
Scheduling conditional task graphs with deep reinforcement
learning

Anton Debner∗1, Maximilian Krahn1, and Vesa Hirvisalo1

1Aalto University
{anton.debner, maximilian.krahn, vesa.hirvisalo}@aalto.fi

Abstract

Industrial applications often depend on costly com-
putation infrastructures. Well optimised schedulers
provide cost efficient utilization of these computa-
tional resources, but they can take significant effort
to implement. It can also be beneficial to split the
application into a hierarchy of tasks represented as
a conditional task graph. In such case, the tasks in
the hierarchy are conditionally executed, depending
on the output of the earlier tasks. While such condi-
tional task graphs can save computational resources,
they also add complexity to scheduling.
Recently, there has been research on Deep Re-

inforcement Learning (DRL) based schedulers, but
they mostly do not address conditional task graphs.
We design a DRL based scheduler for conditional
task graphs in a heterogeneous execution environ-
ment. We measure how the probabilities of a con-
ditional task graph affects the scheduler and how
these adverse effects can be mitigated. We show
that our solution learns to beat traditional baseline
schedulers in a fraction of an hour.

1 Introduction

Scheduling of complex computing actions is needed
in many modern industrial systems. Industrial sys-
tems often have a rich set of sensors and actuators in-
teracting together in a time-sensitive manner. These
interactions are often accompanied with computa-
tionally heavy tasks, that are mapped to available
computational resources. Fine-tuned schedulers can
increase the efficient utilization of these computa-
tional resources, which in turn can lead to significant
cost savings at scale.
While traditional schedulers are well researched

and understood [1], efficient scheduling often re-
quires hand-tuned solutions on case-by-case basis.
Along with the growing interest towards using ma-
chine learning in industrial applications [2, 3], there
has been research for automating the creation of
schedulers for complex scenarios [4–7].
Due to the introduction of ever larger machine

learning models, it can be beneficial to split an
application into a hierarchy of models represented as
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a conditional task graph. In such case, the models in
the hierarchy are conditionally executed, depending
on the output of the earlier models. Ideally, most of
the data runs through the smaller models while the
larger models later in the hierarchy are used more
sparingly.
We focus on how conditional task graphs affect

scheduling. The presence of conditional task graphs
is problematic for schedulers, as the scheduler can
only make limited long-term planning due to not
knowing the exact stages of a job in advance. As
a further complication, the transition probabilities
between each task may vary depending on external
factors, such as changes in the physical condition of
sensors, actuators and quality of materials over time.
In other words, these external factors may change
the probability of, e.g., needing to use computation-
ally heavier models to maintain good accuracy.
As our contribution, we present our deep rein-

forcement learning (DRL) based scheduler for condi-
tional task graphs and test it in a simulated hetero-
geneous computation environment1. We base our
DRL-scheduler in common design decisions used in
related work. Our results show that our scheduler
improves up to 30 % of mean job completion time
(JCT) compared to our baselines with less than 15
minutes of training.

We start the paper by describing conditional task
graphs and reinforcement learning in Section 2.
Then we describe our problem in Section 3. In
Section 4 we describe common design choices for
DRL-based schedulers, followed by our experiment
(Section 5) and results (Section 6). We end our
paper in conclusions (Section 7).

2 Using machine learning in
cluster scheduling

In the context of parallel computing in clusters,
the scheduling of the tasks of an application has
a crucial impact on the system performance. A
task schedule determines both the mapping of tasks
to the processors, and the order in which they are
executed. Typical schedule optimization problems,
such as minimising the total execution time, are

1https://github.com/Aalto-ESG/drl-scheduler-2024
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challenging optimisation problems (formally strongly
NP-hard) and usually heuristics are used instead of
optimal solutions [1].

Tasks are typically selected so that they fit the
overall execution arrangement including its schedul-
ing aspects. As tasks are usually too small for repre-
senting complete algorithms, groups of interdepen-
dent tasks are often used to form jobs. The typical
optimization target is the the Job Completion Time
(JCT), i.e., the total execution time of the related
tasks (also known as the makespan).

Task interdependencies imply constraints on tasks
execution order, and thus, limit the choices that a
scheduler has. They are usually expressed by using
various forms of Directed Acyclic Graphs (DAG),
which include conditional task graphs [8]. There
exists several variations of conditional task graphs.
We use probabilistic conditions in our Task Graph
(Fig. 2, denoted as TG in this paper).

