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ABSTRACT

Diffusion models represent the state-of-the-art for solving inverse problems such
as image restoration tasks. Diffusion-based inverse solvers incorporate a likeli-
hood term to guide prior sampling, generating data consistent with the posterior
distribution. However, due to the intractability of the likelihood, most methods
rely on isotropic Gaussian approximations, which can push estimates off the data
manifold and produce inconsistent, poor reconstructions. We propose Equivari-
ance Regularized (EquiReg) diffusion, a general plug-and-play framework that
improves posterior sampling by penalizing those that deviate from the data mani-
fold. EquiReg formalizes manifold-preferential equivariant functions that exhibit
low equivariance error for on-manifold samples and high error for off-manifold
ones, thereby guiding sampling toward symmetry-preserving regions of the so-
lution space. We highlight that such functions naturally emerge when training
non-equivariant models with augmentation or on data with symmetries. EquiReg is
particularly effective under reduced sampling and measurement consistency steps,
where many methods suffer severe quality degradation. By regularizing trajecto-
ries toward the manifold, EquiReg implicitly accelerates convergence and enables
high-quality reconstructions. EquiReg consistently improves performance in linear
and nonlinear image restoration tasks and solving partial differential equations.

1 INTRODUCTION

Inverse problems aim to recover an unknown signal x∗ ∈ Rd from undersampled noisy measurements:

y = A(x∗) + ν ∈ Rm, (1)
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Figure 1: EquiReg’s broad applicability. a-d) image restoration inverse problems and e) text-guided
image generation, resulting in artifact reduction and more realistic generation. Here, EquiReg refers
to our regularization being applied to the diffusion sampling method on the same row.
where A is a known measurement operator, and ν is an unknown noise (Groetsch, 1993). Inverse
problems are widely studied in science and engineering, including imaging and astrophotography.

Inverse problems are ill-posed, i.e., the inversion process can have many solutions; hence, they require
prior information about the desired solution (Kabanikhin, 2008). In the Bayesian formulation, the
solution maximizes the posterior distribution p(x|y) ∝ p(y|x)p(x), where p(y|x) is the likelihood
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Figure 2: Equivariance Regularized (EquiReg) diffusion for inverse problems. (left) Manifold
preferential equivariance (MPE) functions whose equivariance error is lower for on-manifold and
higher for off-manifold data. (right) EquiReg regularizes the posterior sampling trajectory for
improved performance. It penalizes off-manifold trajectories via MPE-based regularization.
of the measurements and p(x) is a prior describing the signal structure (Stuart, 2010). Examples of
handcrafted priors include sparsity (Donoho, 2006) and low-rankness (Candès et al., 2011).

This paper focuses on methods that leverage unconditionally pre-trained score-based generative
diffusion models as learned priors (Ho et al., 2020; Song and Ermon, 2019) with applications in
image restoration (Chung et al., 2023), medical imaging (Chung et al., 2022a), and solving partial
differential equations (PDEs) (Huang et al., 2024; Yao et al., 2025). These methods define a sequential
noising process x0 ∼ pdata → xt → xT ∼ pT (x) ≈ N (0, I) and a reverse denoising process
parameterized by a neural network score ∇xt

log pt(xt) (Vincent, 2011). During sampling, these
approaches incorporate gradient signals carrying likelihood information to solve inverse problems.

Solving inverse problems with diffusion (Zhang et al., 2025a; Alkhouri et al., 2025) re-
quires computing the conditional score ∇xt

log pt(xt|y), decomposed into ∇xt
log pt(xt) +

∇xt
log pt(y|xt). This introduces challenges, as the likelihood score ∇xt

log pt(y|xt) =
∇xt

log
∫
p(y|x0)pt(x0|xt)dx0 is only computationally tractable when t = 0. To handle the

likelihood for t > 0, many methods approximate the posterior pt(x0|xt) with the isotropic Gaussian
distribution (Zhang et al., 2025a), where the distribution expectation is computed using the optimal
denoising score (Robbins, 1956). The Gaussian approximation can be inaccurate for complex distribu-
tions (Figure 3), leading to errors in likelihood computation, especially with point estimations (Chung
et al., 2023). Since the posterior expectation is a conditional expectation, a linear combination of all
possible x0, it may lie off the data manifold even when individual samples remain on it. These issues
are further amplified in latent diffusion models (LDMs), introducing artifacts (Rout et al., 2023).

Prior work has attempted to address this challenge via projection-based (He et al., 2024; Zirvi et al.,
2025) or decoupled optimization strategies (Zhang et al., 2025a), aimed at reducing the propagation of
measurement consistency errors during sampling. However, they still rely on the isotropic Gaussian
assumption, which can lead to failures on difficult tasks or when the number of sampling steps is
reduced. While higher-order statistics can reduce errors (Boys et al., 2024), most approaches still
rely on the approximation for its efficiency, scalability, and simplicity (Alkhouri et al., 2025), often
coupled with large-scale LDMs (Peebles and Xie, 2023). This raises a key question: how can we
ensure the reliability and practicality of conditional diffusion models under this approximation?

Equivariance provides a natural mechanism to keep sampling trajectories close to the data manifold.
We therefore address this challenge with a regularization scheme that leverages equivariance to
improve posterior sampling by guiding diffusion trajectories toward symmetry-preserving solution
spaces. Prior studies have enforced equivariance directly on the generation or denoising process (Chen
et al., 2023a; Terris et al., 2024), with extensions to probabilistic symmetries (Bloem-Reddy et al.,
2020) enabling more sample-efficient diffusion models (Wang et al., 2024).

Our approach differs as follows: rather than strictly enforcing equivariance within denoising archi-
tectures, which can hinder tasks requiring symmetry breaking (Lawrence et al., 2025), we employ
equivariance as a plug-and-play regularizer to guide diffusion trajectories toward the data manifold.
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Figure 3: Off-manifold posterior expectation. This impacts the likelihood score pt(y|xt) =∫
p(y|x0)pt(x0|xt)dx0 computation achieved via isotropic Gaussian modelling of pt(x0|xt).

Our contributions. We propose Equivariance Regularized (EquiReg) diffusion, an equivariance-
based regularization framework for solving inverse problems with diffusion models (Figure 2).
EquiReg leverages equivariance to regularize likelihood-induced errors during posterior sampling,
guiding diffusion trajectories toward more consistent, on-manifold solutions. Crucially, it employs
Manifold-Preferential Equivariant (MPE) functions, which discriminate on-manifold from off-
manifold data by exhibiting low equivariance error in-distribution and higher error out-of-distribution.
We formalize that an effective regularizer should capture such a global property, and MPE functions
provide a principled way to direct sampling toward plausible solutions. This design makes EquiReg
architecture-agnostic: the regularizer operates independently of the diffusion model itself. With
a suitable MPE function, EquiReg improves performance across models, including those with
equivariant scores, where likelihood guidance may otherwise push trajectories off the manifold.

We observe that many practical functions behave as MPEs: their equivariance error is small on the
training or data manifold but grows off-manifold. This behavior arises in learned models trained
with data augmentation, as well as in data with inherent symmetries such as those from physical
systems. Rather than treating the degradation off-manifold as a limitation, we exploit it as a signal:
equivariance error serves as a natural discriminator of equivariance for identifying undesirable states
during diffusion sampling. Building on this idea, we construct pre-trained MPEs as the foundation
of our EquiReg loss. The choice of this function is independent of the denoiser in diffusion models
and can be derived separately. For instance, if the diffusion model architecture is itself equivariant,
it cannot be leveraged for regularization as it cannot discriminate between on- and off-manifold
samples. Instead, a separate non-equivariant architecture can be used to train to derive EquiReg.

We validate the effectiveness of EquiReg through extensive experiments across diverse diffusion
models, inverse problems, and datasets. We demonstrate that EquiReg improves perceptual image
quality and remains effective in cases where baselines fail. We show that EquiReg improves the
performance of SITCOM (Alkhouri et al., 2025) and DPS (Chung et al., 2023) when the number
of measurement consistency and sampling steps are reduced, thus moving toward more efficient
diffusion-based solvers. Our method is particularly useful when applied to LDMs. EquiReg reduces
failure cases, and consistently improves PSLD (Rout et al., 2023), ReSample (Song et al., 2023a),
and DPS (Chung et al., 2023) on linear and nonlinear image restoration tasks. For example, EquiReg
significantly improves the LPIPS (Song et al., 2023a) of ReSample by 51% for motion deblur and the
FID of DPS (Chung et al., 2023) by 59% on super-resolution. We also include diversity analyses,
demonstrating that EquiReg maintains diversity without collapse of single mode reconstruction.

We extend EquiReg’s applicability to function-space diffusion models and demonstrate its added
benefit for solving PDEs. EquiReg achieves a 7.3% relative reduction in the ℓ2 error of FunDPS (Mam-
madov et al., 2024a; Yao et al., 2025) on the Helmholtz equation and a 7.5% relative reduction on
the Navier-Stokes equation. Lastly, we include preliminary experiments on EquiReg improving the
realism and plausibility of text-guided image generation, emphasizing that the benefits of EquiReg ex-
tend beyond image restorations. Overall, the flexibility of EquiReg as a plug-and-play regularization
framework suggests that its utility will extend well beyond the specific methods studied in this paper.

2 PRELIMINARIES AND RELATED WORKS

Diffusion models. Diffusion generative models (Ho et al., 2020; Song and Ermon, 2019; Sohl-
Dickstein et al., 2015; Kadkhodaie and Simoncelli, 2021) are state-of-the-art in computer vision for
image (Esser et al., 2024) and video generation (Brooks et al., 2024; Zhang et al., 2025b), with score-
based methods (Song et al., 2021) being among the most widely used. Diffusion models generate data
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via a reverse noising process. The forward noising process transforms the data sample x0 ∼ pdata
via a series of additive noise into an approximately Gaussian distribution (pdata → pt → N (0, I)

as t → ∞), described by the stochastic differential equation (SDE) dx = −βt

2 xdt +
√
βtdw,

where w is a standard Wiener process, and the drift and diffusion coefficients are parameterized by
a monotonically increasing noise scheduler βt ∈ (0, 1) in time t (Ho et al., 2020). Reversing the
forward diffusion process is described by (Anderson, 1982)

dx = [−βt

2 x− βt∇xt
log pt(xt)] dt+

√
βtdw̄ (2)

with dt moving backward in time or in discrete steps from T to 0. This reverse SDE is used to
sample data from the distribution pdata, where the unknown gradient ∇xt log pt(xt) is approximated
by a scoring function sθ(xt, t), parameterized by a neural network and learned via denoising score
matching methods (Hyvärinen and Dayan, 2005; Vincent, 2011). Solving inverse problems is
described as a conditional generation where the data is sampled from the posterior p(x|y):

dx = [−βt

2 xdt− βt(∇xt log pt(xt) +∇xt log pt(y|xt))]dt+
√

βtdw̄ (3)

For solving general inverse problems where the diffusion is pre-trained unconditionally, the prior score
∇xt log pt(xt) can be estimated using sθ(xt, t). However, the likelihood score ∇xt log pt(y|xt) is
only known at t = 0, otherwise it is computationally intractable.

Diffusion models for inverse problems. Solving inverse problems with pre-trained diffusion
models requires approximating the intractable likelihood score ∇xt

log pt(y|xt). Training-free
solvers differ in how they approximate pt(y|xt) and combine it with the sampling prior pt(xt) (Peng
et al., 2024). Since pt(y|xt) =

∫
p(y|x0)pt(x0|xt)dx0, the common choice is to approximate

pt(x0|xt) by an isotropic Gaussian N (x0|t, r
2
t I) (Chung et al., 2023; Song et al., 2023b; Zhu

et al., 2023; Zhang et al., 2025a). With an optimal denoising score sθ(xt, t), the posterior mean
x0|t := E[x0|xt] follows from Tweedie’s formula (Robbins, 1956; Miyasawa et al., 1961; Efron,
2011). Although this yields an MMSE estimate, for complex or multimodal distributions, pt(x0|xt)
may not be concentrated around its mean, leading to off-manifold solutions (see Figure 3).

