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Abstract

Warning: This paper includes examples that
may be deemed sensitive or offensive.

Characterizing and predicting human opinions
with language models (LMs) is a challenging
yet vital task to enhance their grasp of human
values, preferences, and beliefs. While prior
studies demonstrate the potential to solve this
task by adopting personae, the personae of-
ten include excessive and irrelevant informa-
tion that can harm the models’ performance.
Therefore, how to effectively employ the per-
sonae for LMs remains a significant challenge.
We introduce ChOiRe, a novel four-step frame-
work addressing the above challenge by differ-
entially modeling the user’s explicit personae
(i.e. demographic or ideological attributes)
that are manually declared, and implicit per-
sonae inferred from user historical opinions.
ChOiRe consists of (i) an LM analyzing the
user’s explicit personae to filter out irrelevant
attributes; (ii) the LM ranking the implicit per-
sona opinions into a preferential list; (iii) Chain-
of-Opinion (CoO) reasoning, where the LM se-
quentially analyzes the explicit personae and
the most relevant implicit personae to perform
opinion prediction; (iv) and where ChOiRe ex-
ecutes Step (iii)’s CoO multiple times with
increasingly larger lists of implicit personae
to overcome insufficient personae information
to infer a final result. ChOiRe achieves new
state-of-the-art effectiveness with limited in-
ference calls, improving previous techniques
significantly by 3.22%. Moreover, ChOiRe’s
Steps (i) and (ii) can significantly better fine-
tune opinion-aligned models, by up to 18.44%.

1 Introduction

Language models (LMs) are becoming indispens-
able tools, serving in various roles such as dia-
logue agents (OpenAl, 2022; Google, 2022), data
analysts (Wang et al., 2023a; Cheng et al., 2023),
and decision support (Ye et al., 2023). LMs also
demonstrate the capability to model distinct opin-

ions which influence response generation on in-
put queries (Bai et al., 2022; Glaese et al., 2022;
Santurkar et al., 2023). Unfortunately, the opin-
ions modeled by language models are shaped by
the extensive training and feedback data, which
are themselves influenced by countless human per-
spectives, making them inherently challenging to
model. As human—Al interactions become com-
mon, it becomes imperative to align models with
human opinion to meet individual expectations.

Despite the development of alignment frame-
works like RLHF (Christiano et al., 2017; Ouyang
et al., 2022), aligning large language models
(LLMs) with human opinions remains challeng-
ing due to the need for significant computational
resources and high-quality supervised feedback
data, which is difficult to collect. As a result,
prompt-based opinion alignment using personas
has emerged as a resource-efficient alternative
(Perez et al., 2023; Simmons, 2023; Santurkar et al.,
2023; Deshpande et al., 2023).

However, even when aligning LLMs with
well-represented groups, persona-based prompting
methods exhibit low steerability (Santurkar et al.,
2023), posing significant concerns and challenges
in modeling individual users. Moreover, Hwang
et al. (2023) find significant opinion variations
among individuals sharing the same demographics,
exposing flaws in current group-focused alignment.
They argue for individualized models, suggesting
to include user’s demographic and ideology (which
we term as explicit personae), and historical opin-
ions (implicit personae) for opinion prediction.

While naively including explicit and/or implicit
personae into the prompt like Santurkar et al.
(2023); Hwang et al. (2023) achieves promising
results, this personae usage for LLMs is inefficient
suffering from multiple limitations, mainly because
personae commonly contain noisy and irrelevant
information. First, all explicit personae are em-
ployed. We contend that only a subset is needed for



accurate opinion prediction; including non-relevant
personae may act as noise, harming predictive per-
formance. Second, Hwang et al. (2023) utilize the
top- K semantically similar opinions with the ques-
tion (here termed top-K implicit personae). This
approach is inefficient, as similar opinions may not
offer the most valuable information for prediction.
Interestingly, our empirical experiments suggest
that LMs may lack sufficient personae evidence
with this fixed X' — dynamically adjusting K per
task can overcome such deficiencies. Finally, while
Chain-of-Thought (CoT; Wei et al. 2022; Kojima
et al. 2022) enables LMs to perform multi-step rea-
soning tasks effectively, we surprisingly find that
the naive application of CoT does not help modern
LLMs like ChatGPT with opinion alignment

To address the above challenges, we propose
ChOiRe! (fig. 1), a novel four-step solution for
opinion prediction leveraging LLMs’ strong data
analytic capabilities (Wang et al., 2023a; Cheng
et al., 2023). First, an LLM analyzes a target user’s
explicit personae to discard irrelevant ones. Sec-
ond, the LLM ranks implicit persona opinions in
order of usefulness, selecting the top-K as the
most valuable. This surpasses the constraint of
using semantic similarity scores. Third, we intro-
duce Chain-of-Opinion (Co0O), a designed variant
of CoT that allows the LLM to explain and ana-
lyze selected explicit personae and top-K implicit
personae sequentially. Finally, ChOiRe applies self-
consistency over CoO to provision the appropriate
amount of user information for opinion inference.

ChOiRe achieves new state-of-the-art (SOTA)
in opinion alignment effectiveness and reliabil-
ity, while using a limited inference budget (ap-
pendix C.4). We conduct a thorough analysis to
verify our hypotheses concerning explicit and im-
plicit personae and defend our Chain-of-Opinion
reasoning methodology. Moreover, ChOiRe’s first
two steps significantly boost fine-tuning opinion-
aligned models. Additionally, ChOiRe generalizes
well in missing persona(e) circumstances, and four
ChOiRe’s steps are also generalizable and motiva-
tive for other personalized tasks where the explicit
personae and user historical views are available.

2 Related Work

Aligning LMs with Humans. Aligning language
models with human behaviour is a recent area of

!ChOiRe, Chain of Opinion Reasoning, pronounced as
the English word “choir”.

study as alignment can increase user experience sat-
isfaction and utility (Wang et al., 2023c). One line
of work develops prompting techniques with user
demographic information (e.g., political identity)
to encourage LMs to output human-like responses.
Argyle et al. (2023) show that by properly condi-
tioning LMs with targeted identity and personality
profiles, it is possible to produce biased outputs
that strongly correlate with human responses. Fur-
thermore, Simmons (2023) claims that LLMs are
moral mimics: by giving models a political identity,
they produce texts mirroring the associated moral
biases. Despite recent advances, Santurkar et al.
(2023) discovered that LMs align poorly with hu-
man opinions, as evidenced by model performance
on public opinion polls. Hwang et al. (2023) re-
cently propose to incorporate explicit and implicit
personae to predict human opinions in new con-
texts. In §1, we argue that this naive strategy is
suboptimal. ChOiRe overcomes these limitations.

Reasoning with LMs via Prompting. Large-
scale model architectures (Devlin et al., 2019; Rad-
ford et al., 2019; Brown et al., 2020; Chowdhery
et al., 2023; Touvron et al., 2023) have enabled
large language models (LLMs) to excel at various
NLP tasks using zero- or few-shot prompting (Liu
et al., 2023). Notably, Wei et al. (2022); Kojima
et al. (2022) propose prominent Chain-of-Thought
(CoT) techniques, enabling LLMs to explicate in-
termediate reasoning steps to solve multi-step rea-
soning tasks with higher fidelity and efficiency.

Can CoT analyze and predict human opinion
effectively? We find that a naive application of
CoT does not help GPT-X models (§5), but that an
appropriate modification does. We propose Chain-
of-Opinion (CoO) reasoning (§3) that overcomes
CoT’s limitations in this task. Noting that prompt-
ing techniques such as task decomposition (Khot
et al., 2023; Zhou et al., 2023) and retrieved-based
methods (Yao et al., 2023; Shinn et al., 2023) have
been recently introduced, we focus only on the rea-
soning explanation aspect here given the abstractive
and challenging nature of the task.

3 ChOiRe: A Chain of Opinion
Framework

Task Formalisation. We follow Santurkar et al.
(2023), and formulate the opinion prediction task
as multiple-choice question answering. Formally,
a benchmark with N data points is denotated as
D= {{T,E,I,q,a),}_,, where T, E and I in-
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Figure 1: ChOiRe overview, consisting of the four main steps (cyan background), as detailed in §3.

dicate the (T)opic of a question g, the (E)xplicit per-
sonae and (I)mplicit personae of the user answering
q with opinion a. Following the prior work, £ con-
sists of 12 user demographic and ideology metadata
attributes, and I contains a number of the user’s his-
torical opinions in the format of question—answer
pairs. Models then learn to analyze T', F/, I, g and
predict the opinion a.