Efficient scheduling often requires hand-tuned so-
lutions on case-by-case basis. As machine learning
has shown potential for solving complex problems,
it has emerged as an way of automating the creation
of schedulers for complex scenarios.

Our research concentrates on applying Deep Re-
inforcement Learning (DRL) [9]. It is a branch of
machine learning that aims to learn optimal be-
havior by interacting with an environment by trial-
and-error. Often, the environment is a simulator
that implements a gym-interface [10], enabling the
use of variety of DRL training frameworks, such as
RLlib [11]. A DRL agent interacts with the environ-
ment by sending actions and receiving observations
and rewards. DRL uses Neural Networks (NN) as
part of the agent.

As related work, Chen et al. [2] and Khalil et
al. [3] give overview of applying DRL for Internet of
Things. As a more concrete example, IRATS [7] is
a DRL-based intelligent priority and deadline-aware
resource allocation algorithm trained with Proximal
Policy Optimization (PPO [12]). They review using
Graph Neural Networks (GNNs [13]) for processing
graph-like input data. Furthermore, Lin et al. [6]
apply reinforcement learning together with heuristics
for the scheduling of DAGs. Their approach is based
on combining a heuristic-based processor allocation
(e.g., HEFT [14]) with DRL-based node selection.
They use a Graph Convolutional Network (GCN) as
an input layer to process graph-based information,
and PPO to train the neural network. Similarly,
Duan and Wu [5] consider reducing JCT for DAG-
style jobs by adding idle slots. They also apply DRL
with GNN to capture the DAG structures.

However, despite the wide research on the schedul-
ing problems, the scheduling of conditional task
graphs by means of modern machine learning meth-
ods has largely remained not addressed.
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Figure 1. Overview of the system.

3 Problem Description

Our motivation comes from a production line with
sensors, where the set of sensors produce a new job
at regular intervals. Each job includes a set of clas-
sification tasks, where the result of the classification
determines the next task. In essence, less inter-
esting data is discarded sooner, while potentially
more interesting data is processed through a more
computationally intensive set of classification tasks.
In other words, each job follows a conditional TG,
similar to the TG in Fig. 2.
Our goal is to minimize the average JCT, which

for each job Ji is defined as

JCT (Ji) = CT (Ji)−AT (Ji) (1)

where AT (Ji) is the time the first task of the ith

job arrived and CT (Ji) is the time the last task of
the ith job was completed.

3.1 Dynamic DAG properties

We consider two scenarios: In the first scenario
we have fixed transition probabilities in the DAG.
However, the probabilities are different for each in-
stallation of the system. The scheduler should either
generalize well to different probabilities or be quick
to adapt for a new installation.

In the second scenario, the transition probabilities
are changing at runtime. This could happen, if the
probabilities are dependent on the physical condi-
tion of the equipment and materials. In this case,
the scheduler should adapt to different transition
probabilities at runtime.

3.2 Heterogeneous environment

We consider a heterogeneous execution environment
with multiple accelerators with different properties.
The properties are execution time coefficient and
maximum batch size. It is natural to assume that dif-
ferent accelerators can run tasks at different speeds.
In addition, batched inference is a typical way of
increasing accelerator utilization through parallel
execution [15].
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In our problem, we define task execution time as

execution time(j, k) = Tj · ck (2)

where ck is the speed coefficient of the kth accelerator
and Tj is the normalized execution time of the jth

task type.
The number of tasks executed is defined as

batch size(j, k) = min(qj , Bk) (3)

where qj is the number of tasks of jth task type in
queue and Bk is the maximum batch size for the
kth accelerator.

3.3 Markov Decision Process

DRL can be used to solve problems that are modeled
as a Markov Decision Process (MDP). Therefore,
we formalize this setup as an MDP. The MDP is a
tuple (S,A, Pa, Ra). Here S represents the full state
space, including the tasks waiting to be processed
along with the state of the cluster. The size of the
state space depends on n and m, where n is the
number of nodes in the TG and m is the amount of
execution units in the cluster.

