
Under review as a conference paper at ICLR 2022

VARIATIONAL WASSERSTEIN GRADIENT FLOW

Anonymous authors
Paper under double-blind review

ABSTRACT

The gradient flow of a function over the space of probability densities with respect
to the Wasserstein metric often exhibits nice properties and has been utilized in
several machine learning applications. The standard approach to compute the
Wasserstein gradient flow is the finite difference which discretizes the underlying
space over a grid, and is not scalable. In this work, we propose a scalable proximal
gradient type algorithm for Wasserstein gradient flow. The key of our method
is a variational formulation of the objective function, which makes it possible to
realize the JKO proximal map through a primal-dual optimization. This primal-dual
problem can be efficiently solved by alternatively updating the parameters in the
inner and outer loops. Our framework covers all the classical Wasserstein gradient
flows including the heat equation and the porous medium equation. We demonstrate
the performance and scalability of our algorithm with several numerical examples.

1 INTRODUCTION

The Wasserstein gradient flow models the gradient dynamics over the space of probability densities
with respect to the Wasserstein metric. It was first discovered by Jordan, Kinderlehrer, and Otto
(JKO) in their seminal work (Jordan et al., 1998). They pointed out that the Fokker-Planck equation
is in fact the Wasserstein gradient flow of the free energy, bringing tremendous physical insights
to this type of partial differential equations (PDEs). Since then, the Wasserstein gradient flow has
played an important role in optimal transport, PDEs, physics, machine learning, and many other areas
(Ambrosio et al., 2008; Otto, 2001; Adams et al., 2011; Santambrogio, 2017; Carlier et al., 2017;
Frogner & Poggio, 2020).

Despite the abundant theoretical results on the Wasserstein gradient flow established over the past
decades (Ambrosio et al., 2008; Santambrogio, 2017), the computation of it remains a challenge.
Most existing methods are either based on finite difference of the underlying PDEs or based on
finite dimensional optimization; both require discretization of the underlying space (Peyré, 2015;
Carlier et al., 2017; Li et al., 2020; Carrillo et al., 2021). The computational complexity of these
methods scales exponentially as the problem dimension, making them unsuitable for the cases where
probability densities over high dimensional spaces are involved.

Our goal is to develop a scalable method to compute the Wasserstein gradient flow without discretizing
the underlying space. One target application we are specifically interested in is optimization over
the space of probability densities. Many problems such as variational inference can be viewed as
special cases of such optimization. We aim to establish a method for this type of optimization that is
applicable to a large class of objective functions.

Our algorithm is based on the JKO scheme (Jordan et al., 1998), which is essentially a backward
Euler time discretization method for the continuous time Wasserstein gradient flow. In each step
of JKO scheme, one needs to find a probability density that minimizes a weighted sum of the
Wasserstein distance (square) to the probability density at the previous step and the objective function.
We reparametrize this problem in each step so that the optimization variable becomes the optimal
transport map from the probability density at the previous step and the one we want to optimize,
recasting the problem into a stochastic optimization framework. This transport map can either be
modeled by a standard feedback forward network or the gradient of an input convex neural network.
The latter is justified by the fact that the optimal transport map for the optimal transport problem with
quadratic cost with any marginals is the gradient of a convex function. Another crucial ingredient
of our algorithm is a variational form of the objective function, which allows the evaluation of the

1

Under review as a conference paper at ICLR 2022

objective with samples and without density estimation. At the end of the algorithm, a sequence of
transport maps connecting an initial distribution and the target distribution are obtained. One can
then sample from the target distribution by sampling from the initial distribution (often Gaussian)
and then propagating these particles through the sequence of transport maps. When the transport map
is modeled by the gradient of an input convex neural network, one can evaluate the target density at
every point.

Our contributions can be summarized as follows.
i). We develop a neural network based algorithm to compute Wasserstein gradient flow without
spatial discretization. Our algorithm is applicable to any objective function that has a variational
representation.
ii). We specialize our algorithm to three important cases where the objective functions are the
Kullback-Leibler divergence, the generalized entropy, and the interaction energy .
iii). We apply our algorithm to several representative problems including sampling and aggregation-
diffusion equation and obtain respectable performance.

Related works: Most existing methods to compute Wasserstein gradient flow are finite difference
based (Peyré, 2015; Carlier et al., 2017; Li et al., 2020; Carrillo et al., 2021). These methods require
spatial discretization and are thus not scalable to high dimensional settings. Salim et al. (2020)
analyze the convergence for a forward-backward scheme but leave the implementation of JKO an
open question. There is a line of research that uses particle-based method to estimate the Wasserstein
gradient flow (Carrillo et al., 2019b; Frogner & Poggio, 2020). In these algorithms, the current density
value is often estimated using kernel method whose complexity scales at least quadratically with the
number of particles. More recently, three interesting neural network based methods (Mokrov et al.,
2021; Alvarez-Melis et al., 2021; Yang et al., 2020) were proposed for Wasserstein gradient flow.
The first one (Mokrov et al., 2021) focuses on the special case with Kullback-Leibler divergence as
objective function. The second one (Alvarez-Melis et al., 2021) uses a density estimation method to
evaluate the objective function by back-propagating to the initial distribution, which could become a
computational burden when the number of time discretization is large. The third one (Yang et al.,
2020) is based on a forward Euler time discretization of the Wasserstein gradient flow and is more
sensitive to time stepsize. Over the past few years, many neural network based algorithms have
been proposed to compute optimal transport map or Wasserstein barycenter (Makkuva et al., 2020;
Korotin et al., 2019; Fan et al., 2020; Korotin et al., 2021). These can be viewed as special cases of
Wasserstein gradient flows or optimizations over the space of probability densities.