Fig. 1 shows an overview of ChOiRe, consist-
ing of four main steps (marked with a cyan back-
ground). First, ChOiRe employs an LLM to an-
alyze and select a subset of relevant explicit per-
sonae, denoted as "¢ C E for answering the opin-
ion question g. The LLM then assesses the informa-
tiveness of the implicit personae (/) in predicting
q, selecting the top-K implicit personae (termed
LLMtop-K). Next, an LLM is prompted to explain
the provided explicit £7¢ and implicit LLMtop-K
personae sequentially in a Chain-of-Opinion (CoO)
reasoning strategy. Finally, ChOiRe calls the LLM
to predict the opinion a with varying values of K
for the top- K implicit personae. ChOiRe chooses
the opinion with the highest frequency as the final
prediction. We detail the steps below.

3.1 Filtering Explicit Personae Attributes
(FEA)

Accounting for explicit personae, which consist
of the demographic and ideological metadata at-
tributes of users — such as their age, political
view — are shown to help models characterize and
predict human opinions more accurately (Santurkar
et al., 2023; Hwang et al., 2023). However, which
personae matter and which do not? are still open

questions. Appendix E.1 shows such an example
in full, where, when considering all of explicit per-
sonae, the model makes an incorrect prediction
while removing unnecessary personae the model
made a correct prediction. This may be caused
by the LLM’s attention mechanism’s forcing the
model to attend to all input tokens, even irrelevant
ones. To filter out unnecessary explicit personae,
we ask the LLM to reason and analyze how each
persona is helpful for the model to predict the opin-
ion via Chain-of-Thought to output a list of which
personae are relevant given the question and the
opinion answer choices?. Surprisingly, we find that
LLMs evaluate more than half of the explicit per-
sonae as irrelevant on average. We further conduct
human evaluations to verify this finding in §4.

3.2 Implicit Personae Opinions Ranking
(LLMtop-K)

LLMs have been sensitive to selected demonstra-
tions and their order in the prompts (Perez et al.,
2021; Luo et al., 2023; Gao et al., 2023). For pre-
dicting human opinions, we discover that LLMs are
also sensitive to the chosen implicit personae opin-
ions as input. Hwang et al. (2023) rank the implicit
personae opinions via semantic-similarity scores
and select top-K. This strategy is suboptimal be-
cause the top-ranked opinions in terms of semantic
similarity may not be the ones that provide the most
supportive information for the models to predict
opinions (appendix E.2). As LLMs are shown to
be good data analysts (Wang et al., 2023a; Cheng

*We provide our FEA prompt in Appendix C.1



et al., 2023), we propose to address the above chal-
lenge by utilizing LLMs to analyze and rank the
implicit personae opinions in usefulness descend-
ing order. Our finding is that despite the output
rankings from LLMs varying with different input
orders of implicit personae opinions, the sets of
LLMtop-K opinions overlap by a good coefficient
when K is large enough (> 8) (fig. 5). Therefore,
we propose to input the implicit personae opinions
to LLMs in a random order to make our method
more versatile. We also examine the case where we
input the opinions in the semantic similarity order.
We illustrate the prompt template in appendix C.2.
By performing this step, our proposed method sup-
ports the usefulness of opinions in predicting the
test opinions, rather than the semantic similarity.
We term this method as LLMtop-K .

3.3 Chain-of-Opinion Reasoning (CoQ)

Wei et al. (2022); Kojima et al. (2022) introduce
few-shot and zero-shot Chain-of-Thought (CoT)
prompting strategies demonstrating that by reason-
ing step-by-step, LLMs can achieve promising re-
sults on complex tasks. However, the sampled
reasoning steps can be inconsistent, leading to pos-
sibly different outcomes (Wang et al., 2023b). Fur-
thermore, it is little known how the models per-
ceive multiple implicit personae opinions, espe-
cially when many opinions are input, which one(s)
the models used, which one(s) they didn’t for pre-
dicting the opinion? Our preliminary experiments
with CoT (§6.1 and appendices E.3 and E.4) re-
veal that the CoT explanations can vary frequently
based on different subsets of opinions mentioned
in their explanations, leading to diverse final an-
swers, especially when the decoding temperature
is relatively high (> 0.6). To mitigate this issue,
we propose to instruct the LLMs to analyze the
given explicit and implicit personae one by one
before concluding the prediction via simply adding
"explaining and analyzing how each of
the Opinions and Demographic Information
supports the question” into the prompt instruc-
tion. Given an LLM that can follow human instruc-
tions well such as ChatGPT (OpenAl, 2022), this
addition offers two notable advantages. First, for
each question, we ensure that the model explains
and analyzes the provided personae one by one
without missing any, possibly resulting in more
thorough predictions. Second, this method helps
the model to output more consistent reasoning ex-

planations, enhancing its reliability (§6.1).

3.4 Answer Consistency with Dynamic
Numbers of Opinions

Prior work (Hwang et al., 2023) fixes the number of
implicit personae opinions for prediction to K = 8.
However, this approach occasionally results in
models generating ". . .the answer cannot be
determined.” (table 4 and appendix E.5). We at-
tribute this to insufficient user implicit personae
opinions provided. Inspired by Self-Consistency
(SC) (Wang et al., 2023b), our approach involves
sampling multiple answers using different K val-
ues for a given question. The most frequent answer,
along with the explanation of the first correct an-
swer, becomes the final prediction. Our method
is distinct from SC since SC samples multiple an-
swers with a fixed prompt. We experiment with
K € {8,10, 12} for efficiency (appendix C.4).

4 Evaluation

Dataset. We experiment on OpinionQA dataset
(Santurkar et al., 2023) — the only opinion QA
dataset to date consisting of both user explicit and
implicit personae designed for the assessment of
alignment between LMMSs’ opinions and human
participants, encompassing a diverse range of 60
US demographic groups. It covers 60 US demo-
graphic groups, with 15 topics, each comprising
around 100 questions, gathered from 5, 340 users.

Dataset Preprocessing. Due to limited resources,
we randomly sample 25 users per topic for our
experiments. For each user, we follow Hwang
et al. (2023) to use 20% of the implicit questions
as the implicit persona. For the remaining 80%
implicit questions, we randomly select a maximum
of 15 implicit questions for testing. Our sampling
method results in a total of 375 users and 5, 603 im-
plicit evaluation question—answer pairs. Our subset
is highly representative because we gather 25 users
from every topic and 15 questions per user. Rigor-
ous statistical tests further validate the significance
of our results which align closely with Hwang et al.
(2023) testing on a larger subset using InstructGPT.

Prompting Baselines. We use both closed-
source ChatGPT (OpenAl, 2022), ChatGPT-
Instruct (OpenAl, 2023a), GPT-4 (OpenAl, 2023b),
and open-source Mistral-7B-Instruct-v.02 (Jiang
et al., 2023) as our LLMs, and compare ChOiRe
with 5 prompting methods: (1) W/o persona,



where LLMs are evaluated without user historical
opinions, ideology, or demographic data; (2) De-
mographic + Ideology + top8 Opinions (termed
DIO-top8), introduced by Hwang et al. (2023)
demonstrating that integrating explicit and im-
plicit personae enhances user opinion modeling
and prediction, achieving state-of-the-art results
on OpinionQA at that time; (3) DIO-top8 + CoT
is the Chain-of-Thought (CoT) prompting (Ko-
jima et al., 2022) version of DIO-top8 involving
appending "answer the following question
step-by-step” to prompts, aiming to explore
whether CoT improves model performance in this
task; (4) DIO-top8 + SC is the baseline which we
apply the Self-Consistency technique with CoT
(Wang et al., 2023b) to DIO-top8 to select the most
frequent answer generated by the model as the fi-
nal opinion prediction; (5) DIO-top8 + Self-refine
(Madaan et al., 2023) interactively feedbacks and
refines the answers by LLMs. We do not experi-
ment with InstructGPT (Ouyang et al., 2022) like
Hwang et al. (2023) since this model is going to
be deprecated and replaced by ChatGPT-Instruct.
For GPT-4, we only run the main experiment and
we use ChatGPT for FEA and LLMtop-K steps
due to our limited budget. All the prompts and
costs are in appendix C, implementation details in
appendix A.1, and more baselines in appendix B.2.

