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Abstract
Graph regression is a fundamental task that has gained significant attention
in various graph learning tasks. However, the inference process is often not
easily interpretable. Current explanation techniques are limited to understanding
GNN behaviors in classification tasks, leaving an explanation gap for graph
regression models. In this work, we propose a novel explanation method to
interpret the graph regression models (XAIG-R). Our method addresses the
distribution shifting problem and continuously ordered decision boundary issues
that hinder existing methods away from being applied in regression tasks. We
introduce a novel objective based on the information bottleneck theory and a
new mix-up framework, which could support various GNNs in a model-agnostic
manner. Additionally, we present a contrastive learning strategy to tackle the
continuously ordered labels in regression tasks. We evaluate our proposed
method on two benchmark datasets and a real-life dataset introduced by us, and
extensive experiments demonstrate its effectiveness in interpreting GNN models
in regression tasks.

1 Introduction
Graph Neural Networks [1] (GNNs) have become a powerful tool for learning knowledge from graph-
structure data and achieved remarkable performance in many areas, including social networks [2, 3],
molecular structures [4, 5], traffic flows [6–9], and recommendation systems [10–12]. Despite the
success, their popularity in sensitive fields such as fraud detection and drug discovery [13, 14]
requires an understanding of their decision-making processes. To address this challenge, some efforts
have been made to explain GNN’s predictions in a post-hoc manner, which aims to find a sub-graph
that preserves the information about the predicted label. On top of the intuitive principle, Graph
Information Bottleneck (GIB) [15, 16] maximizes the mutual information I(G∗;Y ) between the
target label Y and the explanation G∗ while constraining the size of the explanation.

However, existing methods focus on the explanation of the classification tasks, leaving another funda-
mental task, explainable regression, unexplored. Graph regression tasks exist widely in nowadays
applications, such as predicting the molecular property [17] or traffic flow volume [18]. Explaining
the instance-level predictions of graph regression is challenging due to two main obstacles. First, in
the routinely adopted GIB framework, the mutual information between the explanation subgraph
and label, I(G∗;Y ), is estimated with the Cross-Entropy between the predictions f(G∗) from GNN
model f and its prediction label Y . However, in the regression task, the regression label is the
continuous value, making the approximation unsuitable. Another challenge is the distribution shifting
problem in the usage of f(G∗), the prediction of the explanation subgraph made by the GNN model
f . Usually, explanation subgraphs have different topology and feature information compared to
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Figure 1: Intuitive illustration of the distribution shifting problem. The 3-dimensional map represents
a trained GNN model f , where (h1, h2) represents the distribution of the graph in two dimensions,
and Y represents the prediction value of the graph through f . The red and blue lines represent the
distribution of the original training set and corresponding explanation sub-graph set respectively. The
distribution of G∗ shifts away from the original distribution, resulting in shifted prediction values.

the original graph. As a result, explanation subgraphs are out-of-distribution (OOD) of the original
training graph dataset. As shown in Figure 1, a GNN model f is trained on the original graph training
set and cannot be safely used to make predictions for subgraphs.

To fill the gap, in this paper, we propose RegExplainer, to generate post-hoc instance-level expla-
nations for graph regression tasks. Specifically, we formulate a theoretical-sound objective for
explainable regression based on information theory. To further address the distribution shifting issue,
RegExplainer develops a new mix-up approach with contrastive learning. Our experiments show
that RegExplainer provides consistent and concise explanations of GNN’s predictions on regression
tasks. We achieved up to 48.0% improvement when compared to the alternative baselines in our
experiments. Our contributions can be summarized as follows.

• To our best knowledge, we are the first to explain GNN predictions on graph regression tasks. We
addressed two challenges in explaining the graph regression task: the mutual information estimation
in the GIB objective and the distribution shifting problem.

•We proposed a novel model with a new mix-up approach and contrastive learning, which could
more effectively address the two challenges, and better explain the graph model on the regression
tasks compared to other baselines.

•We designed two synthetic datasets, namely BA-Motif-Volume and Triangles, as well as a real-world
dataset called Crippen, which could also be used in future works, to evaluate the effectiveness of
our regression task explanations. Comprehensive empirical studies on both synthetic and real-world
datasets demonstrate that our method can provide consistent and concise explanations for graph
regression tasks.

2 Overview of Methodology
In this section, we first introduce a new objective based on GIB for explaining graph regression tasks.
Then we showcase the distribution shifting problem in the GIB objective for regression and propose a
novel framework through a mix-up approach to solve the distribution shifting problem.

