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Abstract

Automated fact-checking is a crucial task in001
this digital age. To verify a claim, current ap-002
proaches majorly follow one of two strategies003
i.e. (i) relying on embedded knowledge of lan-004
guage models, and (ii) fine-tuning them with ev-005
idence pieces. While the former can make sys-006
tems to hallucinate, the later have not been very007
successful till date. The primary reason behind008
this is that fact verification is a complex pro-009
cess. Language models have to parse through010
multiple pieces of evidence before making a011
prediction. Further, the evidence pieces often012
contradict each other. This makes the reason-013
ing process even more complex. We proposed014
a simple yet effective approach where we re-015
lied on entailment and the generative ability016
of language models to produce “supporting”017
and “refuting” justifications (for the truthful-018
ness of a claim). We trained language models019
based on these justifications and achieved su-020
perior results. Apart from that, we did a sys-021
tematic comparison of different prompting and022
fine-tuning strategies, as it is currently lack-023
ing in the literature. Some of our observa-024
tions are: (i) training language models with025
raw evidence sentences registered an improve-026
ment up to 8.20% in macro-F1, over the best027
performing baseline for the RAW-FC dataset,028
(ii) similarly, training language models with029
prompted claim-evidence understanding (TBE-030
2) registered an improvement (with a margin031
up to 16.39%) over the baselines for the same032
dataset, (iii) training language models with en-033
tailed justifications (TBE-3) outperformed the034
baselines by a huge margin (up to 28.57% and035
44.26% for LIAR-RAW and RAW-FC, respec-036
tively). We have shared our code repository to037
reproduce the results.038

1 Introduction:039

The spread of misinformation on the internet has040

grown to be a pressing social issue. Its conse-041

quences have manifested across social, political042

and commercial domains (Mozur, 2018; Fisher 043

et al., 2016; Allcott and Gentzkow, 2017; Burki, 044

2019; Aghababaeian et al., 2020). To counter the 045

spread, institutional interventions doing manual 046

fact-checking have gained momentum. For ex- 047

ample, the International Fact-Checking Network 048

(IFCN), started in 2015, works with over 170 fact- 049

checking organisations and websites worldwide (as 050

of July 2024 1). However, manually verifying facts 051

and detecting misinformation is a slow and costly 052

process. Human experts struggle to keep up with 053

the pace of rapid spread. To overcome this, the 054

research community have been trying to automate 055

the process. Their interest can be gauged by the 056

fact that more than twelve hundred research arti- 057

cles and more than fifty datasets were published 058

on this topic (Alnabhan and Branco, 2024; Guo 059

et al., 2022). A detailed list of such related works 060

is reported in the Appendix A. 061

Doing automated fact-checking at scale is still an 062

open challenge. Most of the proposed approaches 063

relied on language models (Shu et al., 2022; Yang 064

et al., 2022a; Yue et al., 2023; Choi and Ferrara, 065

2024a). Researchers have either (i) relied on their 066

embedded knowledge or (ii) used evidence col- 067

lected from various sources to predict the verac- 068

ity. For example, Pan et al. (2021); Zeng and 069

Gao (2023) reported the performance of zero-shot 070

or few-shot prompting for this task. Dhuliawala 071

et al. (2024) showcased that integrating reasoning 072

steps through chain-of-thought prompting reduced 073

model hallucinations. Others relied on external 074

tools such as web search (Galitsky, 2025; Zhang 075

and Gao, 2023) to retrieve the evidence and do fact 076

verification. However, their accuracy is far behind 077

to deploy them for practical purposes. The primary 078

reason behind this is that fact verification is difficult 079

because language models need to look at multiple 080

pieces of information to decide what is true. These 081

1https://www.poynter.org/ifcn/
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pieces often disagree with each other, which makes082

the reasoning process even harder. To counter this,083

Yue et al. (2024) segregated the retrieved evidence084

into ‘supporting’ and ‘opposing’ arguments, allow-085

ing the model to consider each perspective inde-086

pendently, and then they verified each claim using087

few-shot prompting. On a philosophically similar088

line, Wang et al. (2024a) introduced a module to089

extract top-k evidence sets stating the claim to be090

‘true’ and ‘false’ based on attention scores. They091

produced ‘true’ and ‘false’ justifications by promot-092

ing language models based on evidence sentences,093

and further trained the language models to produce094

veracity by training LLMs. We, on the other hand,095

proposed a simple yet effective approach, where we096

relied on (i) the entailment ability of language mod-097

els to classify if evidence sentences are supporting098

or refuting a given claim and (ii) the generative099

ability of language models to produce supporting100

and refuting justifications. A schematic diagram101

of our proposed approach is presented in Figure102

17 (in the Appendix). We believe the simplicity103

of our approach will allow us to easily deploy our104

systems in the real-world. Apart from that, we also105

found that a systematic comparison of different106

prompting and fine-tuning strategies is lacking in107

the literature. To fill this research gap, we designed108

different experiments based on three philosophical109

questions. They are,110

★ R1: "How well do the language models per-111

form when only raw evidence sentences along112

with the claim are available during training113

and inferencing?"114

★ R2: "Does training and inferencing with115

prompted claim-evidence understanding im-116

prove the performance of the language mod-117

els?118

★ R3: "Can training and inferencing with119

prompted entailed justifications improve the120

claim veracity prediction?"121

Our key contributions in this work are,122

• We conducted three training-based (TBE)123

and four inference-based (IBEs) experiments124

along the line of the research questions. We125

gave three types of inputs, i.e, along with the126

claim (i) raw evidence sentences, (ii) overall127

claim-evidence understanding generated by128

language models, and (iii) entailed justifica-129

tions generated by the language models.130

• We conducted a detailed evaluation of model 131

explanations. We considered the entailed jus- 132

tifications generated by language models as 133

model explanations, and evaluated them using 134

two strategies: (i) checking lexical overlap 135

and semantic matching, and (ii) doing subjec- 136

tive evaluation by language models. While 137

in the former, we used ROUGE (Lin, 2004), 138

BLEU (Papineni et al., 2002), and BERT- 139

scores (Zhang et al., 2019), in the latter, we 140

prompted VLLMs to check how informative, 141

accurate, readable, objective, and logical the 142

explanations are. 143

• We conducted an ablation study and a thor- 144

ough error analysis of our models. In the abla- 145

tion study, we removed individual supporting 146

and refuting entailed justifications from input 147

samples and trained the veracity prediction 148

models again. This exercise illustrated the im- 149

portance of individual entailed justifications. 150

In linguistic analysis, on the other hand, we 151

identified (i) the cases where our model suc- 152

ceeds and fails, and (ii) the possible reasons 153

behind it. 154

Some of the interesting observations we got are, 155

• While prompting language models (IBEs) 156

with raw evidence sentences couldn’t outper- 157

form the baselines, training some language 158

models with the same (TBE-1) registered an 159

improvement up to 8.20% in macro-F1 for the 160

RAW-FC dataset. Training Language models 161

with prompted claim-evidence understanding 162

(TBE-2) registered an improvement (with a 163

margin up to 16.39%) over baselines for the 164

RAW-FC dataset. Training language models 165

with entailed justifications (TBE-3) outper- 166

formed the baselines by a large margin (up 167

to 28.57% and 44.26% for LIAR-RAW and 168

RAW-FC, respectively). 169

• Subjective evaluation by language models val- 170

idated the correlations between veracity pre- 171

diction and explanation quality in the best- 172

performing models. For instance, Llama- 173

generated explanations received highest infor- 174

mativeness, readability, objectivity, and logi- 175

cality ratings, which correlates with the high- 176

est macro-f1 it got in veracity prediction. 177

• In the ablation study, we found that the macro- 178

F1 score dropped when the best perform- 179
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ing models were trained without supporting180

(31.48% ↓ in LIAR-RAW and 12.50% ↓ in181

RAW-FC) and refuting justifications (9.26% ↓182

in LIAR-RAW and 9.09% ↓ in RAW-FC).183

Further, discarding both had the maximum184

adverse effect (55.56% ↓ in LIAR-RAW and185

47.73% ↓ in RAW-FC).186

2 Dataset details:187

In this section, we have reported the details of the188

datasets considered in our study. We have used189

the LAIR-RAW and RAW-FC datasets provided190

by Yang et al. (2022b) in our experiments. While191

each sample of LAIR-RAW is tagged with one192

of six labels, samples of RAW-FC is tagged with193

one of three labels. The list of labels and their194

distribution in respective datasets are reported in195

Table 1. The datasets are open-source, i.e., they196

are Apache 2.0 licensed. A detailed description of197

the individual datasets along with representative198

sample is reported in the Appendix B.199

Dataset Classes Count
True (T) 2,021
Mostly-true(MT) 2,439
Half-true (HT) 2,594

LAIR-RAW Barely-true (BT) 2,057
(Yang et al., 2022b) False (F) 2,466

Pants-fire (PF) 1,013
Total 12,590
True (T) 695

RAW-FC Half-true (HT) 671
(Yang et al., 2022b) False (F) 646

Total 2,012

Table 1: Datasets Statistics

3 Experiments:200

In this section, we have reported the details of the201

experiments we conducted as part of this study. We202

conducted two types of experiments- (i) training-203

based (TBE), and (ii) inference-based (IBE). As204

their name suggests, in TBE approaches, we fine-205

tuned various language models to predict the verac-206

ity labels based on customised inputs. Particularly,207

(i) we fine-tuned large language models (LLMs)208

like RoBERTa (Liu et al., 2019) and XLNet (Yang209

et al., 2019), and (ii) we fine-tuned very large lan-210

guage models (VLLMs) like Mistral (Jiang et al.,211

2023), Llama (AI@Meta, 2024), Gemma (Team212

et al., 2024), Qwen (Yang et al., 2024) and Fal-213

con (Almazrouei et al., 2023) models using LoRA214

(Hu et al., 2022) and LoRA+ (Hayou et al., 2024)215

adapters. Note that, unlike LLMs, we can not di- 216

rectly fine-tune VLLMs due to their large param- 217

eter size and computational constraints. Similarly, 218

in IBE approaches, we prompted the considered 219

VLLMs to predict veracity labels without explicitly 220

training them for it. We considered the same set 221

of LLMs and VLLMs in all of our experiments 222

reported in this study. The details of individual 223

experiments in each category are reported in the 224

subsequent subsections. We have also reported the 225

current state-of-the-art models as the baselines. 226

3.1 Training Based Experiments (TBE): 227

In this section, we have reported the details of three 228

training-based experiments we have considered in 229

our study. Each of them is based on a unique re- 230

search philosophy. The details of individual ap- 231

proaches are reported in the subsequent subsec- 232

tions. 233

3.1.1 TBE-1: Training based on 234

raw-evidences: 235

In the first experiment, we tried to answer "How 236

well do the language models perform when raw 237

evidence sentences are available during training?". 238

To answer this, we fine-tuned the language models 239

by giving claims and raw evidence sentences as 240

input. For the samples which don’t have associ- 241

ated raw-evidence sentences, we gave claims as the 242

only input. Here, we restricted ourselves from fine- 243

tuning LLMs like RoBERTa (Liu et al., 2019) and 244

XLNet (Yang et al., 2019), as the input length of 245

many samples exceeded the maximum supported 246

input size of these language models. Past work 247

(Cheung and Lam, 2023) demonstrated the effec- 248

tiveness of VLLM finetuning using evidence pieces 249

from web search, whereas in our case, we used the 250

gold evidence sentences given in the dataset. The 251

emergence of adapter-based training for VLLMs 252

allowed us to do this, as they can be trained with 253

large input texts. To the best of our knowledge, 254

we believe we are the first to fine-tune the VLLMs 255

using raw evidence sentences. The approach we 256

followed in TBE-1 is illustrated in sub-figure (a) 257

of Figure 1. 258

3.1.2 TBE-2: Training based on overall 259

understanding: 260

In the second experiment, we tried to answer "Does 261

training with VLLM-generated claim-evidence un- 262

derstanding improve the performance of the lan- 263

guage models?. To conduct this experiment, we 264
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Figure 1: Illustration of steps we followed in different experiments. Sub-figure (a) presents the case where only raw
evidence sentences and claims are given as input. This approach is used in TBE-1 and IBE-1. In TBE-1, we trained
the adapters (with VLLMs) using these inputs, whereas in IBE-1, we prompted VLLMs using zero-shot promptings.
Sub-figure (b) shows the overall process of TBE-2, IBE-2 and IBE-3. In TBE-2, the training of LLMs and VLLMs
with adapters were done with the help of claim-evidence understandings generated by VLLMs. However, in IBE-2
and IBE-3, we used zero-shot and CoT based prompting for final veracity prediction. Sub-figure (c) illustrates the
overall experimental process of TBE-3 and IBE-4. Here, first, we generate the entailment labels ("supporting" or
"refuting") for individual evidence sentences for a given claim. We prompted the considered VLLMs to do the
same. Subsequently, we clubbed the supporting and refuting evidence sentences and prompted VLLMs to generate
justifications supporting and refuting the given claim. Lastly, based on the generated justifications, we generated the
claim veracity by (i) training the LLMs and VLLMs with adapters as part of TBE-3, and (ii) prompting the VLLMs
as a part of IBE-3.