2 BACKGROUND

2.1 OPTIMAL TRANSPORT AND WASSERSTEIN DISTANCE

Given two probability distributions P,Q over the Euclidean space Rn with finite second moments,
the optimal transport problem with quadratic cost reads

min
T :T]P=Q

∫
Rn

‖x− T (x)‖22dP (x), (1)

where the minimization is over all the feasible transport maps that transport mass from distribution P
to distribution Q. The feasibility is characterized by the pushforward operator (Bogachev, 2007) as
T]P = Q. When the initial distribution P admits a density, the above optimal transport problem (1)
has a unique solution and it is the gradient of a convex function, that is,

T ? = ∇ϕ

for some convex function ϕ(·) : Rn → R. In this paper, we assume probability measures admit
densities and use the notation for the measure and the density interchangeably.

The square-root of the minimum transport cost, namely, the minimum of (1), defines a metric on
the space of probability distributions known as the Wasserstein-2 distance (Villani, 2003), denoted
by W2(P,Q). The Wasserstein distance has many nice geometrical properties compared with other
distances such as L2 distance for probability distributions, making it a popular choice in applications.

2

Under review as a conference paper at ICLR 2022

2.2 WASSERSTEIN GRADIENT FLOW

Given a functionF(P) over the space of probability densities, the Wasserstein gradient flow describes
the dynamics of the probability density when it follows the steepest descent direction of the function
F(P) with respect to the Wasserstein metric W2. The Wasserstein gradient flow can be explicitly
represented by the PDE

∂P

∂t
= ∇ ·

(
P∇δF

δP

)
,

where δF/δP stands for the gradient of the functionF with respect to the standardL2 metric (Villani,
2003, Ch. 8)

Many important PDEs are the Wasserstein gradient flow for minimizing certain objective functions
F(P). For instance, when F is the free energy F(P) =

∫
Rn P (x) logP (x)dx+

∫
Rn V (x)P (x)dx,

the gradient flow is the Fokker-Planck equation (Jordan et al., 1998) ∂P∂t = ∇ · (P∇V) + ∆P. When
F is the generalized entropy F(P) = 1

m−1

∫
Rn P

m(x)dx for some positive number m > 1, the
gradient flow is the porous medium equation (Otto, 2001; Vázquez, 2007) ∂P∂t = ∆Pm.

3 METHODS AND ALGORITHMS

We are interested in solving the optimization problem
min
P
F(P) (2)

over the space of probability densities P(Rn). In particular, our objective is to develop a particle-
based Wasserstein gradient flow algorithm to numerically solve (2).

The objective function F(P) could exhibit different form depending on the application. In this paper,
we present our algorithm for the linear combination of the following three important cases:

Case I The functional is equal to the KL-divergence with respect to a given target distribution Q

F(P) = D(P ||Q) :=

∫
log

(
P (x)

Q(x)

)
P (x)dx. (3)

This is important for the problem of sampling from a target distribution.

Case II The objective functional is equal to the generalized entropy

F(P) = G(P) :=
1

m− 1

∫
Pm(x)dx.

This case is important for modeling the porous medium.

Case III The objective functional is equal to the interaction energy

F(P) =W(P) :=

∫ ∫
W (x− y)P (x)P (y)dxdy, W : Rn → R.

This case is important for modeling the aggregation equation.

These functionals have been widely studied in the Wasserstein gradient flow literature (Carlier et al.,
2017; Santambrogio, 2017; Ambrosio et al., 2008) due to their desirable properties. It can be shown
that if F(P) is composed by the above functionals, under proper assumptions, Wasserstein gradient
flow associated with F(P) converges to the unique solution to (2) (Santambrogio, 2017).

In Section 3.1, 3.2, we first assume F(P) doesn’t include interaction energy, and introduce
JKO/backward scheme to solve (2). We then addW(P) into consideration and present a forward-
backward scheme in Section 3.3 and close by showing our Algorithm in Section 3.4.

3.1 JKO SCHEME AND REPARAMETRIZATION

To realize the Wasserstein gradient flow, a discretization over time is needed. One such discretization
is the famous JKO scheme (Jordan et al., 1998)

Pk+1 = arg min
P

1

2a
W 2

2 (P, Pk) + F(P). (4)

3

Under review as a conference paper at ICLR 2022

This is essentially a backward Euler discretization or a proximal point method with respect to the
Wasserstein metric. The solution to (4) converges to the continuous-time Wassrstein gradient flow
when the step size a→ 0.

In our method, we reparametrize (4) as an optimization in terms of the transport maps T : Rn → Rn
from Pk to P , i.e., by defining P = T]Pk. With this reparametrization, in view of the definition of
Wasserstein distance (1), the JKO step (4) becomes

Pk+1 = Tk]Pk, Tk = arg min
T

1

2a

∫
Rn

‖x− T (x)‖22dPk(x) + F(T]Pk). (5)

The optimal T is the optimal transport map from Pk to T]Pk and is thus the gradient of a convex
function ϕ. Therefore, the JKO scheme can be also expressed as

Pk+1 = ∇ϕk]Pk, ϕk = arg min
ϕ∈CVX

1

2a

∫
Rn

‖x−∇ϕ(x)‖22dPk(x) + F(∇ϕ]Pk). (6)

where CVX stands for the space of convex functions. We use the preceding two schemes (5) and (6)
in our numerical method depending on the application.

3.2 D(P‖Q) AND G(P) REFORMULATION WITH VARIATIONAL FORMULA

The main challenge in implementing the JKO scheme is to evaluate the functional F(P) in terms of
samples from P . We achieve this goal by using a variational formulation of F . In order to do so, we
use the notion of f -divergence between the two distributions P and Q:

Df (P‖Q) = EQ
[
f

(
P

Q

)]
(7)

where f : (0,+∞)→ R is a convex function. The f -divergence admits the variational formulation

Df (P‖Q) = sup
h

EP [h(X)]− EQ[f∗(h(Y))]. (8)

where f∗(y) = supx∈R[xy− f(x)] is the convex conjugate of f . The variational form has the special
feature that it does not involve the density of P and Q explicitly and can be approximated in terms of
samples from P and Q. The functionals D(P ||Q) and G(P) can both be expressed as f -divergence.

