Size 151,643 151,643
Hidden Size 1,536 2,048
MLP Intermediate Size 8,960 11,008

Table 7: The overall model architectures of Jet-Nemotron families.

The full attention and sliding window attention layers use grouped-query attention [105] and are
configured as in Table 8. For sliding window attention layers, the window size is set to 1,152 in
Jet-Nemotron-2B and 2,048 in Jet-Nemotron-4B.

Full Attention / SWA Jet-Nemotron-2B Jet-Nemotron-4B

Attention Head Number 12 16
Dimensions of Q/K/V 128 128
K/V Head Number 2 2
Position Embedding RoPE RoPE

Table 8: The configurations of full-attention layers in Jet-Nemotron models.

The configuration of JetBlock are shown in Table 9 :

JetBlock Jet-Nemotron-2B Jet-Nemotron-4B

Q/K Dimension 96 128
V Dimension 256 256
Head Number 12 16
Convolution Kernel Size 4 4
DConv Generator Hidden Size 32 32

Table 9: The configurations of JetBlock.

A.2 Experimental Costs

Table 10 summarizes the costs for PostNAS and training the Jet-Nemotron-2B model. We used 32
H100 GPUs in parallel. The reported GPU hours already account for the total number of devices.

A.3 Throughput Measurement

Throughout the experiments, we measure the maximum reachable prefilling and decoding throughput
of Jet-Nemotron and the baselines on a single H100 GPU. This is achieved by adjusting the chunk
size in chunk-prefilling [72] to maximize the decoding batch size without sacrificing the prefilling
throughput. We list the optimized batch size and the corresponding chunk size for each model
in Table 11. The prefilling context length is 64K. Since the KV cache memory dominates GPU
usage during inference, by reducing the memory footprint per sequence, smaller caches allow more
sequences to be processed in parallel, greatly boosting generation throughput.
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Tokens (B) ZFLOPs Time (H100 GPU Hours)

PostNAS

Full Attention Placement and Elimination 50 0.8 808
Linear Attention Block Selection 50 4.0 3120
New Attention Block Design 50 0.8 624
Harware-Aware Arch Search 50 7.2 5616

Training Stage1 50 0.8 624
Stage2 350 5.6 7536

Table 10: Experimental Costs for PostNAS and training the Jet-Nemotron-2B model.

Model Batch Size Chunk Size

Qwen2.5-1.5B 32 8,192
Qwen3-1.7B 8 16,384
Llama3.2-1B 32 4,096

MiniCPM-2B-128K 2 2,048
Pythia-2.8B 2 16,384

Smollm2-1.7B 4 16,384
Mamba2-2.7B 128 1,024
RWKV7-1.5B 256 2,048

Rec.Gemma-2B 128 512

Gemma3n-E2B 64 4,096
Gemma2-2.6B 16 2,048
Hymba-1.5B 64 512
Zamba2-1.2B 8 8,192

Jet-Nemotron-2B 128 2,048
Jet-Nemotron-4B 64 1,024

Table 11: Hyper-Parameters in Efficiency Measurement. We adjust the chunk size to maximize
decoding batch size without compromising prefilling throughput.

B Additional Results

B.1 Controlled Study on Training Data

To exclude the influence of training data, we continually pre-train the baseline models (Qwen2.5,
RWKV-7, and Mamba-2) on Jet-Nemotron ’s training dataset to provide a more comprehensive
evaluation. The results in Table 12 show that Jet-Nemotron-2B outperforms all these finetuned
baseline models by a significant margin.

Model MMLU Math Commonsense Retrieval

Qwem2.5-1.5B-continual 56.7 37.6 59.8 71.5
Mamba2-2.7B-continual 41.0 22.5 56.9 55.9
RWKV7-1.5B-continual 49.8 25.2 59.3 57.2
Jet-Nemotron-2B 59.6 40.2 61.7 73.6

Table 12: Controlled Study on Training Data. All models are pre-trained or continually pre-trained
on the Jet-Nemotron stage-2 training corpus discussed in Section 3.1.

B.2 Throughput Results on Lower-End Hardware

We measure the throughput of Jet-Nemotron-2B and Qwen2.5-1.5B on the NVIDIA Jetson Orin
(32GB) and NVIDIA RTX 3090 GPUs with a context length of 64K. Results in Table 13 show that
Jet-Nemotron-2B achieves 8.84× and 6.50× speedups over Qwen2.5-1.5B on the Jetson Orin and
RTX 3090 GPUs, respectively.
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Hardware Qwen2.5-1.5B (Tokens/s) Jet-Nemotron-2B (Tokens/s) SpeedUp

Orin 6.22 55.00 8.84
3090 105.18 684.01 6.50

Table 13: Throughput Results on Jetson Orin (32GB) and NVIDIA RTX 3090 GPUs.

Model Throughput Accuracy ↑
(token/s) ↑ MMLU MATH Common. Retrieval Code Long-Context

Falcon-H1-1.5B [106] 223 60.5 40.1 59.9 73.5 56.0 40.7
Falcon-H1-1.5B-deep [106] 66 63.5 46.8 60.6 74.6 60.3 33.4

Jet-Nemotron-2B 2,885 60.8 49.6 62.0 74.2 59.5 41.1
Jet-Nemotron-4B 1,271 65.2 51.3 64.7 76.2 63.5 43.9

Table 14: Comparison with Falcon-H1.