2.1 GIB for Explaining Graph Regression

The Information Bottleneck (IB) [19, 20] provides an intuitive principle for learning dense repre-
sentations that an optimal representation should contain sufficient information for the downstream
prediction task with a minimal size. Based on IB, a recent work [21] unifies the most existing
post-hoc explanation methods for GNN, such as GNNExplainer [22], PGExplainer [23], with the
graph information bottleneck (GIB) principle [15, 16, 21]. Formally, the objective of explaining
the prediction of f on G can be represented by argminG∗ I(G;G∗)− αI(G∗;Y ), where G is the
to-be-explained original graph, G∗ is the explanation sub-graph of G, Y is the original ground-truth
label of G, and α is a hyper-parameter to get the trade-off between minimal and sufficient constraints.
GIB uses the mutual information I(G;G∗) to select the minimal explanation that inherits only the
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most indicative information from G to predict the label Y by maximizing I(G∗;Y ), where I(G;G∗)
avoids imposing potentially biased constraints, such as the size or the connectivity of the selected
sub-graphs [15]. Through the optimization of the sub-graph, G∗ provides model interpretation. In
graph classification task, a widely-adopted approximation to Eq. (3) in previous methods [22, 23]
is argminG∗ I(G;G∗) + αI(Y |G∗) ≈ argminG∗ I(G;G∗) + αCE(Y, Y ∗), where Y ∗ = f(G∗) is
the predicted label of G∗ made by the to-be-explained model f , and the cross-entropy CE(Y, Y ∗)
between the ground truth Y and Y ∗ is used to approximate I(G∗;Y ). However, the GIB objective
with cross-entropy loss couldn’t be applied to the regression tasks.

To address the limitation of the GIB objective in existing methods, we adopt the GIB objective with
InfoNCE loss and employed the contrastive loss, which could be formally represented as

argmin
G∗

I(G;G∗)− αE
H

[
log

fk (h
∗,h)

1
|H|

∑
hj∈H fk (h∗,hj)

]
, (1)

where h represents the embedding of graph G and h∗ represents the embedding of graph G∗. E is
the set of instances embeddings. fk denotes the density ratio function. A detailed description of the
properties and the theoretical proofs can be found in Appendix C.

2.2 Mix-up for Distribution Shifts

We include the label of explanation sub-graph, Y ∗, in our GIB objective for explaining regression.
However, we argue that Y ∗ cannot be safely obtained due to the distribution shift problem [24, 25].
We propose a new mix-up approach to generate a mixed graph by mixing explanation sub-graph G∗

with a randomly sampled label-irrelevant sub-graph G∆, which could be formally written as:

G(mix)
a = G∗

a + (Gb −G∗
b). (2)

This equation shows that how we mix the explanation sub-graph G∗
a of Ga with the label-irrelevant

sub-graph G∆
b from Gb. A detailed description of the distribution shifting problem and mix-up

approach can be found in Appendix D.

2.3 Implementation

We put our overall implementation and objective function in Appendix E.

3 Experiments
In this section, we conduct experiments to demonstrate the performance of our proposed method1.
Further experiments could be found in Appendix G:

3.1 Datasets

We formulate two synthetic datasets and a real-world dataset, as is shown in Table 1. (1) BA-Motif-
Volume: This dataset is based on the BA-shapes [22] and modifies to summarize the node features.
(2) Triangles: We follow the previous work [26] to construct this dataset to count the triangles.
(3) Crippen: The Crippen dataset is a real-life dataset that was initially used to evaluate the graph
regression task. The detailed formulations and configurations of our four datasets can be found in
Appendix F.

3.2 Baselines

We compared the proposed RegExplainer against a comprehensive set of baselines in all datasets,
including: (1) GRAD [22]: GRAD is a gradient-based method that learns weight vectors of edges by
computing gradients of the GNN’s objective function. (2) ATT [27]: ATT is a graph attention network
(GAT) that learns attention weights for edges in the input graph. These weights can be utilized as a
proxy measure of edge importance. (3) GNNExplainer [22]: GNNExplainer is a model-agnostic

1Our data and code are available at: https://anonymous.4open.science/r/RegExplainer-DDA5
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Table 1: Illustration of the graph regression datasets together with the explanation faithfulness
in terms of AUC-ROC on edges under four datasets on RegExplainer and other baselines. The
original graph row visualizes the structure of the complete graph, the explanation row highlights the
explanation sub-graph of the corresponding original graph. In the Crippen dataset, different colors of
the node represent different kinds of atoms and the node feature is a one-hot vector to encode the
atom type.

Dataset BA-Motif-Volume Triangles Crippen

Original Graph G

Explanation G∗

Node Feature Random Float Vector Fixed Ones Vector One-hot Vector
Regression Label Sum of Motif Value Count Triangles Chemical Property Value
Explanation Type Fix Size Sub-Graph Dynamic Size Sub-graph Dynamic Size Sub-graph

Explanation AUC
GRAD 0.418± 0.000 0.479± 0.000 0.426± 0.000

ATT 0.512± 0.005 0.441± 0.004 0.502± 0.006

GNNExplainer 0.501± 0.009 0.500± 0.002 0.497± 0.005

PGExplainer 0.470± 0.057 0.511± 0.028 0.448± 0.005

RegExplainer 0.758± 0.177 0.739± 0.008 0.553± 0.013

method that learns an adjacency matrix mask by maximizing the mutual information between the
predictions of the GNN and the distribution of possible sub-graph structures. (4) PGExplainer [23]:
PGExplainer adopts a deep neural network to parameterize the generation process of explanations,
which facilitates a comprehensive understanding of the predictions made by GNNs. It also produces
sub-graph explanations with edge importance masks.