Since we have multiple execution units that each
can process one task type at a time, our action space
is vector A = [E0, ..., Em], where Ek is the action for
the kth execution unit. Each element Ek has n+ 1
possible values, and the value represents the task
type that should be retrieved from a FIFO queue
for execution. The last value is an idle action.
Pa(s, s

′) is the probability of transitioning be-
tween two states when choosing action a ϵ A.
Ra(s, s

′) is the immediate reward received for exe-
cuting action a in state s. The reward should reflect
our goal of minimizing the average JCT. As Pa(s, s

′)
may change over time, the setup can also be seen as
a Partially Observable MDP (PO-MDP).

4 Scheduler design

To design a DRL-agent, we need to consider the ac-
tion space, observation space and the reward signal.
Additionally, we need to choose the structure of the
NN and the training algorithm. [9]

Action space depends directly on how the problem
is modeled as an MDP. The size of the observation
space has a direct effect on learning efficiency. Using
too large observation vectors can slow down learning
as there are more parameters to learn from. There-
fore, instead of giving the whole state s ϵ S of the
MDP as an input to the DRL agent, it is common
to use a state abstraction that maps s to sϕ, where
|sϕ| << |s| and sϕ is the observation vector given to
the agent. In practice this can be done, for example,
by leaving out potentially less useful information
or by computing an arithmetic mean to aggregate
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Figure 2. Conditional task graph.

multiple values together. However, reducing the
observation space too much can also cause adverse
effects, as there might not be enough information to
select an optimal action.

The reward signal should be chosen depending on
the desired goal of the system. The quality of the
reward signal has direct effect on learning behavior.
A poorly designed reward signal can lead the agent
to optimize towards a sub-optimal solution.

4.1 Action space

The action space of the agent is the same A that was
defined in Section 3.3. To make learning easier, we
use action masking [16] to mask out task types that
are currently not queued in the task pool. We also
mask out execution units that are already occupied.
The action mask is a Boolean vector with m(n+ 1)
elements. The last element (n+1) for each execution
unit is always true, as it corresponds to the idle-
action. The idle-action is considered as no-op, if the
execution unit is already occupied.

4.2 State space

We consider two different observation vectors sϕ0
and sϕ1. The first vector is sϕ0 = [tf , ta, q], where tf
is the waiting time for the first numtf queued tasks
of each task type. Likewise, ta is the average waiting
time for all queued tasks of each task type. Element
q is the number of queued tasks for each task type.
The idea behind numtf is to balance between having
enough information to make optimal decisions, while
also having a small enough observation size to make
learning faster.

In order to deal with probabilistic transitions in
the TG, we add estp to the second observation vector
sϕ1. The estp is a running average estimation for
each transition probability of the TG. Therefore, the
second vector becomes sϕ1 = [tf , ta, q, estp].

4.3 Neural network

As our neural network, we are using a small Feed-
forward Neural Network (FNN) with fully connected
layers. This kind of a network is easy to implement,
and fast to compute when using small enough layers.
This is suitable in our case, as we are scheduling a
single relatively small sized DAG. The weights of
the network are optimized with PPO.
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Table 1. Environment variables.

Property Value Property Value
CPU speed coef 0.8 p(a) 1
GPU speed coef 1 p(b) 0.5

CPU max batch size 1 p(c) dynamic
GPU-1 max batch size 5 exec time (A, ..., E) 10 ms
GPU-2 max batch size 10 exec time (F) 100 ms

If there is need for a more scalable policy that
can adapt to multiple DAGs with different sizes, a
GNN can be added as an additional input layer to
process variable amounts of graph-based data before
feeding it to the fully connected layers. The use of
GNNs for variable sized inputs is shown in many of
the earlier mentioned related work.

4.4 Reward signal

Similar to [4], we define the reward signal as

rp = −(tp − tp−1)numJ(p) (4)

where numJ (p) is the number of jobs in the system
during interval [tp−1, tp) after the pth action. This
reward signal attempts to minimize average JCT
by minimizing the average number of jobs in the
system. The advantage of this reward signal is that
it is very easy to compute and it matches the goal
of minimizing average JCT well.

Many of the alternatives that we considered slow
down learning by being computationally more com-
plex, being harder to learn from or causes the policy
to skew towards a sub-optimal solution. For exam-
ple, giving a reward based on the JCT of the most
recently completed job causes the reward signal to
become sparse, as jobs are not completed on every
step. Likewise, computing the average waiting time
for all currently queued jobs as a negative reward
signal adds additional computational complexity.