B.3 Comparison to Falcon-H1

We compare our work with the concurrent Falcon-H1 [106], a hybrid model that incorporates
Mamba2 [50] and full attention. Unlike Jet-Nemotron, which alternates between component types
at the layer level, Falcon-H1 employs a head-wise hybrid strategy. As shown in Table 14, Jet-
Nemotron-2B outperforms Falcon-H1-1.5B and is comparable to Falcon-H1-1.5B-deep in accuracy,
while achieving significantly higher generation throughput. Jet-Nemotron-4B outperforms both
the two Falcon-H1 models while still achieves higher generation throughput. This efficiency gap
arises because the head-wise strategy requires sequential computation of Mamba2 and full attention
operations within a single layer, thereby limiting parallelism. The “-deep” variant further exacerbates
this issue by reducing model width in favor of greater depth.

B.4 Results on Retrieval and Coding

Table 15 and Table 16 presents the results on retrieval and tasks. Jet-Nemotron-2B outperforms all
baselines except Qwen3-1.7B-Base. When scaled to 4B, Jet-Nemotron-4B achieves the best average
accuracy of 76.2, while still maintaining 21× speedup compared to Qwen3.
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Type Model Throughput Accuracy ↑
(token/s) ↑ Avg. FDA SWDE Squad

Qwen2.5-1.5B [4] 241 72.4 82.8 86.3 48.1
Qwen3-1.7B-Base [5] 61 76.1 81.8 89.2 57.2
Llama3.2-3B [2] 60 71.3 82.3 89.6 56.4
MiniCPM-2B-128K [58] 18 72.6 72.3 86.4 59.1

O(n2)

Smollm2-1.7B [60] 32 68.9 78.1 82.4 46.3

Mamba2-2.7B [50] 2,507 57.0 51.7 74.3 45.1
RWKV7-1.5B [10] 3,050 58.6 54.5 73.3 48.0O(n)
Rec.Gemma-2.6B [62] 2,355 68.8 62.3 86.4 57.8

Gemma3n-E2B [73] 701 74.0 77.3 86.4 58.2
Hymba-1.5B [44] 180 57.1 46.6 74.4 50.2
Zamba2-1.2B [16] 71 66.4 73.8 80.7 44.8

Jet-Nemotron-2B 2,885 74.2 80.4 85.7 56.6

Hybrid

Jet-Nemotron-4B 1,271 76.2 82.5 89.7 56.4

Table 15: Results on Retrieval Tasks.

Type Model Throughput Accuracy ↑
(token/s) ↑ Avg. EvalPlus CRUXEval-I-cot CRUXEval-O-cot

Qwen2.5-1.5B [4] 241 52.0 54.3 56.0 45.8
Qwen3-1.7B-Base [5] 61 58.9 62.8 60.4 53.4
Llama3.2-3B [2] 60 44.0 35.5 54.7 41.7
MiniCPM-2B-128K [58] 18 34.2 40.7 29.9 31.9

O(n2)

Smollm2-1.7B [60] 32 36.2 20.6 49.5 38.6

Mamba2-2.7B [50] 2,507 14.0 12.0 9.3 20.7
RWKV7-1.5B [10] 3,050 13.2 16.8 8.0 14.7O(n)
Rec.Gemma-2.6B [62] 2,355 36.8 29.5 46.7 34.2

Gemma3n-E2B [73] 701 40.4 29.6 49.9 41.6
Hymba-1.5B [44] 180 30.3 31.3 32.2 27.5
Zamba2-1.2B [16] 71 20.1 12.7 21.1 26.4

Jet-Nemotron-2B 2,885 59.5 60.8 61.1 56.7

Hybrid

Jet-Nemotron-4B 1,271 63.5 65.6 65.9 59.0

Table 16: Results on Coding Tasks.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide comprehensive experiment results to support our claims.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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• The claims made should match theoretical and experimental results, and reflect how
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are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss our limitations in Section 2.1.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We do not have theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide details in Section 3.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: We will release our code and models upon publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide core implementation details in Section 3.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The training cost is prohibitive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We will provide details in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully reviewed our research, ensuring it conforms with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We will add discussions in the supplementary material.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

25

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We will add discussions in the supplementary material.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We will add discussion in the supplementary material.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

28

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Method
	PostNAS Motivation and Roadmap
	Full Attention Placement and Elimination
	Linear Attention Block Selection
	New Attention Block Design
	Hardware-Aware Architecture Search

	Experiments
	Setup
	Main Results on Accuracy
	Efficiency Benchmark Results

	Related Work
	Conclusion
	Experimental Details
	Final Model Architecture
	Experimental Costs
	Throughput Measurement

	Additional Results
	Controlled Study on Training Data
	Throughput Results on Lower-End Hardware
	Comparison to Falcon-H1
	Results on Retrieval and Coding