Fine-tuning Baselines. We further investigate
whether ChOiRe’s FEA and LLMtop-K steps (§3)
also improve fine-tuning for opinion-aligned mod-
els. We first create the fine-tuning data by using
ChatGPT to perform ChOiRe’s FEA and LLMtop-
K steps (K = 8) on a training set of 30, 000 sam-
ples randomly selected from OpinionQA which
are different from our 5,603 test ones. We then
fine-tune and evaluate GPT-2 models (base, large)
(Radford et al., 2019) and FlanT5 models (base,
large) (Chung et al., 2022). Fine-tuning details are
provided in appendix A.1.

Metrics. We employ Accuracy and Collapsed
Accuracy® as the automatic evaluation metrics fol-
lowing Hwang et al. (2023). It is worth noting that
Precision/Recall/F1 is not applicable in our task,
since the numbers of answer choices are not the
same for all the OpinionQA samples. In addition,
human evaluations are crucial due to the absence of
automated metrics assessing LLMs’ performance

3is a relaxed accuracy wherein the choices of MCQ ques-
tions (> 4 choices) are collapsed to become 2 choices.

Model ChatGPT ChatGPT-Inst GPT-4 Mistral-7B-Ins.-v0.2

46.60/65.72
50.22/69.21
43.14/65.33
49.96/69.05
50.58/69.66

44.91/63.60
51.95/71.16
42.71/62.98
51.90/71.51
52.06/71.87

41.24/59.54
44.16/62.47
36.23/55.06
52.25/71.95
53.14/72.88

W/o persona
DIO-t0p8

DIO-t0p8 + Self-refine
DIO-t0p8 + CoT
DIO-t0p8 + SC

57.98/76.86

DIO-10p8 + FEA
DIO-10p8 + CoO
DIO-LLM1op8
DIO-LLMiop8 + FEA
DIO-LLMiop8 + FEA + CoO

ChOiRe
% Improvements

50.64/69.85
50.97/70.22
51.03/70.31
51.19/70.69 -
51.90/71.57 59.02/78.70

52.211/72.09F  53.261/73.261  59.301/78.82}
+3.22/+3.49 +2.52/+1.93 +2.28/42.55

52.63/72.30
52.08/71.65
52.80/72.60
52.97/72.84
53.01/72.91

44.99/64.09
53.79/73.59
45.86/64.98
45.23/64.73
54.21/74.09

54.431/74.341

+2.42/+2.00

Table 1:  Accuracy/Collapsed Accuracy on ChatGPT,
ChatGPT-Instruct, and GPT-4. FEA is our first step, Filtering
Explicit Attributes. LLMtop$ is the second step, CoO is Chain-
of-Opinion reasoning. Improvements are calculated with the
best baseline. { denotes our model outperforms baselines sig-
nificantly with p-value < 0.01 under t-test (table 8).

Model ‘ GPT-2-base GPT-2-large  FlanT5-base FlanT5-large
W/o persona 41.14/58.87 21.94/39.11 48.98/68.33 39.83/58.43
DIO-top8 21.23/38.64 24.94/42.22 55.00/74.98 54.94/74.79
DIO-top8 + FEA 22.62/40.97 25.65/45.21 55.78/75.34 58.77/77.26
DIO-LLMtop8 22.65/41.12 28.86/47.60  57.971/77.461  58.20/77.56
DIO-LLMtop8 + FEA 25.05/44.41 29.541/48.661 57.45/77.13  59.001/78.461
% Imp. over DIO-top8 ‘ +17.99/+14.93  +18.44/+15.25  +5.40/+3.30 +7.38/+4.90

Table 2: Performance of fine-tuned baselines with our pro-
posed FEA and LLMtopS8 steps preprocessed by ChatGPT. {
denotes our model significantly outperforms baselines with
p-value < 0.01 under t-test (table 8).

in FEA, LLMtop-K and CoO steps of ChOiRe.
Therefore, we conduct our human assessments to
address these research questions: (1) LLMs’ effec-
tiveness in filtering unnecessary explicit personae;
(2) LLMs’ proficiency in ranking implicit personae
opinions; (3) LLMs’ ability to explain answers via
CoO0. To this end, we randomly select 100 answers
generated by ChOiRe with ChatGPT, ChatGPT-
Instruct, GPT-4, Mistral. We then hire 3 excellent
undergraduates who are native English speakers as
annotators. For FEA and LLMtop-K steps, each
annotator is instructed to rate on a 1-3 scale (3
is best) via the Satisfaction criterion defined as
how well the algorithm of LLMs performs in fil-
tering/ranking, subjectively. To answer (3), we
use two criteria named Reasonableness measuring
how well the LLMs reason with the CoO expla-
nations, and Follow the Instruction assessing the
capability of LLMs in following our instruction to
explain and predict the opinions. Three annotators
are also guided to rate the criteria on a 1-3 scale.
Each metric’s final score is the average of three
annotators’ scores. The scoring instructions are in
appendix D.1 and the inter-annotators’ agreement
is assessed by Kripp’s alpha (Krippendorff, 2011).

5 Main Results

Overall Prompting Results. Table 1 shows our
macro experimental outcomes. We derive 4 main
observations in this task. First, ChOiRe im-
proves the best among baselines significantly with



3.22%, 2.52%, 2.28%, 2.42% accuracy for Chat-
GPT, ChatGPT-Instruct, GPT-4, and Mistral. It
establishes a strong SOTA result with GPT-4, sur-
passing previous SOTA DIO-top8 with Instruct-
GPT achieving 53.74% (Hwang et al., 2023) by
a notable margin. Notably, in the case of GPT-
4, we utilize ChatGPT for FEA and LLMtop-K
steps, showcasing the strength of a weaker model
that enhances a stronger one. Second, we see
that Accuracy and Collapsed Accuracy have the
same trend, and ChOiRe also achieves the SOTA
on Collapsed Accuracy with the highest improve-
ment of 3.94% observed with ChatGPT. Third,
naive CoT ("answer the following question
step-by-step”) helps Mistral but slightly harms
ChatGPT and ChatGPT-Instruct with DIO-top8
(Hwang et al., 2023). On the other hand, SC im-
proves all models. Therefore, we attribute CoT’s
limitation to the inconsistency of its explanations
(3). Meanwhile, ChOiRe with CoO consistently at-
tains improvements, verifying the effectiveness of
explicitly requiring the model to analyze all the
personae. Finally, ChatGPT, ChatGPT-Instruct,
and Mistral show improvements by selecting only
4.79/12 and 5.59/12, 8.83/12 explicit personae
on average, respectively. This suggests that over
half of explicit personae may be noisy for models
to predict opinions.

Fine-grained Prompting Results. Diving
deeper into the benchmark topics in table 5,
ChOiRe achieves SOTA results in 8/15, 8/15,
11/15, 13/15 topics for ChatGPT and ChatGPT-
Instruct, GPT-4, and Mistral. The improvements
are especially huge for some topics. For example,
compared with the best among baselines, it
improves GPT-4 up to 12.08% accuracy on
Views on gender, ChatGPT up to 9.82% on
Economic Inequality. We also specifically compare
ChOiRe with the best baseline DIO-top8 + SC in
appendix B.6, showing 8/12 improvements for
ChatGPT and ChatGPT-Instruct. We further plot
the accuracy distribution over users of ChOiRe,
specifically for ChatGPT in fig. 4. We see that the
majority accuracy is 0.5, with a few users scoring
zero and over 20 achieving perfection.

Fine-tuning Results. Table 2 presents our fine-
tuning outcomes. Notably, leveraging the
ChOiRe’s FEA and LLMtop-K steps on the
fine-tuning data yields substantial enhancements
for GPT-2-large and FlanT5-large, showcasing

Model | FEA Satis.

ChatGPT 2.56 (Ka’ 0.74)
ChatGPT-Inst. 2.64 (Ko’ 0.71)
GPT-4

Mistral-7B-Ins.-v0.2

| LLMtopK Satis. | Rea. Foll. Inst.