Equivariance. Equivariance is a property describing how functions transform predictably under
group actions. It serves as a powerful strategy for incorporating symmetries into deep learning (Bron-
stein et al., 2021). Prior work has applied equivariance to graph networks (Satorras et al., 2021), con-
volutional networks (Cohen and Welling, 2016; Romero and Lohit, 2022), Lie groups for modelling
dynamical systems (Finzi et al., 2020), and diffusion models (Wang et al., 2024) with applications in
molecular generation (Hoogeboom et al., 2022; Cornet et al., 2024), autonomous driving (Chen et al.,
2023b), robotics (Brehmer et al., 2023), crystal structure prediction (Jiao et al., 2023), and audio in-
verse problems (Moliner et al., 2023). Equivariance guidance has also been used to improve temporal
consistency in video generation (Daras et al., 2024). The benefits of equivariance as a prior to solve
inverse problems (Scanvic et al., 2025) are theoretically supported in compressed sensing (Tachella
et al., 2023). An equivariant function respects symmetries under group transformations, i.e.,

Definition 2.1 (Equivariance). Let G act on Z via Tg : Z → Z and on X via Sg : X → X . A
function f : Z → X is equivariant if for all g ∈ G and z ∈ Z , f(Tg(z)) = Sg(f(z)).

While prior work leverages exact equivariance as in Definition 2.1 to directly incorporate symmetries
into deep neural networks, recent studies explore approximate equivariant networks to relax strict
mathematical symmetries that may not fully hold in real-world data, aiming to improve perfor-
mance (Wang et al., 2022). They propose a definition of approximate equivariance (Definition 2.2),
along with an equivariance error of functions to quantify the deviation from perfect symmetry.

Definition 2.2 (Approximate Equivariant Functions). Let G act on Z via Tg : Z → Z and on X
via Sg : X → X . A function f : Z → X is ϵ-approximate equivariant if for all g ∈ G and z ∈ Z ,
∥Sg(f(z)) − f(Tg(z))∥ ≤ ϵ. The equivariance error of the function f : Z → X is defined as
supz,g ∥Sg(f(z))− f(Tg(z))∥. Hence, f is ϵ-approximate equivariant iff its error < ϵ.

Finally, this paper uses the term manifold which refers to the data manifold hypothesis (see As-
sumption H.1 ) (Cayton et al., 2005) that assumes data is sampled from a low-dimensional manifold
embedded in a high-dimensional space. This hypothesis is popular in machine learning (Bordt et al.,
2023) and diffusion-based solvers (He et al., 2024; Chung et al., 2022b; 2023), supported by empirical
evidence for imaging (Weinberger and Saul, 2006).
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3 EQUIREG: EQUIVARIANCE REGULARIZED DIFFUSION

We begin by presenting a generalized regularization framework for improving diffusion-based inverse
solvers. We then focus on the property of equivariance and introduce a new class of functions whose
equivariance errors are distribution-dependent (low for on- or near-manifold samples and high for
off-manifold samples). Finally, we leverage these functions to regularize diffusion models, guiding
sampling trajectories toward better inverse solutions.

This paper addresses the propagation error introduced by the approximation of posterior pt(x0|xt)
by incorporating an explicit regularization term. The proposed framework is general and can be
applied as plug-in on a wide range of pixel and latent-space diffusion models. Given pt(y|xt) =∫
p(y|x0)pt(x0|xt)dx0, let p̃t(x0|xt) denote an approximation of the posterior to make the likeli-

hood tractable. We formulate the regularized reverse diffusion dynamics as

dx = [−βt

2 xdt− βt∇xt(log pt(xt) + log
∫
p(y|x0)p̃t(x0|xt)dx0 −R(xt))]dt+

√
βtdw̄, (4)

where R(xt) is the regularizer. Applying this to DPS (Chung et al., 2023) takes the form in Algo-
rithm 1). This formulation raises two questions: i) how to design the regularizer, and ii) how to
interpret the role of R in regularizing conditional diffusion models and its impact on the sampling
trajectory. We gain insight into the desirable properties of an optimal regularizer by reinterpreting the
reverse conditional diffusion process as a time-inhomogeneous Wasserstein gradient flow (Ferreira
and Valencia-Guevara, 2018) (see Propositions G.1 and G.2 in Appendix). The analysis clarifies
that an ideal regularizer should yield low values for on-manifold and high values for off-manifold
samples, enabling accurate posterior sampling even when the likelihood score is approximated.

Algorithm 1 Equi-DPS for Inverse Problems.

Require: T,y, {ζt}Tt=1, {σ̃t}Tt=1, sθ,R(·), {λt}Tt=1

1: xT ∼ N (0, I)
2: for t = T − 1 to 0 do
3: ŝ← sθ(xt, t)
4: x0|t ← 1√

ᾱt
(xt + (1− ᾱt)ŝ)

5: ϵ ∼ N (0, I)

6: x′
t−1 ←

√
αt(1−ᾱt−1)

1−ᾱt
xt +

√
ᾱt−1βt

1−ᾱt
x0|t + σ̃tϵ

7: xt−1 ← x′
t−1 − ζt∇xt∥y −A(x0|t)∥22

8: xt−1 ← xt−1 − λt∇xtR(xt)
9: end for

10: return x0

We further interpret this property in terms of
sampling dynamics, i.e., when applied at each
reverse-diffusion step, the regularizer effec-
tively penalizes trajectories leaving the data
manifold and reinforces those aligned with
high-probability regions. This motivates de-
signing a regularizer that corrects the entire
functional being minimized globally, in con-
trast to prior works that focus only on locally
reducing likelihood error. The ideal property
of a useful regularizer would be to produce
high error on undesirable samples and low er-
ror on desirable samples. We instantiate this
ideal regularizer using equivariance, a global property that enforces geometric symmetries and guides
the diffusion process toward the data manifold. To realize this idea, we seek functions that exhibit
approximate equivariance and discriminate on- from off-manifold samples.

Thus, we propose to quantify equivariance of a function relative to a data distribution. Specifically,
while the literature has primarily studied the equivariance properties of functions for general inputs,
we propose a new definition for functions in which their equivariance error is distribution-dependent
and defined under the support of an input data distribution (Definition 3.1).
Definition 3.1 (Distribution-Dependent Equivariant Functions). Let G act on Z via Tg : Z → Z and
on X via Sg : X → X . The equivariance error of the function f : Z → X under the distribution p
is defined as supg Ez∼p[∥Sg(f(z))− f(Tg(z))∥].

The above definition enables us to define functions whose equivariance error can differentiate on-
manifold samples from off-manifold ones. Particularly, we aim to find functions whose equivariance
error is low for on-manifold data and high elsewhere. We also introduce a constrained version of
equivariance error, where the input is implicitly regularized to lie on the manifold M in addition to
minimizing the equivariance error (Definition 3.2). Both equivariance errors are non-local, defined
at the distribution level. When used to regularize the reverse conditional diffusion process, they are
computed via local evaluations over the sampled data.
Definition 3.2 (Manifold-Constrained Distribution-Dependent Equivariant Functions). Let G act on
Z via Tg : Z → Z and on X via Sg : X → X . The manifold-constrained equivariance error of the
function f : Z → X under the data distribution p is supg Ez∼p[∥z − h(S−1

g (f(Tg(z))))∥] where
h : X → Z , and the pair (f, h) forms a vanishing-error autoencoder (see Appendix I).
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Figure 4: MPE function examples.

To define our method, we term a class of manifold-preferential equivariant (MPE) functions, whose
equivariance error is lower for samples on the data manifold than for off-manifold samples. EquiReg
is a regularization framework, not a manifold projection method. EquiReg penalizes states that
deviate from symmetry-preserving regions; when an MPE function is used, these regions align with
the data manifold. In practice, MPE functions can emerge in different ways, which we illustrate with
examples from augmented training and from data symmetries. MPE can emerge when functions are
trained with symmetry-preserving mechanisms such as data augmentation. Prior work has studied
equivariant properties of learned representations in deep networks (Lenc and Vedaldi, 2015), showing
that data augmentations (Krizhevsky et al., 2012) and representation compression via reduced model
capacity (Bruintjes et al., 2023) promote equivariant features even when equivariance is not explicitly
built into the architecture. Importantly, the trained network is only approximately equivariant, and
prior studies have noted that symmetry-preserving properties degrade for inputs deviating from
in-distribution data (Azulay and Weiss, 2019). A few studies have leveraged this emergent MPE in
trained networks for out-of-distribution detection (Zhou, 2022; Kaur et al., 2022; 2023).

To demonstrate the widespread MPE property of learned mappings, we have considered additional
pre-trained models and quantified their equivariance loss for several set of data distributions, i.e.,
natural images and corrupted ones (see Section I of Appendix.) Figure 4a illustrates the MPE property,
emergent via training with augmentations, of E-D of a pre-trained autoencoder, currently used in
LDMs. Specifically, it shows that the equivariance error is lower for natural images and increases
when images deviate from the clean data distribution. Based on Definitions 3.1 and 3.2, we propose
Equi and EquiCon losses using a pre-trained encoder-decoder for diffusion-based inverse solvers:

Equipixel R(xt) = ∥Sg(E(x0|t))− E(Tg(x0|t))∥22
Equilatent R(zt) = ∥Sg(D(z0|t))−D(Tg(z0|t))∥22

EquiConlatent R(zt) = ∥z0|t − E(S−1
g (D(Tg(z0|t))))∥22,

(5)

where x0|t and z0|t are function of xt and zt, respectively. MPE can also emerge due to symmetries
present in the data itself during training. This often occurs in physics systems where coefficient
functions, boundary values, and solution functions of PDEs remain valid under invertible coordinate
transformations. Formally, let G(a) 7→ u be a PDE operator mapping initial condition a to solution u,
and let Tg and Sg be invertible transformations that preserve PDE structure and boundary conditions.
Then, Sg(G(a)) = G(Tg(a)). Neural operators (Kovachki et al., 2021), popular architectures
for modelling physics, trained on PDEs with such inherent symmetries can learn equivariance
properties. Figure 4b shows that we can construct an MPE function with Fourier Neural Operators
(FNOs (Li et al., 2021)) trained on non-augmented physics data for Navier-Stokes, yielding lower
error ∥Sg(FNO(x0|t))− FNO(Tg(x0|t))∥22 on in-distribution as opposed to out-of-distribution data,
with reflection as the group action.

The key message from our MPE examples is that MPE properties naturally emerge when a function
(e.g., a neural network) is trained with appropriate augmentations or when the data itself exhibits
inherent symmetries. Our paper leverages this property to distinguish on-manifold samples from
off-manifold ones and to regularize the posterior sampling trajectory toward high-probability regions.
Finally, we note that the choice of symmetry group may often be a challenge depending on application
domain, a shared challenge in the broader equivariance literature. We provide guidelines on how to
choose symmetry groups in Section H with literature reference on automatic symmetry discovery
from data (Zhou et al.; Quessard et al., 2020; Dehmamy et al., 2021; Mohapatra et al., 2025).
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Table 1: Robustness and computational efficiency of applying EquiReg under various periods
during sampling. EquiReg maintains performance when applied every {1, 2, 5, 10} DDIM steps
while incurring minimal computational overhead.