With the help of the f -divergence variational formula, when F(P) = D(P‖Q) or G(P), the JKO
scheme (5) can be equivalently expressed as

Pk+1 = Tk]Pk, Tk = arg min
T

{
1

2a
EPk

[‖X − T (X)‖2] + sup
h
V(T, h)

}
. (9)

where V(T, h) = EPk
[A(T, h)]−EΓ[B(h)], Γ is a user designed distribution which is easy to sample

from, and A and B are functionals whose form depends on the functional F . The form of these two
functionals for the KL divergence and the generalized entropy appears in Table 1. The details appear
in Section 3.2.1 and 3.2.2.

Table 1: Variational formula for D(P‖Q) and G(P)

Energy function A(T, h) B(h) Γ∫
P log(P/Q)dx log h(T) + logµ(T)− logQ(T) h Gaussian distribution µ

1
m−1

∫
Pmdx 1

Ωm−1
k

· m
m−1

(h(T))m−1 1

Ωm−1
k

hm Uniform distribution Q

3.2.1 KL DIVERGENCE

The KL divergence is the special instance of the f -divergence obtained by replacing f with f1(x) =
x log x in (7)

Df1(P‖Q) = EQ
[
P

Q
log

P

Q

]
= EP

[
log

P

Q

]
.

4

Under review as a conference paper at ICLR 2022

Proposition 1. The variational formulation for D(P‖Q) reads

Df1(P‖Q) = 1 + sup
h

EP
[
log h(X) + log

µ(X)

Q(X)

]
− Eµ [h(Z)] ,

where µ is a user designed distribution which is easy to sample from. The optimal function h is equal
to the ratio between the densities of T]Pk and µ.

The proof for Proposition 1 can be found in appendix A. It becomes practical when we have only
access to un-normalized density of Q, which is the case for the sampling problem. Using this
variational form in the JKO scheme (5) yields Pk+1 = Tk]Pk and

Tk = arg min
T

max
h

EPk

[
1

2a
‖X − T (X)‖2 + log h(T (X)) + log

µ(T (X))

Q(T (X))

]
− Eµ [h(Z)] .(10)

In practice, we choose µ = µk adaptively, where µk is the Gaussian with the same mean and
covariance as Pk. We noticed that this choice improves the numerical stability of the the algorithm.

3.2.2 POROUS MEDIUM EQUATION

The generalized entropy can be also represented as f -divergence. In particular, let f2(x) =
1

m−1 (xm − x) and let Q be the uniform distribution on a set which is the superset of the support of
density P (x) and has volume Ω. Then

Df2(P‖Q) =
Ωm−1

m− 1

∫
Pm(x)dx− 1

m− 1
.

Proposition 2. The variational formulation for G(P) reads

G(P) =
1

Ωm−1
sup
h

(
EPk

[
m

m− 1
hm−1(X)

]
− EQ [hm(Z)]

)
. (11)

The optimal function h is equal to the ratio between the densities of T]Pk and Q.

The proof for Proposition 2 is postponed to appendix A. Using this in the JKO scheme yields
Pk+1 = Tk]Pk, and

Tk = arg min
T

max
h

1

2a
EPk
‖X − T (X)‖2 +

1

Ωm−1
k

(
EPk

[
m

m− 1
hm−1(X)

]
− EQ [hm(Z)]

)
,

where Ωk is the volume of a set large enough to contain the support of T]Pk for any T that is not too
far away from the identity map.

Algorithm 1 Primal-dual gradient flow

Input: Objective function F(P), initial distribution P0, step size a, number of JKO steps K,
number of outer loop J1, number of inner loop J2, batch size M .
Initialization: Parameterized Tθ and hλ
for k = 1, 2, . . . ,K do
Pk ← (I − a∇x(W ∗ Pk))]Pk if F(P) includesW(P)
Tθ ← Tk−1 if k > 1 {// use last iteration Tk−1 as a warm-up}
for j1 = 1, 2, . . . , J1 do

Sample Y1, . . . , YM from Pk. Sample Z1, . . . , ZM from Γ.
for j2 = 1, 2, . . . , J2 do

Apply Adam to λ to maximize 1
M

∑M
i=1 [A(Tθ, hλ(Yi))− B(hλ(Zi))]

end for
Apply Adam to θ to minimize 1

M

∑M
i=1

[
1
2a‖Yi − Tθ(Yi)‖

2 +A(Tθ, hλ(Yi))
]

end for
Tk ← Tθ

end for
Output: {Tk}Kk=1

5

Under review as a conference paper at ICLR 2022

3.3 FORWARD BACKWARD (FB) SCHEME

When F(P) involves the interaction energyW(P), we add an additional forward step to solve the
gradient flow:

Pk+ 1
2

:= (I − a∇x(W ∗ Pk))]Pk (12)

Pk+1 := Tk+ 1
2
]Pk+ 1

2
, (13)

where I is the identity map, and Tk+ 1
2

is defined by replacing k by k + 1
2 in (9). In other words, the

first gradient descent step (12) is a forward discretization of the gradient flow and the second JKO step
(13) is a backward discretization. ∇x(W ∗ P) can be written as expectation Ey∼P∇x(W (x− y)),
thus can also be approximated by samples. Salim et al. (2020) firstly propose this method to solve
Wasserstein gradient flow and provide the theoretical convergence analysis. We make this scheme
practical by giving a scalable implementation of JKO.

Since W(P) can be equivalently written as expectation Ex,y∼P [W (x − y)], there exists another
non-forward-backward (non-FB) method , i.e., removing the first step and integratingW(P) into a
single JKO step: Pk+1 = Tk]Pk and

Tk = arg min
T

{
1

2a
EPk
‖X − T (X)‖2 + EX,Y∼Pk

[W (T (X)− T (Y))] + sup
h
V(T, h)

}
.