first prompted the five considered VLLMs to gen-265

erate their understanding of a given claim and its266

evidence sentence set. For the samples which don’t267

have an associated evidence sentence, VLLMs gen-268

erated their understandings based on the embedded269

knowledge. Based on the understanding, we fine-270

tuned the LLMs (such as RoBERTa (Liu et al.,271

2019) and XLNet (Yang et al., 2019)) and trained272

the adapters (LoRA (Hu et al., 2022) and LoRA+273

(Hayou et al., 2024)) with the considered VLLMs274

to produce the claim veracity. The detailed exper-275

imental process is illustrated in sub-figure (b) of276

Figure 1. Some of the prompt samples are pre-277

sented in the appendix (Figure 18).278

3.1.3 TBE-3: Training based on entailment279

understanding:280

In the third experiment, we tried to answer "Can281

training with VLLM-generated entailing justifica-282

tions improve the claim veracity prediction?". To283

conduct this experiment, we followed a three-step284

approach. In the first step, we prompted the con-285

sidered five VLLMs to classify if the evidence sen- 286

tences are “supporting" or “refuting" a given claim. 287

Our approach is inspired by the L-Defense model 288

proposed by Wang et al. (2024a), where the authors 289

used an attention mechanism to distinguish sup- 290

porting and refuting evidence sentences. We, how- 291

ever, used the VLLMs for the same. In the second 292

step, we prompted the language models to generate 293

supporting and refuting justifications based on the 294

classified evidence sentences. For the cases where 295

claims don’t have any supporting or refuting evi- 296

dence sentences, VLLMs generated justifications 297

based on their embedded knowledge. We sepa- 298

rately passed the supporting and refuting evidence 299

sentences associated with a claim in the prompts to 300

generate them. Finally, based on the claims and the 301

generated justifications, we (i) fine-tuned the LLMs 302

(such as RoBERTa (Liu et al., 2019) and XLNet 303

(Yang et al., 2019)), and (ii) fine-tuned the adapters 304

(LoRA (Hu et al., 2022) and LoRA+ (Hayou et al., 305

2024)) with considered VLLMs to generate the ve- 306
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racity labels. The detailed approach is illustrated in307

sub-figure (c) of Figure 1. Some prompt samples308

we used at each step are illustrated in Figure 19,309

Figure 20, and Figure 21 in the appendix.310

3.2 Inference Based Experiments (IBE):311

We have experimented with four types of inference-312

based approaches, each based on a unique prompt-313

ing philosophy. They are (i) zero-shot prompting314

(IBE-1), where we have prompted five considered315

VLLMs to predict the veracity label given a claim316

and its associated evidence sentences, (ii) zero-317

shot prompting with overall understanding (IBE-318

2), where, first, we prompted the five considered319

VLLMs to generate the claim-evidence understand-320

ing and then, we prompted them again to with the321

understanding to predict the veracity labels, (iii)322

CoT prompting with overall understanding (IBE-323

3), where we followed similar steps as mentioned in324

IBE-2, except, additionally, we asked the VLLMs325

to generate step-by-step reasoning behind their pre-326

dictions, and (iv) prompting based on entailment327

(IBE-4), where we prompted the VLLMs to pre-328

dict veracity labels based on entailed justifications.329

Due to space constraints, we have reported the de-330

tails of individual approaches in the appendix. For331

the cases where claims don’t have associated ev-332

idence sentences, we gave the claim as only in-333

put (in TBE-1), generated understandings and jus-334

tifications based on the embedded knowledge of335

VLLMs.336

3.3 Baselines:337

In this section, we have reported the previously338

proposed best-performing models as the baselines.339

Particularly, we compared our models with the per-340

formances of HiSS (Zhang and Gao, 2023), FactL-341

LaMa (Cheung and Lam, 2023), RAFTS (Yue et al.,342

2024), and L-Defence (Wang et al., 2024a) mod-343

els. Out of them, HiSS (Zhang and Gao, 2023) and344

FactLLaMa (Cheung and Lam, 2023) retrieve ev-345

idence from external sources, while RAFTS (Yue346

et al., 2024) employs a coarse-to-fine retrieval tech-347

nique to extract evidence directly from the dataset.348

In contrast, L-Defense (Wang et al., 2024a) used349

relevant evidence without additional retrieval. The350

previously reported performance of these models351

on LIAR-RAW and RAW-FC datasets are pre-352

sented in Table 2. A detailed description of the353

individual models is presented in the Appendix354

C.5.355

Method LIAR-RAW RAWFC

MP MR MF1 MP MR MF1
HiSS 0.46 0.31 0.37 0.53 0.54 0.53
FactLLaMA 0.32 0.32 0.30 0.56 0.55 0.55
RAFTS 0.47 0.37 0.42 0.62 0.52 0.57
L-Defense

-ChatGPT 0.30 0.32 0.30 0.61 0.61 0.61
-Llama2 0.31 0.31 0.31 0.61 0.60 0.60

(0.29†) (0.29†) (0.29†) (0.56†) (0.56†) (0.56†)

Table 2: Performance of the considered baseline meth-
ods on the LIAR-RAW and RAWFC datasets. Notation:
our reproduced results are marked as ‘†’.

Dataset (−→) LIAR-RAW RAW-FC

TBE-1 TBE-1

Method (↓) MP MR MF1 MP MR MF1

LORA
-Mistral 0.44 0.29 0.27 0.69 0.65 0.65

(±0.02) (±0.01) (±0.01) (±0.01) (±0.00) (±0.01)
-Llama 0.34 0.30 0.30 0.68 0.64 0.65

(±0.01) (±0.02) (±0.00) (±0.01) (±0.02) (±0.02)
-Gemma 0.27 0.25 0.23 0.60 0.58 0.57

(±0.02) (±0.03) (±0.04) (±0.05) (±0.04) (±0.06)
-Qwen 0.37 0.29 0.29 0.67 0.66 0.66

(±0.02) (±0.02) (±0.04) (±0.03) (±0.03) (±0.03)
-Falcon 0.39 0.28 0.26 0.59 0.58 0.54

(±0.01) (±0.01) (±0.01) (±0.03) (±0.05) (±0.06)

LORA+
-Mistral 0.40 0.27 0.25 0.53 0.56 0.55

(±0.03) (±0.02) (±0.01) (±0.05) (±0.03) (±0.02)
-Llama 0.34 0.29 0.29 0.67 0.64 0.65

(±0.01) (±0.01) (±0.01) (±0.01) (±0.01) (±0.01)
-Gemma 0.27 0.23 0.22 0.61 0.57 0.57

(±0.02) (±0.02) (±0.03) (±0.03) (±0.02) (±0.03)
-Qwen 0.36 0.29 0.29 0.70 0.65 0.65

(±0.01) (±0.01) (±0.02) (±0.02) (±0.02) (±0.02)
-Falcon 0.37 0.30 0.29 0.64 0.62 0.63

(±0.02) (±0.01) (±0.02) (±0.03) (±0.03) (±0.03)

Table 3: Performance of LoRA and LoRA+ models on
TBE-1 (LIAR-RAW and RAW-FC datasets).

4 Results and Discussion: 356

In this section, we have reported the results from 357

all of our experiments. While we used macro- 358

precision, macro-recall and macro-F1 scores to 359

evaluate the veracity, ROUGE, BLEU and BERT- 360

score, along with subjective evaluation by VLLMs, 361

were made to evaluate the explanations. A detailed 362

description of evaluation metrics is reported in sub- 363

section C.6.4 in the appendix. 364

4.1 Observations from TBE-1: 365

We reported the performance of various models for 366

TBE-1, i.e. training with raw evidence sentences 367

as input in Table 3. We found that LoRA adapter 368

trained with Llama VLLM resulted in the highest 369

F1 score of 0.30 for the LIAR-RAW dataset. While 370

this performance is comparable to the performance 371

of baseline models L-Defense (F1: 0.31) and 372
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FactLLaMA (F1: 0.30), it does not surpass the per-373

formance of other baselines, i.e. HiSS (F1: 0.37)374

and RAFTS (F1: 0.42). However, for the RAWFC375

dataset, we found that many models, such as Mis-376

tral with LoRA (F1: 0.65, ∼ 6.56% ↑), Llama377

with LoRA (F1: 0.65, ∼ 6.56% ↑), Qwen with378

LoRA (F1: 0.66, ∼ 8.20% ↑), Llama with LoRA+379

(F1: 0.65, ∼ 6.56% ↑), Qwen with LoRA+ (F1:380

0.65, ∼ 6.56% ↑) and Falcon with LoRA+ (F1:381

0.63, ∼ 3.28% ↑), outperform the best baseline382

performance (F1: 0.61). Here, ∼ x% ↑ de-383

notes the relative percentage improvement com-384

pared to the best baseline score. Qwen trained with385

LoRA resulted in the overall highest F1-score (0.66,386

∼ 8.20% ↑). We have reported some additional ob-387

servations in the appendix section D.1.388

4.2 Observations from TBE-2:389

We reported the performance of various models390

for TBE-2, i.e. training with claim-evidence un-391

derstanding as input in table 4. We found that392

Mistral trained with LoRA resulted in the high-393

est macro-F1 (0.32) for the LIAR-RAW dataset.394

While its performance surpasses the performance395

of baselines FactLLaMA (MF1 : 0.30) and L-396

Defense (MF1 : 0.31), it is still behind HiSS397

(MF1 : 0.37) and RAFTS (MF1 : 0.42). How-398

ever, for the RAW-FC dataset, we observed that399

many models, such as XLNet fine-tuned on Llama400

based understandings (MF1 : 0.62, ∼ 1.64% ↑),401

and Llama trained (with Llama understandings)402

with LoRA+ (MF1 : 0.71, ∼ 16.39% ↑) out-403

performed the best reported macro-F1 score by404

the baselines (MF1 : 0.61). Llama trained (with405

Llama understandings) with LoRA+ adapter re-406

sulted in the highest overall performance (MF1 :407

0.71, ∼ 16.39% ↑). We have reported some ad-408

ditional observations in the section D.2 of the ap-409

pendix due to space constraints.410

4.3 Observations from TBE-3:411

We reported the performance of various models412

for TBE-3, i.e. training with entailed justifications413

generated by VLLMs as input in table 4. We found414

that XLNet fine-tuned on Llama based entailed jus-415

tification resulted in the highest macro-F1 (0.54,416

∼ 28.57% ↑) for the LIAR-RAW dataset. Many417

models, such as RoBERTa fine-tuned with Mis-418

tral (MF1 : 0.47, ∼ 16.39% ↑), Llama (MF1 :419

0.52, ∼ 23.81% ↑), Gemma (MF1 : 0.48, ∼420

14.29% ↑), Qwen (MF1 : 0.46, ∼ 9.52% ↑),421

and Falcon (MF1 : 0.44, ∼ 4.76% ↑) based en-422

tailed justifications, XLNet fine-tuned with Mistral 423

(MF1 : 0.47, ∼ 16.39% ↑), Llama (MF1 : 0.54, 424

∼ 28.57% ↑), Qwen (MF1 : 0.48, ∼ 14.29% ↑), 425

and Falcon (MF1 : 0.44, ∼ 4.76% ↑) based en- 426

tailed justifications, and Llama trained (with Llama 427

justifications) with LoRA+ adapter (MF1 : 0.49, 428

∼ 16.67% ↑) surpassed the best reported macro- 429

F1 score of baselines (MF1 : 0.42). In a similar 430

manner, for the RAW-FC dataset, we observed that 431

many models, such as such as RoBERTa fine-tuned 432

with Mistral (MF1 : 0.83, ∼ 36.07% ↑), Llama 433

(MF1 : 0.88, ∼ 44.26% ↑), Qwen (MF1 : 0.71, 434

∼ 16.39% ↑), and Falcon (MF1 : 0.64, ∼ 435

4.91% ↑) based entailed justifications, XLNet fine- 436

tuned with Mistral (MF1 : 0.82, ∼ 34.42% ↑), 437

Llama (MF1 : 0.87, ∼ 42.62% ↑), Qwen (MF1 : 438

0.70, ∼ 14.75% ↑), and Falcon (MF1 : 0.74, ∼ 439

21.31% ↑) based entailed justifications, and Llama 440

trained (with Llama justifications) with LoRA+ 441

adapter (MF1 : 0.83, ∼ 36.07% ↑) outperformed 442

the best reported macro-F1 score by the baselines 443

(MF1 : 0.61). RoBERTa fine-tuned with Mistral 444

based entailed justification achieved the highest 445

overall performance (MF1 : 0.88, ∼ 44.26% ↑). 446

We have reported some additional observations in 447

the Appendix section D.3. 448

4.4 Observations from IBEs’: 449

We reported the performance of various models in 450

IBEs in Table 11. For LIAR-RAW dataset, Mis- 451

tral achieved the highest macro-F1 (0.22) in IBE-1. 452

While in IBE-2, Llama achieved the highest perfor- 453

mance (MF1 : 0.22), Mistral, Llama, Qwen and 454

Falcon (MF1 : 0.21) gave the highest performance 455

in IBE-3. In IBE-4, Mistral (MF1 : 0.14) and Fal- 456

con (MF1 : 0.14) got the highest performance. 457

None of the macro-F1 could surpass the baseline 458

performances. In contrast, for RAW-FC dataset, 459

Llama (MF1 : 0.62) achieved the highest perfor- 460

mace in IBE-2, surpassing the highest baseline per- 461

formance (MF1 : 0.61). While Qwen attained the 462

highest performance in IBE-1 (MF1 : 0.59), sur- 463

passing the baselines HiSS (MF1 : 0.53), FactL- 464

LaMa (MF1 : 0.55) and RAFTS (MF1 : 0.57), 465

it is still behind the performance of L-Defense 466

(MF1 : 0.61). Similarly, Qwen got the highest 467

performance in IBE-3 (MF1 : 0.52). In IBE-4, 468

Mistral and Qwen achieved the highest macro-F1 469

of 0.43, which is far behind all baselines. We have 470

reported some additional observations in the Ap- 471

pendix (section D.4) 472
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Dataset (−→) LIAR-RAW RAW-FC

Method (↓) TBE-2 TBE-3 TBE-2 TBE-3

MP MR MF1 MP MR MF1 MP MR MF1 MP MR MF1

FINE-TUNING

-RoBERTa-LMistral 0.28 0.26 0.26 0.48 0.47 0.47 0.51 0.50 0.50 0.83 0.82 0.83
(±0.01) (±0.01) (±0.01) (±0.01) (±0.00) (±0.01) (±0.01) (±0.01) (±0.01) (±0.00) (±0.01) (±0.01)

-RoBERTa-LLlama 0.27 0.28 0.25 0.53 0.53 0.52 0.50 0.50 0.49 0.88 0.88 0.88
(±0.02) (±0.01) (±0.02) (±0.01) (±0.01) (±0.01) (±0.01) (±0.01) (±0.01) (±0.01) (±0.01) (±0.01)

-RoBERTa-LGemma 0.28 0.27 0.27 0.49 0.50 0.48 0.51 0.51 0.50 0.50 0.49 0.49
(±0.02) (±0.01) (±0.01) (±0.01) (±0.02) (±0.02) (±0.04) (±0.03) (±0.04) (±0.02) (±0.01) (±0.02)

-RoBERTa-LQwen 0.30 0.28 0.28 0.48 0.47 0.46 0.51 0.49 0.48 0.73 0.71 0.71
(±0.01) (±0.02) (±0.01) (±0.01) (±0.02) (±0.01) (±0.01) (±0.01) (±0.02) (±0.02) (±0.02) (±0.02)

-RoBERTa-LFalcon 0.29 0.28 0.27 0.49 0.43 0.44 0.50 0.48 0.48 0.65 0.64 0.64
(±0.02) (±0.02) (±0.01) (±0.01) (±0.02) (±0.01) (±0.00) (±0.01) (±0.01) (±0.02) (±0.02) (±0.02)