Super Resolution Gaussian Blur

Method Period Runtime (s) PSNR↑ LPIPS↓ FID↓ Runtime (s) PSNR↑ LPIPS↓ FID↓

DPS N/A 46.20 22.99 (1.93) 0.20 (0.05) 135.7 46.50 24.59 (2.25) 0.15 (0.03) 88.70
Equi-DPS 1 51.10 26.73 (1.99) 0.12 (0.03) 87.97 52.20 26.08 (2.25) 0.12 (0.03) 87.11
Equi-DPS 2 48.90 26.73 (1.99) 0.12 (0.03) 87.98 49.10 26.06 (2.24) 0.12 (0.03) 87.19
Equi-DPS 5 47.10 26.73 (1.99) 0.12 (0.03) 87.98 47.30 26.06 (2.24) 0.12 (0.03) 87.32
Equi-DPS 10 46.90 26.73 (1.99) 0.12 (0.03) 87.99 47.00 26.05 (2.24) 0.12 (0.03) 87.04

a) b)

Figure 5: EquiReg is effective across a range of measurement noise levels. a) Equivariance error
computed over a pre-trained decoder on increasingly noisy inputs. b) EquiReg performance computed
over a range of measurement noise levels on the FFHQ dataset.

4 RESULTS

This section provides experimental results on the performance of EquiReg for inverse problems,
including linear and nonlinear image restoration tasks and solving PDEs. To fairly assess EquiReg’s
impact, we deliberately use a duo-setting comparison (e.g., PSLD vs. Equi-PSLD) across experiments,
where all other factors (architecture, training, sampling) remain fixed. This ensures that any observed
improvement can be attributed to EquiReg, not the underlying model or inference procedure. We
also evaluate the impact of EquiReg under reduced measurement consistency and sampling steps,
providing a path toward faster diffusion-based inverse solvers. Results emphasize the usefulness of
EquiReg when the baseline performance deteriorates. Lastly, we provide preliminary analysis on
EquiReg improving the realism of text-guided image generation.

Table 2: EquiReg improves SITCOM un-
der reduced measurement consistency
steps (Kmeas). We reduce Kmeas and
add an equal amount of EquiReg steps
(KEquiReg). Evaluated on motion deblur
for FFHQ sampled with 50 DDIM steps.

Kmeas. KEquiReg PSNR↑ SSIM↑ Runtime (s)

10 N/A 28.06 0.81 21.57
5 5 29.26 0.83 11.09

20 N/A 27.04 0.79 38.85
10 10 28.93 0.82 20.92

30 N/A 27.79 0.80 58.84
15 15 29.63 0.84 30.19

40 N/A 30.40 0.85 78.08
20 20 29.50 0.83 41.02

60 N/A 28.35 0.81 108.57
30 30 31.36 0.87 59.38

Image restoration tasks. We evaluate the perfor-
mance of EquiReg when applied to: SITCOM (Alkhouri
et al., 2025), PSLD (Rout et al., 2023), ReSample (Song
et al., 2023a), and DPS (Chung et al., 2023). We com-
pare against several manifold-preserving or geometry-
constraint approaches including MCG (Chung et al.,
2022b), MPGD-AE (He et al., 2024), and DiffState-
Grad (Zirvi et al., 2025). We measure performance via
perceptual similarity (LPIPS), distribution alignment
(FID), pixel-wise fidelity (PSNR), and structural consis-
tency (SSIM). We test EquiReg on two datasets: a) the
FFHQ 256×256 validation dataset (Karras et al., 2021),
and b) the ImageNet 256× 256 validation dataset (Deng
et al., 2009). For pixel-based experiments, we use i) the
pre-trained model from (Chung et al., 2023) on FFHQ,
and ii) the pre-trained model from (Dhariwal and Nichol,
2021) on ImageNet. For latent diffusion experiments,
we use i) the unconditional LDM-VQ-4 model (Rom-
bach et al., 2022) on FFHQ, and ii) the Stable Diffusion
v1.5 (Rombach et al., 2022) model on ImageNet.
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a) b)

Figure 6: Robustness of EquiReg, demonstrated on PSLD. a) EquiReg is robust to the choice of λt.
b) EquiReg reduces failure cases and enhances reconstruction fidelity for super-resolution on FFHQ.

We evaluate EquiReg on a variety of linear and nonlinear restoration tasks for natural images
(see Section E for task details). We adopt the pre-trained encoder-decoder E-D as our MPE function.
For FFHQ, we use vertical reflection as the symmetry group, which preserves upright facial orientation.
For ImageNet, we define a rotation group G = {0, π/2, π, 3π/2}, and uniformly at random select
the group action for each sample. Finally, the loss functions given in Equation (5) are used to
regularize. We note that while our main experiment explore the reflection and rotation groups with
small cardinality, EquiReg does not rely on full group coverage. Sampling even a sparse or randomly
chosen subset of group actions is sufficient, as long as the function used for regularization exhibits
the MPE property across the group (see additional experiment in Appendix).

Table 3: EquiReg for ReSample on linear and non-
linear tasks. FFHQ 256× 256 with σy = 0.01.

Task Method LPIPS↓ FID↓ PSNR↑ SSIM↑

Linear

Gaussian
deblur

ReSample 0.253 55.65 27.78 0.757
Equi-ReSample 0.197 64.86 29.08 0.825
EquiCon-ReSample 0.156 54.72 28.18 0.777

Motion
deblur

ReSample 0.160 40.14 30.55 0.854
Equi-ReSample 0.120 46.28 30.92 0.870
EquiCon-ReSample 0.078 37.61 30.73 0.860

Super-res.
(×4)

ReSample 0.204 40.46 28.02 0.790
Equi-ReSample 0.098 43.56 29.74 0.849
EquiCon-ReSample 0.112 40.38 28.27 0.801

Box
inpainting

ReSample 0.198 108.30 19.91 0.807
Equi-ReSample 0.150 59.69 22.56 0.832
EquiCon-ReSample 0.171 110.70 21.04 0.815

Random
inpainting

ReSample 0.115 36.12 31.27 0.892
Equi-ReSample 0.047 29.88 31.47 0.908
EquiCon-ReSample 0.047 28.81 31.21 0.904

Nonlinear

HDR
ReSample 0.190 49.06 24.88 0.819
Equi-ReSample 0.133 49.52 24.71 0.815
EquiCon-ReSample 0.135 49.98 24.67 0.817

Phase
retrieval

ReSample 0.237 97.86 27.61 0.750
Equi-ReSample 0.155 85.22 28.16 0.770
EquiCon-ReSample 0.159 88.75 28.11 0.774

Nonlinear
deblur

ReSample 0.188 56.06 29.54 0.842
Equi-ReSample 0.128 55.09 29.45 0.840
EquiCon-ReSample 0.125 54.62 29.55 0.843

First, we show that adding EquiReg op-
timization steps consistently enables SIT-
COM to achieve superior performance with
significantly faster runtime using fewer
measurement consistency steps (Table 2).
Next, we show that EquiReg maintains
strong performance even as the number of
DDIM steps is reduced, whereas DPS suf-
fers a significant drop; Equi-DPS consis-
tently outperforms DPS, with the perfor-
mance gap widening at lower step counts
(Figure 13). We also show that EquiReg is
able to preserve performance when applied
with lower frequency (Table 1).

Table 3, Table 4a, and Table 5 highlights
the benefits of EquiReg for latent diffusion
models by consistently improving the per-
formance of ReSample and PSLD across
several tasks on both FFHQ and ImageNet.
We attribute this improvement in part to
the reduction of failure cases (Figure 6b).
EquiReg also significantly improves the
performance of pixel-based methods (see
Equi-DPS vs. DPS, Table 4b).

We observe that EquiReg achieves its
largest improvements on perceptual met-
rics (FID and LPIPS), suggesting it gener-
ates more realistic images that lie closer
to the data manifold (see Appendix E for
supporting qualitative results). EquiReg improves performance under high measurement noise (Fig-
ure 5b). This result aligns with Figure 5a, which shows the equivariance error is lower on clean
images than noisy ones, indicating that EquiReg enforces an effective denoising. Lastly, we note that
EquiReg is robust to regularizing hyperparameter λt (Figure 6a, see Section C for details).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: EquiReg for diffusion models on FFHQ. 256× 256 with σy = 0.05.

Method Gaussian deblur Motion deblur Super-resolution (×4) Box inpainting Random inpainting

LPIPS↓FID↓PSNR↑LPIPS↓FID↓PSNR↑LPIPS↓FID↓ PSNR↑ LPIPS↓FID↓PSNR↑LPIPS↓FID↓PSNR↑

PSLD 0.357 106.2 22.87 0.322 84.62 24.25 0.313 89.72 24.51 0.158 43.02 24.22 0.246 49.77 29.05
Equi-PSLD 0.344 94.09 24.42 0.338 99.14 24.83 0.289 90.88 26.32 0.098 31.54 24.19 0.188 41.61 30.43
EquiCon-PSLD 0.320 83.18 24.38 0.322 89.87 25.14 0.277 79.39 26.14 0.092 35.07 24.26 0.204 40.75 29.99

(a) Latent diffusion.

Method Gaussian deblur Motion deblur Super-resolution (×4) Box inpainting Random inpainting

LPIPS↓FID↓PSNR↑LPIPS↓FID↓PSNR↑LPIPS↓FID↓ PSNR↑ LPIPS↓FID↓PSNR↑LPIPS↓FID↓PSNR↑

DPS 0.145 104.8 25.48 0.132 99.75 26.75 0.191 125.4 24.38 0.133 56.89 23.10 0.113 51.32 29.63
Equi-DPS (ours) 0.114 48.76 26.32 0.094 41.71 28.23 0.120 51.00 27.15 0.099 40.47 23.39 0.068 33.65 32.16

DiffStateGrad-DPS 0.128 52.73 26.29 0.118 50.14 27.61 0.186 73.02 24.65 0.114 47.53 24.10 0.107 49.42 30.15
MCG 0.340 101.2 6.72 0.702 310.5 6.72 0.520 87.64 20.05 0.309 40.11 19.97 0.286 29.26 21.57
MPGD-AE 0.150 114.9 24.42 0.120 104.5 25.72 0.168 137.7 24.01 0.138 248.7 21.59 0.172 339.0 25.22

(b) Pixel-based diffusion.

Diversity analysis. To study posterior sampling diversity of EquiReg, we generated K = 10
posterior samples for 20 test images across three inverse problems of box inpainting, Gaussian
deblurring, 4× super-resolution, and measured diversity using two complementary metrics: Intra-
LPIPS for perceptual diversity and Pixel-Std for spatial diversity. Table 11 demonstrates that
Equi-DPS achieves favorable fidelity-diversity trade-offs. We further investigated diversity scaling by
varying box inpainting mask size from 128× 128 to 192× 192 pixels (Figure 18). Results show that
diversity metrics increase linearly with task difficulty, demonstrating that Equi-DPS naturally expands
sampling as problems become more ill-posed rather than artificially constraining solutions. This linear
relationship indicates healthy, predictable posterior sampling behavior across the difficulty spectrum.
Lastly, Figure 7 provides qualitative confirmation through visual examples showing four posterior
samples per image. Observable variations in facial features, expressions, and eye gaze validate our
quantitative measurements, confirming EquiReg can generate genuinely diverse reconstructions rather
than collapsing to a single solution.

Figure 7: Qualitative diversity examples for box inpainting. We show K = 4 posterior samples
for two test images with 160× 160 masks. Each sample exhibits perceptually distinct facial features
(expressions, eye gaze, facial structure) while maintaining high fidelity to the ground truth, demon-
strating EquiReg generates diverse plausible reconstructions rather than collapsing to a single mode.