2.32 (Ka’ 0.68) | 2.90 (Ka’ 0.88) 2.95 (Ko’ 0.90)
2.28 (Ka’ 0.65) | 2.92 (Ka’ 0.90) 2.95 (Ko’ 0.87)
2.95 (Ko’ 0.91) 221 (Ko’ 0.77)
2.66 (Ka’ 0.68) 2.16 (Ka’ 0.55)

2.31 (Ko’ 0.65) | 2.12 (Ka’ 0.64)

Table 3: Human evaluation results. Ko’ is Kripp’s alpha.

relative accuracy improvements of 18.44% and
7.38% respectively. Remarkably, ChOiRe’s FEA
and LLMtop-K steps bring FlanT5-large’s perfor-
mance on par with GPT-4, despite GPT-4’s signifi-
cantly stronger capability. Furthermore, ChOiRe’s
LLMtop-K proves particularly beneficial for en-
hancing FlanT5-base. Surprisingly, GPT-2-base
performs well even without user demographic and
ideological information, possibly due to poten-
tial contamination (Sainz et al., 2023) with public
polling data from OpinionQA.

Human Evaluation Results. Our human eval-
uation results in table 3 reveal three key findings.
First, ChatGPT and ChatGPT-Instruct achieve sim-
ilar performance in filtering explicit personae and
ranking opinions, while Mistral achieves lower
results. While ChatGPT excels slightly in rank-
ing, ChatGPT-Instruct performs slightly better in
explicit personae selection. Three models profi-
ciently filter unnecessary explicit personae, but
ranking opinions poses a more challenging task
intuitively and empirically, with a common error be-
ing the inconsistent relevance ranking of opinions,
sometimes misplacing high-level relevance. Sec-
ond, four models effectively generate reasonable
thoughts leading to the final answer, and GPT-4
performs the best. Finally, ChatGPT and ChatGPT-
Instruct follow our instructions to explain and an-
alyze the explicit and implicit personae provided
one by one with CoO significantly better than GPT-
4 and Mistral, achieving nearly perfect scores of 3.
We hypothesize that this is because ChatGPT and
ChatGPT-Instruct excel in following instructions,
while GPT-4 is optimized for completing texts.

6 Discussion

We discuss the main analyses in this section. Extra
important analyses are presented in appendix B.

6.1 Methodology Analysis

Ablation of FEA. To gauge the impact of filter-
ing unnecessary explicit personae (FEA) on per-
formance, we experiment with applying FEA ex-
clusively to the baseline DIO-top8 (Hwang et al.,
2023), denoted as DIO-top8 + FEA in table 1.
The results indicate enhancements with DIO-top8



+ FEA achieving a 0.8%, 1.3%, 1.9% accuracy
performance boost on ChatGPT, ChatGPT-Instruct,
and Mistral respectively. This underscores the ef-
fectiveness of eliminating irrelevant explicit per-
sonae in improving the models’ ability to under-
stand and predict human opinions.

FEA via Topics. To understand the explicit per-
sonae filtered by LLMs across various topics,
we document the top-3 removed personae in ap-
pendix B.8. We observe that "Citizenship” is
consistently the most frequently removed attribute,
followed by "Race"”. This could be due to LLMs
treating these as sensitive information, prioritizing
respect and unbiased text generation. Another ex-
planation may be the lack of correlation between
citizenship/race and opinions in the US-centric
OpinionQA dataset. Additionally, we also see that
ChatGPT often categorizes “Marital status"” as
non-useful, ChatGPT-Instruct commonly removes
“Frequency of religious attendance”, and
“Gender" got removed by Mistral, revealing poten-
tial biases in LLMs.

LLMtop-K versus Top-K. From table 1, DIO-
LLMtop8 outperforms DIO-top8 by 1.6%, 1.6%,
3.8% accuracy on ChatGPT, ChatGPT-Instruct,
Mistral confirming that prioritizing meaning and
usefulness improves opinion prediction. One pos-
sible explanation for this can be the orders ranked
by semantic similarity scores only consider rank-
ing with the input questions (Hwang et al., 2023),
while our orders consider both input questions
and their answer choices (fig. 1). We further
explore two key aspects: (1) The agreement of
LLM-orders and semantic similarity orders, and (2)
Points of maximum disagreement between these or-
ders. To measure the ranking agreements, we calcu-
late Kendall’s Tau correlation coefficient (Kendall,
1938) between the orders generated by ChatGPT,
ChatGPT-Instruct, and Mistrial and orders sorted
by semantic similarity scores, and the results are
presented in fig. 6 and fig. 7. Surprisingly, for Chat-
GPT and ChatGPT-Instruct, we find that the two
ranking orders have minimal monotonous relations
with means approximating 0 and low standard de-
viations showing no agreement. For Mistral, we
find a low agreement with a mean of 0.43 score.
These low and no agreements further verify that
ranking by usefulness can be very different from
ranking by semantic similarity. We also deep dive
into cases with notable order variations to address

(2). Appendix E.2 illustrates one such case in the
"Guns" topic. We derive three observations. First,
not all top-8 opinions by semantic similarity scores
help predict the opinion. For example, the 16-th
opinion, despite having a relatively high seman-
tic similarity score with the question which might
offer some perspective on the prevalence of guns
in the user’s community during the upbringing, is
less directly related to the question. This is simi-
lar to the 18-th opinion which is also less relevant.
Meanwhile, several important opinions are dese-
lected by the semantic-similarity-based method,
such as the 6, 3, 4, 10-th ones, which are chosen
by the LLM. The 6-th one is critical, and directly
relevant because it assesses the person’s attitude
toward safety measures related to gun ownership.
Finally, by using LLMtop-K order, the model pre-
dicts the opinion accurately, whereas the semantic
similarity order leads to an incorrect prediction.

Opinions Order Analysis of LLMtop-K Step.
The performance difference of DIO-top8 and DIO-
LLMtop8 in table 1 highlights that LLMs are sen-
sitive to the chosen implicit personae opinions. An
important question arises: Are LLMs also affected
by the input order of implicit persona opinions in
the ranking step (§3)? Our discovery confirms sen-
sitivity, but with reasonable overlap when K is
sufficiently large. We randomly select 300 ques-
tions, shuffle implicit persona opinions four times
with different seeds, and record four LLM rank-
ing outputs for each. We also collect one more
LLM ranking output by feeding implicit personae
opinions in semantic similarity order. For each
K €{1,2,...,20}, we calculate the pairwise Over-
lap coefficient (Vijaymeena and Kavitha, 2016)
among the five ranking outputs, averaging them
as the LLM ranking consistency score for each
K. The scores, shown in fig. 5, indicate that for
K > 8, the ranking outputs overlap well with a
score of > .6 for both models. Despite this, is there
substantial variance in model performance across
random seeds? Our findings reveal no significant
variance, with the variants statistically outperform-
ing the baseline DIO-top8. Specifically, we assess
ChatGPT and Mistral with DIO-LLMtop8 on 3 out
of 4 random seeds, detailed in appendix B.9. The
results demonstrate relatively small standard de-
viations in their performance, and critical values
of 99% CI of DIO-LLMtop8 under t-test for both
models surpass DIO-top8, confirming that LLM-
top8’s effectiveness is not due to randomness.



Model | ChatGPT | ChatGPT-Inst | GPT-4 | Mistral

% of ITA of DIO-LLMtop8 + FEA + CoO 0.61 1.32 9.71
DIO-LLMtop8 + FEA + CoO 51.90 53.01 59.02

0.00
54.21

0.12 1.01 5.44 0.00
51.55 52.74 58.88 | 53.88

0.00 0.66 3.12 0.00
51.60 52.31 59.11 52.96

| 59.30 | 54.43

% of ITA of DIO-LLMtop10 + FEA + CoO
DIO-LLMtop10 + FEA + CoO

% of ITA of DIO-LLMtop12 + FEA + CoO
DIO-LLMtop12 + FEA + CoO

ChOiRe | s221 | 53.26

Table 4: Extra analysis on ChatGPT, ChatGPT-Instruct, GPT-
4, and Mistral. ITA stands for "Impossible To Answer".