-XLNet-LMistral 0.29 0.28 0.28 0.49 0.47 0.47 0.62 0.61 0.61 0.83 0.82 0.82
(±0.02) (±0.01) (±0.01) (±0.00) (±0.01) (±0.01) (±0.02) (±0.01) (±0.02) (±0.01) (±0.01) (±0.01)

-XLNet-LLlama 0.31 0.29 0.29 0.55 0.54 0.54 0.63 0.63 0.62 0.88 0.88 0.87
(±0.02) (±0.01) (±0.01) (±0.01) (±0.02) (±0.01) (±0.03) (±0.03) (±0.03) (±0.01) (±0.01) (±0.01)

-XLNet-LGemma 0.26 0.26 0.25 0.47 0.43 0.42 0.51 0.50 0.50 0.47 0.47 0.46
(±0.02) (±0.02) (±0.02) (±0.04) (±0.05) (±0.09) (±0.01) (±0.01) (±0.01) (±0.02) (±0.02) (±0.02)

-XLNet-LQwen 0.29 0.29 0.28 0.50 0.48 0.48 0.60 0.58 0.58 0.70 0.70 0.70
(±0.02) (±0.02) (±0.02) (±0.01) (±0.01) (±0.01) (±0.02) (±0.01) (±0.01) (±0.03) (±0.03) (±0.04)

-XLNet-LFalcon 0.26 0.26 0.24 0.45 0.44 0.44 0.61 0.60 0.60 0.76 0.75 0.74
(±0.03) (±0.01) (±0.03) (±0.01) (±0.02) (±0.01) (±0.02) (±0.01) (±0.01) (±0.01) (±0.01) (±0.01)

LORA
-Mistral 0.36 0.32 0.32 0.35 0.34 0.29 0.61 0.60 0.60 0.69 0.59 0.58

(±0.01) (±0.01) (±0.01) (±0.04) (±0.03) (±0.03) (±0.04) (±0.04) (±0.04) (±0.05) (±0.05) (±0.05)
-Llama 0.31 0.27 0.25 0.36 0.32 0.30 0.48 0.48 0.46 0.63 0.62 0.61

(±0.04) (±0.03) (±0.04) (±0.03) (±0.03) (±0.04) (±0.06) (±0.03) (±0.02) (±0.03) (±0.03) (±0.03)
-Gemma 0.21 0.22 0.18 0.26 0.23 0.20 0.47 0.45 0.40 0.36 0.34 0.30

(±0.01) (±0.01) (±0.01) (±0.03) (±0.03) (±0.02) (±0.03) (±0.03) (±0.05) (±0.02) (±0.01) (±0.02)
-Qwen 0.32 0.27 0.21 0.40 0.36 0.32 0.56 0.54 0.53 0.48 0.46 0.46

(±0.09) (±0.02) (±0.02) (±0.07) (±0.07) (±0.05) (±0.07) (±0.0) (±0.03) (±0.03) (±0.03) (±0.03)
-Falcon 0.28 0.26 0.23 0.27 0.24 0.21 0.56 0.57 0.53 0.43 0.0.40 0.41

(±0.01) (±0.00) (±0.01) (±0.03) (±0.03) (±0.02) (±0.03) (±0.01) (±0.00) (±0.01) (±0.03) (±0.03)

LORA+
-Mistral 0.33 0.30 0.30 0.30 0.32 0.27 0.66 0.60 0.60 0.52 0.48 0.46

(±0.01) (±0.01) (±0.01) (±0.07) (±0.02) (±0.03) (±0.05) (±0.05) (±0.05) (±0.06) (±0.04) (±0.04)
-Llama 0.27 0.24 0.23 0.49 0.50 0.49 0.73 0.71 0.71 0.84 0.82 0.82

(±0.01) (±0.02) (±0.02) (±0.03) (±0.02) (±0.02) (±0.02) (±0.02) (±0.02) (±0.01) (±0.03) (±0.03)
-Gemma 0.23 0.21 0.20 0.34 0.32 029 0.53 0.51 0.51 0.52 0.48 0.46

(±0.03) (±0.02) (±0.02) (±0.04) (±0.05) (±0.06) (±0.02) (±0.02) (±0.04) (±0.03) (±0.04) (±0.01)
-Qwen 0.27 0.27 0.24 0.33 0.34 0.29 0.57 0.48 0.43 0.52 0.49 0.47

(±0.04) (±0.03) (±0.04) (±0.03) (±0.03) (±0.03) (±0.07) (±0.03) (±0.01) (±0.06) (±0.09) (±0.09))
-Falcon 0.33 0.28 0.28 0.39 0.39 0.36 0.55 0.56 0.53 0.58 0.52 0.50

(±0.00) (±0.01) (±0.02) (±0.02) (±0.03) (±0.04) (±0.03) (±0.02) (±0.03) (±0.01) (±0.02) (±0.03)

Table 4: Performance of claim veracity prediction using gold evidences. Green and Blue indicates best and
second-best performance, respectively.

4.5 Comparing the performances across TBEs473

and IBEs:474

In this section, we have reported our findings by475

comparing the best-performing models across all476

TBEs and IBEs. The comparison is also illus-477

trated in Figure 22, Figure 23 and Figure 24 in478

the Appendix D.5. For the LIAR-RAW dataset,479

we found that none of the models from any IBEs,480

TBE-1 and TBE-2 (MF1: 0.14 - 0.32) could sur-481

pass the highest F1 achieved in baselines (MF1:482

0.42). However, we observed that TBE-1 and TBE-483

2 (MF1: 0.30 - 0.32, ∼ 45.45% ↑) outperformed484

IBEs (MF1: 0.22) in terms of the highest reported 485

macro-F1. Further, we also found that many mod- 486

els from TBE-3 (MF1: 0.44 - 0.54, ∼ 68.75% ↑) 487

outperform all of the models of IBEs (MF1: 0.14 488

- 0.22), TBE-1 (MF1: 0.30) and TBE-2 (MF1: 489

0.32). For the RAW-FC dataset, we observed a 490

similar comparative performance. However, here, 491

the highest reported macro-F1 by IBE-2 (0.62) is 492

comparable to the best-performing baseline (MF1: 493

0.61). Similar to the LIAR-RAW dataset, here also 494

we observed that (i) many TBE-1 and TBE-2 mod- 495

els (MF1: 0.62 - 0.71, ∼ 14.52% ↑) outperform 496

IBEs (0.62) in terms of macro-F1, and (ii) many 497
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Dataset (−→) LIAR-RAW RAW-FC

Method (↓) IBE-1 IBE-2 IBE-3 IBE-4 IBE-1 IBE-2 IBE-3 IBE-4

MP MR MF1 MP MR MF1 MP MR MF1 MP MR MF1 MP MR MF1 MP MR MF1 MP MR MF1 MP MR MF1
PROMPTING

-Mistral 0.24 0.25 0.22 0.22 0.23 0.20 0.40 0.23 0.21 0.30 0.17 0.14 0.54 0.54 0.53 0.58 0.58 0.58 0.50 0.52 0.45 0.45 0.46 0.43
-Llama 0.24 0.23 0.20 0.30 0.23 0.22 0.26 0.22 0.21 0.22 0.13 0.13 0.56 0.56 0.54 0.62 0.63 0.62 0.45 0.47 0.49 0.42 0.39 0.35
-Gemma 0.24 0.21 0.19 0.16 0.16 0.13 0.27 0.19 0.16 0.09 0.16 0.11 0.40 0.40 0.40 0.41 0.38 0.38 0.45 0.41 0.40 0.27 0.31 0.24
-Qwen 0.27 0.23 0.20 0.25 0.23 0.20 0.24 0.22 0.21 0.13 0.16 0.13 0.61 0.58 0.59 0.58 0.57 0.57 0.57 0.54 0.52 0.50 0.46 0.43
-Falcon 0.24 0.23 0.20 0.22 0.22 0.20 0.24 0.23 0.21 0.16 0.17 0.14 0.56 0.57 0.54 0.60 0.59 0.57 0.60 0.52 0.48 0.40 0.38 0.37

Table 5: Performance of Prompting methods across IBE-1, IBE-2, and IBE-3 settings for LIAR-RAW and RAW-FC
datasets.

TBE-3 models (MF1: 0.64 - 0.88, ∼ 23.94% ↑)498

outperform all of the models of IBEs (MF1: 0.43499

- 0.62), TBE-1 (MF1: 0.65 - 0.66) and TBE-2500

(MF1: 0.62 - 0.71). The whole comparison points501

to the fact that training the LLMs with VLLM-502

generated entailed-justifications can improve the503

performance of veracity prediction. We have re-504

ported some additional observations in the section505

D.5 of the appendix due to space constraints. Fur-506

ther, we have also presented the confusion metrics507

of best-performing TBE and IBE models for LIAR-508

RAW and RAW-FC datasets in Figure 37 and 38509

respectively.510

4.6 Insights from evaluation of explanations:511

In this section, we reported our findings from eval-512

uating model explanations. We obtained them by513

concatenating the supporting and refuting justifi-514

cations. The details of the metrics and evaluation515

scores are provided in Appendix C.6.4 and Ap-516

pendix D.6, respectively. We observed that lexical517

overlap measures like ROUGE (R1, R2, RL) pro-518

vided mixed signals. For instance, while Falcon519

generated explanations showed higher unigram-520

based overlaps (R1: 0.23 for LIAR-RAW and R1:521

0.40 for RAW-FC), Mistral generated explanations522

got the highest overlap in longest common subse-523

quences (RL: 0.14 for LIAR-RAW and RL: 0.18524

for RAW-FC). However, all models scored consis-525

tently low on the BLEU score and the BERT score.526

On the other hand, subjective evaluations indicated527

that Llama-generated explanations were rated high-528

est by the majority of language models for dimen-529

sions like informativeness, readability, objectivity,530

and logicality for both datasets. These high sub-531

jective ratings seem to be correlated with better532

veracity prediction performance, as RoBERTa and533

XLNet performed well upon taking Llama expla-534

nations. A more detailed discussion on the obser-535

vations of ‘evaluation of explanations’ is presented536

in Appendix D.6.537

5 Conclusion: 538

• Training language models with VLLM en- 539

tailed justifications surpassed the baseline 540

macro-F1 scores substantially with an im- 541

provement of 28.57% and 44.26% for LIAR- 542

RAW and RAW-FC, respectively. The ap- 543

proach of training with claim-evidence un- 544

derstanding (TBE-2) secured the second spot, 545

with an increment of 16.39% in the RAW-FC 546

dataset compared to the best baseline macro- 547

F1. In contrast, the inference-based methods 548

(IBEs) were unable to understand the justifi- 549

cations generated from VLLM and performed 550

consistently poorly. 551

• While lexical overlap and semantic matching 552

methods showed no definite pattern, the sub- 553

jective evaluation of model explanations by 554

VLLMs found that Llama generated model 555

explanations are more informative, readable, 556

objective, and logical. It correlates with the 557

superior performance reported by XLNet and 558

RoBERTa (in TBE-3) for veracity prediction 559

as they took Llama generated justifications as 560

input. 561

• The role of VLLM entailed justification as a 562

second step in TBE-3 is justified in the ab- 563

lation study (see Appendix E) where we ob- 564

served that removing supporting and refuting 565

justification adversarially affected the scores. 566

• In the linguistic analysis of model explana- 567

tions, we found that LLM could attend to 568

supporting and refuting keywords and fac- 569

tual pieces of information for samples labelled 570

with ‘true’ and ‘false’ veracity samples. How- 571

ever, for samples with other veracity labels 572

LLM attention seem to be scattered. A de- 573

tailed discussion is presented in Appendix F 574

due to space constraints. 575
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6 Limitations:576

In this section, we reported the limitations of our577

work.578

• We restricted our experiments to using only579

open-source language models, for repro-580

ducibility and resource constraints. However,581

expanding these experiments to commercial582

language models will further generalize the583

idea of claim-evidence entailment.584

• Due to our limited linguistic expertise, we585

restricted our experiments to an English-586

language setup only. In the future, our hy-587

pothesis can also be tested in other languages.588

• In our work, we assumed a closed-domain589

fact-checking setup for reproducibility. In590

future, one can consider open-domain fact-591

checking, i.e., retrieve evidence from an exter-592

nal source and test our hypothesis for general-593

isation.594

• Due to space constraints, we restricted our595

experiments to the task of fact-checking and596

utilised two popular datasets. A wider testing597

of our hypothesis on various other datasets598

could help us know the applicability of our599

idea of utilising entailment.600

• Due to resource constraints, we could not eval-601

uate the model-generated explanations manu-602

ally. One can extend the study by integrating603

human evaluation of the explanations.604
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Appendix1066

A Related works:1067

The NLP community has long been focusing on1068

the core and peripheral tasks of automated fact-1069

checking. Several datasets and methodologies have1070

been proposed in the past, spanning different do- 1071

mains, languages, and task frameworks. In the 1072

following, we have reported the past literature for 1073

(i) monolingual fact-checking, (ii) multi-lingual 1074

and multi-modal fact-checking, (iii) explainable 1075

fact-checking, and (iv) associated tasks in this area. 1076

Apart from that, we have also reported how our 1077

work fills the current research gap. 1078

A.1 Monolingual fact-checking: 1079

Here, we reported the past works for monolingual 1080

fact-checking. Specifically, we focused on two as- 1081

pects, i.e. datasets and approaches. We found sev- 1082

eral datasets focusing on text-based fact-checking 1083

in the monolingual domain. Some of the popular 1084

ones are, FEVER (Thorne et al., 2018), FEVER- 1085

OUS (Aly et al., 2021), VITAMIN-C (Schuster 1086

et al., 2021), LIAR-RAW and RAW-FC (Yang 1087

et al., 2022b). Thorne et al. (2018) produced one 1088

of the earlier famous datasets, FEVER, consisting 1089

of around 185K, claims which were extracted from 1090

the Wikipedia corpus. Annotators tagged them 1091

with three distinct labels: ‘Supported’, ‘Refuted’ or 1092

‘NotEnoughInfo’ (NEI). LIAR-RAW and RAWFC 1093

datasets were constructed by Yang et al. (2022b). 1094

RAW-FC consists of around 2K claims with associ- 1095

ated raw reports collected from the Snopes 2 web- 1096

site. They were annotated for three labels, namely, 1097

‘true’, ‘half-true’, and ‘false’. On the other hand, 1098

the LIAR-RAW dataset was an extension of the 1099

LIAR-PLUS (Alhindi et al., 2018) dataset. The au- 1100

thors accompanied each claim with raw reports, 1101

and expert annotators labelled the claims with 1102

one label out of six: ‘pants-fire’, ‘false’, ‘barely- 1103

true’, ‘half-true’, ‘mostly-true’ and ‘true’. The 1104

samples are domain-agnostic and mainly used to 1105

train general-domain fact-checking models. Addi- 1106

tionally, we have domain-specific datasets as well. 1107

For example, PUBHEALTH dataset proposed by 1108

Kotonya and Toni (2020b) does fact-checking in 1109

the healthcare domain. It consists of 11.8K claims, 1110

where each claim is annotated and tagged with one 1111

of the following four labels: ‘true’, ‘false’, ‘mix- 1112

ture’, and ‘unproven’. Similarly, the SciClaimHunt 1113

dataset by Kumar et al. (2025) focused on scientific 1114

claim verification. Here, each claim is labelled as 1115

positive or negative based on the evidence provided 1116

in the scientific research papers. A complete list 1117

of datasets focusing on automated fact-checking is 1118

reported in Guo et al. (2022); Vladika and Matthes 1119

2https://www.snopes.com/
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(2023); Zeng et al. (2021).1120