3.3 Quantitative Evaluation

In this section, we evaluate the performance of our approach with other baselines. For GRAD
and GAT, we use the gradient-based and attention-based explanation, following the setting in the
previous work [22]. We take GCN as our to-be-explained model for all post-hoc explainers. For
GNNExplainer and PGExplainer, which were previously used for the classification task, we replace
the Cross-Entropy loss with the MSE loss. We run and tune all the baselines on our four datasets. We
evaluate the explanation from all the methods with the AUC metric, as done in the previous work. As
we can see in table 1, our method achieves the best performance compared to the baselines in all four
datasets.

As we can see from Table 1, RegExplainer improves the second best baseline with 0.175/34.3%
on average and up to 0.246/48.0%. The comparison between RegExplainer and other baselines
indicates the advantages of our proposed approach. This improvement indicates the effectiveness of
our proposed method, showing that by adding mixup and contrastive learning, we can have more
faithful explanations.

4 Conclusion

We addressed the challenges in the explainability of graph regression tasks and proposed the Reg-
Explainer, a novel method for explaining the predictions of GNNs with the post-hoc explanation
sub-graph on graph regression task without requiring modification of the underlying GNN architecture
or re-training. We showed how RegExplainer can leverage the distribution shifting problem and
knowledge from the continuous decision boundary with the mix-up approach and the adopted GIB
objective with the contrastive loss, while the problems seriously affect the performances of other
explainers. We formulated four new datasets, which are BA-Motif-Volume, BA-Motif-Counting,
Triangles, and Crippen for evaluating the explainers on the graph regression task, which are developed
from the previous datasets and follow a similar setting. They could also benefit future studies on the
XAIG-R.
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A Related Works
GNN Explainability. The explanation methods for GNN models could be categorized into two
types based on their granularity: instance-level [22, 23, 28, 29] and model-level [30], where the
former methods explain the prediction for each instance by identifying important sub-graphs, and the
latter method aims to understand the global decision rules captured by the GNN. These methods could
also be classified into two categories based on their methodology: self-explainable GNNs [31, 32]
and post-hoc explanation methods [22, 23, 29], where the former methods provide both predictions
and explanations, while the latter methods use an additional model or strategy to explain the target
GNN. Additionally, CGE [33] (cooperative explanation) generates the sub-graph explanation with
the sub-network simultaneously, by using cooperative learning. However, it has to treat the GNN
model as a white box, which is usually unavailable in the post-hoc explanation. Existing methods
haven’t explored the explanation of the graph regression task and haven’t considered two important
challenges: the distribution shifting problem and the limitation of the GIB objective, which were
addressed by our work.

GIB Objective. The Information Bottleneck (IB) [19, 20] provides an intuitive principle for learning
dense representations that an optimal representation should contain sufficient information for the
downstream prediction task with a minimal size. Based on IB, a recent work [21] unifies the most
existing post-hoc explanation methods for GNN, such as GNNExplainer [22], PGExplainer [23], with
the graph information bottleneck (GIB) principle [15, 16, 21]. Formally, the objective of explaining
the prediction of f on G can be represented by

argmin
G∗

I(G;G∗)− αI(G∗;Y ), (3)

where G is the to-be-explained original graph, G∗ is the explanation sub-graph of G, Y is the
original ground-truth label of G, and α is a hyper-parameter to get the trade-off between minimal and
sufficient constraints. GIB uses the mutual information I(G;G∗) to select the minimal explanation
that inherits only the most indicative information from G to predict the label Y by maximizing
I(G∗;Y ), where I(G;G∗) avoids imposing potentially biased constraints, such as the size or the
connectivity of the selected sub-graphs [15]. Through the optimization of the sub-graph, G∗ provides
model interpretation. In graph classification task, a widely-adopted approximation to Eq. (3) in
previous methods [22, 23] is:

argmin
G∗

I(G;G∗) + αI(Y |G∗) ≈

argmin
G∗

I(G;G∗) + αCE(Y, Y ∗),
(4)

where Y ∗ = f(G∗) is the predicted label of G∗ made by the to-be-explained model f , and the
cross-entropy CE(Y, Y ∗) between the ground truth Y and Y ∗ is used to approximate I(G∗;Y ). The
approximation is based on the definition of mutual information I(G∗;Y ) = H(Y ) − H(Y |G∗):
with entropy H(Y ) being static and independent of the explanation process, minimizing the mutual
information between the explanation sub-graph G∗ and Y can be reformulated as maximizing the
conditional entropy of Y given G∗, which can be approximated by CE(Y, Y ∗).

B Preliminary
Notation and Problem Formulation. We use G = (V, E ;X,A) to represent a graph, where V
equals to {v1, v2, ..., vn} represents a set of n nodes and E ∈ V × V represents the edge set. Each
graph has a feature matrix X ∈ Rn×d for the nodes, wherein X , Xi ∈ R1×d is the d-dimensional
node feature of node vi. E is described by an adjacency matrix A ∈ {0, 1}n×n, where Aij = 1 means
that there is an edge between node vi and vj ; otherwise, Aij = 0. For the graph prediction task, each
graph Gk has a label Yk ∈ C, where k ∈ {1, ..., N}, C is the set of the classification categories or
regression values, with a GNN model f trained to make the prediction, i.e., f : (X,A) 7→ C.
Problem 1 (Post-hoc Instance-level GNN Explanation). Given a trained GNN model f , for an
arbitrary input graph G = (V, E ;X,A), the goal of post-hoc instance-level GNN explanation is to
find a sub-graph G∗ that can explain the prediction of f on G.
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In non-graph structured data, the informative feature selection has been well studied [34], as well
as in traditional methods, such as concrete auto-encoder [35], which can be directly extended to
explain features in GNNs. In this paper, we focus on discovering the important sub-graph typologies
following the previous work [22, 23]. Formally, the obtained explanation G∗ is depicted by a binary
mask M∗ ∈ {0, 1}n×n on the adjacency matrix, e.g., G∗ = (V, E ;X,A⊙M∗),⊙means elements-
wise multiplication. The mask highlights components of G which are essential for f to make the
prediction.