CoO versus CoT. Table 1 indicates that Chain-
of-Thought (CoT) (Kojima et al., 2022) slightly
harms baseline DIO-top8 performance for Chat-
GPT and ChatGPT-Instruct. Conversely, our Chain-
of-Opinion reasoning (CoO) enhances overall per-
formance for all models. To investigate the consis-
tency of CoT and CoO, we design an experiment
with ChatGPT, DIO-top8 where we randomly se-
lect 100 question-answer pairs and sample 5 an-
swers per pair using CoT and CoO, at 3 different
temperatures 0.3, 0.6, 0.9. For each prompting
technique, we measure the percentage of questions
that all 5 answers sampled have the same result, as
the consistency score. The results are illustrated
in appendix B.5-fig. 2 showing that CoO brings
better consistent answers compared to CoT, espe-
cially when the temperature is high verifying CoO
potentially enhances the reliability of LLMs.

Dynamic Numbers of Opinions Analysis. Ta-
ble 4 illustrates our analysis answering two re-
search questions: (1) How frequently can’t LLMs
answer the question? and (2) How do LLMs per-
form when more opinions than K = 8 are pro-
vided? Our findings show that, firstly, with 8
opinions, GPT-4 exhibits the highest percentage
of unanswered questions, while Mistral answers
all the questions. Secondly, increasing the num-
ber of opinions beyond 8 reduces this percentage
across models, confirming our hypothesis regard-
ing the lack of implicit personae opinions when
fixing K = 8 in §3. Lastly, while including more
opinions could harm the performance of models,
our answer consistency strategy enables LLMs to
achieve the best results across K values.

6.2 Error Analysis

FEA Misses Key Explicit Personae. Despite
showing promising results in removing unuse-
ful explicit personae depicted in table 3, we ob-
serve that LLMs sometimes misselect relevant per-
sonae. One such example is the top-left of ap-
pendix E.6. We observe that in this case, our an-
notators can’t grade a high FEA satisfaction score
because "Education” and "Age" are also two im-

portant personae as they can influence one’s un-
derstanding of workplace dynamics significantly,
which are deselected by ChatGPT.

LLMtop-K Opinions Include Less Relevant
Ones. While LLMs generally demonstrate a com-
mendable ability to rank implicit opinions by use-
fulness, as exemplified in appendix E.2, we also
observe they frequently include less relevant, or
even irrelevant opinions to the ranked list such as
in appendix E.6-bottom. We attribute this to the
challenge of this task, even for humans it might
require substantial cognitive effort.

LLMs May Not Follow the Instructions. Al-
though ChatGPT and ChatGPT-Instruct demon-
strate a robust ability to adhere to our instructions
for opinion prediction via CoO, the same level of
proficiency is not observed in Mistral and GPT-4,
as shown in appendix E.6-top-right. We posit this
disparity arises from the fact that ChatGPT and
ChatGPT-Instruct excel in comprehending and ex-
ecuting human instructions, while GPT-4 excels
primarily in generating coherent text.

6.3 ChOiRe’s Generatization

We discuss two fundamental questions regard-
ing the generalization of ChOiRe: (/) How does
ChOiRe perform in the situations of missing per-
sona(e)? and (2) Are ChOiRe’s steps generalized
to other tasks? Our full discussions are provided in
appendix B.1. In summary, we find that ChOiRe’s
steps generalize to other tasks, and missing per-
sona(s) situations better than the baselines.

7 Conclusion

We propose ChOiRe, a novel four-step solution
framework addressing the problem of effectively
employing personae with LLMs for opinion predic-
tion. We further introduce Chain-of-opinion rea-
soning and answer consistency over variable num-
bers of input implicit personae guiding the models
to derive thorough predictions. ChOiRe achieves
strong SOTA results with limited inference calls,
demonstrating its strong effectiveness. Addition-
ally, Steps (i) and (ii) of ChOiRe significantly im-
prove the fine-tuning of opinion-aligned models.
We strongly suggest that our method should only
be used for positive moral intents, avoiding making
LLMs echo chambers (Vicario et al., 2016). In the
future, we will focus on developing frameworks
that utilize personae more efficiently.



Limitations

One limitation of our proposed ChOiRe framework
is that it requires the LLMs to have a good ca-
pability in following human instructions to solve
tasks such as selecting explicit personae, ranking
historical opinions, and explaining personae and
opinions one by one via CoO. However, we fore-
see that this limitation is going to be overcome by
cutting-edge Al language models, in the present
and near future. Additionally, our method also
utilizes user’s personal information from explicit
and implicit personae, which may be sensitive to
some audiences and not be fully available in the
real world. However, to what extent is the personal
information provided, our ChQOiRe is still able to
offer reasonable opinion predictions since it is not
constrained by the number of provided explicit per-
sonae, or the number of user historical opinions
(see appendix B.1).

Ethical Considerations

Characterizing and predicting human opinions with
LLMs can be directly applied to personalize and
align machines to users’ values, and cultural be-
liefs. Nonetheless, there exist unwanted situations
when LLMs with our techniques can be misused
for unethical purposes and biased opinions.

Bias Amplification and Fairness. A personal-
ized LLM allows users to reinforce their existing
beliefs and potentially amplify biased or unethical
perspectives, leading to the creation of echo cham-
bers (Vicario et al., 2016). This can ultimately
harm users by reinforcing polarized or undesirable
views. To mitigate this issue, the Chain-of-Opinion
(CoO) reasoning from our proposed ChOiRe in-
volves presenting user demography or ideology
group responses alongside personalized answers.
Additionally, CoO can encourage users to reflect
on their previous viewpoints.

Privacy and Consent. Users may not always be
aware of or have control over the extent of per-
sonalization applied to the content they receive.
Therefore, empowering users to have control over
Al-generated opinions is essential. Users should
be able to customize and adjust the explicit and
implicit personae used for opinion prediction. This
customization can help mitigate potential biases
and provide individuals with Al-generated opin-
ions that align more closely with their values and
preferences.

Human Evaluation. Through human evalua-
tions, we observe that our proposed method does
not generate any discriminatory, insulting re-
sponses. We validate the intermediate steps of our
proposed ChOiRe by human evaluation which in-
volves manual labor. We hire annotators to score,
and the hourly pay is set to $15, which is higher
than the local statutory minimum wage. Therefore,
we do not anticipate any major ethical concerns
raising from human evaluations.

References

Lisa P. Argyle, Ethan C. Busby, Nancy Fulda, Joshua R.
Gubler, Christopher Rytting, and David Wingate.
2023. Out of one, many: Using language mod-
els to simulate human samples. Political Analysis,
31(3):337-351.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron
McKinnon, Carol Chen, Catherine Olsson, Christo-
pher Olah, Danny Hernandez, Dawn Drain, Deep
Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez,
Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua
Landau, Kamal Ndousse, Kamile Lukosuite, Liane
Lovitt, Michael Sellitto, Nelson Elhage, Nicholas
Schiefer, Noemi Mercado, Nova DasSarma, Robert
Lasenby, Robin Larson, Sam Ringer, Scott John-
ston, Shauna Kravec, Sheer El Showk, Stanislav Fort,
Tamera Lanham, Timothy Telleen-Lawton, Tom Con-
erly, Tom Henighan, Tristan Hume, Samuel R. Bow-
man, Zac Hatfield-Dodds, Ben Mann, Dario Amodei,
Nicholas Joseph, Sam McCandlish, Tom Brown, and
Jared Kaplan. 2022. Constitutional ai: Harmlessness
from ai feedback.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877—1901. Curran Associates,
Inc.

Liying Cheng, Xingxuan Li, and Lidong Bing. 2023.
Is GPT-4 a good data analyst? In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 9496-9514, Singapore. Association for
Computational Linguistics.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,


https://doi.org/10.1017/pan.2023.2
https://doi.org/10.1017/pan.2023.2
https://doi.org/10.1017/pan.2023.2
http://arxiv.org/abs/2212.08073
http://arxiv.org/abs/2212.08073
http://arxiv.org/abs/2212.08073
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2023.findings-emnlp.637

Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2023. Palm: Scaling language mod-
eling with pathways. J. Mach. Learn. Res., 24:240:1—
240:113.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2017. Deep
reinforcement learning from human preferences. Ad-
vances in neural information processing systems, 30.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2022. Scaling instruction-finetuned
language models.