From a methodological point of view, the choice1121

of fact-checking systems was closely tied to the1122

datasets and task frameworks. Early approaches1123

(DAGAN et al., 2010; Bowman et al., 2015) as-1124

sessed whether each retrieved evidence supports or1125

refutes a claim as an entailment task.1126

A.2 Mutli-lingual and multi-modal fact1127

checking1128

The need to address misinformation across vari-1129

ous languages and media formats have expanded1130

the field of fact-checking into multilingual and1131

multi-modal domains. In multilingual settings,1132

datasets such as FakeCovid (Shahi and Nandini,1133

2020), which focuses on COVID-19 misinforma-1134

tion covering 40 languages, and X-Fact (Gupta1135

and Srikumar, 2021) covering 25 languages and di-1136

verse domains. Prior surveys (Wang et al., 2024b;1137

Singhal et al., 2024) provided a complete list of1138

datasets and methods ranging from machine learn-1139

ing classifiers to LLM based techniques used for1140

multi-lingual fact-checking. In parallel, a com-1141

prehensive survey by Akhtar et al. (2023a) high-1142

lighted the evolution of multi-modal fact checking1143

domain. Several datasets have emerged to support1144

this line of research such as FactDrill (Singhal et al.,1145

2022) which combines video, audio, image, text,1146

and metadata, while r/Fakeddit (Nakamura et al.,1147

2020), MuMiN (Nielsen and McConville, 2022),1148

MOCHEG dataset (Yao et al., 2023), and Factify-21149

(Suryavardan et al., 2023) focused on image-text1150

pairs only. Gupta et al. (2022) introduced a novel1151

multi-lingual multimodal misinformation (MMM)1152

dataset which integrated three Indian languages1153

into multimodal fact-checking domain. In terms1154

of modeling, early approaches used CNN-based1155

models, such as ResNet (Sabir et al., 2019), and1156

VGG16 (Amerini et al., 2019). Later on, studies in-1157

tegrated recurrent networks such as LSTM (Güera1158

and Delp, 2018) to give better verdict. In the fol-1159

lowing years, researchers used CNN-LSTM hybrid1160

(Tufchi et al., 2023) and transformers based models1161

such as ViT (Wodajo and Atnafu, 2021). Recently,1162

pretrained models have gained pace into multi-1163

modal fact checking (Zhang et al., 2020; Cekinel1164

et al., 2025). Several studies (Akhtar et al., 2023b;1165

Tufchi et al., 2023) highlighted the list of datasets1166

and methods used for multi-modal fact checking.1167

A.3 Explainable fact-checking: 1168

Explainability has emerged as a critical re- 1169

quirement for trustworthy fact-checking systems. 1170

Kotonya and Toni (2020a); Eldifrawi et al. (2024) 1171

illustrated the recent advancements in this domain 1172

through comprehensive surveys. Alhindi et al. 1173

(2018) created the LIAR-PLUS dataset, extend- 1174

ing the LIAR dataset, by including justification 1175

from long ruling comments. Except for general 1176

domain, explanability has also entered into more in- 1177

tricate domains like healthcare (Kotonya and Toni, 1178

2020b). In multi-modal contexts, MOCHEG (Yao 1179

et al., 2023) introduced the first end-to-end dataset 1180

to include structured explanations, bridging the 1181

gap between multi-modal fact verification and in- 1182

terpretability. Early methods relied on attention 1183

mechanisms (i.e., highlighting high-attention to- 1184

kens) to pinpoint evidence span for explanation 1185

(Popat et al., 2018). But critiques said attention 1186

weights often misrepresent true model reasoning 1187

and lack accessibility for non-experts (Pruthi et al., 1188

2020). Rule-based systems (Gad-Elrab et al., 2019) 1189

improved transparency but restricted scope to struc- 1190

tured claims and pre-defined data. More recent 1191

textual explanation models face challenges like hal- 1192

lucination in abstractive outputs (Maynez et al., 1193

2020). Out of them, our proposed method utilized 1194

the ‘Justification-Then-Veracity’ pipeline, as men- 1195

tioned in Eldifrawi et al. (2024), for reliable fact- 1196

checking. 1197

A.4 Associated tasks: 1198

There are various associated tasks along with fact- 1199

checking such as claim check-worthiness, rumour 1200

detection, stance detection, etc. Claim check- 1201

worthiness (Wright and Augenstein, 2020) is re- 1202

quired before jumping directly into fact verification. 1203

Another related task, rumour detection (Dougrez- 1204

Lewis et al., 2022; Gorrell et al., 2019) identifies 1205

unverified claims in real-time, often using prop- 1206

agation patterns. Stance detection gauges public 1207

reactions to prioritize claims (Baly et al., 2018). 1208

Exaggeration detection (Patro and Baruah, 2021) is 1209

another task where similar statements are compared 1210

to find which of them is a more exaggerated version. 1211

Credibility detection (Patro and Rathore, 2020) as- 1212

sesses the trustworthiness of topics discussed in so- 1213

cial media. Clickbait detection (Chakraborty et al., 1214

2016) identifies the online content (headlines or 1215

titles) specially designed to attract users to click. 1216
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A.5 Research gap:1217

Prior work by Yue et al. (2024) took retrieved evi-1218

dences to generate supporting and opposing argu-1219

ments for independent evaluation, and utilized few-1220

shot prompting for claim verification. Similarly,1221

Wang et al. (2024a) split relevant evidences into1222

supporting or refuting categories relying on a com-1223

plex attention mechanism. However, both of them1224

suffer from key limitations: Yue et al. (2024)’s1225

method did not consider dividing evidence set1226

that may contain contradictory statements, whereas1227

Wang et al. (2024a)’s complex attention mecha-1228

nism discarded some useful information by focus-1229

ing only on the top-k evidences based on the at-1230

tention score. Here, we argue that VLLMs, with1231

their broad understanding of language can instead1232

analyse how each evidence supports (entails) or1233

refutes the claim. Further, with their ability to pro-1234

cess long input text, VLLMs can consolidate the1235

whole support and refute evidence set to gener-1236

ate respective justification. To test this hypothesis,1237

we compared it with various training-based and1238

inference-based methods. To the best of our knowl-1239

edge, our work is the first to use claim-evidence1240

entailment in VLLMs for this task, ensuring no1241

evidence is overlooked.1242

B Additional details on datasets:1243

In this section, we reported a detailed discussion1244

of the considered datasets. Additionally, we have1245

also presented some samples and statistics for the1246

datasets for better illustration.1247

B.1 LIAR-RAW (Yang et al., 2022b):1248

LIAR-RAW (Yang et al., 2022b) consists of 12,5901249

claims, each paired with raw reports collected from1250

news articles, press releases, and web pages. LIAR-1251

RAW builds upon the LIAR-Plus dataset (Alhindi1252

et al., 2018) by adding crowd-sourced raw reports.1253

Authors have retrieved up to 30 raw reports for each1254

claim via the Google API using claim keywords.1255

Claims were collected from a well-known fact-1256

checking website, i.e. Politifact3, which provided1257

gold veracity labels. To ensure quality, they ex-1258

cluded fact-checking site reports, those published1259

after the verdict, and reports under 5 words or1260

over 3,000 words. After filtering, the final dataset1261

had 10,065 training instances, 1,274 validation in-1262

stances, and 1,251 test instances. Expert annotators1263

manually assigned one of six fine-grained veracity1264

3https://www.politifact.com

labels to each claim. The labels they considered are: 1265

“pants-fire” (completely false), “false”, “barely- 1266

true” (contains minimal truth but is mostly false), 1267

“half-true” (equally true and false, with a signifi- 1268

cant mix of both), “mostly-true” (predominantly 1269

true with minor inaccuracies) and “true”. A sam- 1270

ple from the dataset is presented in Table 6 for il- 1271

lustration. We have also studied the claim-evidence 1272

distribution, where we clubbed the claims based on 1273

the number of evidence sentences they have. The 1274

distribution is illustrated in Figure 2. We found 1275

that (i) the majority of claims have no evidence 1276

sentences, (ii) more than a thousand of claims have 1277

one evidence sentence, and (iii) 170+ claims have 1278

more than fifty evidence sentences associated with 1279

them. 1280

0 1 2-5 6-2
0

21
-50 >50

Number of Evidence

0

1000

2000

3000

4000
N

um
be

r 
of

 C
la

im
s

4706

1609

2854
2487

762

172

Figure 2: Bar plot showing number of claims v/s number
of evidences for LIAR-RAW dataset

B.2 RAW-FC (Yang et al., 2022b): 1281

RAWFC dataset, introduced by (Yang et al., 1282

2022b), has 2,012 claims. Authors collected claims 1283

from Snopes4 website and retrieved relevant raw 1284

reports using claim keywords via the Google API. 1285

For each claim, up to 30 raw reports were gathered 1286

from various web sources. To ensure quality, re- 1287

ports from fact-checking sites and those published 1288

after the fact-checking verdict were excluded. Re- 1289

ports shorter than 5 words or longer than 3,000 1290

words were also removed. Expert annotators man- 1291

ually assigned one of the three veracity labels to 1292

each claim. The labels used for the annotation 1293

are: “true” (entirely accurate), “half-true” (par- 1294

tially true but includes misleading information), 1295

and “false” (entirely false). A sample from the 1296

dataset is presented in Table 7 for illustration. We 1297

have studied the claim-evidence distribution for 1298

this dataset as well. We created buckets based on 1299

evidence sentence counts and gathered the claims 1300

4https://www.snopes.com
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Dataset: LIAR-RAW (Yang et al., 2022b)
Event_id: “5209.json”
Claim: “Suzanne Bonamici supports a plan that will cut choice for Medicare Advantage
seniors.”
Label: “half-true”
Explain: “The Affordable Care Act was designed to save money by slowing future spending,
including future spending on Medicare Advantage plans. But spending still goes up. In
addition, many outside factors can affect the cost and range of benefits, making it impossible
to know how Medicare Advantage might change. While the statement from Cornilles is
partially accurate, it is taken out of context and ignores important details on a politically
volatile subject.”
Evidences:
E1: “So I hope , a we move forward , we will focus on that approach to modernize Medicare
and Medicaid , an approach that improve the quality of care while we reduce the cost of care
, rather than simply offload those cost onto senior .”,
E2: “ So some of the save we achieve , a significant amount of save we achieve , be in reduce
these overpayment , these huge subsidy , to the private Medicare Advantage plan .”,
E3: “In addition to the issue with Part D benefit design and plan flexibility , there be
transaction such a rebate , pharmacy fee , and other form of compensation that occur in the
supply chain that pose several issue .”,
E4: “ The ACA have help slow the growth in health care cost , it be close the doughnut hole
for senior , and have encourage and improved access to mental health service and preventive
care .”

Table 6: Example entry from the LIAR-RAW dataset. It contains five key fields: (i) an identifier ‘Event_id’, (ii) the
‘claim’ to be fact-checked, (iii) the ground-truth ‘Label’, (iv) an explanation (‘Explain’) that clarifies its ground
truth, and (v) the evidence sentences (E1–E4) extracted from the underlying fact-checking article.

belonging to individual buckets. The distribution1301

is illustrated in Figure 3. We found that (i) around1302

750 claims have twenty to fifty evidence sentences1303

associated with them, and (ii) more than five hun-1304

dred claims have fifty or more evidence sentences1305

associated with them.1306
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Figure 3: Bar plot showing number of claims v/s number
of evidences for RAW-FC dataset

C Additional Details on Experiments: 1307

In this section, we have reported additional details 1308

on our experiments. Particularly, we described in- 1309

dividual IBEs, provided additional details on base- 1310

lines and experimental setups. 1311

C.1 IBE-1: Zero-shot prompting: 1312

In this experiment, we have tried to answer "How 1313

well the VLLMs can predict the claim veracity 1314

if raw evidence sentences are provided in the in- 1315

put?" To conduct this experiment, we prompted 1316

five VLLMs by giving claims and associated ev- 1317

idence sentences as input. Some of the prompt 1318

samples are showcased in Figure 4 and Figure 5 1319

for illustration. In past, researchers have tried zero- 1320

shot prompting for this task; however, either (i) 1321

they gave only claims without evidence sentences 1322

(Zhang and Gao, 2023), or (ii) they relied on ev- 1323

idence retrieved from web searches (Cheung and 1324

Lam, 2023). 1325
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Dataset: RAW-FC (Yang et al., 2022b)
Event_id: “247609”
Claim: “Right-wing commentator Bill Mitchell tweeted \"someone let me know\" when
55,000 Americans have died from COVID-19 coronavirus disease.”
Label: “true”
Explain: “In late April 2020, a month-old tweet posted by right-wing Twitter commentator
Bill Mitchell received new attention amid tragic circumstances.\n Feeding on a conservative
media talking point that the COVID-19 coronavirus disease pandemic isn\u2019t as serious as
officials say, Mitchell tweeted on March 21, 2020:\u201cWhen COVID-19 reaches 51 million
infected in the US and kills 55,000, someone let me know.\u201d\nSome readers asked if the
statement (displayed above) was a real tweet posted by Mitchell, and it is.\nSadly, as of this
writing, the U.S. has surpassed 55,000 fatalities from COVID-19. The Centers for Disease
Control and Prevention (CDC) reports that as of May 1, 2020, there are 1,062,446 COVID-19
cases in the U.S. and 62,406 deaths.\nSocial media users wasted no time posting comments
directed at Mitchell, reminding him of his statement.\n\nBecause the tweet in question
was published from Mitchell\u2019s Twitter account, we rate this claim\u201cCorrect
Attribution.\u201d"
Evidences:
E1: “On March 21, Bill Mitchell tweet, \u2018 When COVID-19\u2026kills 55,000 , let me
know.”,
E2: “ In it , Hannan write that \u2018 [ COVID-19 ] be unlikely to be as lethal a the more
common form of influenza that we take for granted.”,
E3: “ While I \u2019 d normally be content to mock conspiracy theorist \u2014 I set up a
Twitter account to make fun of bad COVID-19 take \u2014 spread false information about
the pandemic be dangerous , and merit rebuttal.”,
E4: “ \u201d Owens delete the tweet after a Twitter user observe that her claim be not only
false , but appear to be base on a lazy misreading of a Google search result .”,
E5: “ Given the dire situation , it seem worth know if the severity of the pandemic finally
have penetrate the bubble of the most extreme coronavirus scoffer ; if these people and their
follower be ignore safety measure because they believe the pandemic be a false flag to take
away their gun or a Deep State plot to take down Trump , then they risk contribute to the
disease \u2019 s spread .”