C GIB for Explaining Graph Regression

As introduced in Section A, in the classification task, I(G∗;Y ) in Eq. (3) is commonly approximated
by cross-entropy CE(Y ∗, Y ) [36]. However, it is non-trivial to extend it for regression tasks because
Y is a continuous variable and it is intractable to compute the cross-entropy CE(Y ∗, Y ) or the mutual
information I(G∗;Y ), where G∗ is a graph variable with a continuous variable Y ∗ as its label.

C.1 Optimizing the Lower Bound of I(G∗;Y )

To address the challenge of computing the mutual information I(G∗;Y ) with a continuous Y , we
propose a novel objective for explaining graph regression.

Instead of minimizing I(G∗;Y ) directly, we propose to maximize a lower bound for the mutual
information by including the label of G∗, denoted by Y ∗, and approximate I(G∗;Y ) with I(Y ∗;Y ),
where Y ∗ is the prediction label of G∗:

argmin
G∗

I(G;G∗)− αI(Y ∗;Y ). (5)

I(Y ∗;Y ) has the following property, upon with we can approximate Eq. (3) with Eq. (5):

Property 1. I(Y ∗;Y ) is a lower bound of I(G∗;Y ).

Proof. From the definition of Y ∗, we can make a safe assumption that there is a many-to-one map
(function), denoted by h, from G∗ to Y ∗ as Y ∗ is the prediction label for G∗. For simplicity, we
assume a finite number of explanation instances for each label y∗, and each explanation instance,
denoted by g∗, is generated independently. Then, we have p(y∗) =

∑
g∗∈G(y∗) p(g

∗), where
G(y∗) = {g|h(g) = y∗} is the set of explanations whose labels are y∗.

Based on the definition of mutual information, we have:

I(G∗;Y ) =

∫
y

∫
g∗

p(G∗,Y )(g
∗, y) log

p(G∗,Y )(g
∗, y)

pG∗(g∗)pY (y)
dg∗dy

=

∫
y

∫
g∗

p(G∗,Y ∗,Y )(g
∗, h(g∗), y)

log
p(G∗,Y ∗,Y )(g

∗, h(g∗), y)

pG∗(g∗)pY (y)
dg∗dy

=

∫
y

∫
g∗

p(G∗,Y ∗,Y )(g
∗, h(g∗), y)

log
p(G∗,Y ∗,Y )(g

∗, h(g∗), y)

p(G∗,Y ∗)(g∗, h(g∗))pY (y)
dg∗dy

=

∫
y

∫
y∗

∑
g∗∈G(y∗)

p(G∗,Y ∗,Y )(g
∗, y∗, y)

log
p(G∗,Y ∗,Y )(g

∗, y∗, y)

p(G∗,Y ∗)(g∗, y∗)pY (y)
dy∗dy

9
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Figure 2: Intuitive illustration about why I(G∗;Y ) ≥ I(Y ∗;Y ). G∗ contains more mutual informa-
tion as having more overlapping area with Y than the overlapping area between Y ∗ and Y .

Based on our many-to-one assumption , while each g∗ is generated independently , we know that if
g /∈ G(y∗), then p(G∗,Y ∗,Y )(g

∗, y∗, y) = 0. Thus, we have:

I(G∗;Y ) = I(G∗;Y )

+

∫
y

∫
y∗

∑
g/∈G(y∗)

p(G∗,Y ∗,Y )(g
∗, y∗, y)

log
p(G∗,Y ∗,Y )(g

∗, y∗, y)

p(G∗,Y ∗)(g∗, y∗)pY (y)
dy∗dy

=

∫
y

∫
y∗

∫
g∗

p(G∗,Y ∗,Y )(g
∗, y∗, y)

log
p(G∗,Y ∗,Y )(g

∗, y∗, y)

p(G∗,Y ∗)(g∗, y∗)pY (y)
dg∗dy∗dy

= I(G∗, Y ∗;Y ).

With the chain rule for mutual information, we have I(G∗, Y ∗;Y ) = I(Y ∗;Y ) + I(G∗;Y |Y ∗).
Then due to the non-negativity of the mutual information, we have I(G∗, Y ∗;Y ) ≥ I(Y ∗;Y ).

Intuitively, the property of I(Y ∗;Y ) is guaranteed by the chain rule for mutual information and the
independence between each explanation instance g∗. An intuitive demonstration is shown in Figure 2.

