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ABSTRACT

Diffusion models represent the state-of-the-art for solving inverse problems such
as image restoration tasks. Diffusion-based inverse solvers incorporate a likeli-
hood term to guide prior sampling, generating data consistent with the posterior
distribution. However, due to the intractability of the likelihood, most methods
rely on isotropic Gaussian approximations, which can push estimates off the data
manifold and produce inconsistent, unstable reconstructions. We propose Equiv-
ariance Regularized (EquiReg) diffusion, a general plug-and-play framework that
improves posterior sampling by penalizing those that deviate from the data mani-
fold. EquiReg formalizes manifold-preferential equivariant functions that exhibit
low equivariance error for on-manifold samples and high error for off-manifold
ones, thereby guiding sampling toward symmetry-preserving regions of the so-
lution space. We highlight that such functions naturally emerge when training
non-equivariant models with augmentation or on data with symmetries. EquiReg is
particularly effective under reduced sampling and measurement consistency steps,
where many methods suffer severe quality degradation. By regularizing trajecto-
ries toward the manifold, EquiReg implicitly accelerates convergence and enables
high-quality reconstructions. EquiReg consistently improves performance in linear
and nonlinear image restoration tasks and solving partial differential equations,

1 INTRODUCTION

Inverse problems aim to recover an unknown signal x∗ ∈ Rd from undersampled noisy measurements:

y = A(x∗) + ν ∈ Rm, (1)

where A is a known measurement operator, and ν is an unknown noise (Groetsch and Groetsch,
1993). Inverse problems are widely applied and studied in science and engineering, including image
restorations, medical imaging, and astrophotography.

Figure 1: EquiReg’s broad applicability. a-d) image restoration inverse problems and e) text-guided
image generation, resulting in artifact reduction and more realistic generation. Here, EquiReg refers
to our regularization being applied to the diffusion sampling method on the same row.

Inverse problems are ill-posed, i.e., the inversion process can have many solutions; hence, they require
prior information about the desired solution (Kabanikhin, 2008). In the Bayesian formulation, the
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Figure 2: Equivariance Regularized (EquiReg) diffusion for inverse problems. a) EquiReg uses a
stand-alone function whose equivariance error is lower for on-manifold and higher for off-manifold
data. EquiReg regularizes the posterior sampling trajectory for improved performance. b-c) Illustra-
tion of off-manifold posterior expectation challenge via manifold and distribution interpretation.

solution maximizes the posterior distribution p(x|y) ∝ p(y|x)p(x), where p(y|x) is the likelihood
of the measurements and p(x) is a prior describing the signal structure (Stuart, 2010). Examples of
handcrafted priors include sparsity (Donoho, 2006) and low-rankness (Candès et al., 2011).

This paper focuses on methods that leverage unconditionally pre-trained score-based generative
diffusion models as learned priors (Ho et al., 2020; Song and Ermon, 2019) with applications in
image restoration (Chung et al., 2023), medical imaging (Chung et al., 2022a), and solving partial
differential equations (PDEs) (Huang et al., 2024; Yao et al., 2025). These methods define a sequential
noising process x0 ∼ pdata → xt → xT ∼ pT (x) ≈ N (0, I) and a reverse denoising process
parameterized by a neural network score ∇xt

log pt(xt) (Vincent, 2011). During sampling, these
approaches incorporate gradient signals carrying likelihood information to solve inverse problems.

Solving inverse problems with diffusion (Zhang et al., 2025a; Alkhouri et al., 2025) requires com-
puting the conditional score ∇xt log pt(xt|y), decomposed into ∇xt log pt(xt) +∇xt log pt(y|xt).
This introduces challenges, as the likelihood score ∇xt log pt(y|xt) is only computationally tractable
when t = 0. To handle the likelihood for t > 0, many state-of-the-art methods approximate the
posterior pt(x0|xt) with the isotropic Gaussian distribution (Zhang et al., 2025a), where the distri-
bution expectation is computed using the optimal denoising score (Robbins, 1956). The Gaussian
approximation can be inaccurate for complex distributions (Figure 2c), leading to errors in likelihood
computation, especially with point estimations (Chung et al., 2023). Since the posterior expectation
is a conditional expectation, a linear combination of all possible x0, it may lie off the data manifold
even when individual samples remain on it (Figure 2b). These issues are further amplified in latent
diffusion models (LDMs), introducing artifacts (Rout et al., 2023).