5 Experiment setup

In this section, we describe our experiment setup.
The goal of the experiment is to find out how con-
ditional transitions affect scheduling in a simple
scenario and how our DRL agent can learn to mini-
mize the average JCT with conditional task graphs
with minimal information about the system.

5.1 Simulator

Fig. 1 shows the overview of the experiment setup.
For the experiment, we designed and implemented
a discrete-event simulator to model the operation of
a system that processes jobs in a computing cluster.
The jobs arrive to the system at regular intervals,
and their tasks have to be mapped to accelerators.

Table 2. Training and evaluation hyperparameters.

num training jobs 5000 learning rate 0.005
num evaluation jobs 10000 batch size 80000
num eval iterations 40 sgd minibatch size 1000
job arrival interval 8 ms sgd iterations 5

training steps 5000000 hidden layers [64, 64]
(observation vector) numtf 3

Our simulated cluster has a simple heterogeneous
accelerator setup with four different accelerators, as
shown in Fig. 1. We could think of them as having
two identical CPU cores and two distinct GPUs
available. The CPUs are slightly faster at executing
a singular task, but the GPUs can run a batch of
the same task in parallel. The exact properties are
shown in Table 1.
As a workload, we designed a TG to represent a

simple but reasonably realistic scenario, where longer
tasks occur rarely. The Fig. 2 shows the shape of
the TG. The Table 1 shows the execution time for
each task type and the probabilities of taking the
transition to the next task.
Since there are three leaf nodes, we can think

of the TG as having three distinct jobs with some
shared task types. However, due to the conditional
nature of the TG, it is not possible to know in
advance which of the three sequences a job will take.

5.2 Training and evaluation

We measure the behavior on two degrees of free-
dom. First, to investigate how training and design
details affect the DRL-based schedulers, we train
five separate policies π0, π1, π2, π3 and π4.
Second, we measure the scheduling performance

for each policy with all values of transition proba-
bility p(c) between 0 and 1 at small intervals.
Policies π0, π1, π2 are trained with a fixed value

for p(c). The values are p0(c) = 0.1, p1(c) = 0.5
and p2(c) = 0.9 respectively. Policy π3 is trained by
randomizing p(c) at start of each training episode
to encourage generalisation. We sample the ran-
domized value for p(c) in the range of [0, 1] from a
uniform distribution. In addition to this random-
ization, π4 includes a running average estimation of
the p(c) value in its observation.

Most of the policies use the observation vector sϕ0.
The total size of sϕ0 is 30, with numtf = 3. Likewise,
policy π4 uses sϕ1, which has 31 elements. The extra
element comes from estp, that is an estimate for the
value of p(c). The action vector for each policy has
four elements with seven possible values for each
element, as we have four execution units, six task
types and an idle action.

For training the models we use Ray [17] along with
its reinforcement learning library RLlib [11]. We use
the default RLlib implementation of PPO [12] with
action masking [16]. Software versions and hard-
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Figure 3. Relative average JCT for different policies at different values for p(c). Values are normalized against
π4. Note the different y-axes.

Table 3. Software and hardware specifications.

CPU RAM ML framework ML backend
Intel Core 13900k 64 GB Ray 2.5.1 PyTorch 2.0.1

ware specifications are shown in Table 3. Training
hyperparameters can be seen in Table 2.

Evaluation is done separately with longer episodes
after training is finished. For each policy, we repeat
the evaluation with 40 different fixed seeds for each
measurement point. The rest of the evaluation pa-
rameters can be seen in Table 2.

5.3 Baselines

As baselines, we use multiple traditional algo-
rithms, such as First-In-First-Out (FIFO) and Most-
Recently-Used (MRU) and Depth-First, which pri-
oritizes tasks further along the TG. These baseline
algorithms allocate tasks to multiple execution units
one-by-one following their policy until all execu-
tion units have received an action. The baseline
algorithms are not aware of the properties of each
execution unit.
Heuristic methods such as HEFT [14] could pro-

vide a more advanced and resource-aware compari-
son, but would need to be modified for conditional
TGs.

6 Results and discussion

In this section, we present the results of our exper-
iment. We start by describing the overall perfor-
mance of our policies against each other and the
baselines. Then, we analyze the effectiveness of our
training setup and discuss further improvements.