Solving PDEs from sparse observations. EquiReg is evaluated on two important PDE problems:
the Helmholtz and Navier-Stokes equations (see Section F). The objective is to solve both forward
and inverse problems in sparse sensor settings. The forward problem involves predicting the solution
function or the final state using measurements from only 3% of the coefficient field or the initial state.
The inverse problem, conversely, aims to predict the input conditions from observations of 3% of
the system’s output. This task is challenging due to the nonlinearity of the equations, the complex
structure of Gaussian random fields, and the sparsity of observations.
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Table 5: EquiReg for latent diffusion models on ImageNet. 256× 256 with σy = 0.05.

Method Gaussian deblur Motion deblur Super-resolution (x4) Box inpainting Random inpainting

FID↓ PSNR↑ FID↓ PSNR↑ FID↓ PSNR↑ FID↓ PSNR↑ FID↓ PSNR↑

PSLD 263.9 20.70 252.1 21.26 224.3 22.29 151.4 16.28 83.22 26.56
EquiCon-PSLD 214.5 22.01 196.3 22.69 198.5 22.34 137.6 19.25 65.14 27.03

Recent studies (Huang et al., 2024; Mammadov et al., 2024a; Yao et al., 2025) have demonstrated
the superiority of diffusion models over deterministic single-forward methods for solving PDEs.
DiffusionPDE (Huang et al., 2024) decomposes the conditional log-likelihood into a learned diffusion
prior and a measurement score. FunDPS (Yao et al., 2025) extends the sampling process to a more
natural infinite-dimensional spaces, achieving better accuracy and speed via function space models.

Table 6: Solving PDEs from sparse observations.

Steps (N)
Helmholtz Navier-Stokes

Forward Inverse Forward Inverse

DiffusionPDE 2000 12.64% 19.07% 3.78% 9.63%
FunDPS 500 2.13% 17.16% 3.32% 8.48%
Equi-FunDPS (ours) 500 2.12% 15.91% 3.06% 7.84%

We integrate EquiReg into the state-of-
the-art FunDPS framework (Mammadov
et al., 2024a; Yao et al., 2025), where
we compute the Equi loss with respect to
equivariance learned by an FNO trained
on the corresponding inverse problem.
We use reflection symmetry (i.e., flipping
along the y = x axis), and observe no
significant performance difference when using other transformations such as rotations or alternating
flips. Equi-FunDPS improves performance (Table 6), measured by relative ℓ2 loss, across various
tasks, especially in inverse problems where a strong data prior is critical.

Text-to-image guidance. Given the “source” image, DreamSampler (Kim et al., 2024) transforms
the source image using the prompt. Applying EquiReg to DreamSampler, we observe perceptual
improvement of generated images as well as artifact reduction. Figure 1 shows the “source” cat, being
transformed into the prompt (e.g., “corgi”). Equi-DreamSampler generates more realistic images
than DreamSampler. Notably, EquiReg resolves the three-front-legged corgi into a two-front-legged
one (for an implicit acceleration of image generation when EquiReg is imposed, see Section A).

5 CONCLUSION

We introduce Equivariance Regularized (EquiReg) diffusion for inverse problems. EquiReg regu-
larizes sampling trajectories to stay closer to the data manifold, leveraging manifold-preferential
equivariance (MPE): functions with low equivariance error on-manifold and high error off-manifold.
Such functions arise naturally in trained networks and can serve as plug-and-play regularizers without
modifying the diffusion denoiser. EquiReg is agnostic across pixel- and latent-space diffusion models
and remains robust under reduced sampling, effectively accelerating convergence. Across diverse
inverse problems, it consistently improves perceptual and reconstruction metrics while reducing
failure cases, highlighting its generality and efficiency.

Limitations and future work. EquiReg’s effectiveness depends on the quality of the pre-trained
backbone diffusion. EquiReg is a plug-and-play regularization framework that can be applied to a
variety of guidance-based diffusion models; thus, it does not directly address the approximations
of the underlying diffusion models, but instead regularizes for improved performance. Also, since
EquiReg is a regularization mechanism, it improves performance precisely in regimes where baseline
methods degrade or fail. Hence, one cannot expect EquiReg to improve the performance of a
diffusion model beyond the capability of a regularization framework. Finally, applying EquiReg
requires task-specific design choices: selecting an appropriate symmetry group and identifying
suitable MPE functions for the problem at hand. While we presented two systematic approaches to
construct MPE functions for imaging and PDEs, the process of identifying MPE functions varies
across applications and represents an important area for methodological development, which we have
provide guidelines for in this paper. This task-specific design also makes EquiReg broadly adaptable
across diverse domains beyond the considered applications. Finally, while our paper formalizes
distribution-dependent equivariant functions and MPE functions, a full theoretical characterization
of the conditions under which MPE properties emerge in trained networks or its joint training with
diffusion remains an important and valuable direction for future work.
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APPENDICES FOR “EQUIREG: EQUIVARIANCE REGULARIZED DIFFUSION FOR
INVERSE PROBLEMS”

We provide our source code when EquiReg. We will provide a publicly available source code upon
acceptance. This supplementary materials contain the following:

• Section A includes additional experiments on text-to-image guidance. We regularize DreamSam-
pler (Kim et al., 2024) with EquiReg for an improved performance (see Figures 8 to 12).

• Section B includes additional experiments on robustness including robustness to λt, reduced
number of DDIM steps, and reduced number of measurent consistency steps.

• Section C includes qualitative analysis on the performance of methods with and without EquiReg.
Results show a reduction of artifacts and an improved perceptual quality of the solution. This
section also includes the equivariance error of a pre-trained encoder used in EquiReg (Figure 15a)
and a histogram of Equi’s improvement on DPS (Figure 14).

• Section D includes diversity experiments. Results show that EquiReg achieves favorable fidelity-
diversity tradeoffs (Table 11, Figure 18, and Figure 19).

• Section E demonstrates EquiReg experimental setup and implementation for PSLD, ReSample,
and DPS (Algorithms 2 to 6). It also contains information about the EquiReg hyperparameters for
image restoration tasks.

• Section F contains information on the PDE reconstruction experiment. It discusses the equations
along with implementation details and hyperparameters.

• Section G provides theoretical proofs of Propositions G.1 and G.2.

• Section H contains additional background information on solving inverse problems, vanishing-
error autoencoders, and equivariance.

• Section I provides additional experiment on MPE functions.

• Section J discloses computing resources used to conduct the experiments.

• Section K credits code assets used for our experiments.

• Section L discusses the broader impacts of this paper, the developed method, the conducted
experiments, and their overall implications.

• Section M concludes the appendix with a “responsible release” statement.

The authors acknowledge the usage of LLMs on proofreading of the manuscript. The authors have
not used LLMs for content generation.
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A EQUIREG FOR TEXT-TO-IMAGE GUIDANCE

Given the “source” image, DreamSampler (Kim et al., 2024) is asked to transform the source image
using the prompt. Applying EquiReg to DreamSampler, we observe perceptual improvement of
generated images as well as artifact reduction.

Source Prompt

“Women, red hair,  
smiling”

DreamSampler (DDIM: 50 —> 75 —> 100)

0.001 0.01 0.02 0.066 0.09 0.1

0.11 0.12 0.15 0.2 0.3 0.5

λinit

Equi-DreamSampler (Ours) with DDIM 50

Figure 8: Impact of EquiReg parameter λt, implicit acceleration, and introduction of more
image details. Women, red hair, smiling.

We have observed an implicit acceleration of image generation when EquiReg is imposed (Figure 8).
Equi-DreamSampler with 50 DDIM steps can generate images that are only possible with DreamSam-
pler when the DDIM steps are increased. We attribute this to EquiReg’s ability to generate images
that are closer to the data manifold. For example, the increase of DDIM steps in DreamSampler
(from 50 to 75 to 100) has a relatively similar effect to increasing the EquiReg regularizer λt at a
fixed 50 DDIM steps. Figure 8 shows that increasing the regularization λt results in addition of a car
in the background. For DreamSampler, an early notion of the car seat in the background start to arise
only when DDIM is increased to 100 (see also Figures 9 to 12).
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Source Prompt

“Boy, 
curly hair”

DreamSampler (DDIM: 50 —> 75)

0.01 0.066 0.1 0.15

0.18 0.22 0.3 0.5

λinit

Equi-DreamSampler (Ours) with DDIM 50

Figure 9: Adding EquiReg into the text-to-image guidance method DreamSampler for improved
performance. Boy, curly hair.

Source Prompt

“Glasses”

DreamSampler (DDIM: 50 —> 75)

0.01 0.066 0.1 0.15

0.18 0.22 0.3 0.5

λinit

Equi-DreamSampler (Ours) with DDIM 50

Figure 10: Adding EquiReg into the text-to-image guidance method DreamSampler for im-
proved performance. Glasses.
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Source Prompt

“Mustache, 
beard”

DreamSampler (DDIM: 50 —> 75)

0.01 0.066 0.1 0.15

0.18 0.22 0.3 0.5

λinit

Equi-DreamSampler (Ours) with DDIM 50

Figure 11: Adding EquiReg into the text-to-image guidance method DreamSampler for im-
proved performance. Mustache, beard.

Source Prompt

“Sculpture”

DreamSampler (DDIM: 50 —> 75)

0.01 0.066 0.1 0.15

0.18 0.22 0.3 0.5

λinit

Equi-DreamSampler (Ours) with DDIM 50

Figure 12: Adding EquiReg into the text-to-image guidance method DreamSampler for im-
proved performance. Sculpture.
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B ADDITIONAL EXPERIMENTS ON ROBUSTNESS

a) b)

Figure 13: Advantages of EquiReg under reduced DDIM steps. Super-resolution on FFHQ.

Table 7: Robustness to λt. Sensitivity analysis for DPS and PSLD across different values of λt.

DPS PSLD

λt PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

0.0 24.34 (1.03) 0.664 (0.061) 0.156 (0.051) 23.83 (2.61) 0.63 (0.12) 0.315 (0.07)
0.001 25.44 (1.22) 0.708 (0.057) 0.118 (0.038) – – –

0.01 25.44 (1.22) 0.708 (0.057) 0.118 (0.038) 25.35 (2.24) 0.70 (0.09) 0.280 (0.07)
0.1 25.44 (1.22) 0.708 (0.057) 0.118 (0.038) 26.63 (1.68) 0.74 (0.08) 0.337 (0.06)

0.25 – – – 26.22 (1.57) 0.72 (0.08) 0.366 (0.05)
1.0 25.44 (1.22) 0.709 (0.057) 0.118 (0.038) 24.74 (1.28) 0.66 (0.07) 0.438 (0.05)

Table 8: EquiReg improves performance under reduced DDIM steps. Pixel-based super-resolution
on FFHQ 256× 256.

DPS Equi-DPS (ours)

Steps PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓

500 13.89 0.0937 0.955 417.07 20.61 0.366 0.500 238.51
750 21.77 0.540 0.254 153.74 25.60 0.704 0.160 110.89
900 22.97 0.628 0.201 148.03 26.52 0.755 0.126 88.46

1000 22.99 0.649 0.201 135.71 26.73 0.767 0.120 88.00
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Table 9: EquiReg improves SITCOM under reduced measurement consistency steps (Kmeas).
Motion deblur on FFHQ sampled with 50 DDIM steps.

Kmeas. KEquiReg PSNR↑ SSIM↑ Runtime (s)

10 N/A 28.06 0.81 21.57
10 1 28.71 0.82 21.07
5 5 29.26 0.83 11.09

20 N/A 27.04 0.79 38.85
20 1 28.54 0.82 37.74
10 10 28.93 0.82 20.92

30 N/A 27.79 0.80 58.84
30 1 28.35 0.81 55.51
15 15 29.63 0.84 30.19

40 N/A 30.40 0.85 78.08
40 1 30.58 0.85 69.83
20 20 29.50 0.83 41.02

60 N/A 28.35 0.81 108.57
60 1 27.02 0.78 95.62
30 30 31.36 0.87 59.38

Table 10: EquiReg Effectiveness with Subset of Group Actions.