In practice, we observe the FB scheme is more stable however converge slower than non-FB scheme.
The detailed discussion appears in the Appendix B.2, B.3.
Remark 1. In principle, one can single out log(Q) term from (10) and perform a similar forward
step Pk+ 1

2
= (I − a(∇xQ)/Q)]Pk (Salim et al., 2020), but we don’t observe improved performance

of doing this in sampling task.

3.4 PRIMAL-DUAL ALGORITHM AND PARAMETRIZATION OF T AND h

The two optimization variables T and h in our minimax formulation (9) can be both parameterized
by neural networks, denoted by Tθ and hλ. With this neural network parametrization, we can then
solve the problem by iteratively updating Tθ and hλ. This prime-dual method to solve (2) is depicted
in Algorithm 1.

In this work, we implemented two different architectures for the map T . One way is to use a neural
network to represent T directly, and another way is to parametrize T as the gradient of a Input convex
neural network (ICNN) (Amos et al., 2017) ϕ. The latter has been widely used in optimal transport
(Makkuva et al., 2020; Fan et al., 2020; Korotin et al., 2021). In our experiments, we find that the
first parameterization gives better result in the sampling application. As we discuss in Section 3.5,
when density evaluation is needed, we adopt the ICNN parameterization since we need to compute
T−1. Note that ICNN could be modified to be strictly convex and if the function ϕ is strictly convex,
the gradient ∇ϕ is invertible.

3.5 EVALUATION OF THE DENSITY

In this section, we assume the solving process doesn’t use forward-backward scheme, i.e. all
the probability measures Pk are obtained by performing JKO one by one. Otherwise, the map
I−a∇x(W ∗Pk) = I−Ey∼Pk

∇x(W (x−y)) includes an expectation term and becomes intractable
to push-backward particles to compute density.

If T is invertible, these exists a standard approach to evaluate the density of Pk (Alvarez-Melis
et al., 2021; Mokrov et al., 2021) through the change of variables formula. More specifically. we
assume T is parameterized by the gradient of an ICNN ϕ that is assumed to be strictly convex.
To evaluate the density Pk(xk) at point xk, we back propagate through the sequence of maps
Tk = ∇ϕk, . . . , T1 = ∇ϕ1 to get

xi = T−1
i+1 ◦ T

−1
i+2 ◦ · · · ◦ T

−1
k (xk).

The inverse map T−1
j = (∇ϕj)−1 = ∇ϕ∗j can be obtained by solving the convex optimization

xj−1 = arg max
x∈Rn

〈x, xj〉 − ϕj(x). (14)

6

Under review as a conference paper at ICLR 2022

Then, by the change of variables formula, we obtain

log[Pk(xk)] = log[P0(x0)]−
k∑
i=1

log
∣∣∇2ϕi(xi−1)

∣∣ , (15)

where∇2ϕi(xi−1) is the Hessian of ϕi and |∇2ϕi(xi−1)| is its determinant. By iteratively solving
(14) and plugging the resulting xj into (15), we can recover the density Pk(xk) at any point.

3.6 COMPUTATIONAL COMPLEXITY

Per each update k in Algorithm 1, the forward step (12) requires at most O(N2) where N is the total
number of particles to push-forward. The backward step (13) requires O(J1kMH) where J1 is the
number of iterations per each JKO step, M is the batch size, and H is the size of the network. k
shows up in the bound because sampling Pk requires us to pushforward x0 ∼ P0 through k− 1 maps.

However, both Mokrov et al. (2021) and Alvarez-Melis et al. (2021) require O(J1k
(
nMH + n3

)
)

which has the cubic dependence on dimension n because they need to query the log det∇2ϕ in each
iteration. We refer to Mokrov et al. (2021, Section 5) for the complexity details of calculating the
Hessian term. Thus our method has the advantage of independence on the dimension.

We provide training time details in Section 4.2 and Appendix B.4. Other than training and sampling
time, the complexity for evaluating the density are the same as the above two methods due to the
standard density evaluation process (see Section 3.5).

4 NUMERICAL EXAMPLES

4.1 SAMPLING

(a) ground truth (b) ours

Figure 1: The left figure shows samples from the tar-
get 16-GMM distribution and the right figure shows
samples obtained by our method. Each plot contains
4000 points.

We first consider the sampling problem to
sample from a target distribution Q. Note
that Q doesn’t have to be normalized. To
this end, we consider the Wasserstein gra-
dient flow with objective function F(P) =∫
P log(P/Q)dx, that is, the KL divergence

between distributions P and Q. When this
objective is minimized, P ∝ Q. In our experiments, we consider two types of target distribution: the
two moons distribution and the Gaussian mixture model (GMM) with spherical Gaussian components.
In this set of experiments, the step size is set to be a = 0.3 and the initial measure is a spherical
Gaussian N (0, 2.25Id).

Two moons: The two moons distribution is a popular target distribution for sampling task. It is a
2D mixture model composed of 16 Gaussian components; each moon shape consists of 8 Gaussian
components. The results are displayed in Figure 1, from which we see that our method is able to
generate samples that match the target distribution.

(a) Dimension n = 8 (b) Dimension n = 13

Figure 2: Comparison between the target GMM and fitted measure of generated samples by our
method. Samples are projected onto 2D plane by performing PCA. We refer the reader to Mokrov
et al. (2021) for the performance of another algorithm in similar setup.

7

Under review as a conference paper at ICLR 2022

GMM with spherical Gaussians: We also test our algorithm in sampling from GMM in higher
dimensional space. The target GMM has 9 Gaussian components with equal weights and the same
covariances. The results with dimension n = 8 and n = 13 are depicted in Figure 2. In Figure 2,
we not only display the samples as grey dots in the plot, but also the kernel density estimation of
generated samples as level sets. As can be seen from the results, both the samples and densities
obtained with our algorithm match the target distribution well.