C.2 Estimating I(Y ∗;Y ) with InfoNCE

Now the challenge becomes the estimation of the mutual information I(Y ∗;Y ). Inspired by the model
of Contrastive Predictive Coding [37], in which InfoNCE loss is interpreted as a mutual information
estimator, we further extend the method so that it could apply to InfoNCE loss in explaining graph
regression. In our graph explanation scenario, the InfoNCE Loss defined in Eq. (6) could also be
utilized as a lower bound of I(Y ∗;Y ), as shown in the following property with proofs:

Property 2. InfoNCE Loss is a lower bound of the I(Y ∗;Y ):

I(Y ∗;Y ) ≥ E
Y

[
log

fk (Y
∗, Y )

1
|Y|

∑
Yj∈Y fk (Y ∗, Yj)

]
, (6)

where Yj is randomly sampled graph neighbors, Y is the set of the neighbors, and fk is the density
ratio function.

Proof. As in the InfoNCE method, the mutual information between Y ∗ and Y is defined as:

I(Y ∗;Y ) =
∑
Y ∗,Y

p(Y ∗, Y ) log
p(Y |Y ∗)

P (Y )
(7)

However, the ground truth joint distribution p(Y ∗, Y ) is not controllable, so, we turn to maximize the
density ratio

10
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fk (Y
∗, Y ) ∝ p(Y |Y ∗)

p(Y )
(8)

We want to put the representation function of mutual information into the NCE Loss

LN = −E
Y
log

[
fk (Y

∗, Y )∑
Y ′∈Y(Y

∗, Y ′)

]
, (9)

where LN denotes the NCE loss and by inserting the optimal fk (Y ∗, Y ) into Eq. (9), we could get:

Lcontr = −E
Y
log

 p(Y |Y ∗)
p(Y )

p(Y |Y ∗)
p(Y ) +

∑
Y ′∈Yneg

p(Y ∗,Y ′)
p(Y ′)


= E

Y
log

1 + p(Y |Y ∗)

p(Y )

∑
Y ′∈Yneg

p(Y ∗, Y ′)

p(Y ′)


≈ E

Y
log

[
1 +

p(Y |Y ∗)

p(Y )
(N − 1)E

Y ′

p(Y ∗, Y ′)

p(Y ′)

]
= E

Y
log

[
1 +

p(Y |Y ∗)

p(Y )
(N − 1)

]
≥ E

Y
log

[
p(Y |Y ∗)

p(Y )
N

]
= −I(Y ∗, Y ) + log(N)

(10)

To employ the contrastive loss, we use the representation embedding to approximate Y , where h∗

represents the embedding for G∗ and h represents the embedding for G. We use H to represent the
neighbors set Y accordingly. Thus, we approximate Eq. (5) as:

argmin
G∗

I(G;G∗)− αE
H

[
log

fk (h
∗,h)

1
|H|

∑
hj∈H fk (h∗,hj)

]
(11)

D Mix-up for Distribution Shifts
In the above section, we include the label of explanation sub-graph, Y ∗, in our GIB objective for
explaining regression. However, we argue that Y ∗ cannot be safely obtained due to the distribution
shift problem [24, 25].

D.1 Distribution Shifts in GIB for Regression

Suppose that the to-be-explained model f is trained on a dataset {(Gk, Yk)}Nk=1. Usually in su-
pervised learning (without domain adaptation), we suppose that the examples (Gk, Yk) are drawn
i.i.d. from a distribution Dtrain of support G × Y (unknown and fixed). The objective is then to
learn f such that it commits the least error possible for labeling new examples coming from the
distributionDtrain. However, as pointed out in previous studies, there is a shift between the distribution
explanation sub-graphs, denoted by Dexp and Dtrain. As the explanation, sub-graphs tend to be small
and dense. The distribution shift problem is severe in regression problems due to the continuous
decision boundary [38].

Figure 3 shows the existence of distribution shifts between f(G∗) and Y in graph regression tasks.
For each dataset, we sort the indices of the data samples according to the value of their labels, and
visualize the label Y , prediction f(G) of the original graph from the trained GNN model f , and
prediction f(G∗) of the explanation sub-graph G∗ from f . As we can see in Figure 3, in all four
graph regression datasets, the red points are well distributed around the ground-truth blue points,

11
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Figure 3: Visualization of distribution shifting problem on three graph regression datasets. The
points represent the regression value, where the blue points mean label Y , red points mean prediction
f(G) of the original graph, and the green points mean prediction f(G∗) of explanations on the four
datasets, the x-axis is the indices of the graph, sorted by the value of the label Y .

indicating that f(G) is close to Y . In comparison, the green points shift away from the red points,
indicating the shifts between f(G∗) and f(G). Intuitively, this phenomenon indicates the GNN
model f could make correct predictions only with the original graph G yet could not predict the
explanation sub-graph G∗ correctly. This is because the GNN model f is trained with the original
graph sets, whereas the explanation G∗ as the sub-graph is out of the distribution from the original
graph sets. With the shift between f(G) and f(G∗), the optimal solution in Eq. (5) is unlikely to be
the optimal solution for Eq. (3).

D.2 Graph Mix-up Approach.