Dorottya Demszky, Nikhil Garg, Rob Voigt, James Zou,
Jesse Shapiro, Matthew Gentzkow, and Dan Juraf-
sky. 2019. Analyzing polarization in social media:
Method and application to tweets on 21 mass shoot-
ings. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 2970—
3005, Minneapolis, Minnesota. Association for Com-
putational Linguistics.

Ameet Deshpande, Vishvak Murahari, Tanmay Rajpuro-
hit, Ashwin Kalyan, and Karthik Narasimhan. 2023.
Toxicity in chatgpt: Analyzing persona-assigned lan-
guage models. CoRR, abs/2304.05335.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages

10

4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Xuan Long Do, Bowei Zou, Liangming Pan, Nancy F.
Chen, Shafiq Joty, and Ai Ti Aw. 2022. CoHS-CQG:
Context and history selection for conversational ques-
tion generation. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
pages 580-591, Gyeongju, Republic of Korea. Inter-
national Committee on Computational Linguistics.

Shuzheng Gao, Xin-Cheng Wen, Cuiyun Gao, Wenxuan
Wang, and Michael R. Lyu. 2023. Constructing effec-
tive in-context demonstration for code intelligence
tasks: An empirical study. CoRR, abs/2304.07575.

Amelia Glaese, Nat McAleese, Maja Trgbacz, John
Aslanides, Vlad Firoiu, Timo Ewalds, Maribeth Rauh,
Laura Weidinger, Martin Chadwick, Phoebe Thacker,
et al. 2022. Improving alignment of dialogue agents

via targeted human judgements. arXiv preprint
arXiv:2209.14375.

Google. 2022. Bard: A conversational ai tool by google.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu,
Ruobing Xie, Julian McAuley, and Wayne Xin Zhao.
2024. Large language models are zero-shot rankers
for recommender systems. In European Conference
on Information Retrieval, pages 364-381. Springer.

EunJeong Hwang, Bodhisattwa Prasad Majumder, and
Niket Tandon. 2023. Aligning language models to
user opinions. CoRR, abs/2305.14929.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b.

M. G. Kendall. 1938. A new measure of rank correla-
tion. Biometrika, 30(1/2):81-93.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao
Fu, Kyle Richardson, Peter Clark, and Ashish Sab-
harwal. 2023. Decomposed prompting: A modular
approach for solving complex tasks. In The Eleventh
International Conference on Learning Representa-
tions, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net.

Sunghwan Mac Kim, Qiongkai Xu, Lizhen Qu, Stephen
Wan, and Cécile Paris. 2017. Demographic infer-
ence on Twitter using recursive neural networks. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 471-477, Vancouver, Canada.
Association for Computational Linguistics.


http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2210.11416
https://doi.org/10.18653/v1/N19-1304
https://doi.org/10.18653/v1/N19-1304
https://doi.org/10.18653/v1/N19-1304
https://doi.org/10.18653/v1/N19-1304
https://doi.org/10.18653/v1/N19-1304
https://doi.org/10.48550/ARXIV.2304.05335
https://doi.org/10.48550/ARXIV.2304.05335
https://doi.org/10.48550/ARXIV.2304.05335
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/2022.coling-1.48
https://aclanthology.org/2022.coling-1.48
https://aclanthology.org/2022.coling-1.48
https://aclanthology.org/2022.coling-1.48
https://aclanthology.org/2022.coling-1.48
https://doi.org/10.48550/ARXIV.2304.07575
https://doi.org/10.48550/ARXIV.2304.07575
https://doi.org/10.48550/ARXIV.2304.07575
https://doi.org/10.48550/ARXIV.2304.07575
https://doi.org/10.48550/ARXIV.2304.07575
https://bard.google.com/?hl=en_GB
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.48550/ARXIV.2305.14929
https://doi.org/10.48550/ARXIV.2305.14929
https://doi.org/10.48550/ARXIV.2305.14929
http://arxiv.org/abs/2310.06825
http://www.jstor.org/stable/2332226
http://www.jstor.org/stable/2332226
http://www.jstor.org/stable/2332226
https://openreview.net/pdf?id=_nGgzQjzaRy
https://openreview.net/pdf?id=_nGgzQjzaRy
https://openreview.net/pdf?id=_nGgzQjzaRy
https://doi.org/10.18653/v1/P17-2075
https://doi.org/10.18653/v1/P17-2075
https://doi.org/10.18653/v1/P17-2075

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances in
Neural Information Processing Systems, volume 35,
pages 22199-22213. Curran Associates, Inc.

Klaus Krippendorff. 2011. Computing krippendorff’s
alpha-reliability.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Comput. Surv., 55(9):195:1-195:35.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Man Luo, Xin Xu, Zhuyun Dai, Panupong Pasu-
pat, Seyed Mehran Kazemi, Chitta Baral, Vaiva
Imbrasaite, and Vincent Y. Zhao. 2023. Dr.icl:
Demonstration-retrieved in-context learning. CoRR,
abs/2305.14128.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Itera-
tive refinement with self-feedback. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

OpenAl. 2022. Introducing chatgpt.

OpenAl. 2023a. Gpt-4 api general availability and dep-
recation of older models in the completions api.

OpenAl. 2023b. Gpt-4 technical report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730-27744.
Curran Associates, Inc.

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021.
True few-shot learning with language models. In Ad-
vances in Neural Information Processing Systems 34.:
Annual Conference on Neural Information Process-
ing Systems 2021, NeurlPS 2021, December 6-14,
2021, virtual, pages 11054—-11070.

Ethan Perez, Sam Ringer, Kamile Lukosiute, Karina
Nguyen, Edwin Chen, Scott Heiner, Craig Pettit,
Catherine Olsson, Sandipan Kundu, Saurav Kada-
vath, Andy Jones, Anna Chen, Benjamin Mann,
Brian Israel, Bryan Seethor, Cameron McKinnon,
Christopher Olah, Da Yan, Daniela Amodei, Dario

11

Amodei, Dawn Drain, Dustin Li, Eli Tran-Johnson,
Guro Khundadze, Jackson Kernion, James Landis,
Jamie Kerr, Jared Mueller, Jeeyoon Hyun, Joshua
Landau, Kamal Ndousse, Landon Goldberg, Liane
Lovitt, Martin Lucas, Michael Sellitto, Miranda
Zhang, Neerav Kingsland, Nelson Elhage, Nicholas
Joseph, Noemi Mercado, Nova DasSarma, Oliver
Rausch, Robin Larson, Sam McCandlish, Scott John-
ston, Shauna Kravec, Sheer El Showk, Tamera Lan-
ham, Timothy Telleen-Lawton, Tom Brown, Tom
Henighan, Tristan Hume, Yuntao Bai, Zac Hatfield-
Dodds, Jack Clark, Samuel R. Bowman, Amanda
Askell, Roger Grosse, Danny Hernandez, Deep Gan-
guli, Evan Hubinger, Nicholas Schiefer, and Jared
Kaplan. 2023. Discovering language model behav-
iors with model-written evaluations. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 13387-13434, Toronto, Canada. Associ-
ation for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Delip Rao, Michael Paul, Clay Fink, David Yarowsky,
Timothy Oates, and Glen Coppersmith. 2011. Hierar-
chical bayesian models for latent attribute detection
in social media. In Proceedings of the international

AAAI conference on web and social media, volume 5,
pages 598-601.

Oscar Sainz, Jon Campos, Iker Garcia-Ferrero, Julen
Etxaniz, Oier Lopez de Lacalle, and Eneko Agirre.
2023. NLP evaluation in trouble: On the need to mea-
sure LLLM data contamination for each benchmark.
In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 10776-10787, Sin-
gapore. Association for Computational Linguistics.

Shigeyuki Sakaki, Yasuhide Miura, Xiaojun Ma, Keigo
Hattori, and Tomoko Ohkuma. 2014. Twitter user
gender inference using combined analysis of text and
image processing. In Proceedings of the Third Work-
shop on Vision and Language, pages 54—61, Dublin,
Ireland. Dublin City University and the Association
for Computational Linguistics.