4.2 ORNSTEIN-UHLENBECK PROCESS

We study the performance of our method in modeling the Ornstein-Uhlenbeck Process as dimension
grows. The gradient flow is affiliated with the free energy (3), where Q = e(x−b)TA(x−b)/2 with a
positive definite matrix A ∈ Rn × Rn and b ∈ Rn. Given an initial Gaussian distribution N (0, In),
the gradient flow at each time t is a Gaussian distribution Pt with mean vector µt = (In − e−At)b
and covariance Σt = A−1(In − e−2At) + e−2At (Vatiwutipong & Phewchean, 2019). We calculate
Pk with JKO step size a = 0.05 and compare with the Fokker-Planck (FP) JKO (Mokrov et al., 2021).
We quantify the error as the SymKL divergence between estimated distribution and the ground truth
in Figure 3, where

SymKL(P1, P2) := D(P1‖P2) +D(P2‖P1).

(a) Time t = 0.5 (b) Time t = 0.9

Figure 3: We repeat the experiments for 15 times in dimensions d = 2, 6, 12, 16, 32.

We also compare the training time per every two JKO steps with FP JKO. The computation time for
FP JKO is around 20s when d = 2 and increases to 100s when d = 32. Our method’s training time
remains at 20s± 2s for all the dimensions d = 2 ∼ 32. This is due to we fix the neural network size
for both methods and our method’s computation complexity doesn’t depend on the dimension.

4.3 POROUS MEDIA EQUATION

(a) t = 0.002 (b) t = 0.004 (c) t = 0.006 (d) t = 0.008

Figure 4: Comparison among exact density, finite difference method solution given by CVXOPT, and
the density given by our method. To better visualize the distributed particles from each distribution,
we also plot the histograms of our method as the blue shadow.

We next consider the porous media equation with only diffusion: ∂tP = ∆Pm. This is the Wasser-
stein gradient flow associated with the energy function F(P) = 1

m−1

∫
Pm(x)dx. A representative

8

Under review as a conference paper at ICLR 2022

closed-form solution of the porous media equation is the Barenblatt profile (GI, 1952; Vázquez, 2007)

Pgt(t, x) = (t+ t0)
−α
(
C − β (x− x0)

2
(t+ t0)

−2α/n
) 1

m−1

+
,

where α =
n

n(m− 1) + 2
, β =

(m− 1)α

2mn
,

and t0 > 0 is the starting time and C > 0 is a free parameter.

In principle, our algorithm should match the analytical solution Pgt when the step size a is sufficiently
small. When a is not that small, time discretization is inevitable. To account for the time-discretization
error of JKO scheme, we consider the porous media equation in 1D space and use the solution via
finite difference method as a reference. The details appear in appendix C.3.

In the experiments, we set the stepsize for the JKO scheme to be a = 0.001 and the initial time
to be t0 = 0.002. Other parameters are chosen as C = (3/16)1/3,m = 2, n = 1, d = 300. We
parametrize the transport map T as the gradient of an ICNN and thus we can evaluate the density
following Section 3.5. In Figure 4, we observe that the gap between the density computed using our
algorithm and the ground truth density Pgt is dominated by the time-discretization error of the JKO
scheme. Our result matches the discrete time solution nicely.

4.4 AGGREGATION–DIFFUSION EQUATION

(a) k = 24 (b) k = 36 (c) k = 60 (d) k = 84 (e) k = 92

Figure 5: Histogram for simulated measures Pk by FB scheme at different k.

We finally simulate the evolution of solutions to the following aggregation-diffusion equation:

∂tP = ∇ · (P∇W ∗ P) + 0.1∆Pm, W (x) = −e−‖x‖
2

/π.

This corresponds to the energy functionW(P) + 0.1G(P). We use the same parameters in Carrillo
et al. (2021, Section 4.3.3). The initial distribution is a uniform distribution supported on [−3, 3]×
[−3, 3] and the JKO step size a = 0.5. In Figure 5, we utilize FB scheme to simulate the gradient
flow for this equation with m = 3 on R2 space. With this choice W (x), ∇x(W ∗ Pk) is equal to
Ey∼Pk

[
2e−‖x−y‖

2

/π
]

in the gradient descent step (12). And we estimate ∇x(W ∗ Pk) with 104

samples from Pk.

Throughout the process, the aggregation term∇·(P∇W ∗P) and the diffusion 0.1∆Pm adversarially
exert their effects and cause the probability measure split to four pulses and converge to a single pulse
in the end (Carrillo et al., 2019a).

5 CONCLUSION

In this paper we presented a novel neural network based algorithm to compute the Wasserstein
gradient flow. Our algorithm follows the JKO time discretization scheme. We reparametrize the
problem so that the optimization variable becomes the transport map T between the consecutive steps.
By utilizing a variational formula of the objective function, we further reformulate the problem in
every step as a min-max problem over map T and dual function h respectively. This formulation
doesn’t require density estimation using samples and can be optimized using stochastic optimization.
It also shows advantages with dimension-independent computation complexity. Our method can also
be extended to minimize other objective functions that can be written as f -divergence. Our limitation
is the accuracy is not satisfying in sampling tasks with high dimension complex density.

9

Under review as a conference paper at ICLR 2022

6 REPRODUCIBILITY

The basic setup is distributed in Section 4. We refer to Section 3.4 and Appendix C for all the rest
training details. The code of our method is also attached in the supplementary material.

10

Under review as a conference paper at ICLR 2022

REFERENCES

Stefan Adams, Nicolas Dirr, Mark A Peletier, and Johannes Zimmer. From a large-deviations
principle to the Wasserstein gradient flow: a new micro-macro passage. Communications in
Mathematical Physics, 307(3):791–815, 2011.

David Alvarez-Melis, Yair Schiff, and Youssef Mroueh. Optimizing functionals on the space of
probabilities with input convex neural networks. arXiv preprint arXiv:2106.00774, 2021.

Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces and in the
space of probability measures. Springer Science & Business Media, 2008.

Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In International Conference
on Machine Learning, pp. 146–155. PMLR, 2017.

Vladimir I Bogachev. Measure theory, volume 1. Springer Science & Business Media, 2007.

Guillaume Carlier, Vincent Duval, Gabriel Peyré, and Bernhard Schmitzer. Convergence of entropic
schemes for optimal transport and gradient flows. SIAM Journal on Mathematical Analysis, 49(2):
1385–1418, 2017.

Jose A Carrillo, Sabine Hittmeir, Bruno Volzone, and Yao Yao. Nonlinear aggregation-diffusion
equations: radial symmetry and long time asymptotics. Inventiones mathematicae, 218(3):889–977,
2019a.

Jose A Carrillo, Katy Craig, Li Wang, and Chaozhen Wei. Primal dual methods for Wasserstein
gradient flows. Foundations of Computational Mathematics, pp. 1–55, 2021.

José Antonio Carrillo, Katy Craig, and Francesco S Patacchini. A blob method for diffusion. Calculus
of Variations and Partial Differential Equations, 58(2):1–53, 2019b.

William Falcon and Kyunghyun Cho. A framework for contrastive self-supervised learning and
designing a new approach. arXiv preprint arXiv:2009.00104, 2020.

Jiaojiao Fan, Amirhossein Taghvaei, and Yongxin Chen. Scalable computations of Wasserstein
barycenter via input convex neural networks. arXiv preprint arXiv:2007.04462, 2020.

Charlie Frogner and Tomaso Poggio. Approximate inference with Wasserstein gradient flows. In
International Conference on Artificial Intelligence and Statistics, pp. 2581–2590. PMLR, 2020.

Barenblatt GI. On some unsteady motions of a liquid and gas in a porous medium. Prikl. Mat. Mekh.,
16:67–78, 1952.

Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the Fokker–Planck
equation. SIAM journal on mathematical analysis, 29(1):1–17, 1998.

Alexander Korotin, Vage Egiazarian, Arip Asadulaev, Alexander Safin, and Evgeny Burnaev.
Wasserstein-2 generative networks. arXiv preprint arXiv:1909.13082, 2019.

Alexander Korotin, Lingxiao Li, Justin Solomon, and Evgeny Burnaev. Continuous Wasserstein-2
barycenter estimation without minimax optimization. arXiv preprint arXiv:2102.01752, 2021.

Wuchen Li, Jianfeng Lu, and Li Wang. Fisher information regularization schemes for Wasserstein
gradient flows. Journal of Computational Physics, 416:109449, 2020.

Ashok Makkuva, Amirhossein Taghvaei, Sewoong Oh, and Jason Lee. Optimal transport mapping via
input convex neural networks. In International Conference on Machine Learning, pp. 6672–6681.
PMLR, 2020.

Petr Mokrov, Alexander Korotin, Lingxiao Li, Aude Genevay, Justin Solomon, and Evgeny Burnaev.
Large-scale Wasserstein gradient flows. arXiv preprint arXiv:2106.00736, 2021.

Felix Otto. The geometry of dissipative evolution equations: the porous medium equation. 2001.

Gabriel Peyré. Entropic approximation of Wasserstein gradient flows. SIAM Journal on Imaging
Sciences, 8(4):2323–2351, 2015.

11

Under review as a conference paper at ICLR 2022

Adil Salim, Anna Korba, and Giulia Luise. The Wasserstein proximal gradient algorithm. arXiv
preprint arXiv:2002.03035, 2020.

Filippo Santambrogio. Euclidean, metric, and wasserstein gradient flows: an overview. Bulletin of
Mathematical Sciences, 7(1):87–154, 2017.

P Vatiwutipong and N Phewchean. Alternative way to derive the distribution of the multivariate
ornstein–uhlenbeck process. Advances in Difference Equations, 2019(1):1–7, 2019.

Juan Luis Vázquez. The porous medium equation: mathematical theory. Oxford University Press on
Demand, 2007.

Cédric Villani. Topics in optimal transportation. Number 58. American Mathematical Soc., 2003.

Zhuoran Yang, Yufeng Zhang, Yongxin Chen, and Zhaoran Wang. Variational transport: A convergent
particle-based algorithm for distributional optimization. arXiv preprint arXiv:2012.11554, 2020.

12

Under review as a conference paper at ICLR 2022

A DETAILS ABOUT VARIATIONAL FORMULA IN SECTION 3.2

A.1 KL DIVERGENCE

The KL divergence is the special instance of the f -divergence obtained by replacing f with f1(x) =
x log x in (7)

Df1(P‖Q) = EQ
[
P

Q
log

P

Q

]
= EP

[
log

P

Q

]
,

which, according to (8), admits the variational formulation

Df1(P‖Q) = 1 + sup
h

EP [h(X)]− EQ
[
eh(Y)

]
(16)

where the convex conjugate f∗1 (y) = ey−1 is used.

The variational formulation can be approximated in terms of samples from P and Q. For the case
where we have only access to un-normalized density of Q, which is the case for the sampling
problem, we use the following change of variable: h→ log(h) + log(µ)− log(Q) where µ is a user
designed distribution which is easy to sample from. Under such a change of variable, the variational
formulation reads

Df1(P‖Q) = 1 + sup
h

EP
[
log h(X) + log

µ(X)

Q(X)

]
− Eµ [h(Z)] .

Note that the optimal function h is equal to the ratio between the densities of T]Pk and µ.
Remark 2. The Donsker-Varadhan formula

D(P‖Q) = sup
h

EP [h(X)]− logEQ
[
eh(Z)

]
is another variational representation of KL divergence and it’s a stronger than (16) because it’s a
upper bound of (16) for any fixed h. However, we cannot get an unbiased estimation of the objective
using samples.