To address the distribution shifting issue between f(G) and f(G∗) in the GIB objective, we introduce
the mix-up approach to reconstruct a within-distribution graph, G(mix), from the explanation graph G∗.
We follow [23] to make a widely-accepted assumption that a graph can be divided by G = G∗ +G∆,
where G∗ presents the underlying sub-graph that makes important contributions to GNN’s predictions,
which is the expected explanatory graph, and G∆ consists of the remaining label-independent edges
for predictions made by the GNN. Both G∗ and G∆ influence the distribution of G. Therefore, we
need a graph G(mix) that contains both G∗ and G∆, upon which we use the prediction of G(mix) made
by f to approximate Y ∗ and h∗.

Specifically, for a target graph Ga in the original graph set to be explained, we generate the explanation
sub-graph G∗

a = Ga−G∆
a from the explainer. To generate a graph in the same distribution of original

Ga, we can randomly sample a graph Gb from the original set, generate the explanation sub-graph of
G∗

b with the same explainer and retrieve its label-irrelevant graph G∆
b = Gb −G∗

b . Then we could
merge G∗

a together with G∆
b and produce the mix-up explanation G(mix)

a . Formally, we can have
G(mix)

a = G∗
a + (Gb −G∗

b).

Since we are using the edge weights mask to describe the explanation, we can denote Ga and
Gb with the adjacency matrices Aa and Ab, their edge weight mask matrices as Ma and Mb. If
Ga and Gb are aligned graphs with the same number of nodes, we could simply mix them up by
M (mix)

a = M∗
a + (Ib −M∗

b ), where M denotes the weight of the adjacency matrix and Ib denotes
the zero-ones matrix as weights of all edges in the adjacency matrix of Gb, where 1 represents the
existing edge and 0 represents there is no edge between the node pair.

If Ga and Gb are not aligned with the same number of nodes, we can use a connection adjacency ma-
trix Aconn and mask matrix Mconn to merge two graphs with different numbers of nodes. Specifically,
the mix-up adjacency matrix could be formed as:

A(mix)
a =

[
Aa Aconn
AT

conn Ab

]
. (12)

12



RegExplainer: Generating Explanations for Graph Neural Networks in Regression Tasks

Figure 4: Illustration of RegExplainer. G is the to-be-explained graph, G+ is the randomly sampled
positive graph and G− is the randomly sampled negative graph. The explanation of the graph is
produced by the explainer model. Then graph G is mixed with G+ and G− respectively to produce
G(mix)+ and G(mix)−. Then the graphs are fed into the trained GNN model to retrieve the embedding
vectors h+, h−, h(mix)+ and h(mix)−. We use contrastive loss to minimize the distance between
G(mix)+ and the positive sample and maximum the distance between G(mix)− and the negative sample.
The explainer is trained with the GIB objective and contrastive loss.

And the mix-up mask matrix could be formed as:

M (mix)
a =

[
M∗

a Mconn
MT

conn M∆
b

]
(13)

Finally, we could form G(mix)
a as (X (mix),A(mix)

a ⊙M (mix)
a ), where X (mix) = [Xa;Xb]. The detailed

algorithm for mix-up is shown in Algorithm 1.

Algorithm 1 Graph Mix-up Algorithm

Input: Target to-be-explained graph Ga = (Xa,Aa), Gb sampled from a set of graphs G, the
number of random connections η, explainer model E.

Output: Graph G(mix).
1: Generate mask matrix Ma = E(Ga)
2: Generate mask matrix Mb = E(Gb)
3: Sample η random connections between Ga and Gb as Aconn
4: Mix-up adjacency matrix A(mix)

a with Eq. (12)
5: Mix-up edge mask M (mix)

a with Eq. (13)
6: Mix-up node features X (mix) = [Xa;Xb]
7: return G(mix) = (X (mix),A(mix)

a ⊙M (mix)
a )

We show that this mix-up approach has the following property, with its proof:

Property 3. G(mix) is within the distribution of Dtrain.

Proof. Following the previous work [23], we denote a graph G = G∗ + G∆, where G∗ is the
sub-graph explanation and G∆ is the label-irrelevant graph. A common acknowledgment is that
for a graph G with label Y , the explanation G∗ holds the label-preserving information, which is
the important sub-graph, while G∆ also holds useful information which makes sure connecting it
with G∗ would maintain the distribution of the graph and not lead to another label. We denote the
distribution for the graphs as G ∼ Dtrain = PG , G∗ ∼ PG∗ , G∆ ∼ PG∆ , where Dtrain means the
distribution of train dataset. When we produce G(mix), we independently sample a label-irrelevant
graph G∆ and mix it up with target explanation G∗. So, we could write the distribution of G(mix) as :

G(mix) ∼ PG∗ ∗ PG∆ = P(G∗+G∆) = PG = Dtrain (14)

Thus, we prove that G(mix) is within the distribution of Dtrain.
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E Implementation
E.1 InfoNCE Loss

After generating the mix-up explanation G(mix), we specify the contrastive loss to further train the
parameterized explainer with a triplet of graphs ⟨G,G+, G−⟩ as the implementation of InfoNCE
Loss in Eq. (11). Intuitively, for each target graph G with label Y to be explained, we can define two
randomly sampled graphs as positive graph G+ and negative instance G− where G+’s label, Y + is
closer to Y than G−’s label, Y −, i.e., |Y + − Y | < |Y − − Y |. Therefore, the distance between the
distributions of the positive pair ⟨G,G+⟩ should be smaller than the distance between the distributions
of the negative pair ⟨G,G−⟩.
In practice, G+ and G− are randomly sampled from the graph dataset, upon which we calculate
their similarity score with the target graph G. The sample with a higher score would be the positive
sample and the other one would be the negative sample. Specifically, we use sim(h,hj) = hThj to
compute the similarity score, where Gj could be G+ or G−. h is generated by feeding G into the
GNN model f and retrieving the embedding vector before the dense layers.