Shibani Santurkar, Esin Durmus, Faisal Ladhak, Cinoo
Lee, Percy Liang, and Tatsunori Hashimoto. 2023.
Whose opinions do language models reflect? In In-
ternational Conference on Machine Learning, ICML
2023, 23-29 July 2023, Honolulu, Hawaii, USA, vol-
ume 202 of Proceedings of Machine Learning Re-
search, pages 29971-30004. PMLR.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In Thirty-seventh Conference on Neural
Information Processing Systems.

Gabriel Simmons. 2023. Moral mimicry: Large lan-
guage models produce moral rationalizations tailored


https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://api.semanticscholar.org/CorpusID:59901023
https://api.semanticscholar.org/CorpusID:59901023
https://api.semanticscholar.org/CorpusID:59901023
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.48550/ARXIV.2305.14128
https://doi.org/10.48550/ARXIV.2305.14128
https://doi.org/10.48550/ARXIV.2305.14128
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://openai.com/blog/chatgpt
https://openai.com/blog/gpt-4-api-general-availability
https://openai.com/blog/gpt-4-api-general-availability
https://openai.com/blog/gpt-4-api-general-availability
http://arxiv.org/abs/2303.08774
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper/2021/hash/5c04925674920eb58467fb52ce4ef728-Abstract.html
https://doi.org/10.18653/v1/2023.findings-acl.847
https://doi.org/10.18653/v1/2023.findings-acl.847
https://doi.org/10.18653/v1/2023.findings-acl.847
https://doi.org/10.18653/v1/2023.findings-emnlp.722
https://doi.org/10.18653/v1/2023.findings-emnlp.722
https://doi.org/10.18653/v1/2023.findings-emnlp.722
https://doi.org/10.3115/v1/W14-5408
https://doi.org/10.3115/v1/W14-5408
https://doi.org/10.3115/v1/W14-5408
https://doi.org/10.3115/v1/W14-5408
https://doi.org/10.3115/v1/W14-5408
https://proceedings.mlr.press/v202/santurkar23a.html
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://doi.org/10.18653/v1/2023.acl-srw.40
https://doi.org/10.18653/v1/2023.acl-srw.40
https://doi.org/10.18653/v1/2023.acl-srw.40
https://doi.org/10.18653/v1/2023.acl-srw.40

to political identity. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 4: Student Research Workshop),
pages 282-297, Toronto, Canada. Association for
Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Michela Del Vicario, Gianna Vivaldo, Alessandro Bessi,
Fabiana Zollo, Antonio Scala, Guido Caldarelli, and
Walter Quattrociocchi. 2016. Echo chambers: Emo-
tional contagion and group polarization on facebook.
CoRR, abs/1607.01032.

MK Vijaymeena and K Kavitha. 2016. A survey on sim-
ilarity measures in text mining. Machine Learning
and Applications: An International Journal, 3(2):19—
28.

Jiaan Wang, Yunlong Liang, Fandong Meng, Zengkui
Sun, Haoxiang Shi, Zhixu Li, Jinan Xu, Jianfeng Qu,
and Jie Zhou. 2023a. Is ChatGPT a good NLG evalu-
ator? a preliminary study. In Proceedings of the 4th
New Frontiers in Summarization Workshop, pages
1-11, Singapore. Association for Computational Lin-
guistics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023b. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net.

Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, Xing-
shan Zeng, Wenyong Huang, Lifeng Shang, Xin
Jiang, and Qun Liu. 2023c. Aligning large lan-
guage models with human: A survey. arXiv preprint
arXiv:2307.12966.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824-24837.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

12

Lanling Xu, Junjie Zhang, Bingqian Li, Jinpeng Wang,
Mingchen Cai, Wayne Xin Zhao, and Ji-Rong Wen.
2024. Prompting large language models for recom-
mender systems: A comprehensive framework and
empirical analysis. arXiv preprint arXiv:2401.04997.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R. Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Yining Ye, Xin Cong, Yujia Qin, Yankai Lin, Zhiyuan
Liu, and Maosong Sun. 2023. Large language
model as autonomous decision maker. CoRR,
abs/2308.12519.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H.
Chi. 2023. Least-to-most prompting enables com-
plex reasoning in large language models. In The
Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net.


https://doi.org/10.18653/v1/2023.acl-srw.40
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
http://arxiv.org/abs/1607.01032
http://arxiv.org/abs/1607.01032
http://arxiv.org/abs/1607.01032
https://doi.org/10.18653/v1/2023.newsum-1.1
https://doi.org/10.18653/v1/2023.newsum-1.1
https://doi.org/10.18653/v1/2023.newsum-1.1
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://openreview.net/pdf?id=WE_vluYUL-X
https://openreview.net/pdf?id=WE_vluYUL-X
https://openreview.net/pdf?id=WE_vluYUL-X
https://doi.org/10.48550/ARXIV.2308.12519
https://doi.org/10.48550/ARXIV.2308.12519
https://doi.org/10.48550/ARXIV.2308.12519
https://openreview.net/pdf?id=WZH7099tgfM
https://openreview.net/pdf?id=WZH7099tgfM
https://openreview.net/pdf?id=WZH7099tgfM

A Baselines

A.1 Baselines Implementation Details

Prompting. ChatGPT  (gpt-3.5-turbo-0613),
ChatGPT-Instruct (gpt-3.5-turbo-instruct-0914),
GPT-4 (gpt-4-0613) are called via OpenAl API
with chat, text, text completion mode respectively
at a temperature of 0.3. Mistral-7B-Instruct-v0.2 is
called via HuggingFace interface*. We use Nucleus
Sampling (Holtzman et al., 2020) with a p = .95
as our decoding strategy. To obtain the embeddings
of opinions for semantic similarity scores’ compu-
tations, we use OpenAl’s text-embedding-ada-002
model with its default setting, following Hwang
et al. (2023). For each sample, ChOiRe requires 5
inference calls, 2 for FEA and LLMtop-K steps,
and 3 for K € {8,10,12}. Therefore, to have a
fair comparison with our method, we sample 5
answers for the Self-Consistency baseline, and 2
rounds of feedback-edit for Self-refine baseline,
for each question.

Fine-tuning. We fine-tune GPT-2 (Radford et al.,
2019) and FlanT5 (Chung et al., 2022) base and
large sizes to verify that ChOiRe’s FEA and
LLMtop-K steps (§3) also help to build better
opinion-aligned models. Both models with two dif-
ferent sizes are initialized from public pre-trained
checkpoints on the Transformers library (Wolf
et al., 2020) of HuggingFace. We use a learning
rate of 1e—5 for FlanT5, and 5e — 5 for GPT-2, and
AdamW (Loshchilov and Hutter, 2018) as our opti-
mizer with a warm-up of 100 steps. FlanTS5 variants
are trained on 50K iterations, and evaluations and
checkpoint-savings are done for each 1000 steps.
GPT-2 base model is trained on 15 epochs and eval-
uated every 300 steps, while GPT-2 large is trained
on only 5 epochs, and the checkpoints are evalu-
ated every 300 steps. All the models are fine-tuned
on a single A100 80GB GPU. We use a window
size of 1024 for both models, and Nucleus Sam-
pling (Holtzman et al., 2020) with a p = .95 as
our decoding strategy, same as API/inference mod-
els. The input format for both models is “Input:
explicit_persona <SEP> implicit_persona
<SEP> question <SEP> answer_choices;
Output: correct_answer” for with per-
sona cases, and “Input: question <SEP>
answer_choices; Output: correct_answer”
for without persona case. The “correct_answer"

*https://huggingface.co/mistralai/
Mistral-7B-Instruct-ve.2
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is an actual text correct answer like “Yes/No”,
unlike APl/inference models where we use
“A/B/C/D". We find that fine-tuning with the tex-
tual correct answer yields significantly better re-
sults compared to “A/B/C/D", while prompting
with “A/B/C/D" for APl/inference models achieve
slightly better results compared to textual output.

B Extra Analysis

B.1 ChOiRe’s Generalization

How Does ChOiRe Perform If Not Enough
Personae Given? We conduct experiments with
ChOiRe in Table 6 using ChatGPT (gpt-3.5-turbo-
1106) under the following conditions of not having
enough explicit and/or implicit personae. Under
these cases, ChOiRe is simplified. Specifically:

* ChOiRe w/o any personae (Step 4 is used):
Without any personae given, Steps 1 (FEA), 2
(LLMtop-K), 3 (CoO) of ChOiRe are deacti-
vated, while Step 4 is still in use. In this case,
Step 4 is simplified to be Self-consistency
(Wang et al., 2023b). We observe a 2.55%
improvement over the baseline DIO-top8 w/o
persona.