Table 7: Example entry from the RAW-FC dataset. It contains five key fields: (i) an identifier ‘Event_id’, (ii) the
‘claim’ to be fact-checked, (iii) the ground-truth ‘Label’, (iv) an explanation (‘Explain’) that clarifies its ground
truth, and (v) the evidence sentences (E1–E4) extracted from the underlying fact-checking article.
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Figure 4: IBE-1 (LIAR-RAW): Prompt used to predict
the veracity of the claim using zero-shot prompting
based on the given evidence sentences and the claim.

C.2 IBE-2: Zero-shot prompting with overall1326

understanding:1327

In this experiment, we have tried to answer "Can1328

zero-shot prompting improve the veracity predic-1329

tion performance if claim-evidence relation under-1330

standings generated by VLLMs are given as in-1331

put?". To conduct this experiment, we followed a1332

two-step prompting strategy. First, we prompted1333

the VLLMs to generate the claim-evidence under-1334

standing like we did in TBE-2. In the next step,1335

we prompted them again with the claim and the1336

generated understanding to predict the veracity la-1337

bels. Some of the prompt samples are presented1338

in the Figure 7 and Figure 8. To the best of our1339

knowledge, nobody has attempted this in past.1340

C.3 IBE-3: CoT (Wei et al., 2022) prompting1341

with overall understanding:1342

In this experiment, we tried to answer Can CoT-1343

based prompting improve the veracity prediction1344

performance if claim-evidence understanding is1345

given in the input?. Here we followed similar steps1346

as mentioned in IBE-2, except in the prompt, we1347

asked the VLLMs to generate step-by-step reason-1348

ing behind their predictions. Prior work (Zhang1349

and Gao, 2023) did a similar attempt. However,1350

they gave evidence collected from web searches.1351

We, on the other hand, relied on the claim-evidence1352

understanding generated by VLLMs. Some of the1353

prompt samples are presented in Figure 10 and1354

Figure 11 for illustration.1355

Figure 5: IBE-1 (RAW-FC): Prompt used to predict the
veracity of the claim using zero-shot prompting based
on the given evidence sentences and the claim.

User Prompt

System Prompt

 f"Here is a claim: \"{claim}\"\n\n"
 f"Here is the evidence: \"{evidences}\"\n\n"
"Based on the provided claim and evidence, what is your overall understanding of
the claim? "
 "Provide a brief overall understanding (not more then 150 words) that captures
the key reasoning between them." 

  You are a helpful assistant. Your job is to read a claim and the raw evidence 
provided for it, and    then explain your overall understanding of the claim 
based on that evidence. Focus on the key points and how the evidence helps in 
understanding the claim. Be objective, neutral, and avoid repetition.

Figure 6: IBE-2: First step, prompt used to generate an
overall understanding of the claim based on the provided
evidence sentences.

C.4 IBE-4: Prompting based on entailment: 1356

In the last inference-based experiment, we tried 1357

to answer "Can prompting with VLLM generated 1358

entailed-justifications enhance language models’ 1359

ability to predict claim veracity?" To conduct 1360

this experiment, we have followed a three-step 1361

approach similar to TBE-3 as described in Sec- 1362

tion 3.1.3. While the initial two steps, i.e. (i) to 1363

classify the evidence sentences as supporting or 1364

refuting a given claim and (ii) generating the justifi- 1365

cations based on classified evidence sentences, are 1366

exactly the same, in the last step, instead of training, 1367

we prompted the VLLMs to generate the veracity. 1368

In past, researchers have prompted the VLLMs 1369

to find entailment for tasks like claim matching 1370

(Choi and Ferrara, 2024b) and counterfactual gen- 1371

eration (Dai et al., 2022). However, to the best of 1372

our knowledge, we are the first to (i) apply it to 1373

classify each evidence into supporting or refuting 1374

categories, and (ii) generate entailed justifications 1375

and use them for fact verification. The detailed 1376
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Figure 7: IBE-2 (LIAR-RAW): Second step, prompt
using zero-shot prompting to directly predict the claim’s
veracity based on the overall understanding.

approach is illustrated in Fig. 1 (c). Some of the1377

prompt samples are show cased in the Figure 12,1378

Figure 13, Figure 14, Figure 15 and 16.1379

C.5 Additional details on baselines:1380

In this section, we reported the details of individual1381

baseline methods considered in our study.1382

• HiSS: It is proposed by Zhang and Gao (2023).1383

Here, authors have proposed a hierarchical1384

step-by-step (a.k.a. HiSS) method where they1385

first decomposed a claim into smaller sub-1386

claims using few-shot prompting. Then they1387

verified each sub-claim step-by-step by rais-1388

ing and answering a series of questions. For1389

each question, they prompted the language1390

models to assess if it is confident in answering1391

or not, and if not, they gave the question to a1392

web search engine. The search results were1393

then inserted back into the ongoing prompt1394

to continue the verification process. Finally,1395

using that information, language models pre-1396

dicted the veracity label for the whole claim.1397

• FactLLaMa: It is proposed by Cheung and1398

Lam (2023). Their approach has two com-1399

ponents: (i) generation of prompts (having1400

instructions, claims and evidence pieces), and1401

(ii) instruction-tuning of a generative pre-1402

trained language model. In the first com-1403

Figure 8: IBE-2 (RAW-FC): Second step, using zero-
shot prompting to predict the claim’s veracity from the
overall understanding.

User Prompt

System Prompt

 f"Here is a claim: \"{claim}\"\n\n"
 f"Here is the evidence: \"{evidences}\"\n\n"
"Based on the provided claim and evidence, what is your overall understanding of
the claim? "
 "Provide a brief overall understanding (not more then 150 words) that captures
the key reasoning between them." 

  You are a helpful assistant. Your job is to read a claim and the raw evidence 
provided for it, and    then explain your overall understanding of the claim 
based on that evidence. Focus on the key points and how the evidence helps in 
understanding the claim. Be objective, neutral, and avoid repetition.

Figure 9: IBE-3: First step, prompt used to generate an
overall understanding of the claim based on the provided
evidence sentences.

ponent, to create the prompt samples, they 1404

combined the instruction, evidence, and in- 1405

put claim into a single sequence, with special 1406

tokens separating them. While the instruc- 1407

tion guides how to incorporate the evidence 1408

for fact-checking, evidence contains relevant 1409

information retrieved from search engines, us- 1410

ing the Google API. As a part of the sec- 1411

ond component they we fine-tuned the LoRA 1412

adapter with Llama as the language model. 1413

• RAFTS: It stands for retrieval augmented 1414

fact verification through the synthesis of con- 1415

trastive arguments. It is proposed by Yue 1416

et al. (2024), where authors retrieve relevant 1417

documents and perform a few-shot fact ver- 1418

ification using pretrained language models. 1419

RAFTS have three components, (i) demon- 1420

stration retrieval, where relevant examples 1421

were collected to included in the input con- 1422

texts, (ii) document retrieval, where authors 1423

proposed a retrieve and re-rank pipeline (us- 1424

ing RAG framework) to accurately identify 1425
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Figure 10: IBE-3 (LIAR-RAW): Second step, prompt
using Chain-of-Thought reasoning to predict the verac-
ity of the claim from the overall understanding.

relevant documents for the input claim, and1426

(iii) few-shot fact verification using support-1427

ing and opposing arguments derived from the1428

facts within the collected documents. How-1429

ever, unlike in our work, they didn’t rely on1430

supporting and opposing justifications (a.k.a.1431

entailed justifications) in their final steps.1432

• L-Defense: The LLM-equipped defense-1433

based explainable fake news detection ap-1434

proach (L-Defense) was proposed by Wang1435

et al. (2024a). Their approach shares some1436

similarity with RAFTS at a philosophical1437

level. The framework consists of three compo-1438

nents: (i) a competing evidence extractor, (ii)1439

a prompt-based reasoning module, and (iii) a1440

defense-based inference module. In the com-1441

peting evidence extractor, authors deployed1442

a natural language inference (NLI) module1443

to associate a “true” or “false” label to each1444

claim for each associated evidence sentence.1445

The NLI module gave two top-k evidence sen-1446

tence sets, each stating a claim to be “true” or1447

“false. In the reasoning module, they prompted1448

language models to generate two separate ex-1449

planations, each for stating a claim to be “true”1450

and “false based on the respective top-k ev-1451

idence set. Finally, in the defense-based in-1452

ference module, they trained the transformer1453

encoders by taking claims and associated two1454

Figure 11: IBE-3 (RAW-FC): Second step, prompt using
Chain-of-Thought reasoning to predict the veracity of
the claim from the overall understanding.

Figure 12: IBE-4: First step prompt used to classify
each evidence sentence as supporting or refuting the
claim.

explanations to predict the veracity. Our ap- 1455

proach is different from the L-Defense as we 1456

(i) deployed VLLMs to classify each evidence, 1457

(ii) we considered all evidences associated 1458

with a claim, and (iii) we fine-tuned LLMs 1459

and adapters with VLLMs for veracity predic- 1460

tion (in TBE-3). 1461

C.6 Experimental set-up: 1462

C.6.1 Training/ test/ validation splits: 1463

We have used the training, validation, and test splits 1464

originally provided by Yang et al. (2022b) in our 1465

experiments. They are essential for the comparison 1466

of our models with the baselines. The distribution 1467

of samples falling under each label and training 1468

splits are reported in Table 10. 1469

C.6.2 Language models: 1470

For prompting, we used five very large language 1471

models (VLLMs). We call them so because of 1472
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Figure 13: IBE-4, Second step prompt used to generate
a supporting justification based on the supporting evi-
dence sentences.

Figure 14: IBE-4, Second step prompt used to generate
a refuting justification based on the refuting evidence
sentences.

their immense parameter size, which prohibits us1473

from fine-tuning them like we do for normal BERT-1474

based language models. We used five VLLMs1475

i.e. Mistral (Jiang et al., 2023), Llama (AI@Meta,1476

2024), Gemma (Team et al., 2024), Qwen (Yang1477

et al., 2024) and Falcon (Almazrouei et al., 2023)1478

in all of our experiments. For fine-tuning, we used1479

LLMs RoBERTa and XLNet in TBE-2 and TBE-3.1480

Apart from that, we also used adapter-based (LoRA1481

(Hu et al., 2022) and LoRA+ (Hayou et al., 2024)1482

adapters) fine-tuning methods for the considered1483

VLLMs. The details of LLMs and VLLMs such1484

as their versions and maximum input size they can1485

take are reported in Table 9.1486

C.6.3 Hyperparameter details:1487

We did an extensive hyperparameter search that led1488

to the optimal performance of our models. The1489

list of hyperparameters for which we trained our1490

models is presented in Table 8. For the VLLMs,1491

we kept the temperature constant at ‘0.001’ for1492

consistency. We conducted all our experiments on1493

two NVIDIA A100 80GB GPU cards.1494

C.6.4 Evaluation metrics:1495

Since we are working in a multi-class classifica-1496

tion framework for veracity prediction, we used1497

standard metrics such as macro-precision (MP ),1498

Figure 15: IBE-4 (LIAR-RAW): Third step prompt used
to predict the veracity of the claim using the supporting
and refuting justifications.

Parameters Values
Learning rate {2e-6, 2e-5, 1e-5}
Optimizer AdamW, Adam
Batch size 8, 16
Patience (Early stop) 2, 3
lora_rank 8
Learning rate {1e-5,1e-4}
lr_scheduler_type cosine
bf16 true

Table 8: Hyperparameters explored during model train-
ing and evaluation.

macro-recall (MR), and macro-f1 (MF ) to eval- 1499

uate our models. To evaluate model explainabil- 1500

ity, we first concatenated the supporting and re- 1501

futing entailed justifications (generated as part of 1502

TBE-3) and considered them as model explana- 1503

tions. The evaluation was done with two types of 1504

strategies: (i) checking lexical overlap and seman- 1505

tic matching, and (ii) doing subjective evaluation 1506

by VLLMs. To check lexical overlap, we used sev- 1507

eral standard evaluation metrics such as ROUGE-1 1508

(R1), ROUGE-2 (R2), ROUGE-L (RL) (Lin, 2004) 1509

and BLEU (Papineni et al., 2002). While R1 and 1510

R2 measure the overlap of unigrams and bigrams 1511

between predicted and gold explanations, RL mea- 1512

sures the longest common subsequence. BLEU, on 1513

the other hand, measures the precision of matching 1514

n-grams between predicted and gold explanations. 1515
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Figure 16: IBE-4 (RAW-FC): Third step prompt used
to predict the veracity of the claim using the supporting
and refuting justifications.

Model Max. length Version
RoBERTa 1k roberta-large
XLNet 1k xlnet-large-cased
Mistral 32k mistralai/Mistral-7B-Instruct-v0.3
Llama 128k meta-llama/Llama-3.1-8B-Instruct
Gemma 8k google/gemma-7b-it
Qwen 1M Qwen/Qwen2.5-7B-Instruct-1M
Falcon 8k tiiuae/Falcon3-7B-Instruct

Table 9: Language model details. Here, ‘Max. length’
denotes the maximum sequence length allowed by the
particular model.