Learning through the triplet instances could effectively reinforce the ability of the explainer to
learn the explanation self-supervised. A similar idea goes with mix-up graphs which we propose
to address the distribution shifts in GIB. After we mix up target graph G with the neighbors G+

and G− and get G(mix)+ and G(mix)− respectively, the distance between G(mix)+ and G+ should be
smaller than the distance between G(mix)− and G−. For example, given graph G with label Y , we
can randomly sample a near neighbor G+ with label Y + and a far neighbor G− with label Y −,
where |Y − − Y | > |Y + − Y |. With an explainer, we can get the explanation of G as G∗, and
the label-independent parts of G+ and G−. Then if we mix G∗ with these label-independent parts,
we could have G(mix)+ and G(mix)−. Since we only mix the label-independent parts with G∗, the
prediction f(G(mix)+) and f(G(mix)−) should be similar to f(G). Since |Y − − Y | > |Y + − Y |, we
could have |f(G−)− f(G(mix)−)| > |f(G+)− f(G(mix)+)|, where f(G) represents the prediction
label of graph G.

Formally, given a target graph G, the sampled positive graph G+ and negative graph G−, we
formulate the contrastive loss in Eq. (11) as the following:

Lcontr(G,G+, G−) =

− log
exp((h(mix)+)Th+)

exp((h(mix)+)Th+) + exp((h(mix)-)Th−)

(15)

where exp() function is used to instantiate the density ratio function fk, the denominator is a sum
over the ratios of both positive and negative samples in the triplet Y.

E.2 Size Constraints

We optimize I(G;G∗) in Eq. (11) to constraint the size of the explanation sub-graph G∗. The upper
bound of I(G;G∗) is optimized as the estimation of the KL-divergence between the probabilistic
distribution between the G∗ and G, where the KL-divergence term can be divided into two parts as
the entropy loss and size loss [16]. In practice, we follow the previous work [22, 23, 39] to implement
them. Specifically,

Lsize(G,G∗) = γ
∑

(i,j)∈E

(M∗
ij)− log σ(h∗(h∗)T ), (16)

where
∑

(i,j)∈E
(M∗

ij) means sum the weights of the existing edges in the edge weight mask M∗ for

the explanation G∗; h∗ is extracted from the embedding of the graph G∗ before the GNN model f
transforming it into prediction Y ∗, σ means the sigmoid function and γ is the weight for the size of
the masked graph.

E.3 Overall Objective Function

In practice, the denominator in Eq. (11) works as a regularization to avoid trivial solutions. Since
the label Y is given and independent of the optimization process, we could also employ the MSE
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loss between Y ∗ and Y additionally, regarding InfoNCE loss only estimates the mutual information
between the embeddings. Formally, the overall loss function could be implemented as:

LGIB = Lsize(G,G∗)− αLcontr(G,G+, G−) (17)

L = LGIB + βLMSE(f(G), f(G(mix)+)), (18)

where G(mix)+ means mix G∗ with the positive sample G+ and the hyper-parameters are α and β.

Algorithm 2 Training Explainer

Input: A set of graphs G, trained GNN model f , explainer model E.
Output: Trained explainer E.

1: Initialize explainer model E.
2: for e ∈ epochs do
3: for G ∈ G do
4: Gb, Gc ← Randomly sample two graphs from G
5: G+, G− ← Compare similarity(Gb, Gc) to G
6: G(mix)+ ←Mix-up (G,G+)
7: G(mix)− ←Mix-up (G,G−)
8: Compute Lcontr(G,G+, G−) with Eq. (15)
9: Compute LGIB with Eq. (17)

10: Compute overall loss L with Eq. (18)
11: end for
12: Update E with back propagation.
13: end for
14: return Explainer E

Algorithm 2 shows the training procedure for our explainer. For each epoch and each to-be-explained
graph G, we first randomly sample two neighbors and decide the near neighbor G+ and far neighbor
G− according to the similarity between their embedding vectors and h of G respectively, with the
graph with higher similarity to G being the near neighbor G+. We generate the explanation for graphs
and mix G with G+ and G− respectively. We calculate the contrastive loss for triplet ⟨G,G+, G−⟩
with Eq. (15) and the GIB loss, which contains the size loss and contrastive loss. We also calculate
the MSE loss between f(G(mix)+) and f(G). The overall loss is the sum of GIB loss and MSE loss.
We update the trainable parameters in the explainer with the overall loss.

F Datasets
Here is a detailed description of our four datasets:

(1) BA-Motif-Volume: This dataset is based on the BA-shapes [22] and makes a modification, which
is adding random float values from [0.00, 100.00] as the node feature. We then sum the node values
on the motif as the regression label of the whole graph, which means the GNNs should recognize the
[house] motif and then sum features to make the prediction.