PSLD Equi-PSLD (90, 270 deg)

PSNR↑ SSIM↑ PSNR↑ SSIM↑

15.86 (1.19) 0.77 (0.03) 17.60 (1.60) 0.79 (0.03)

C VISUALIZATIONS FOR IMAGE RESTORATION EXPERIMENTS

Figure 14: Histogram of EquiReg improvement for DPS. Super-resolution using FFHQ 256× 256.
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(a) The equivariance error of the encoder is lower on clean, natural images than corrupted ones.

(b) Example visualizations of used images and corresponding equivariance error computed using the decoder
(see Figure 4a).

Figure 15: Training induced equivariance for a pre-trained function.
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(a) Box inpainting. (b) Random inpainting.

(c) Gaussian deblur. (d) Super-resolution (×4).

Figure 16: Qualitative comparison of EquiCon-PSLD and PSLD on FFHQ 256 × 256.

(a) Random inpainting. (b) Super-resolution (×4).

Figure 17: Qualitative comparison of Equi-DPS and DPS on ImageNet 256 × 256.

D DIVERSITY ANALYSIS

In the Bayesian setting, the objective of solving inverse problems with diffusion models is to sample
from high-probability regions of the posterior distribution. While the goal is not to maximize
“diversity”, the true diversity emerges when the posterior admits meaningful variability. In practice,
diversity-related concerns in inverse problems arise when a method suffers from mode collapse, i.e.,
the sampler becomes biased and fails to explore multiple plausible modes of the posterior. Thus,
the relevant question is whether a method properly explores the posterior rather than whether it
maximizes diversity in an unconstrained sense.

Because closed-form posteriors are unavailable for real image restoration tasks, the standard practice
in the diffusion inverse-problem literature is to evaluate diversity through variation among plausible
reconstructions consistent with the measurement, without collapsing to a single solution. This is the
notion of “diversity” our work adopts.
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Given the goal of posterior sampling, EquiReg is not designed to maximize diversity for its own sake.
Its objective is to incorporate data-inherent geometric structure (equivariance) to guide sampling
toward high-probability regions of the posterior. Hence, diversity arises naturally from the ill-
posedness of the inverse problem; it is a consequence of posterior uncertainty, not the goal of the
regularizer.

To quantify this effect, in addition to reconstruction quality, we analyzed the diversity of posterior
samples produced by EquiReg. We evaluate diversity metrics across multiple tasks and difficulty
levels to characterize the sampling behavior of our method.

D.1 EXPERIMENTAL SETUP

To evaluate diversity, we generate multiple posterior samples and measure variation across these
samples. For each of 20 test images, we generate K=10 reconstructions using different random seeds.
We evaluate diversity using two complementary metrics: Intra-LPIPS, which measures perceptual
diversity by computing the average LPIPS distance between all pairs of samples, and Pixel-Std, which
measures spatial diversity through pixel-wise standard deviation across samples. Higher values for
both metrics indicate greater diversity. For Intra-LPIPS, we compute distances for all

(
K
2

)
= 45

pairs per image and average across all test images. For Pixel-Std, we compute the standard deviation
at each pixel location across the K samples, then average across all pixels and test images. We
evaluate diversity across three inverse problems (box inpainting, Gaussian deblurring, and 4× super-
resolution) comparing EquiReg against DPS (Chung et al., 2023) without equivariance regularization.
To investigate how diversity scales with task difficulty, we additionally vary the inpainting mask size
from 128× 128 (standard) to 160× 160 to 192× 192 pixels.

D.2 RESULTS AND DISCUSSION

Table 11 shows that Equi-DPS achieves favorable fidelity-diversity trade-offs across three inverse
problems. For box inpainting and super-resolution, equivariance regularization improves both fidelity
and diversity simultaneously. For Gaussian deblurring, Equi-DPS achieves 15-20% better fidelity
while retaining 80-85% of baseline diversity, representing a modest but justified trade-off. These
results demonstrate that equivariance constraints do not inherently suppress diversity; rather, they can
guide sampling toward regions of higher data fidelity while maintaining posterior exploration.

Table 11: Fidelity and diversity comparison across inverse problems. Evaluated on 20 test images
with K = 10 samples per image. Equi-DPS improves fidelity while largely preserving or enhancing
sampling diversity.

Task Method Fidelity Metrics Diversity Metrics

LPIPS↓ FID↓ Intra-LPIPS↑ Pixel-Std↑

Box inpainting
DPS 0.140 70.89 0.112 9.286
Equi-DPS (ours) 0.112 59.70 0.118 10.59

Gaussian deblur
DPS 0.150 76.71 0.114 6.565
Equi-DPS (ours) 0.120 63.02 0.092 5.669

Super-resolution (×4)
DPS 0.683 99.11 0.134 7.956
Equi-DPS (ours) 0.703 87.52 0.187 23.52

Figure 18 reveals linear diversity scaling with task difficulty. Diversity metrics grow proportionally
with task difficulty, indicating Equi-DPS naturally expands sampling as problems become more
ill-posed. This linear relationship demonstrates stable, predictable behavior across difficulty levels
without artificial diversity suppression.
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(a) Box inpainting

(b) Gaussian deblur

(c) Super-resolution

Figure 18: Diversity vs task difficulty across three inverse problems. As task difficulty increases
(larger inpainting mask, stronger blur, higher SR scale), both diversity metrics increase proportionally,
demonstrating that Equi-DPS maintains healthy posterior sampling behavior across a wide difficulty
spectrum.

Figures 7 and 19 provide qualitative results.
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(a) Gaussian deblur

(b) Super-resolution

Figure 19: Qualitative diversity examples across Gaussian deblur and super-resolution. Each
subfigure shows K = 4 posterior samples for two different test images. (a) Gaussian deblur: samples
differ in facial expressions and accessories (i.e., earrings in first test image). (b) Super-resolution:
samples differ in facial features (i.e., teeth in the first test image, eye color and eyelashes in the
second test image). Across both tasks, EquiReg produces diverse plausible reconstructions rather
than collapsing to a single mode.

D.3 CONCLUSION

Finally, we highlight that EquiReg improves both fidelity and diversity on 2 of the 3 considered tasks,
an encouraging outcome that is uncommon given the general behavior of classical regularizers. Hand-
crafted regularizers such as TV and ℓ1 may suppress diversity by shrinking solutions toward simple
structures. By contrast, EquiReg leverages data-dependent regularization that captures the richness
and structural complexity of the underlying data manifold, enabling it to preserve manifold-consistent
variability while suppressing implausible samples.

High diversity without fidelity is not meaningful for posterior sampling. A method that samples the
entire solution space, including low-probability and artifacted regions, may score well on diversity
but fail to provide useful reconstructions. Equi-DPS avoids this failure mode: it maintains meaningful
diversity while reducing artifacts and improving perceptual quality. In the experiments conducted
during the rebuttal, our goal was to demonstrate clearly that EquiReg preserves meaningful diversity,
reflecting the posterior uncertainty, rather than unstructured or unconstrained variability.

E IMPLEMENTATION DETAILS FOR IMAGE RESTORATION TASKS

Experimental Setup. We evaluate EquiReg on a variety of linear and nonlinear restoration tasks
for natural images. We fix sets of 100 images from FFHQ and ImageNet as our validation sets. All
images are normalized from [0, 1]. For the majority of experiments, we use noise level σy = 0.05
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(we indicate σy in our tables). For linear inverse problems, we consider (1) box inpainting, (2)
random inpainting, (3) Gaussian deblur, (4) motion deblur, and (5) super-resolution. We apply a
random 128× 128 pixel box for box inpainting, and a 70% random mask for random inpainting. For
Gaussian and motion deblur, we use kernels of size 61 × 61, with standard deviations of 3.0 and
0.5, respectively. For super-resolution, we downscale images by a factor of 4 using a bicubic resizer.
For nonlinear inverse problems, we consider (1) phase retrieval, (2) nonlinear deblur, and (3) high
dynamic range (HDR). We use an oversampling rate of 2.0 for phase retrieval, and due to instability
of the task, we generate four independent reconstructions and take the best result (as also done in
DPS (Chung et al., 2023), DAPS (Zhang et al., 2025a), and DiffStateGrad (Zirvi et al., 2025)). We
use the default setting from (Tran et al., 2021) for nonlinear deblur, and a scale factor of 2 for HDR.

Hyperparameters. Our method introduces a single hyperparameter λt that controls the amount of
regularization applied. Below we include a table detailing the use of this hyperparameter in the main
experiments (Table 12). For majority of experiments, we keep λt constant throughout iterations. For
all unscaled experiments, we employ early stopping, setting λt = 0 for the last 10% of sampling.

Table 12: Equivariance regularization weight λt used in main experiments.

Method
Box

Inpainting
Random

Inpainting
Gaussian
Deblur

Motion
Deblur

Super-resolution
(×4)

FFHQ 256× 256
Equi-PSLD 0.05 0.05 0.03 0.03 0.02
EquiCon-PSLD 0.01 0.01 0.01 0.01 0.01
Equi-ReSample 0.03 0.05 0.02 0.02 0.05
EquiCon-ReSample 0.001 0.001 0.001 0.001 0.001
Equi-DPS 0.0001 0.001 0.001 0.001 0.1

ImageNet 256× 256
EquiCon-PSLD 0.0015 0.05 0.06 0.07 0.001

PSLD. We integrate EquiReg into PSLD by simply adding an additional gradient update step using
our regularization term (Algorithms 2 and 3).

In our experiments, we use the official PSLD implementation from Rout et al. (2023), running with
its default settings to reproduce the baseline results. We note that in our code, we do not square the
norm when computing the gradient, aligning with PSLD’s implementation.

Algorithm 2 Equi-PSLD for Image Restoration Tasks

Require: T,y, {ηt}Tt=1, {γt}Tt=1, {σ̃t}Tt=1

Require: E ,D,Ax∗
0,A, sθ, Tg and Sg , {λt}Tt=1

1: zT ∼ N (0, I)
2: for t = T − 1 to 0 do
3: ŝ← sθ(zt, t)
4: z0|t ← 1√

ᾱt
(zt + (1− ᾱt)ŝ)

5: ϵ ∼ N (0, I)

6: z′
t−1 ←

√
αt(1−ᾱt−1)

1−ᾱt
zt +

√
ᾱt−1βt

1−ᾱt
z0|t + σ̃tϵ

7: z′′
t−1 ← z′

t−1 − ηt∇zt∥y −A(D(z0|t))∥22
8: zt−1 ← z′′

t−1 − γt∇zt∥z0|t − E(ATAx∗
0 + (I −ATA)D(z0|t))∥22

9: zt−1 ← zt−1 − λt∇zt∥Sg(D(z0|t))−D(Tg(z0|t))∥22
10: end for
11: return D(z0|t)
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Algorithm 3 EquiCon-PSLD for Image Restoration Tasks

Require: T,y, {ηt}Tt=1, {γt}Tt=1, {σ̃t}Tt=1

Require: E ,D,Ax∗
0,A, sθ, Tg and Sg , {λt}Tt=1

1: zT ∼ N (0, I)
2: for t = T − 1 to 0 do
3: ŝ← sθ(zt, t)
4: z0|t ← 1√

ᾱt
(zt + (1− ᾱt)ŝ)

5: ϵ ∼ N (0, I)

6: z′
t−1 ←

√
αt(1−ᾱt−1)

1−ᾱt
zt +

√
ᾱt−1βt

1−ᾱt
z0|t + σ̃tϵ

7: z′′
t−1 ← z′

t−1 − ηt∇zt∥y −A(D(z0|t))∥22
8: zt−1 ← z′′

t−1 − γt∇zt∥z0|t − E(ATAx∗
0 + (I −ATA)D(z0|t))∥22

9: zt−1 ← zt−1 − λt∇zt∥z0|t − E(S−1
g (D(Tg(z0|t))))∥22

10: end for
11: return D(z0|t)

ReSample. We integrate EquiReg into ReSample by adding our regularization term into the hard
data consistency step (Algorithms 4 and 5). We note that the ReSample algorithm employs a two-
stage approach; initially, it performs pixel-space optimization, and later it performs latent-space
optimization. We apply EquiReg in the latent-space optimization stage.