To measure the semantic matching between pre-1516

dicted and gold explanations, we deployed BERT1517

score (Zhang et al., 2019). It generates contextual1518

embeddings of predicted and gold explanations and1519

calculates cosine similarity between them. To do1520

the subjective evaluation, we prompted the consid-1521

ered VLLMs (a.k.a evaluating VLLMs) to asses1522

the model explanations generated by each VLLM1523

(generating VLLM). The VLLMs were asked to1524

asses across five dimensions (i) informativeness,1525

(ii) logicality, (iii) objectivity, (iv) readability and1526

(v) accuracy (Zheng et al., 2025). The prompt tem-1527

plate used for the assessment is presented in Figure1528

25.1529

D Additional Results and Discussion:1530

D.1 Additional observations from TBE-1:1531

• We found that Mistral trained with LoRA1532

adapter resulted in the highest macro-1533

precision (0.44) for the LIAR-RAW dataset.1534

While it surpasses the performance of base-1535

lines such as FactLLaMA (MP : 0.32,1536

Veracity prediction

Evidence consolidation

Entailment

Claim: U.S. Senator Elizabeth Warren listed 

her race as 'American Indian'  on her 1986 

Texas State Bar registration card.

E1: The card was signed by Warren.

E2: Warren apologized to the Cherokee Nation.

En: She wrote 'American Indian'  under race.

Support

Refute

Support

Supporting justif ication

Refuting justif ication

VLLM

VLLM

Claim; Supporting evidences= {Ei | Ei 

belongs to     }Support

Claim; Refuting evidences= {Ei | Ei 

belongs to }Refute

Evidences

Supporting justif ication

Refuting justif ication

Claim

Concatenation

Veracity 
(True, False, Half- true, etc.)

LLM

Determine whether an 

evidence 'supports'  or 

' refutes'  a given claim

Generate 

supporting/refuting

 justif ication 

Parameter update: 

Frozen parameters:

Figure 17: A schematic diagram explaining the TBE-3
pipeline which breaks down into three stages. (a) Entail-
ment: Given a claim and its corresponding evidences,
a VLLM first distinguishes evidences into supporting/
refuting evidence via entailment. (b) Evidence consol-
idation: Then the same VLLM consolidates these two
groups into concise supporting and refuting justification.
(c) Veracity prediction: Using the claim and both justifi-
cations, an LLM is trained to predict veracity.

37.50% ↑) and L-Defense (MP : 0.31, ∼ 1537

41.94% ↑), it is still behind HiSS (MP : 1538

0.46) and RAFTS (MP : 0.47). For RAWFC 1539

dataset, however, many models, such as Mis- 1540

tral trained with LoRA adapter (MP : 0.69, ∼ 1541

11.29% ↑), Llama trained with LoRA (MP : 1542

0.68, ∼ 9.68% ↑) and LoRA+ adapters (MP : 1543

0.67, ∼ 8.06% ↑), Qwen trained with LoRA 1544

(MP : 0.67, ∼ 8.06% ↑) and LoRA+ (MP : 1545

0.70, ∼ 12.90% ↑) adapters, outperformed 1546

the best performance reported by the base- 1547

lines (MP : 0.62). Qwen trained with LoRA+ 1548

adapter achieved the highest overall perfor- 1549

mance (MP : 0.70). 1550

• We observed that Llama trained with LoRA 1551

adapter resulted in the highest macro-recall 1552

(0.30) for the LIAR-RAW dataset. It falls be- 1553

hind the macro-recall reported by all baselines 1554

HiSS (MR : 0.31), FactLLaMa (MR : 0.32), 1555

L-Defense (MR : 0.31), and RAFTS (MR : 1556

0.37). However, for the RAW-FC dataset, 1557

we observed that many models, such as Mis- 1558
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Dataset Label Train Val Test
T 1647 169 205
MT 1950 251 238

LAIR-RAW HT 2087 244 263
(Yang et al., 2022b) BT 1611 236 210

F 1958 259 249
PF 812 115 86
T 561 67 67

RAW-FC HT 537 67 67
(Yang et al., 2022b) F 514 66 66

Table 10: Train, val and test distributions. Notations:
T for True, MT for Mostly-true, HT for Half-true, BT
for Barely-true, F for False, PF for Pants-fire and T for
True.

User Prompt

System Prompt

 f"Here is a claim: \"{claim}\"\n\n"
 f"Here is the evidence: \"{evidences}\"\n\n"
"Based on the provided claim and evidence, what is your overall understanding of
the claim? "
 "Provide a brief overall understanding (not more then 150 words) that captures
the key reasoning between them." 

  You are a helpful assistant. Your job is to read a claim and the raw evidence 
provided for it, and    then explain your overall understanding of the claim 
based on that evidence. Focus on the key points and how the evidence helps in 
understanding the claim. Be objective, neutral, and avoid repetition.

Figure 18: TBE-2: Prompt for generating overall under-
standing from the claim and evidence sentences.

tral trained with LoRA adapter (MR : 0.65,1559

∼ 6.56% ↑), Llama trained with LoRA (MR :1560

0.64, ∼ 4.92% ↑) and LoRA+ adapters (MR :1561

0.64, ∼ 4.92% ↑), Qwen trained with LoRA1562

adapter (MR : 0.66, ∼ 8.20% ↑) outper-1563

formed the best reported macro-recall score1564

by the baselines (0.61). Qwen trained with1565

LoRA adapter achieved the highest overall1566

performance (MR : 0.66).1567

D.2 Additional observations from TBE-2:1568

• We found that Mistral trained (with Mistral1569

understandings) with the LoRA adapter re-1570

sulted in the highest macro-precision (0.36)1571

for the LIAR-RAW dataset. While it outper-1572

forms the baselines FactLLaMA (MP : 0.32)1573

and L-Defense (MP : 0.31) models, it is still1574

behind HiSS (MP : 0.46) and RAFTS (MP :1575

0.47). However, for the RAW-FC dataset, we1576

observed that many models, such as XLNet1577

fine-tuned with Llama understandings (MP :1578

0.63, ∼ 1.61% ↑), Mistral trained (with Mis-1579

tral understandings) with LoRA+ (MP : 0.66,1580

∼ 6.45% ↑) and Llama trained (with Llama1581

understandings) with LoRA+ (MP : 0.73,1582

∼ 17.74% ↑) adapters outperformed the best1583

reported macro-precision by the baselines1584

(MP : 0.62). Llama trained (with Llama un-1585

Figure 19: TBE-3: First step prompt used to classify
each evidence sentence as supporting or refuting the
claim.

Figure 20: TBE-3: Second step prompt used to generate
a supporting justification based on the supporting evi-
dence sentences.

derstandings) with LoRA+ adapter resulted 1586

in the overall highest macro-precision (MP : 1587

0.73). 1588

• We found that Mistral trained (with Mistral 1589

understandings) with LoRA adapter gave us 1590

the highest macro-recall (0.32) for LIAR- 1591

RAW dataset. While this performance is 1592

comparable to the performance of baselines 1593

HiSS (MR : 0.31), FactLLaMA (MR : 1594

0.32), and L-Defense (MR : 0.32), it is 1595

still behind RAFTS (MR : 0.37). However, 1596

for the RAW-FC dataset, we observed that 1597

many models, such as Llama trained (with 1598

Llama understandings) with LoRA+ adapter 1599

(MR : 0.71, ∼ 16.39% ↑) and XLNet fine- 1600

tuned with Llama understandings (MR : 1601

0.63, ∼ 3.27% ↑) outperformed the best re- 1602

ported macro-recall score by the baselines 1603

(MR : 0.61). Llama trained (with Llama un- 1604

derstandings) with LoRA+ adapter achieved 1605

the highest macro-recall overall (MR : 0.71 1606

∼ 16.39% ↑). 1607
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Figure 21: TBE-3: Second step prompt used to generate
a refuting justification based on the refuting evidence
sentences.

D.3 Additional observations from TBE-3:1608

• We found that XLNet fine-tuned with Llama1609

entailed justifications gave the highest macro-1610

precision (0.55) for the LIAR-RAW dataset.1611

Many models, such as RoBERTa fine-tuned1612

with Mistral (MP : 0.48, ∼ 2.12% ↑),1613

Llama (MP : 0.53, ∼ 12.76% ↑), Gemma1614

(MP : 0.49, ∼ 4.25% ↑), Qwen (MP : 0.48,1615

∼ 2.12% ↑), and Falcon (MP : 0.49, ∼1616

4.25% ↑) entailed justifications, XLNet fine-1617

tuned with Mistral (MP : 0.49, ∼ 4.25% ↑),1618

Llama (MP : 0.55, ∼ 17.02% ↑), and1619

Qwen (MP : 0.50, ∼ 6.38% ↑) entailed1620

justifications and Llama trained (with Llama1621

entailed justifications) with LoRA+ adapter1622

(MP : 0.49, ∼ 4.25% ↑) surpassed the best1623

reported macro-precision score of baselines1624

(MP : 0.47). Similarly, for the RAW-FC1625

dataset, we observed that many models, such1626

as such as RoBERTa fine-tuned with Mistral1627

(MP : 0.83, ∼ 33.87% ↑), Llama (MP :1628

0.88, ∼ 41.93% ↑), Qwen (MP : 0.73,1629

∼ 17.74% ↑), and Falcon (MP : 0.65, ∼1630

4.83% ↑) entailed justifications, XLNet fine-1631

tuned with Mistral (MP : 0.83, ∼ 33.87% ↑),1632

Llama (MP : 0.88, ∼ 41.93% ↑), Qwen1633

(MP : 0.70, ∼ 12.90% ↑), and Falcon1634

(MP : 0.76, ∼ 22.58% ↑) entailed justi-1635

fications, Mistral trained (with Mistral en-1636

tailed justifications) with LoRA (MP : 0.69,1637

∼ 11.29% ↑), Llama trained (with Llama en-1638

tailed justifications) with LoRA (MP : 0.63,1639

∼ 1.61% ↑) and LoRA+ adapters (MP :1640

0.84, ∼ 35.48% ↑), respectively, surpassed1641

the best macro-precision reported by the base-1642

lines (MP : 0.61). RoBERTa and XLNet fine-1643

tuned with Llama entailed justifications gave1644

the highest macro-precision (MP : 0.88).1645

• We observed that XLNet fine-tuned with 1646

Llama entailed justifications gave the high- 1647

est macro-recall (0.54) for the LIAR-RAW 1648

dataset. Many models, such as RoBERTa fine- 1649

tuned with Mistral (MR : 0.47, ∼ 27.02% ↑), 1650

Llama (MR : 0.53, ∼ 43.24% ↑), Gemma 1651

(MR : 0.50, ∼ 35.14% ↑), Qwen (MR : 1652

0.47, ∼ 27.02% ↑), and Falcon (MR : 0.43, 1653

∼ 16.22% ↑) entailed justification, XLNet 1654

fine-tuned with Mistral (MR : 0.47, ∼ 1655

27.02% ↑), Llama (MR : 0.54, ∼ 45.95% ↑), 1656

Gemma (MR : 0.43, ∼ 16.22% ↑), Qwen 1657

(MR : 0.48, ∼ 29.73% ↑), and Falcon 1658

(MR : 0.44, ∼ 18.92% ↑) entailed justifica- 1659

tions, Llama trained (with Llama entailed jus- 1660

tifications) with LoRA+ adapter (MR : 0.50, 1661

∼ 35.14% ↑) and Falcon trained (with Falcon 1662

entailed justifications) with LoRA+ adapter 1663

(MR : 0.39, ∼ 5.41% ↑) surpassed the best 1664

reported macro-recall score of the baselines 1665

(MR : 0.37). Similarly, for the RAW-FC 1666

dataset, we observed that many models, such 1667

as such as RoBERTa fine-tuned with Mistral 1668

(MR : 0.82, ∼ 34.43% ↑), Llama (MR : 1669

0.88, ∼ 44.26% ↑), Qwen (MR : 0.71, 1670

∼ 16.39% ↑), and Falcon (MR : 0.64, ∼ 1671

4.92% ↑) entailed justifications, XLNet fine- 1672

tuned with Mistral (MR : 0.82, ∼ 34.43% ↑), 1673

Llama (MR : 0.88, ∼ 44.26% ↑), Qwen 1674

(MR : 0.70, ∼ 14.75% ↑), and Falcon 1675

(MR : 0.75, ∼ 22.95% ↑) entailed justifi- 1676

cations, Llama trained (with Llama entailed 1677

justifications) with LoRA (MR : 0.62, ∼ 1678

1.64% ↑) and LoRA+ adapter (MR : 0.82, ∼ 1679

34.43% ↑) surpassed the best reported macro- 1680

precision score of baselines (MR : 0.61). 1681

RoBERTa and XLNet fine-tuned on Llama 1682

entailed justifications gave the highest overall 1683

performance (MR : 0.88). 1684

D.4 Additional observations from IBEs: 1685

• For LIAR-RAW dataset, we observed that 1686

Qwen gave the highest macro-precision (0.27) 1687

in IBE-1. While in IBE-2, Llama achieved 1688

the highest macro-precision (MP : 0.27), 1689

Mistral gave the highest macro-precision in 1690

IBE-3 (MP : 0.27) and IBE-4 (MP : 0.27). 1691

However, none of them could surpass the 1692

baselines. In contrast, for RAW-FC dataset, 1693

Qwen (MP : 0.61), Llama (MP : 0.62), 1694

and Falcon (MP : 0.60) achieved highest 1695

macro-precision in IBE-1, IBE-2, and IBE-3 1696
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respectively. They are comparable to the high-1697