6.1 General performance

Fig. 3 shows the average JCT for all policies at dif-
ferent p(c) values. In Fig. 3(a) we can see that our
policy π4 performs better than baselines with all
p(c) values, ranging from 0 % to 30 % improvement

over the best baseline. The comparison is not en-
tirely fair, as the baselines are not optimized for the
heterogeneous execution environment.

Despite the unfairness, we can further analyze the
behavior of the DRL-based policies. In Fig. 3(b) we
can see that by randomizing the p(c) and having an
estimate of p(c) in the observation vector, our policy
π4 is able to generalize well to all values of p(c). We
can also see that π4 has room for improvement, as
models trained with fixed values perform better in
some cases. Most notably, policy π2 is 5 % better
when p(c) = 0.8. As a clarification, with high values
of p(c) the computationally heavy task F occurs
rarely. However, as one might expect, the policies
π0, π1, π2 perform significantly worse when the p(c)
gets further from their training target.
Finally, Fig. 3(c) shows the effect of having an

estimate of p(c) in the observation vector. As ex-
pected, the additional observation helps π4 to be
consistently better than π3, reaching more than 10 %
difference at some p(c) values. On the other hand,
even without the p(c) observation, π3 still beats
all baselines by a significant margin in most cases.
Additionally, with many values of p(c) (≤ 0.6) the
difference between π3 and π4 is only roughly 2 %.

The overhead of the schedulers is also rather small,
as the inference time for the NN measures at less
than 20 microseconds on our test hardware.

6.2 Training behavior

Training five million samples took roughly 15 min-
utes for each DRL policy. This is rather quick, espe-
cially considering that the training hyperparameters
are not finely tuned, the hardware is underutilized
and our simulator is unoptimized.

Fig. 4 shows the typical behavior for training and
test performance for both DRL policies. Both mean
episode length and mean episode reward show steady
increase, until converging reasonably well at three
million samples for all policies.
Fig. 4(c) shows the relative performance com-

pared to the best baseline during training. Values
less than 1 means that the policy achieves lower
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Figure 5. Average task execution unit utilization rates for each DRL policy. Both CPUs are combined in one
graph, as they have identical properties and similar behavior.

mean JCT than the best baseline. We can see that
better-than-best-baseline performance is achieved
after roughly 500 thousand to 2 million samples.

Fig. 5 shows how the DRL-policies learn to utilize
different task execution units. In this figure, max-
imum achievable utilization value depends on the
maximum batch size of a given execution unit.

Fig. 5(a) indicates that π2 outperforms other poli-
cies at p(c) = 0.8 by prioritizing the faster CPUs
and utilizing less of the larger batch sizes of the
GPUs. As a result, it spends less time computing
the rarely occurring and computationally expensive
task F . However, there might also be other differ-
ences that are not visible in the figures. As far as the
authors see, there is no fundamental reason for why
π4 cannot also learn this behavior, indicating that
there is room for more finetuning. Further hyper-
parameter tuning, or better training strategies such
as importance sampling the relatively more difficult
values of p(c) could result in a more optimal policy.

7 Conclusions

In this paper, we described our design and results for
a DRL-based scheduler for conditional task graphs
in a heterogeneous computing cluster.

Our experiments show that runtime changes in
the conditional task graph transition probabilities
can significantly affect application performance. We
show that these effects can be reduced by two simple

methods. First, training with randomized properties
helps the model to generalize, but is not sufficient
on its own. Second, keeping a running average of
the properties is enough to help the model perform
better in edge cases. With and without these modi-
fications, our model learns to beat the baselines in
a fraction of an hour.
The time it takes to train a scheduler affects its

adaptability. Adaptability of the scheduler can be
important, if the system of sensors, actuators and
computational cluster faces frequent changes. With
hand-tuned schedulers, it can take a lot of effort to
tune it after each change, often leading to the use of
more generalized, less optimal solutions. However,
with a DRL-scheduler that is fast to train, it could
be possible to create an optimized solution for each
variation with low effort.

We think that the use of conditional TGs can be-
come more common with the use of larger machine
learning models. As in our use case, we can save
a significant amount of computational resources by
having a conditional DAG, where most of the data
runs through the smaller models and the larger mod-
els later in the hierarchy are used more sparingly.

As future work, we suggest evaluating the design
in more complex environments with more dynamic
transition probabilities and against more complex,
hand-tuned baselines. If necessary, adding a GNN
as the input layer could make the policy scale better
to a larger DAG or multiple different DAGs.
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