A.2 POROUS MEDIUM EQUATION

The generalized entropy can be also represented as f -divergence. In particular, let f2(x) =
1

m−1 (xm − x) and let Q be the uniform distribution on a set which is the superset of the support of
density P (x) and has volume Ω. Then

Df2(P‖Q) =
Ωm−1

m− 1

∫
Pm(x)dx− 1

m− 1
.

As a result, the generalized entropy can be expressed in terms of f -divergence according to

G(P) =
1

m− 1

∫
Pm(x)dx =

1

Ωm−1
Df2(P‖Q) +

1

Ωm−1(m− 1)
.

Upon using the variational representation of the f -divergence with

f∗2 (y) =

(
(m− 1)y + 1

m

) m
m−1

,

the generalized entropy admits the following variational formulation

G(P) = sup
h

1

Ωm−1

(
EP [h(X)]− EQ

[(
(m− 1)h(Y) + 1

m

) m
m−1

])
+

1

Ωm−1(m− 1)
.

In practice, we find it numerically useful to let h = 1
m−1

[
m
(
ĥ
)m−1

− 1

]
so that

G(P) =
1

Ωm−1
sup
ĥ

(
EPk

[
m

m− 1
ĥm−1(X)

]
− EQ

[
ĥm(Z)

])
.

With such a change of variable, the optimal function ĥ = T]Pk/Q.

13

Under review as a conference paper at ICLR 2022

B ADDITIONAL EXPERIMENT RESULTS AND DISCUSSIONS

B.1 SAMPLING USING ICNN PARAMETERIZATION

(a) Dimension n = 8 (b) Dimension n = 13

Figure 6: Sampling Gaussian mixture models by parameterizing the map by∇ϕ.

In Figure 6, we present the sampling results with ∇ϕ parameterized map where ϕ is a ICNN neural
network. The experiment setting is the same as Section 4.1 and we can observe a MLP network map
gives better fitted measures.

B.2 AGGREGATION EQUATION

Alvarez-Melis et al. (2021) proposes using the neural network based JKO, i.e. the backward method,
to solve (17). They parameterize T as the gradient of the ICNN. In this section, we use two cases to
compare the forward method and backward when F(P) =W(P). This could help explain the FB
and non-FB scheme performance difference later in Section B.3.

We study the gradient flow associated with the aggregation equation

∂tP = ∇ · (P∇W ∗ P), W : Rn → R. (17)

The forward method is

Pk+1 := (I − a∇x(W ∗ Pk))]Pk.

The backward method or JKO is

Pk+1 := Tk]Pk, Tk = arg min
T

{
1

2a
EPk

[‖X − T (X)‖2] + EX,Y∼Pk
[W (T (X)− T (Y))]

}
.

Example 1 We follow the setting in Carrillo et al. (2021, Section 4.3.1). The interaction kernel is
W (x) = ‖x‖4

4 −
‖x‖2

2 , and the initial measure P0 is a GaussianN (0, 0.25I). In this case,∇x(W ∗Pk)

becomes Ey∼Pk

[
(‖x− y‖2 − 1)(x− y)

]
. We use step size a = 0.05 for both methods and show

the results in Figure 7.

Example 2 We follow the setting in Carrillo et al. (2021, Section 4.2.3). The interaction kernel is
W (x) = ‖x‖2

2 − ln ‖x‖, and the initial measure P0 is N (0, 1). The unique steady state for this case
is

P∞(x) =
1

π

√
(2− x2)+.

The reader can refer to Alvarez-Melis et al. (2021, Section 5.3) for the backward method performance.
As for the forward method, ∇x(W ∗ Pk) becomes Ey∼Pk

[
x− y − 1

x−y

]
. Because the kernel W

enforces repulsion near the origin and P0 is concentrated around origin,∇x(W ∗ P) will easily blow
up. So the forward method is not suitable for this kind of interaction kernel.

Through the above two examples, if ∇x(W ∗ P) is smooth, we can notice the backward method
converges faster, but is not stable when solving (17). This shed light on the FB and non-FB scheme
performance in Section 4.4, B.3. However, if ∇x(W ∗ P) has bad modality such as Example 2, the
forward method loses the competitivity.

14

Under review as a conference paper at ICLR 2022

(a) Forward method k = 23, t = 1.15 (b) Forward method k = 200, t = 10

(c) Backward method k = 23, t = 1.15 (d) Backward method k = 40, t = 2

Figure 7: The steady state is supported on a ring of radius 0.5. Backward converges faster to the
steady rate but is unstable. As k goes large, it cannot keep the regular ring shape and will collapse
after k > 50.

B.3 AGGREGATION-DIFFUSION EQUATION WITH NON-FB SCHEME

In Figure 8, we show the non-FB solutions to Aggregation-diffusion equation in Section 4.4. FB
scheme should be independent with the implementation of JKO, but in the following context, we
assume FB and non-FB are both neural network based methods discussed in Section 3. Non-FB
scheme reads

Pk+1 = Tk]Pk

Tk = arg min
T

{
1

2a
EPk

[‖X − T (X)‖2] + EX,Y∼Pk
[W (T (X)− T (Y))] + G(T, h)

}
,

where G(T, h) is represented by the variational formula (11). We use the same step size a = 0.5 and
other PDE parameters as in Section 4.4.

(a) k = 18 (b) k = 24 (c) k = 30 (d) k = 42

Figure 8: Histograms for simulated measures Pk by non-FB scheme at different k.

Comparing the FB scheme results in Figure 5 and the non-FB scheme results in Figure 8, we observe
non-FB converges 1.5× slower than the finite difference method (Carrillo et al., 2021), and FB
converges 3× slower than the finite difference method. This may because splitting one JKO step to
the forward-backward two steps removes the aggregation term effect in the JKO, and the diffusion
term is too weak to make a difference in the loss. Note at the first several k, both Pk and Q are nearly
the same uniform distributions, so h is nearly a constant and T (x) exerts little effect in the variational
formula of G(P). Another possible reason is a single forward step for aggregation term converges
slower than integrating aggregation in the backward step, as we discuss in Section B.2 and Figure 7.