In our experiments, we use the official ReSample implementation from Song et al. (2023a), running
with its default settings to reproduce the baseline results.

Algorithm 4 Equi-ReSample for Image Restoration Tasks

Require: Measurements y, A(·), Encoder E(·), Decoder D(·), Score function sθ(·, t), Pretrained LDM
Parameters βt, ᾱt, η, δ, Hyperparameter γ to control σ2

t , Time steps to perform resample C, Tg and Sg ,
{λt}Tt=1

1: zT ∼ N (0, I) ▷ Initial noise vector
2: for t = T − 1, . . . , 0 do
3: ϵ1 ∼ N (0, I)
4: ϵ̂t+1 = sθ(zt+1, t+ 1) ▷ Compute the score
5: ẑ0(zt+1) =

1√
ᾱt+1

(zt+1 −
√
1− ᾱt+1ϵ̂t+1) ▷ Predict ẑ0 using Tweedie’s formula

6: z′
t =
√
ᾱtẑ0(zt+1) +

√
1− ᾱt − ηδ2ϵ̂t+1 + ηδϵ1 ▷ Unconditional DDIM step

7: if t ∈ C then ▷ ReSample time step
8: Initialize ẑ0(y) with ẑ0(zt+1)
9: for each step in gradient descent do

10: g ← ∇ẑ0(y)
1
2
∥y −A(D(ẑ0(y)))∥22 + λt∇ẑ0(y)∥Sg(D(ẑ0(y)))−D(Tg(ẑ0(y)))∥22

11: Update ẑ0(y) using gradient g
12: end for
13: zt = StochasticResample(ẑ0(y),z

′
t, γ) ▷ Map back to t

14: else
15: zt = z′

t ▷ Unconditional sampling if not resampling
16: end if
17: end for
18: x0 = D(z0) ▷ Output reconstructed image
19: return x0
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Algorithm 5 EquiCon-ReSample for Image Restoration Tasks

Require: Measurements y, A(·), Encoder E(·), Decoder D(·), Score function sθ(·, t), Pretrained LDM
Parameters βt, ᾱt, η, δ, Hyperparameter γ to control σ2

t , Time steps to perform resample C, Tg and Sg ,
{λt}Tt=1

1: zT ∼ N (0, I) ▷ Initial noise vector
2: for t = T − 1, . . . , 0 do
3: ϵ1 ∼ N (0, I)
4: ϵ̂t+1 = sθ(zt+1, t+ 1) ▷ Compute the score
5: ẑ0(zt+1) =

1√
ᾱt+1

(zt+1 −
√
1− ᾱt+1ϵ̂t+1) ▷ Predict ẑ0 using Tweedie’s formula

6: z′
t =
√
ᾱtẑ0(zt+1) +

√
1− ᾱt − ηδ2ϵ̂t+1 + ηδϵ1 ▷ Unconditional DDIM step

7: if t ∈ C then ▷ ReSample time step
8: Initialize ẑ0(y) with ẑ0(zt+1)
9: for each step in gradient descent do

10: g ← ∇ẑ0(y)
1
2
∥y −A(D(ẑ0(y)))∥22 + λt∇ẑ0(y)∥ẑ0(y)− E(S−1

g (D(Tg(ẑ0(y)))))∥22
11: Update ẑ0(y) using gradient g
12: end for
13: zt = StochasticResample(ẑ0(y),z

′
t, γ) ▷ Map back to t

14: else
15: zt = z′

t ▷ Unconditional sampling if not resampling
16: end if
17: end for
18: x0 = D(z0) ▷ Output reconstructed image
19: return x0

DPS. Similar to PSLD, we integrate EquiReg into DPS by simply adding an additional gradient
update step using our regularization term (Algorithm 6).

In our experiments, we use the official DPS implementation from Chung et al. (2023), running with
its default settings to reproduce the baseline results.

Algorithm 6 Equi-DPS for Image Restoration Tasks

Require: T,y, {ζt}Tt=1, {σ̃t}Tt=1, sθ, E , Tg and Sg , {λt}Tt=1

1: xT ∼ N (0, I)
2: for t = T − 1 to 0 do
3: ŝ← sθ(xt, t)
4: x0|t ← 1√

ᾱt
(xt + (1− ᾱt)ŝ)

5: ϵ ∼ N (0, I)

6: x′
t−1 ←

√
αt(1−ᾱt−1)

1−ᾱt
xt +

√
ᾱt−1βt

1−ᾱt
x0|t + σ̃tϵ

7: xt−1 ← x′
t−1 − ζt∇xt∥y −A(x0|t)∥22

8: xt−1 ← xt−1 − λt∇xt∥Sg(E(x0|t))− E(Tg(x0|t))∥22
9: end for

10: return x0

SITCOM. We augment the original SITCOM algorithm by introducing an additional equivariant
refinement stage at each reverse diffusion step. After completing the standard measurement and
backward-consistency gradient updates, we perform a second optimization over the equivariance loss,
enforcing consistency between E(Tg(v)) and Tg(E(v)) (Algorithm 7).

In our experiments, we use the official SITCOM implementation from Alkhouri et al. (2025), running
with its default settings to reproduce the baseline results.
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Algorithm 7 Equi-SITCOM for Image Restoration Tasks

Require: Measurements y, forward operator A(·), pre-trained DM ϵθ(·, ·), diffusion steps N , schedule ᾱi,
measurement gradient steps K, equivariant gradient steps Kequi, stop δ, lr γ, reg. λ.

Ensure: Restored image x̂.
1: Initialize xN ∼ N (0, I), ∆t =

⌊
T
N

⌋
.

2: for i = N,N − 1, . . . , 1 do ▷ Reducing diffusion sampling steps
3: v

(0)
i ← xi ▷ Init for closeness (C3)

4: for k = 1, . . . ,K do ▷ Adam on measurement/backward consistency (C1, C2)

5: v
(k)
i ← v

(k−1)
i −γ∇vi

[∥∥∥A( 1√
ᾱi

(
vi −

√
1− ᾱi ϵθ(vi, i∆t)

))
− y

∥∥∥2

2
+ λ∥xi − vi∥22

] ∣∣∣
vi=v

(k−1)
i

6: if
∥∥∥A( 1√

ᾱi

(
v
(k)
i −

√
1− ᾱi ϵθ(v

(k)
i , i∆t)

))
− y

∥∥∥2

2
< δ2 then

7: break ▷ Prevent noise overfitting
8: end if
9: end for

10: v
(0)
i ← v

(k)
i ▷ Initialize to optimized vi

11: for k = 1, . . . ,Kequi do

12: v
(k)
i ← v

(k−1)
i − γ∇vi

[∥∥∥E(Tg(v
(k)
i )

)
− Tg

(
E(v(k)

i )
)∥∥∥2

2

] ∣∣∣
vi=v

(k−1)
i

13: if
∥∥∥E(Tg(v

(k)
i )

)
− Tg

(
E(v(k)

i )
)∥∥∥2

2
< δ2 then

14: break
15: end if
16: end for
17: v̂i ← v

(k)
i ▷ Backward diffusion consistency (C2)

18: x̂′
0 ← 1√

ᾱi

[
v̂i −

√
1− ᾱi ϵθ(v̂i, i∆t)

]
▷ Backward consistency (C2)

19: xi−1 ←
√
ᾱi−1 x̂

′
0 +
√
1− ᾱi−1 ηi, ηi ∼ N (0, I) ▷ Forward consistency (C3)

20: end for
21: return x̂ = x0

F EXPERIMENT SETUP FOR PDE RECONSTRUCTIONS

Helmholtz equation. The Helmholtz equation represents wave propagation in heterogeneous
media:

∇2u(x) + k2u(x) = a(x), x ∈ (0, 1)2, (6)

with k = 1 and u|∂Ω = 0. Coefficient fields a(x) are generated according to a ∼ N (0, (−∆+9I)2).
We note that this system has reflection equivariance along x1 = 1

2 , x2 = 1
2 , x1 = x2 and rotation

equivariance by π
2 , π,

3π
2 .

Navier-Stokes equations. Following the methodology of (Li et al., 2020), we model the time
evolution of a vorticity field, u(x, t), governed by:

∂tu(x, t) +w(x, t) · ∇u(x, t) = ν∆u(x, t) + f(x), x ∈ (0, 1)2, t ∈ (0, T ], (7)

∇ ·w(x, t) = 0, x ∈ (0, 1)2, t ∈ [0, T ], (8)

u(x, 0) = a(x), x ∈ (0, 1)2, (9)

where w is the velocity field; ν = 1
1000 , viscosity; and f , a fixed forcing term. The initial condition

a(x) is drawn from N (0, 73/2(−∆+ 49I)−5/2) under periodic boundary conditions. The forcing
term is f(x) = 0.1 (sin(2π(x1 + x2)) + cos(2π(x1 + x2))). We borrow the dataset from (Huang
et al., 2024). We note that this system has a reflection symmetry along the x1 = x2 axis.

Implementation details. EquiReg, as a regularizer for diffusion posterior sampling, can be adapted
to many inverse solvers in a plug-and-play manner. For PDE experiments, we use the same model
weights and configurations as FunDPS (Yao et al., 2025). Error rates are calculated using the L2

relative error between the predicted and true solutions, averaged on 100 randomly selected test
samples. We provide the information on the EquiReg scaling weights in Table 13.
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Table 13: EquiReg loss used in PDE experiments.

Helmholtz Navier-Stokes

Forward Inverse Forward Inverse

EquiReg Norm Type MSE L2 MSE L2
EquiReg Weight λ 100 100 100 1000

G THEORETICAL ANALYSIS

G.1 SUMMARY OF THE ANALYSIS

The theoretical framework presented in this paper is intended to motivate and guide the design of
effective regularizers. This perspective, grounded in optimal transport theory (Ferreira and Valencia-
Guevara, 2018), serves as an intuitive interpretation of the dynamics and motivates the design of
regularization strategies such as EquiReg. We note that whether diffusion models follow exact
Wasserstein dynamics still remains an open problem (Zheng et al., 2025).
Proposition G.1. Let ρ(x, t) be the distribution of xT−t driven by the ideal reverse dynamics (eq. (3)).
Then, the evolution of ρ follows the Wasserstein-2 gradient flow associated with minimizing functional
Φ(ρ, t) defined as βT−t

∫
[ρϕ(x, t) + 1

2ρ log ρ]dx, where ϕ(x, t) = −(log pT−t(x|y) + 1
4∥x∥

2).

The dynamics of ρ remain the same if we replace ϕ(x, t) with ϕC(x, t) := ϕ(x, t) − C(t) for
arbitrary temporal function C(t). Without loss of generality, we assume ϕC(x, t) < 0 for all x and t.
In practice, the density function pT−t is not available and thus ϕC(x, t) is approximated as ϕ̂ with
pT−t(xT−t|y) ≈ C̃pT−t(xT−t)p(y|E[x0|xT−t]) where C̃ only depends on y.