est macro-precision reported by the baseline1698

(MP : 0.62). Similarly, Qwen (MP : 0.50)1699

got the best macro-precision in IBE-4, which1700

is far behind the baselines.1701

• For LIAR-RAW dataset, Mistral achieved the1702

highest macro-recall (0.25) in IBE-1. While1703

in IBE-2, Mistral, Llama and Qwen achieved1704

the highest macro-recall (MR : 0.23), for1705

IBE-3 Mistral and Falcon (MR : 0.23) gave1706

the highest scores. None of them could sur-1707

pass the baseline performances. Similarly,1708

they achieved highest scores in IBE-4 (MR :1709

0.17). In contrast, for RAW-FC dataset,1710

Llama (MR : 0.63, ∼ 3.29% ↑) achieved1711

highest performace in IBE-2, surpassing the1712

highest baseline performance (MR : 0.61).1713

While Qwen attained the highest performance1714

in IBE-1 (MR : 0.58), surpassing the base-1715

lines HiSS (MR : 0.54), FactLLaMa (MR :1716

0.55) and RAFTS (MR : 0.52), it is still be-1717

hind the performance of L-Defense (MR :1718

0.61). Similarly, Qwen got the highest per-1719

formance in IBE-3 (MR : 0.54), which sur-1720

passed the baseline RAFTS (MR : 0.52), but1721

it is still behind the performance of HiSS1722

(MR : 0.54), FactLLaMa (MR : 0.55), and1723

L-Defense (MR : 0.61). In IBE-4, Mistral1724

and Qwen achieved the highest macro-recall1725

of 0.46, which is far behind all baselines.1726

D.5 Additional observations from comparing1727

the performance of TBEs and IBEs:1728

• We compared the macro-precision scores of1729

best-performing models across TBEs and1730

IBEs and presented them in Figure 23 for il-1731

lustration. For the LIAR-RAW dataset, none1732

of the models from IBEs, TBE-1, or TBE-21733

(MP : 0.27 - 0.44) could exceed the high-1734

est macro-precision reported by the baseline1735

(MP : 0.47). However, some models in TBE-1736

1 and TBE-2 achieved higher macro-precision1737

(0.36 - 0.44, ∼ 10.00% ↑) than the IBEs1738

(MP : 0.27 - 0.40). Moreover, several TBE-31739

models (MP : 0.48 - 0.55, ∼ 25.00% ↑) out-1740

performed all models in IBEs (MP : 0.27 -1741

0.40), TBE-1 (MP : 0.44), and TBE-2 (MP :1742

0.36). For the RAW-FC dataset, we observed1743

similar comparative results. Here, the high-1744

est macro-precision reported by an IBE-21745

(0.62) model was nearly the same as the best-1746

performing baseline (MP : 0.62). But, none 1747

of the models from IBEs (MP : 0.50 - 0.62) 1748

were able to surpass the baseline (MP : 0.62). 1749

Similar to the LIAR-RAW dataset, here we 1750

found that (i) many TBE-1 and TBE-2 mod- 1751

els (MP : 0.63 - 0.73, ∼ 17.74% ↑) out- 1752

performed the IBE models (0.50-0.62), and 1753

(ii) many TBE-3 models (MP : 0.63 - 0.88, 1754

∼ 20.55% ↑) outperformed all of the mod- 1755

els in IBEs (0.50-0.62), TBE-1 (MP : 0.64 - 1756

0.70) and TBE-2 (MP : 0.63 - 0.73). 1757

• We have also compared the macro-recall 1758

scores of the best-performing models across 1759

TBEs and IBEs and presented them in Fig- 1760

ure 24. In the LIAR-RAW dataset, none of 1761

the models from IBEs, TBE-1 and TBE-2 1762

(MR: 0.17 - 0.32) could outperform the high- 1763

est baseline macro-recall (0.37). However, 1764

some models in TBE-1 and TBE-2 got bet- 1765

ter macro-recall (0.30 - 0.32, ∼ 28.00% ↑) 1766

compared to the models in IBEs (0.25). Fur- 1767

ther, several TBE-3 models (MR: 0.43 - 0.54, 1768

∼ 68.75% ↑) outperformed models in IBEs 1769

(MR: 0.17 - 0.25), TBE-1 (MR: 0.30), and 1770

TBE-2 (MR: 0.32) in terms of the highest re- 1771

ported macro-recall. In the RAW-FC dataset, 1772

we observed a similar trend. The highest 1773

macro-recall reported by a model in IBE-2 1774

(0.63, ∼ 3.28% ↑) surpassed all baselines 1775

(0.61) by a small margin, whereas macro- 1776

recall from other IBEs remained significantly 1777

low (0.46 - 0.58). Consistent with LIAR- 1778

RAW results, (i) various TBE-1 and TBE- 1779

2 models (MR: 0.62 - 0.71, ∼ 12.70% ↑) 1780

outperformed IBEs (MR: 0.46 - 0.63), and 1781

(ii) many TBE-3 models (MR: 0.64 - 0.88, 1782

∼ 23.94% ↑) surpassed all models in IBEs 1783

(MR: 0.46 - 0.63), TBE-1 (MR: 0.62 - 0.66) 1784

and TBE-2 (MR: 0.63 - 0.71), showing a sig- 1785

nificant improvement in terms of the highest 1786

reported macro-recall. 1787

• The confusion metrics for best-performing 1788

TBE and IBE models for LIAR-RAW and 1789

RAW-FC datasets are illustrated in Figure 37 1790

and Figure 38, respectively. For LIAR-RAW 1791

dataset, TBE-3 recorded the highest number 1792

of correct predictions (CP) for the labels “true 1793

(CP : 186)”, “mostly-true (CP : 135)”, “false 1794

(CP : 195)”, “pants-fire (CP : 41)”. For “half- 1795

true (CP : 105)” IBE-4 achieved the most cor- 1796
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(b) Macro-F1 Scores for RAW-FC including IBE and TBE models.

Figure 22: Comparison of Macro-F1 scores across LIAR-RAW and RAW-FC datasets.

rect predictions, while TBE-2 performed best1797

for “barely-true (CP : 115)”. Similarly, for1798

RAW-FC dataset, TBE-3 recorded the highest1799

number of correct predictions for the labels1800

“true (CP : 60)”, “half (CP : 62)”, “false (CP1801

: 55)”, surpassing other methods in correctly1802

classifying these labels. These results showed1803

that TBE-3 is effectively handling the label-1804

wise distinction in the LIAR-RAW dataset.1805

Here, CP denotes the number of correct pre-1806

dictions.1807

D.6 Detailed observations from evaluation of 1808

explanations: 1809

In this section, we have reported our observations 1810

from the evaluation of model explanations. The 1811

details of evaluation metrics and approaches are 1812

reported in the section C.6.4. The results of lexical- 1813

overlapping and semantic-matching based evalua- 1814

tion are reported in Table 11. Similarly, the results 1815

of subjective evaluation are reported in Figure 26 1816

and 27 (see Table 12 for raw values). Some of the 1817

key findings we got are, 1818

• Explanations generated by Falcon got high- 1819

est R1 score for both LIAR-RAW (0.23) and 1820

RAW-FC (0.40). It indicates that Falcon- 1821
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(a) Macro-precision Scores for LIAR-RAW including IBE and TBE models.
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Figure 23: Comparison of Macro-precision scores across LIAR-RAW and RAW-FC datasets.

generated explanations show maximum un-1822

igram overlap with the gold explanations pro-1823

vided in the datasets. Similarly, explana-1824

tions generated by Mistral got the highest RL1825

score for both LIAR-RAW (0.14) and RAW-1826

FC (0.18). While Falcon too got the high-1827

est RL for LAIR-RAW (0.14), it fell behind1828

for RAW-FC (0.17) by a small margin. Sim-1829

ilar to Falcon, Llama also showcased a com-1830

petitive RL score for RAW-FC (0.17). It in-1831

dicates that explanations generated by these1832

VLLMs show a maximum overlap of longest1833

common subsequences with the gold expla-1834

nations. Interestingly, we see a small devia-1835

tion for R2 scores. While explanations gen-1836

erated by Mistral, Llama and Falcon scored1837

high R2 for LIAR-RAW (0.06- 0.07) dataset,1838

Gemma scored highest (0.20) for RAW-FC1839

dataset. It means their explanations show 1840

maximum bigram overlap with the gold ex- 1841

planations. Except for the Gemma-generated 1842

explanations(BERT score: 0.24) for RAW- 1843

FC, BERT-scores were consistently low for 1844

all VLLMs and datasets (0.02-0.08). Simi- 1845

larly, BLEU scores were also low for both 1846

LIAR-RAW (0.02 - 0.03) and RAW-FC (0.02 1847

- 0.07) datasets. 1848

• As evaluating VLLMs, four out of five mod- 1849

els i.e. Mistral, Qwen, Llama and Falcon 1850

found that Llama-generated explanations are 1851

better in four out of five evaluating dimen- 1852

sions i.e. (informativeness: 4.73 - 4.78, read- 1853

ability: 4.51 - 4.91, objectivity: 4.17 - 4.60 1854

and Logicality: 4.26 - 4.68) for the LIAR- 1855

RAW dataset. However, the majority (Llama, 1856
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Qwen
Lla

ma
Qwen

Mist
ra

l Q
wen

Mist
ra

l LO
RA

Lla
ma LO

RA

Qwen
LO

RA

Lla
ma LO

RA+

Qwen
LO

RA+

Fa
lco

n LO
RA

XLN
et

-L Lla
ma

Lla
ma LO

RA+

RoB
ER

Ta
-LMist

ra
l

RoB
ER

Ta
-L Lla

ma

RoB
ER

Ta
-L Qwen

RoB
ER

Ta
-L Fa

lco
n

XLN
et

-LMist
ra

l

XLN
et

-L Lla
ma

XLN
et

-L Qwen

XLN
et

-L Fa
lco

n

Lla
ma LO

RA+

Models

0.4

0.5

0.6

0.7

0.8

0.9

M
ac

ro
-F

1 
Sc

or
e

0.58

0.63

0.54

0.46

0.65 0.64
0.66

0.64 0.65

0.62 0.63

0.71

0.82

0.88

0.71

0.64

0.82

0.88

0.70

0.75

0.82

IBE-1
IBE-2
IBE-3
IBE-4
TBE-1
TBE-2
TBE-3
Baseline = 0.61

(b) Macro-recall Scores for RAW-FC including IBE and TBE models.

Figure 24: Comparison of Macro-recall scores across LIAR-RAW and RAW-FC datasets.

Gemma, Qwen and Falcon) of them found1857

that Falcon-generated explanations are more1858

accurate (3.55 - 3.96). Similarly, three out of1859

five evaluating VLLMs, i.e. Mistral, Llama1860

and Qwen, found that Llama-generated ex-1861

planations are better for all five dimensions1862

(informativeness: 4.48 - 4.92, accuracy: 4.10 -1863

4.14, readability: 4.43 - 4.82, objectivity: 4.281864

- 4.47 and Logicality: 4.33 - 4.52). This ob-1865

servation seems to correlate with veracity pre-1866

diction results, as RoBERTa and XLNet gave1867

the high macro-precision, macro-recall and1868

macro-F1 when trained with Llama-generated1869

explanations in TBE-3.1870

• We see some deviating trends as well. For1871

the LIAR-RAW dataset, while most of the1872

evaluating VLLMS gave high scores to Llama1873

and Falcon-generated explanations, Gemma1874

gave high scores to Mistral-generated expla-1875

LIAR-RAW RAW-FC

R1 R2 RL BLEU BERT R1 R2 RL BLEU BERT

Mistral 0.17 0.06 0.14 0.03 0.03 0.39 0.12 0.18 0.04 0.02
Llama 0.19 0.07 0.12 0.03 0.04 0.39 0.11 0.17 0.04 0.04
Gemma 0.20 0.04 0.11 0.02 0.08 0.19 0.20 0.11 0.06 0.24
Qwen 0.17 0.06 0.10 0.02 0.03 0.28 0.08 0.15 0.02 0.07
Falcon 0.23 0.06 0.14 0.03 0.05 0.40 0.12 0.17 0.05 0.02

Table 11: Performance of explanation generation.

nations for three (informativeness: 3.70, ob- 1876

jectivity: 3.91 and Logicality: 3.99) out of 1877

five dimensions. Similarly, for RAW-FC, we 1878

see that evaluating VLLMs Gemma and Fal- 1879

con gave high scores to Mistral and Gemma- 1880

generated explanations. Figure 26 and Figure 1881

27 indicate another interesting phenomenon. 1882

Gemma, as an evaluating VLLM, gave low 1883

scores compared to other evaluating VLLMs. 1884

We see a similar trend for Falcon as well in 1885

the RAW-FC dataset. 1886
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Evaluator
VLLM

Generator
VLLM

LIAR-RAW RAW-FC

Info. Acc. Read. Obj. Logi. Info. Acc. Read. Obj. Logi.

Mistral

Mistral 4.30 3.47 4.07 4.18 4.14 3.60 3.11 3.91 3.91 3.81
Llama 4.78 3.93 4.79 4.55 4.62 4.75 4.12 4.76 4.47 4.44
Gemma 3.67 2.94 4.20 3.72 3.40 3.40 2.74 4.23 3.77 3.29
Qwen 3.12 2.87 4.04 3.75 3.57 2.93 2.85 3.88 3.32 3.34
Falcon 4.15 3.83 3.39 4.12 4.16 3.15 3.21 3.66 3.79 3.26

Llama

Mistral 4.13 3.44 4.05 4.14 4.13 3.57 3.50 3.96 4.06 4.03
Llama 4.52 3.71 4.51 4.17 4.26 4.48 4.14 4.43 4.28 4.33
Gemma 3.51 2.94 4.06 3.79 3.51 3.35 2.85 4.12 3.81 3.55
Qwen 2.97 2.82 3.95 3.63 3.49 3.14 3.36 4.15 3.61 3.76
Falcon 3.88 3.80 3.48 4.00 3.99 3.19 3.36 3.61 3.85 3.47

Gemma

Mistral 3.70 3.48 3.40 3.91 3.99 2.99 3.02 3.12 3.33 3.55
Llama 3.53 2.82 2.48 2.95 2.97 2.20 1.48 1.89 1.52 1.71
Gemma 2.87 2.60 3.41 3.56 3.17 2.88 2.50 3.60 3.43 2.84
Qwen 2.49 2.52 3.31 3.22 3.03 2.13 2.04 2.88 2.59 2.49
Falcon 3.55 3.55 2.79 3.62 3.39 2.14 2.08 2.38 2.25 1.89

Qwen

Mistral 4.31 3.43 4.10 4.12 4.21 4.24 3.64 4.11 3.94 4.15
Llama 4.73 3.82 4.77 4.45 4.54 4.92 4.10 4.82 4.32 4.52
Gemma 3.81 3.11 4.33 3.89 3.62 3.72 2.89 4.41 3.79 3.51
Qwen 3.18 2.82 4.09 3.65 3.56 3.30 3.30 4.07 3.57 3.76
Falcon 4.22 3.84 3.50 4.09 4.18 3.72 3.61 3.62 4.05 3.71

Falcon

Mistral 4.36 3.49 4.03 4.13 4.07 3.05 3.08 3.61 3.73 3.60
Llama 4.73 3.92 4.91 4.60 4.68 3.74 2.65 3.60 3.00 3.02
Gemma 3.71 2.89 4.21 3.70 3.41 3.00 2.56 3.97 3.80 3.15
Qwen 3.13 2.90 4.10 3.88 3.69 2.05 1.91 3.45 2.57 2.59
Falcon 4.29 3.96 3.56 4.18 4.18 2.10 2.43 3.39 3.06 2.45

Average

Mistral 4.16 3.46 3.93 4.10 4.11 3.49 3.27 3.74 3.79 3.83
Llama 4.46 3.64 4.29 4.14 4.22 4.02 3.30 3.90 3.52 3.60
Gemma 3.52 2.90 4.04 3.73 3.42 3.27 2.71 4.06 3.72 3.27
Qwen 2.97 2.78 3.90 3.63 3.47 2.71 2.69 3.69 3.13 3.19
Falcon 4.02 3.80 3.34 4.00 3.98 2.86 2.94 3.33 3.40 2.96

Table 12: Scores of subjective evaluation by VLLMs. Notations: Info. for Informativeness, Acc. for Accuracy,
Read. for Readability, Obj. for Objectivity and Logi. for Logicality.
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User Prompt

System Prompt

        "" Your task is to evaluate a model-generated explanation ("generated") against a reference         
explanation ("gold") across five specific criteria. For each criterion, assign an integer score 
from 1 to 5 (inclusive):

 1 = very poor
 2 = poor
 3 = average
 4 = good
 5 = excellent""

    """**Instructions:**
   - Only return a **strict JSON object** in the exact format shown below.
   - Do NOT include any explanation, comments, or additional text.
   - Do NOT use floating point numbers or non-integer values.
   - If you are unsure, always pick the conservative score.