15

Under review as a conference paper at ICLR 2022

However, FB generates more regular measures. We can tell the four pulses given by FB are more
symmetric. We speculate this is because gradient descent step in FB utilizes the geometric structure
of W (x) directly, but integratingW(P) in neural network based JKO losses the geometric meaning
of W (x).

B.4 COMPUTATIONAL TIME

Our experiments are conducted on GeForce RTX 3090. The forward step (12) takes about 14 seconds
to pushforward one million points.

Assume each JKO step involves 500 iterations and the number of inner iteration J1 = 3, then each
JKO step (13) takes 100 seconds if the energy function contains the generalized energy G(P) and 25
seconds if the energy function contains the KL divergence D(P‖Q).

C IMPLEMENTATION DETAILS

Our code is written in Pytorch-Lightning (Falcon & Cho, 2020). For some parts of plotting in Section
4.1 and 4.2, we adopt the code given by Mokrov et al. (2021).

Without further specification, we use the following parameters:
1) The number of iterations of the outer loop J1 is 600.
2) The number of iterations of the inner loop J2 is 3.
3) The batch size is fixed to be M = 100.
4) The learning rate is fixed to be 0.001.
5) All the activation functions are set to be PReLu.
6) h has 4 layers and 16 neurons in each layer.
7) T has 5 layers and 16 neurons in each layer.

The transport map T can be parametrized in different ways. We use a residual MLP network for it in
Section 4.1, 4.2, B.2 and the gradient of a strongly convex ICNN in Section 4.3, 4.4, B.1, B.3. The
dual test function h is always a MLP network with a dropout layer before each layer.

C.1 SAMPLING (SECTION 4.1 AND B.1)

Two moons We run K = 10 JKO steps with J2 = 6 inner iterations. h has 6 layers. T has 5 layers.

GMM 8D example trains for K = 50 JKO steps. h has 6 layers and 64 neurons in each layer. T
has 3 layers and 128 neurons in each layer.

13D example trains for K = 20 JKO steps. h has 8 layers and 64 neurons in each layer. T has 9
layers and 64 neurons in each layer.

C.2 ORNSTEIN-UHLENBECK PROCESS (SECTION 4.2)

For Fokker-Planck JKO, we use the implementation provided by the authors and the default parameters
given in Mokrov et al. (2021, Section A.2). We also estimate the SymKL using Monte Carlo according
to the author’s instructions.

For our method, we use a linear residual feed-forward NN to work as T , i.e. without activation
function. h and T both have 3 layers and 64 hidden neurons per layer for all dimensions. We also train
them for J1 = 500 iterations per each JKO with learning rate 0.005. The batch size is M = 1000.

However, we estimate SymKL for our algorithm in a different way. Since our map T is a linear
transformation, our estimated P̃t is guaranteed to be a Gaussian distribution. We firstly draw 5 · 105

samples from P̃t and calculate the empirical mean µ̃t and covariance Σ̃t. Then we estimateD(P̃t‖Pt)
using the following closed form KL divergence between two Gaussians

D(P̃t‖Pt) =
1

2

[
log
|Σt|
|Σ̃t|
− d+ (µ̃t − µt)T Σ̃−1

t (µ̃t − µt) + tr(Σ−1
t Σ̃t)

]
.

D(Pt‖P̃t) is estimated similarly.

16

Under review as a conference paper at ICLR 2022

C.3 POROUS MEDIA EQUATION (SECTION 4.3)

In the experiment, h and T both have 10 neurons in each layer.

To account for the time-discretization error of JKO scheme, we consider the porous media equation
in 1D space and use the solution via finite difference method as a reference. More specifically, in the
1D space R, we discretize the density over a fixed grid with grid size d and grid resolution δx. With
this discretization, the probability densities become (scaled) probability vectors and the problem (4)
can be converted into a convex optimization

min
π:δxπT1=P̂k

(δx)2

2a
〈π,M〉+

δx

m− 1
(1Tπδx)m1 (18)

where M is the discretized unit transport cost, P̂k ∈ Rd is the probability vector at the previous step,
1 ∈ Rd is the all-ones vector and the optimization variable π ∈ Rd × Rd is the joint distribution
between P̂k and P̂k+1. This is a standard convex optimization and can be solved with generic
solvers. When an optimal π is obtained, P̂k+1 can be computed as P̂k+1 = π1. We adopt the library
CVXOPT1 to solve the convex programming problem (18). In so doing, we arrive at a reference
solution P̂0, P̂1, . . . , P̂k, . . . for our algorithm.

C.4 AGGREGATION-DIFFUSION EQUATION (SECTION 4.4 AND B.3)

Each JKO step contains J1 = 200 iterations. The batch size is M = 1000.

1http://cvxr.com/cvx/

17

http://cvxr.com/cvx/

	Introduction
	Background
	Optimal transport and Wasserstein distance
	Wasserstein gradient flow

	Methods and algorithms
	JKO scheme and reparametrization
	D(PQ) and G(P) Reformulation with variational formula
	KL divergence
	Porous medium equation

	Forward Backward (FB) scheme
	Primal-dual algorithm and parametrization of T and h
	Evaluation of the density
	Computational complexity

	Numerical examples
	Sampling
	Ornstein-Uhlenbeck Process
	Porous media equation
	Aggregation–Diffusion Equation

	Conclusion
	Reproducibility
	Details about variational formula in Section 3.2
	KL divergence
	Porous medium equation

	Additional experiment results and discussions
	Sampling using ICNN parameterization
	Aggregation equation
	 Aggregation-diffusion equation with non-FB scheme
	Computational time

	Implementation details
	Sampling (Section 4.1 and B.1)
	Ornstein-Uhlenbeck Process (Section 4.2)
	Porous media equation (Section 4.3)
	Aggregation-diffusion equation (Section 4.4 and B.3)