(2) BA-Motif-Counting: Different from BA-Motif-Volume, where node features are summarized, in
this dataset, we attach various numbers of motifs to the base BA random graph and pad all graphs to
equal size. The number of motifs is counted as the regression label. Padding graphs to the same size
could prevent the GNNs from making trivial predictions based on the total number of nodes.

(3) Triangles: We follow the previous work [26] to construct this dataset. The dataset is a set of 5000
Erdős–Rényi random graphs denoted as ER(m, p), where m = 30 is the number of nodes in each
graph and p = 0.2 is the probability for an edge to exist. The size of 5000 was chosen to match the
previous work. The regression label for this dataset is the number of triangles in a graph and GNNs
are trained to count the triangles.

(4) Crippen: The Crippen dataset is a real-life dataset that was initially used to evaluate the graph
regression task. The dataset has 1127 graphs reported in the Delaney solubility dataset [40] and has
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Figure 5: Ablation study of RegExplainer. We evaluated the performance of original RegExplainer
and its variants that exclude mix-up approach, contrastive loss, or MSE loss respectively. The black
solid line shows the standard deviation value.

Figure 6: Hyper-parameters study of α and β on four datasets with RegExplainer. In both figures,
the x-axis is the value of different hyper-parameter settings and the y-axis is the value of the average
AUC score over ten runs with different random seeds.

weights of each node assigned by the Crippen model [41], which is an empirical chemistry model
predicting the water-actual partition coefficient. We adopt this dataset, firstly shown in the previous
work [42], and construct edge weights by taking the average of the two connected nodes’ weights.

G Additional Experimants

G.1 Ablation Study

We conducted an ablation study to show how our proposed components, specifically, the mix-up
approach and contrastive learning, contribute to the final performance of RegExplainer. To this end,
we denote RegExplainer as RegE and design three types of variants as follows: (1) RegE−mix: We
remove the mix-up processing after generating the explanations and feed the sub-graph G∗ into GIB
objective and contrastive loss directly. (2) RegE−contr: We remove the contrastive loss term but still
maintain the mix-up processing and MSE loss. (3) RegE−mse: We remove the MSE loss computation
item from the objective function.

Additionally, we set all variants with the same configurations as original RegExplainer, including
learning rate, training epochs, and hyper-parameters η, α, and β. We trained them on all four datasets
and conduct the results in Figure 5. We observed that the proposed RegExplainer outperforms its
variants in all datasets, which indicates that each component is necessary and the combination of
them is effective.

G.2 Hyper-parameter Sensitivity Study

In this section, we investigate the hyper-parameters of our approach, which include α and β, across
all four datasets. The hyper-parameter α controls the weight of the contrastive loss in the GIB
objective while the β controls the weight of the MSE loss. We determined the optimal values of α
and β with grid search. The experimental results can be found in Figure 6. Our findings indicate that
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Figure 7: Correlations between the predictions and their shifting on BA-Motif-Volume. The value of
r indicates the Pearson Correlation Coefficient, and the values with * indicate statistical significance
for correlation, where *** indicates the p-value for testing non-correlation p ≤ 0.001. Each point
represents one graph instance.

Table 2: Prediction shifting study on the RMSE of (f(G), Y ), (f(G∗), Y ), (f(G), f(G∗)) respec-
tively.

Dataset (f(G), Y ) (f(G∗), Y ) (f(G), f(G∗))
BA-Motif-Volume 131.42 1432.07 1427.07

Triangles 5.28 12.38 12.40
Crippen 1.13 1.54 1.17

our approach, RegExplainer, is stable and robust when using different hyper-parameter settings, as
evidenced by consistent performance across a range.

We also have additional experimental results in the Appendix on how the distribution shifts exist in
regression tasks and how our proposed method alleviates the distribution shifts.

G.3 Alleviating Distribution Shifts

In this section, we visualize the regression values of the graphs and calculate the prediction shifting
distance for each dataset and analyze their correlations to the distance of the decision boundaries. We
put our results into Figure 7 and Table 2.

We observed that in Figure 3, red points distribute surround the blue points but green points are shifted
away, which indicates that the explanation sub-graph couldn’t help GNNs make correct predictions.
As shown in Table 2, we calculate the RMSE score between [the] f(G) and Y , f(G∗) and Y , f(G)
and f(G∗) respectively, where f(G) is the prediction the original graph, f(G∗ is the prediction of
the explanation sub-graph, and Y is the regression label. We could observe that f(G∗) shows a
significant prediction shifting from f(G) and Y , indicating that the mutual information calculated
with the original GIB objective Eq. (4) would be biased.

We further explore the relationship of the prediction shifting against the label value with dataset BA-
Motif-Volume, which represents the semantic decision boundary. In Figure 7, each point represents
a graph instance, where Y represents the ground-truth label, and ∆ represents the absolute value
difference. It’s clear that both the ∆(f(G∗), Y ) and ∆(f(G), f(G∗)) strongly correlated to Y with
statistical significance, indicating the prediction shifting problem is related to the continuous ordered
decision boundary, which is present in regression tasks.
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