   **Criteria:**
   1. Informativeness – Does it add meaningful context or background?
   2. Accuracy – Does it reflect the correct meaning based on the reference?
   3. Readability – Is it grammatically correct and easy to understand?
   4. Objectivity – Is it neutral and free of emotional language?
   5. Logicality – Does the reasoning follow a coherent and sound process?

   **Return JSON (strict format):**
   {{
  "Informativeness": int,
  "Accuracy": int,
  "Readability": int,
  "Objectivity": int,
  "Logicality": int
   }}

   Expected explanation:
   \"\"\"{expected}\"\"\"

   Actual explanation:
   \"\"\"{actual}\"\"\"
   """

Figure 25: Prompt sample for subjective evaluation of
generated explanation.

Method LIAR-RAW RAW-FC

MP MR MF1 MP MR MF1
TBE-3 0.55 0.54 0.54 0.88 0.88 0.88

-w/o Supp. just. 0.38 0.38 0.37 0.77 0.78 0.77
(±0.06) (±0.05) (±0.05) (±0.02) (±0.02) (±0.02)

-w/o Ref. just. 0.49 0.50 0.49 0.80 0.80 0.80
(±0.01) (±0.02) (±0.02) (±0.02) (±0.02) (±0.02)

-w/o Both just. 0.26 0.26 0.24 0.46 0.46 0.46
(±0.04) (±0.03) (±0.03) (±0.03) (±0.03) (±0.03)

Table 13: Ablation study showing classification perfor-
mance on the LIAR-RAW (XLNet-LLlama) and RAW-FC
(RoBERTa-LLlama) dataset. Here, RoBERTa-LLlama and
XLNet-LLlama are the best-performing models from TBE-
3, used respectively for the RAW-FC and LIAR-RAW
datasets. “w/o Supp. just.” indicates that only refuting
justifications were passed to the model; “w/o Ref. just.”
passes only supporting justifications; and “w/o Both
just.” uses the claim alone without any justification.

E Detailed observations from ablation1887

study:1888

In this section, we reported our observations1889

from the ablation study. We took the best-1890

performing models (XLNet-LLlama for LIAR-RAW1891

and RoBERTa-LLlama for RAW-FC) for both LIAR-1892

RAW and RAW-FC and removed individual justi-1893

fication (supporting and refuting) components to1894

gauge its impact. Particularly, we trained the best-1895

performing model frameworks by (i) removing sup-1896

porting justification, (ii) removing refuting justifi-1897

cation, and (iii) removing both. Results obtained1898

for all training scenarios are reported in Table 13.1899

Apart from that, we also segmented the test set1900

based on the number of pieces of evidence each 1901

sample has, and calculated their performances. Par- 1902

ticularly for LIAR-RAW, and RAW-FC, we divided 1903

the test set into six and five segments. The segment 1904

detail and their performance scores are reported in 1905

Table 14, and Table 15 respectively. We observed 1906

the following, 1907

• Upon removing the supporting justifications 1908

from training input (see (‘w/o Supp. just.’ 1909

in Table 13), we found that macro-precision, 1910

macro-recall and macro-F1 scores dropped 1911

by 30.90%, 29.63% and 31.48% respec- 1912

tively for the LIAR-RAW dataset. A simi- 1913

lar trend can also be seen for the RAW-FC 1914

dataset, where macro-precision, macro-recall 1915

and macro-F1 scores dropped by 12.50%, 1916

11.36% and 12.50% respectively. However, 1917

the performance drop was not as harsh as we 1918

saw for the LIAR-RAW dataset. 1919

• When we removed the refuting justifications 1920

from the training input (see (‘w/o ref. just.’ in 1921

Table 13), we saw a performance drop as well. 1922

We found that macro-precision, macro-recall 1923

and macro-F1 scores dropped by 10.90%, 1924

7.41% and 9.26% respectively for the LIAR- 1925

RAW dataset. Similarly, macro-precision, 1926

macro-recall and macro-F1 scores dropped 1927

by 9.09%, 9.09% and 9.09% respectively for 1928

the RAW-FC dataset as well. One interesting 1929

observation is that removing the supporting 1930

justifications made a more adversarial impact 1931

than removing refuting justifications. 1932

• Finally, when we removed both supporting 1933

and refuting justifications from the training in- 1934

put, the models performed worst. The macro- 1935

precision, macro-recall and macro-F1 scores 1936

dropped by 52.73%, 51.85% and 55.56% re- 1937

spectively for the LIAR-RAW dataset. We 1938

observed a similar trend for RAW-FC as 1939

well. Here macro-precision, macro-recall and 1940

macro-F1 scores dropped by 47.73%, 47.73% 1941

and 47.73% respectively. 1942

• While investigating the behaviour with vary- 1943

ing number of evidences, we observed the fol- 1944

lowing. For LIAR-RAW, performance of ve- 1945

racity predictor peaked with ‘6–20’ evidences 1946

(MP: 0.62, MR: 0.60, MF1: 0.61). It showed 1947

significant sensitivity to increasing number 1948

of evidences with macro-F1 dropping 29.50% 1949
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(d) Mistral as the evaluator.
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(f) Average evaluation across all models.

Figure 26: Radar charts on the LAIR-RAW dataset illustrating how each model (Gemma, Falcon, Qwen, Mistral,
and Llama) performed as an evaluator by scoring justifications generated by all five models across five dimensions:
Informativeness, Accuracy, Readability, Objectivity, and Logicality. Subfigure (f) presents the average evaluation
across all models.
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(d) Mistral as the evaluator.
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(e) Llama as the evaluator.
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(f) Average evaluation across all models.

Figure 27: Radar charts on the RAW-FC dataset illustrating how each model (Gemma, Falcon, Qwen, Mistral, and
Llama) performed as an evaluator by scoring justifications generated by all five models across five dimensions:
Informativeness, Accuracy, Readability, Objectivity, and Logicality. Subfigure (f) presents the average evaluation
across all models.
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Number of
Evidences

LIAR-RAW

MP MR MF1
0 0.47 0.51 0.48
1 0.53 0.49 0.49
2-5 0.58 0.59 0.58
6-20 0.62 0.60 0.61
21–50 0.54 0.50 0.48
> 50 0.45 0.48 0.43

Table 14: Performance of claim veracity prediction on
the LIAR-RAW dataset grouped by the number of gold
evidences. Here, we used the best performing model
for the considered dataset. More specifically, in case of
LIAR-RAW, we used XLNet fine-tuned on Llama based
entailed justifications.

Number of
Evidences

RAW-FC

MP MR MF1
4-5 0.83 0.91 0.84
6-10 0.87 0.85 0.86
11-20 0.93 0.95 0.94
21-50 0.85 0.86 0.85
> 50 0.89 0.88 0.87

Table 15: Performance of claim veracity prediction on
the RAW-FC dataset grouped by the number of gold
evidences. Here, we used the best performing model
for the considered dataset. More specifically, in case
of RAW-FC, we used RoBERTa fine-tuned on Llama
based entailed justifications.

from ‘6–20’ evidences (MF1: 0.61) to ‘>50’1950

evidences (MF1: 0.43). However, for RAW-1951

FC, the highest were observed with ‘11–20’1952

evidences (MP: 0.93, MR: 0.95, MF1: 0.94).1953

It showed more robustness with macro-F11954

decreasing slightly 7.45% from ‘11–20’ evi-1955

dences (MF1: 0.94) to ‘>50’ evidences (MF1:1956

0.87).1957

F Linguistic insights from model1958

explanations:1959

In this section, we have reported how our best-1960

performing model (XLNet-LLlama for LIAR-RAW1961

and RoBERTa-LLlama for RAW-FC) is giving atten-1962

tion to different words and phrases while predicting1963

veracity. We presented some of the samples, their1964

gold labels, predicted labels, support justifications,1965

and refute justifications in Figure 28, Figure 29,1966

Figure 30, Figure 31, Figure 32, Figure 33, Figure1967

34, Figure 35, Figure 36. To visualise the attention,1968

we highlighted the top 25% words which received1969

higher attention scores from the respective LLM in1970

TBE-3. Here, the higher intensity of blue colour 1971

indicates a higher attention score. Some of the 1972

observations are, 1973

• In Figure 28 where the gold and predicted 1974

label is ‘true’, we observed high attention 1975

scores on the words like ‘supported by mul- 1976

tiple sources’, ‘evidence’, ‘supports’ in the 1977

support justification part. However, attention 1978

scores are more scattered in refute justifica- 1979

tion. Also, in contrast to supporting justifi- 1980

cation, refuting justification doesn’t consist 1981

of any phrases which refutes the claim with 1982

authority. 1983

• In Figure 29 where the label is ‘mostly-true’, 1984

attention scores indicates that the LLM relied 1985

heavily on quantitative results which can be 1986

seen by attention on percentage scores in the 1987

supportive justification. But in refutive justifi- 1988

cation, LLM focused on counter-evidence but 1989

with less intensity of attention which matches 1990

the "mostly-true" stance. 1991

• In Figure 30 where the label is ‘half-true’, we 1992

observed the LLM could attend to some simi- 1993

lar keywords in both support and refute justi- 1994

fication. For example, ‘Gov’, ‘education’, etc. 1995

are prominent ones. Also, we observed more 1996

attention towards phrases like ‘appears that 1997

the claim is accurate’ in support justification 1998

and ‘inconsistencies undermine the validity of 1999

the claim’ in refute justification. It justifies 2000

the predicted label as half-true. 2001

• In Figure 31 where the label is ‘barely-true’, 2002

the VLLM generated justification focussing 2003

on references to the Obamacare and how many 2004

health plans were canceled nationwide. It 2005

noted Florida may have been heavily affected 2006

because of its size. But it also noticed that 2007

the exact number (300,000) is not confirmed. 2008

Subsequently, the LLM also gave more at- 2009

tention to keywords like ‘Obamacare’ due 2010

to which the LLM may have understood the 2011

claim might be true. Similarly, under the re- 2012

fute justification also, VLLM confidently con- 2013

tradicted the claim by saying that ‘customers 2014

were not immediately dropped’. As a result, 2015

the LLM extends more attention to ‘false’ and 2016

‘coverage’, marking the reasons to doubt the 2017

claim. Thus, the LLM figured out that the 2018

claim is not entirely false, but also not fully 2019

accurate and labeled it as ‘barely-true’. 2020
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• In Figure 32 where the label is ‘false’, the2021

LLM assigned higher attention scores to eco-2022

nomic indicators, due to absence of reasons to2023

support the claim. Whereas the refuting jus-2024

tification consisted of statements disproving2025

the claim and LLM showed more attention2026

toward terms like ‘layoffs’, ‘assertion’, and2027

‘deaths’ which provides counter-evidence to2028

refute the claim.2029

• In Figure 33 where the label is ‘pants-fire’, the2030

support justification is not useful as it is filled2031

with repetition and irrelevant chat-bot fillers2032

like ‘anything else I can help you with’, ‘let2033

me know I can assist you further’, etc. Thus,2034

we observed more attention scores on non-2035

useful stopwords. While in the refuting justi-2036

fication the VLLM argued with authority that2037

the claim is misleading and lacks merit. We2038

observed high attention scores on the phrase2039

‘the claim is unfounded and lacks merit’ which2040

aligns with the predicted label ‘pants-fire’.2041

• In Figure 34 where the label is ‘true’, the2042

support justification generated by VLLM em-2043

phasized on evidences like Fintan O’s (well-2044

known columnist) writing and reputation of2045

‘Irish Times’. The LLM also assigned higher2046

attention scores to these details which sup-2047

ports the claim with authority. However, re-2048

fute justification seems to be weaker in dis-2049

proving the claim due to lack of refuting evi-2050

dence.2051

• In Figure 35 where the label is ‘half’ (denot-2052

ing half-true), the LLM put high attention on2053

keywords like ‘evidence’, ‘statement is true’,2054

‘credibility’ and ‘support’ around factual com-2055

ponents justifying truthfulness in the support2056

justification. While in the refute justification,2057

we observed higher attention scores on key-2058

words like ‘false’, and phrases like ‘disputes2059

the claim’ and ’In conclusion, the evidence2060

suggests that the claim is false’. That is how2061

the LLM evaluated the conflicting narratives2062

and reached to a ‘half’ label.2063

• In Figure 36 where the label is ‘false’, VLLM2064

did not generate any factual justification for2065

supporting the claim. Subsequently, the LLM2066

could not find any solid fact or figure to put2067

more attention on it. On the other hand, in2068

the refute justification, VLLM justified with2069

facts like event being from 2011, not during 2070

COVID. Also, the horses were rehomed well 2071

before the claim was made. Thus, the LLM 2072

could extend higher attention scores to phrases 2073

like ‘claim is not supported by facts’ and ‘out- 2074

dated story’. 2075
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Figure 28: LIAR-RAW dataset sample for label "true"
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Figure 29: LIAR-RAW dataset sample for label "mostly-true"
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Figure 30: LIAR-RAW dataset sample for label "half-true"

Figure 31: LIAR-RAW dataset sample for label "barely-true"
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Figure 32: LIAR-RAW dataset sample for label "false"
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Figure 33: LIAR-RAW dataset sample for label "pants-fire"
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Figure 34: RAW-FC dataset sample for label "true"
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Figure 35: RAW-FC dataset sample for label "half"
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Figure 36: RAW-FC dataset sample for label "false"
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Figure 37: Confusion matrix for LIAR-RAW dataset for IBEs and TBEs.
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Figure 38: Confusion matrix for RAW-FC dataset for IBEs and TBEs.
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