Because the conditional expectation E[x0|xT−t] is a linear combination of all candidate x0, the
approximation remains relatively accurate when T − t is small (i.e., xT−t stays close to the data
manifold under low noise) but may incur high error for larger T−t, as shown in Figure 2b. To mitigate
this, we reweight the contributions to the first term of Φ, down-weighting unreliable estimates, and
amplifying the reliable ones. The resulting reweighted functional is

Φ̃(ρ, t) = βT−t

[
Zt

−1
∫
ρ(x)ϕ̂c(x, t)e

R(x)

ϕ̂c(x,t) dx+ 1
2

∫
ρ(x) log ρ(x)dx

]
, (10)

where Zt =
∫
e

R(x)

ϕ̂c(x,t) dx is the normalizing factor, and R(x) is a positive regularization that is
nearly zero near the data manifold and much larger elsewhere. Intuitively, since ϕ̂C < 0, the weight
is nearly one for x near the data manifold and much smaller elsewhere.
Proposition G.2. (Informal) The evolution of ρ, the probability distribution of xT−t driven by the
practical and regularized reverse dynamics (eq. (11)), is an approximation of the Wasserstein-2
gradient flow associated with minimizing Φ̃.

dx = [−βt

2 xdt− βt∇xt(log pt(xt) + log
∫
p(y|x0)p̃t(x0|xt)dx0 −R(xt))]dt+

√
βtdw̄ (11)

G.2 PRELIMINARY AND NOTATIONS

We first remind the readers of gradient flow under the Wasserstein-2 metric and introduce the notations
related to the diffusion model.

Wasserstein Gradient Flow Let F : P2(Rd) → R ∪ {+∞} be a functional of probability
distributions. The Wasserstein gradient flow of F is characterized by the minimizing movement
scheme (also known as JKO scheme) introduced by (Jordan et al., 1998). For a fixed time step τ > 0,
the sequence (ρk)k∈N of probability densities is defined recursively by:

ρk+1 ∈ arg min
ρ∈P2(Rd)

{
1

2τ
W 2

2 (ρ, ρk) + F(ρ)

}
,

where W2 denotes the 2-Wasserstein distance, and each ρk is a probability density representing the
distribution at time t = kτ . In the limit τ → 0, this discrete-time scheme recovers the continuous-time
gradient flow of F under the W2 metric.
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Diffusion Model A diffusion model defines a forward stochastic process (xt)t∈[0,T ] governed by
the Itô SDE:

dxt = f(xt, t) dt+
√

βt dwt, (12)
where wt is standard Brownian motion, βt > 0 is a time-dependent variance schedule, and f(x, t)

is a drift term. For instance, f ≡ 0 for a variance-exploding SDE and f(x, t) = −βt

2 x for a
variance-preserving SDE defined in (Song et al., 2021). In this work, we carry out our analysis under
a more general setting.
Assumption G.1. The drift term is a gradient field, f(x, t) = ∇h(x, t) for a scalar function h.

This process progressively transforms an initial data distribution x0 ∼ p0 into a tractable reference
distribution (e.g., approximately a Gaussian N (0, I)) at time T .

Sampling is performed by simulating the reverse-time SDE:

dxt = [f(xt, t)− βt∇x log pt(xt)] dt+
√
βt dw̄t, (13)

where pt is the marginal density of xt, and w̄t is a standard Brownian motion in reverse time.

In practice, the score function ∇x log pt(x) is approximated by a neural network sθ(x, t) trained to
estimate the score of the forward process. For conditional sampling, where we sample x0 given some
observed variable y, the score is replaced by ∇x log pt(x|y) and decomposed as

∇x log pt(x|y) = ∇x log pt(x) +∇x log pt(y|x), (14)

based on Bayes’ rule.

To simplify notation in the sequel, we perform a time reparameterization t = T − t′, so that the
reverse process is written as a forward SDE over t ∈ [0, T ]:

dxt = − [f(xt, T − t)− βT−t[∇x log pT−t(xt) +∇x log pt(y|xt)]] dt+
√

βT−t dwt, (15)

This form describes the generative process as evolving forward from t = 0 to t = T , matching the
usual direction of analysis in gradient flow frameworks.

G.3 PROOF OF PROPOSITION G.1

In this work, we consider Wasserstein gradient flow under the setting where the functional F depends
on time.
Lemma G.1. Consider a time-dependent functional F(ρ, t) =

∫
ρ(x)V (x, t)dx+

∫
α(t)ρ log ρdx.

Then the particle description of Wasserstein-2 gradient flow associated with this functional derived
by JKO scheme is

dxt = −∇V (xt, t)dt+
√

2α(t)dwt. (16)

Proof. Consider the following optimization

min
ρ′

F(ρ′, t+∆t)−F(ρ, t) +
1

2∆t
W 2

2 (ρ, ρ
′), (17)

where the change of density is restricted to the Liouville equation

∂tρ = −∇ · (ρv(x, t)), and ρ′(x) = ρ(x)−∆t∇ · (ρ(x)v(x)) + o(∆t). (18)

Using the static formulation of W2 distance, we have

W 2
2 (ρ, ρ

′) =

∫
ρ(x)∥x− T ∗(x)∥2 dx = ∆t2

∫
ρ(x)∥v∗(x)∥2 dx, (19)

where T ∗(x) is the optimal transport map, and v∗(x) is the associated optimal velocity field.

Thus, we can rewrite the eq. (17) as

inf
v

F(ρ, t)−∆t

∫
∇ · (ρ(x)v(x)) δF(ρ, t)

δρ
(x) dx+∆t

∫ [
ρ(x)∂tV (x, t) + α̇(t)ρ log ρ

]
dx

(20)

−F(ρ, t) +
∆t

2

∫
ρ(x)∥v(x)∥2 dx, (21)
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which simplifies to

min
v

∫
ρ(x)

〈
v(x),∇δF(ρ, t)

δρ
(x)

〉
dx+

1

2

∫
ρ(x)∥v(x)∥2 dx, (22)

since the last term in the first line of (20) does not depend on v. and further to

min
v

∫
ρ(x)

∥∥∥∥v(x) +∇δF(ρ, t)

δρ
(x)

∥∥∥∥2 dx. (23)

From the optimality condition of the above problem, we obtain

v(x, t) = −∇δF(ρ, t)

δρ
(x) = −(∇V (x, t) + α(t)∇ log ρ(x, t)). (24)

We note that By Hörmander’s theorem, a smooth density ρ(x, t) exists for t > 0, ensuring that the
above v is well-defined. The corresponding evolution of probability density is

∂tρ(x, t) = −∇ · (ρ(x, t)v(x, t)) (25)

= ∇ · (ρ(x, t)(∇V (x, t) + α(t)
∇ρ(x, t)

ρ
)) (26)

= −∇ · (ρ(x, t)(−∇V (x, t)) + α(t)∆ρ(x, t), (27)

which is exactly the Fokker-Planck equation describing the evolution of the probability density
describing the particles following

dxt = −∇V (xt, t)dt+
√

2α(t)dwt. (28)

□

Now we come back to Proposition G.1. From eq. (15) we know that choosing

V (x, t) = h(x, T − t)− βT−t[log pT−t(x) + log pT−t(y|x)] and α(t) =
βT−t

2
(29)

in Lemma G.1 completes the proof, where h is defined in Assumption G.1.

G.4 DETAILED VERSION OF PROPOSITION G.2

In practice, one does not have access to log pt(y|xt) which appears in the reverse SDE. The most
popular approach is do the following approximation,

pt(y|xt) =

∫
p(y|x0)p(x0|xt)dx0 = Ex0∼p(x0|xt)[p(y|x0)] ≈ p(y| E[x0|xt]), (30)

which can be interpreted as exchanging two operations, the conditional expectation and the measure-
ment p(y|·).
As discussed in the main text, since the conditional expectation is a linear combination over all
possible values of x0, it may fall outside the data manifold, resulting in physically invalid samples.
One of the central challenges in diffusion-based inverse sampling is guiding the sampling trajectory,
generated by the reverse SDE dynamics, toward the data manifold. A common strategy is to
incorporate regularization into the reverse SDE to encourage manifold adherence. In this work,
building on the perspective of Wasserstein gradient flow as outlined above, we provide a novel
interpretation of the role played by such regularization terms.

We show that the regularizer serves to reweight the contribution of different regions in the calculation
of the underlying functional being minimized, Φ(ρ, t) defined in Proposition G.1. Specifically, it
amplifies the influence of regions where the density estimate is reliable (typically near the data
manifold), while down-weighting regions with poor approximation quality of based on eq. (30), often
corresponding to off-manifold samples.

Following from what we have shown in the main text, Φ(ρ, t) has the form of βT−t

∫
[ρϕ(x, t) +

1
2ρ log ρ]dx for a function ϕ(x, t), which can be derived by (29). The log pt(y|x) term in (29) or
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∇ log pt(y|x) term in (28), equivalently, is computed based on approximation (30). We denote the
corresponding approximation of ϕ(x, t) as ϕ̂(x, t). As discussed in the main text, we can assume
without loss of generality that ϕ(x, t) < 0 and ϕ̂(x, t) < 0. We have

Φ̂(ρ, t) = βT−t

[ ∫
x∈N(M)

ρ(x)ϕ̂(x, t)dx+

∫
x/∈N(M)

ρ(x)ϕ̂(x, t)dx+
1

2

∫
ρ log ρdx

]
, (31)

where N(M) denotes a neighborhood of the data manifold M. Intuitively, we aim to focus on the
contribution from regions near M, which corresponds to the first term, while down-weighting the
influence of points farther away, where the approximation tends to be unreliable. For instance, we
can introduce two positive weights A ≫ B and adopt the modified functional

Φ̃(ρ, t) = βT−t

[
A

∫
x∈N(M)

ρ(x)ϕ̂(x, t)dx+B

∫
x/∈N(M)

ρ(x)ϕ̂(x, t)dx+
1

2

∫
ρ log ρdx

]
. (32)

In this work, we further generalize this idea and consider a continuous weight function,

Φ̃(ρ, t) = βT−t

[ ∫
ρ(x)ϕ̂(x, t)λ(x)dx+

1

2

∫
ρ log ρdx

]
, (33)

where the non-negative weight λ(x) is large for x ∈ N(M) and small elsewhere.

In practice, a nonnegative regularization function R(x) is introduced, ideally being nearly zero for x
near the data manifold and much larger elsewhere. We consider the following modified functional

with weight function λ(x, t) := e
R(x)

ϕ̂(x,t) ,

Φ̃(ρ, t) = βT−t

[∫
ρ(x)ϕ̂(x, t)e

R(x)

ϕ̂(x,t) dx+ 1
2

∫
ρ(x) log ρ(x)dx

]
. (34)

Note that ϕ̂ < 0, we have that

R(x) ≈
{
0, x ∈ N(M)

≫ 1, x far away from N(M)
⇒ λ(x, t) ≈

{
1, x ∈ N(M)

0, x far away from N(M)
.

Next, we consider practical algorithms based on this reweighted functional. In practice, we only have
the score function instead of the function value of log pT−t(x). Thus, the Wasserstein gradient flow
associated with (34) is intractable since we cannot evaluate the weight function. We consider the
following approximation based on eδ ≈ 1 + δ when δ is sufficiently small,

Φ̃(ρ, t) ≈βT−t

[∫
ρ(x)ϕ̂(x, t)

(
1 +

R(x)

ϕ̂(x, t
) )dx+ 1

2

∫
ρ(x) log ρ(x)dx

]
(35)

=βT−t

[∫
ρ(x)

(
ϕ̂(x, t) +R(x)

)
dx+ 1

2

∫
ρ(x) log ρ(x)dx

]
. (36)

By Lemma G.1, the dynamics of x driven by the Wasserstein gradient flow associated with the
approximated functional above is

dx = [−f(x, T − t)− βT−t∇x

(
log pT−t(x) + log p̂T−t(y|x) +R(x)

)
]dt+

√
βT−tdw̄. (37)

This completes the proof.