ChOiRe w/o explicit persona (Steps 2, 3, 4
are used): Without explicit personae, Step 1
FEA of ChOiRe is deactivated, while Steps 2,
3, 4 are in use. Compared with the baseline
DIO-top8 w/o explicit persona, it is observed
a significant gain up to 4.7% using ChatGPT.

ChOiRe w/o implicit persona (Steps 1, 4
are used): Without implicit persona, Steps
2 (LLMtop-K) and 3 (CoO) of ChOiRe
are deactivated, while Steps 1 (FEA) and
4 (Self-consistency) are utilized. From Ta-
ble 6, ChOiRe significantly improves DIO-
top8 baseline by a 5.95% Accuracy.

In summary, under the missing persona(e) cir-
cumstances, we observe that ChOiRe can general-
ize well and better than the previous SOTA method
DIO-top8 of Hwang et al. (2023).

ChOiRe’s Generalization to Other Tasks. Each
of ChOiRe’s steps holds a similar philosophy with
multiple prior studies proven effective in other per-
sonalized tasks. We specify them below:

* ChOiRe’s Step 1: FEA. Filtering irrelevant
user profile attributes for better classification


https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

Model

ChatGPT/ChatGPT-Inst/GPT-4/Mistral

Guns

Auto. & driverless vehicles

Views on gender

Com. types & sex. harassment

Race

W/o persona
DIO-top8
DIO-top8 + CoT
DIO-top8 + SC

53.07/37.30/——/30.48
53.87/57.00/60.39/44.73
54.55/52.33/——155.48
54.40/52.85/——-156.57

47.73/48.26/——/41.72
45.33/44.78/53.22/41.72
47.22/46.77/——-/49.00
43.73/48.26/——-/52.31

50.53/42.94/——/37.39
53.21/52.15/63.73/40.09
48.11/57.67/——/54.28
55.61/56.44/——-/56.30

47.73/41.67/——-/29.34
43.47/45.24/42.86/35.45
42.39/42.26/——-/42.01
45.33/40.48/——-/42.01

41.95/45.28/——/37.55
43.06/44.65/55.17/41.11

45.63/43.40/——-/49.78
45.00/43.40/——/50.00

ChOiRe ‘ 57.06/58.21/63.37/58.00  49.25/51.92/50.00/53.75 59.23/53.07/71.43/57.78 39.88/44.14/47.96/42.08 42.77/47.28/50.57/51.44
‘ Gender & Leadership ~ America in 2050 Trust in science Biomedical & food issues Misinformation

W/o persona 53.13/50.83/——-/43.51  39.73/39.13/——/41.95 50.40/47.29/——-/48.34 53.87/53.63/——-/53.21 46.93/40.38/——-/53.63

DIO-top8 48.27/54.70/65.55/50.23  46.93/46.20/43.70/35.14 54.93/61.58/61.54/51.65 52.27/55.86/58.03/52.78 49.33/52.11/52.71/50.77

DIO-top8 + CoT
DIO-top8 + SC

48.58/50.83/——-/55.79
49.07/53.60/——-/57.87

43.05/48.91/——-/43.76
45.87/47.83/——-/46.03

54.10/65.02/——-/58.28
56.27/65.52/——-/58.94

56.91/57.54/——-/57.08
53.07/57.54/——/58.58

49.57/53.99/——-/53.19
45.00/53.52/——-/53.85

ChOiRe

52.22/57.78/63.03/57.87

49.46/48.99/45.37/47.50

56.43/55.50/68.46/60.37

54.75/57.26/61.61/58.58

46.45/53.62/57.36/53.85

Privacy & Surveilance

Family & Relati

E L e lity

Global attitudes

Political views

W/o persona
DIO-top8
DIO-top8 + CoT
DIO-top8 + SC

43.24/40.28/——/33.64
53.24/47.22/47.73/43.31

53.38/47.22/——/56.91
54.05/47.22/——/58.06

47.06/44.36/——/46.08
57.22/57.89/62.50/47.42
59.57/55.64/——/54.36
55.35/54.89/——/57.04

43.67/49.15/——/34.07
45.60/51.98/63.81/41.87
47.65/51.98/——/51.45
46.13/51.98/——-/52.76

46.13/46.71/——-/40.42
49.60/57.23/66.67/41.27
46.42/56.58/——-/51.06
46.42/55.26/——-/52.89

40.80/48.95/——/46.20
56.80/46.85/62.07/44.13
53.30/45.45/——/50.80
57.33/47.55/——/51.67

ChOiRe

54.29/53.33/52.27/58.06

60.00/58.77/63.89/58.50

52.33/50.13/64.76/51.89

44.74/55.26/64.58/52.76

51.05/53.74/67.82/53.34

Table 5: Fine-grained accuracy results of ChatGPT/ChatGPT-Instruct/GPT-4/Mistral. DIO stands for Demographic + Ideology

+ Opinions (§4).

Method

W/o persona

ChOiRe w/o any personae (Step 4 is used) ‘

DIO-top8 w/o explicit persona

ChOiRe w/o explicit persona (Steps 2, 3, 4 are used)

DIO-top8 w/o implicit persona

‘ ChatGPT Model ‘ ChatGPT  Mistral-7B-Instruct-v0.2

46.60 DIO-top8 | 5022 44.16
47.79 DIO-top8 + FEA 50.64 44.99

DIO-top8 + Random FEA (S=2000) | 49.47 4223
49.22 DIO-top8 + Random FEA (S=2024) | 48.85 43.36
51.55 DIO-LLMtop8 51.03 45.86
47.16 DIO + Random LLMtop8 (S=2000) | 48.13 4458
49.97 DIO + Random LLMtop8 (S=2024) | 49.21 43.84

ChOiRe w/o implicit persona (Steps 1, 4 are used) ‘

Table 6: ChOiRe’s generalization results under missing per-
sona(e) situations with ChatGPT. We use Accuracy as the

evaluation metric.

and generation outcomes has been studied
widely (Xu et al., 2024). For example, Rao
et al. (2011); Sakaki et al. (2014) filter the
gender information by classifiers; Kim et al.
(2017) consider the age while Demszky et al.
(2019) analyze the personal political polarity.
Our proposed FEA step holds a similar philos-
ophy and can be generalized to and motivative
for the above tasks.

ChOiRe’s Step 2: LLMtop-K. Selecting top-
K most useful individual historical opinions
for the next opinion prediction is philosoph-
ically related to re-ranking items by LLMs
for recommendations (Hou et al., 2024; Xu
et al., 2024) and selecting the most utterances
in dialogue generation (Do et al., 2022). Un-
doubtedly, our Step 2 LLMtop-K can be also
useful for recommendation tasks.

ChOiRe’s Step 3: CoO. Chain-of-Opinion
(Co0) is our new innovation from Chain-of-
Thought (Wei et al., 2022; Kojima et al., 2022).
Essentially, CoO can enhance recommenda-
tion tasks by leveraging historical user views

Table 7: Accuracy results of ChatGPT and Mistral with two
trivial variants with two different random seeds 2000 and 2024
in appendix B.2.

in a better way compared to CoT to improve
the results and provide explainable recommen-
dations.

ChOiRe’s Step 4: Majority voting with the
dynamic number of historical opinions. Our
step is a creative usage of Self-consistency
(Wang et al., 2023b) which is a strong prompt-
ing method for LLMs in reasoning tasks. As
LLM:s are sensitive to selected demonstrations
(Perez et al., 2021; Luo et al., 2023; Gao et al.,
2023), combining answers from prompting
with different historical views can bring more
reliable output by then boosting the perfor-
mance of models. Therefore, this method can
potentially be very useful and motivative for
recommendation tasks.

In summary, ChOiRe’s steps can generalize to
and be motivative for other personalized tasks such
as recommendation, as either proven or philosophi-
cally proven by prior studies.



Model Accuracy | Collapsed Accuracy
ChatGPT 4.11e-11 6.06e-13
ChatGPT-Inst. 9.97e-8 4.45e-5
GPT-4 4.23e-6 1.17e-9
Mistral 6.01e-8 4.12e