Remark 1. Since ϕ̂ < 0, and eA ≥ 1+A for any A ∈ R, the dynamics derived by the approximated
functional in (36) is evolving to minimize an upper bound of the reweighted functional Φ̃.

H ADDITIONAL BACKGROUND INFORMATION

Solving inverse problems with deep learning prior to diffusion models. Earlier works (Metzler
et al., 2016; Romano et al., 2017; Zhang et al., 2017; Metzler et al., 2017) used deep neural networks
as denoisers to solve inverse problems. Furthermore, deep generative models such as variational
autoencoders (VAEs) (Kingma, 2013), and generative adversarial networks (GANs) (Goodfellow
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et al., 2014) were employed. Notable applications include compressed sensing (Bora et al., 2017) and
MRI (Jalal et al., 2021).

Applications on diffusion models to solve inverse problems. Most popular applications include
image restoration (Chung et al., 2023; 2022b; Kawar et al., 2022; Lugmayr et al., 2022; Saharia
et al., 2022; Song et al., 2023a; Rout et al., 2023; Zhu et al., 2023; ?; Zirvi et al., 2025), medical
imaging (Song et al., 2022; Chung and Ye, 2022; Chung et al., 2022a; Hung et al., 2023; Dorjsembe
et al., 2024; Li et al., 2024; Kazerouni et al., 2023; Bian et al., 2024), and solving partial differential
equations (PDEs) (Isakov, 2006; Huang et al., 2024; Shysheya et al., 2024; Liu et al., 2023; Li et al.,
2025; Baldassari et al., 2023; Mammadov et al., 2024a; Yao et al., 2025). On the methodology side,
there has been numerous advancements (Chung et al., 2023; 2022b; Kawar et al., 2022; Lugmayr
et al., 2022; Saharia et al., 2022; Song et al., 2023a; Rout et al., 2023; Zhu et al., 2023; ?; Zirvi et al.,
2025; Song et al., 2022; Chung and Ye, 2022; Chung et al., 2022a; Hung et al., 2023; Dorjsembe
et al., 2024; Li et al., 2024; Kazerouni et al., 2023; Bian et al., 2024; Huang et al., 2024; Shysheya
et al., 2024; Mammadov et al., 2024b; Cardoso et al., 2024).

Resources for Definition 3.2 on vanishing-error autoencoders. Manifold constrained distribution-
dependent equivariance error uses the notion of vanishing-error autoencoders (Shao et al., 2018;
Anders et al., 2020; He et al., 2024) (Definition H.1), also known as an asymptotically-trained
autoencoder (Anders et al., 2020) or a perfect autoencoder (He et al., 2024). Vanishing-error
autoencoders have previously been employed by diffusion-based inverse solvers to preserve the
diffusion process on the manifold (He et al., 2024).
Definition H.1 (Vanishing-Error Autoencoder). A vanishing-error autoencoder under the manifold
M with encoder E : X → Z and decoder D : Z → X with Z = Rk where k < d, has zero
reconstruction error under the support of the data distribution X , i.e., ∀x ∈ X ⊂ M, x = D(E(x)).
It follows that the decoder is surjective on the data manifold, D : Z → M (He et al., 2024), and the
encoder-decoder composition forms an identity map, i.e., ∀z ∈ M, z = E(D(z)).

Equivariance. Let z ∈ Rd and x = f(z) ∈ Rd. For rotation and reflection equivariance, the
transformations Tg and Sg can be defined by a rotation matrix R ∈ Rd×d; then, a function f with
the rotation equivariant property would satisfy Rx = f(Rz). For translation equivariance, the
transformations would be Tg(z) = z+g and Sg(x) = x+g, where g ∈ Rd. Hence, for a translation
equivariance function f , we would have x+ g = f(z + g). For the case where the output dimension
is larger than the input, f : Rk → Rd with d > k, translation equivariance can be defined up to a
discrete scale, i.e., Tg(z) = z + g and Sg(x) = Tsg(z) where s = d/k. The equivariance properties
of translation, rotation, and reflections, combined, are referred to as E(3) symmetries. Without
reflections, the symmetries form a Euclidean group SE(3) (Thomas et al., 2018; Fuchs et al., 2020).

E(3), SE(3), and SO(3) are important symmetry groups in 3D Euclidean space, with well-established
applications in physics and chemistry, computer vision, and reinforcement learning (Cohen and
Welling, 2016; Thomas et al., 2018; Hoogeboom et al., 2022; Xu et al., 2024; Park et al., 2025).
Finally, our contributions are complementary to, and can be combined with, the growing literature on
meta-learning and automatic symmetry discovery to learn symmetry groups and their actions directly
from data (Zhou et al.; Quessard et al., 2020; Dehmamy et al., 2021; Mohapatra et al., 2025).

Data manifold hypothesis. Let data x ∈ X ⊂ Rd be in an ambient space of dimension d with
support X distribution. We assume that data are sampled from a low-dimensional manifold M (Cay-
ton et al., 2005; Ma and Fu, 2012) embedded in a high-dimensional space (Assumption H.1). This
hypothesis is popular in machine learning (Bordt et al., 2023), and has been studied mathematically
in the literature (Narayanan and Mitter, 2010; Bortoli, 2022). Moreover, empirical evidence in image
processing supports the manifold hypothesis (Weinberger and Saul, 2006; Fefferman et al., 2016),
and diffusion-based solvers assume this property (He et al., 2024; Chung et al., 2022b; 2023).
Assumption H.1 (Manifold Hypothesis). Let x ∈ X ⊂ Rd be a data sample. The support X of the
data distribution lies on a k dimensional manifold M within an ambient space Rd where k ≪ d.

I ADDITIONAL EXPERIMENTS ON MPE FUNCTIONS

We compare several networks and show that MPE consistently emerges across them: as Gaussian
noise is added to natural images, the equivariance loss systematically increases. We examine both (i)
the emergence of MPE properties in different functions (neural networks) and (ii) the effect of using
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these functions within EquiReg on identical inverse problem settings. Specifically, for each dataset
(FFHQ 256 and ImageNet), we consider four MPE function classes: (1) the pre-trained encoder
of the latent diffusion model (LDM) used in our main experiments (Rombach et al., 2022), (2) a
CNN autoencoder trained on the corresponding training distribution (FFHQ or ImageNet) with flip
(FFHQ) or rotation (ImageNet) augmentations, (3) a pre-trained ResNet-50 (He et al., 2016), and (4)
a pre-trained CLIP encoder (Radford et al., 2021). For each network, we evaluate equivariance loss
under the relevant symmetry (flip for FFHQ, rotation for ImageNet) as Gaussian noise is added to
100 natural images at increasing noise levels.

Our results show that all four networks exhibit clear MPE behavior; their equivariance error increases
as the noise level of the input grows. At the same time, the strength of the MPE property varies across
architectures. Notably, the CNN autoencoder trained on the true data distribution shows the strongest
MPE behavior, with equivariance error rising most sharply as images are corrupted, in line with
our systematic guidelines for constructing MPE functions (Section 3). This is precisely the regime
where the training distribution of the function matches the distribution of the inverse problem (e.g.,
training on ImageNet train and evaluating on ImageNet test). In contrast, the LDM encoder exhibits
the weakest MPE signal among the four, while ResNet-50 and CLIP fall between these extremes.
These trends are visualized in Figures 15 and 20.

We then apply each of these MPE functions within the EquiReg framework on the same inverse
problem configurations: two datasets (FFHQ 256 and ImageNet), two diffusion-based solvers (DPS
and SITCOM), and two tasks (super-resolution and motion deblurring). Across all settings and all
MPE choices, EquiReg consistently improves reconstruction quality relative to the corresponding
baseline without regularization (“None”). Tables 14 and 15 summarize these results. Taken together,
these experiments demonstrate that (a) MPE properties naturally emerge in widely used pre-trained
networks, making EquiReg easy to deploy in practice, and (b) EquiReg is robust across a range of
MPE functions, including cases where the MPE property is relatively weak. Importantly, our main
results use the LDM encoder which is the weakest MPE function in this ablation, suggesting that even
stronger empirical gains are achievable using other MPE functions, such as the CNN autoencoder.
We leave this as a future area of exploration.

(a) FFHQ 256. (b) ImageNet.

Figure 20: Equivariance error vs. σ noise added. As more noise is added, equivariance error,
computed with all MPE functions, increases.

J COMPUTING RESOURCES

We conduct experiments on two NVIDIA GeForce RTX 4090 GPUs with 24 GB of VRAM. We note
that we use pre-trained models and perform inference, so not much compute is required.

K ASSETS

We use the publicly available code from PSLD (https://github.com/LituRout/PSLD),
ReSample (https://github.com/soominkwon/resample), DPS (https://github.
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Table 14: DPS superresolution with λ = 0.01 using different MPE functions.

(a) FFHQ 256.

MPE function PSNR SSIM LPIPS FID

None 23.160 (1.923) 0.657 (0.072) 0.193 (0.057) 129.528
LDM Encoder (FFHQ) 26.581 (2.457) 0.773 (0.044) 0.120 (0.030) 87.437
CNN Autoencoder (FFHQ) 26.866 (1.943) 0.771 (0.044) 0.116 (0.029) 85.352
Pretrained ResNet50 26.873 (1.941) 0.771 (0.044) 0.116 (0.029) 85.138
Pretrained CLIP 26.860 (1.942) 0.771 (0.044) 0.116 (0.029) 85.495

(b) ImageNet.

MPE function PSNR SSIM LPIPS FID

None 19.727 (4.292) 0.407 (0.180) 0.541 (0.182) 446.829
LDM Encoder (ImageNet) 22.200 (4.295) 0.568 (0.146) 0.384 (0.130) 311.636
CNN Autoencoder (ImageNet) 22.178 (4.294) 0.568 (0.148) 0.375 (0.125) 312.530
Pretrained ResNet50 22.176 (4.290) 0.568 (0.148) 0.375 (0.125) 314.590
Pretrained CLIP 22.177 (4.293) 0.568 (0.148) 0.376 (0.125) 313.468

Table 15: SITCOM motion deblurring on FFHQ 256 with λ = 0.05 using different MPE functions.

MPE function PSNR SSIM LPIPS

None 27.670 (1.343) 0.790 (0.031) 0.221 (0.040)
LDM Encoder (FFHQ) 28.357 (1.379) 0.806 (0.031) 0.200 (0.036)
CNN Autoencoder (FFHQ) 28.852 (1.376) 0.819 (0.044) 0.193 (0.033)
Pretrained ResNet50 28.682 (1.388) 0.811 (0.036) 0.198 (0.036)

com/DPS2022/diffusion-posterior-sampling), and SITCOM (https://github.
com/sjames40/SITCOM).

L BROADER IMPACTS

On the positive side, high-fidelity image restoration can improve downstream tasks in medical
imaging, remote-sensing and environmental monitoring (e.g., denoising satellite observations to
track pollution or deforestation). Likewise, accelerated PDE-solving via learned diffusion priors
may enable faster, more accurate simulations for climate modeling, fluid-dynamics research, and
engineering design. On the other hand, robust reconstruction methods could be misappropriated for
privacy-invasive surveillance or to create deceptive imagery. We emphasize that our method does not
amplify these existing risks.

M RESPONSIBLE RELEASE

Our approach uses only publicly available datasets and standard pre-trained diffusion models, intro-
ducing no novel dual-use or privacy risks. Consequently, no additional safeguards are required.
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