Prior work has attempted to address this challenge via projection-based (He et al., 2024; Zirvi et al.,
2025) or decoupled optimization strategies (Zhang et al., 2025a), aimed at reducing the propagation of
measurement consistency errors during sampling. However, they still rely on the isotropic Gaussian
assumption, which can lead to failures on difficult tasks or when the number of sampling steps is
reduced. While higher-order statistics can reduce errors (Boys et al., 2024), most approaches still
rely on the approximation for its efficiency, scalability, and simplicity (Alkhouri et al., 2025), often
coupled with large-scale LDMs (Peebles and Xie, 2023). This raises a key question: how can we
ensure the reliability and practicality of conditional diffusion models under this approximation?

Equivariance provides a natural mechanism to keep sampling trajectories close to the data manifold.
We therefore address this challenge with a regularization scheme that leverages equivariance to
improve posterior sampling by guiding diffusion trajectories toward symmetry-preserving solution
spaces. Prior studies have enforced equivariance directly on the generation or denoising process (Chen
et al., 2023a; Terris et al., 2024), with extensions to probabilistic symmetries (Bloem-Reddy et al.,
2020) enabling more sample-efficient diffusion models (Wang et al., 2024).
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Our approach differs as follows: rather than strictly enforcing equivariance within denoising archi-
tectures, which can hinder tasks requiring symmetry breaking (Lawrence et al., 2025), we employ
equivariance as a plug-and-play regularizer to guide diffusion trajectories toward the data manifold.

Our contributions. We propose Equivariance Regularized (EquiReg) diffusion, an equivariance-
based regularization framework for solving inverse problems with diffusion models (Figure 2a).
EquiReg leverages equivariance to regularize likelihood-induced errors during posterior sampling,
guiding diffusion trajectories toward more consistent, on-manifold solutions. Crucially, it employs
Manifold-Preferential Equivariant (MPE) functions, which discriminate on-manifold from off-
manifold data by exhibiting low equivariance error in-distribution and higher error out-of-distribution.

We formalize that an effective regularizer should capture such a global property, and MPE functions
provide a principled way to direct sampling toward plausible solutions. This design makes EquiReg
architecture-agnostic: the regularizer operates independently of the diffusion model itself. With
a suitable MPE function, EquiReg improves performance across models, including those with
equivariant scores, where likelihood guidance may otherwise push trajectories off the manifold.

We observe that many practical functions behave as MPEs: their equivariance error is small on the
training or data manifold but grows off-manifold. This behavior arises in learned models trained
with data augmentation, as well as in data with inherent symmetries such as those from physical
systems. Rather than treating the degradation off-manifold as a limitation, we exploit it as a signal:
equivariance error serves as a natural discriminator of equivariance for identifying undesirable states
during diffusion sampling. Building on this idea, we construct pre-trained MPE functions as the
foundation of our EquiReg loss. The choice of this function is independent of the denoiser in
diffusion models and can be derived separately. For instance, if the diffusion model architecture
is itself equivariant, it cannot be leveraged for EquiReg as it cannot discriminate between on- and
off-manifold samples. Instead, a separate non-equivariant architecture can be used to train to derive
EquiReg for regularization.

We validate the effectiveness of EquiReg through extensive experiments across diverse diffusion
models, inverse problems, and datasets. We demonstrate that EquiReg improves perceptual image
quality and remains effective in cases where baselines fail. We show that EquiReg improves the
performance of SITCOM (Alkhouri et al., 2025) and DPS (Chung et al., 2023) when the number
of measurement consistency and sampling steps are reduced, thus moving toward more efficient
diffusion-based solvers. Our method is particularly useful when applied to LDMs. EquiReg reduces
failure cases, and consistently improving PSLD (Rout et al., 2023), ReSample (Song et al., 2023a),
and DPS (Chung et al., 2023) on linear and nonlinear image restoration tasks. For example, EquiReg
significantly improves the LPIPS (Song et al., 2023a) of ReSample by 51% for motion deblur and the
FID of DPS (Chung et al., 2023) by 59% on super-resolution.

We extend EquiReg’s applicability to function-space diffusion models and demonstrate its added
benefit for solving PDEs. EquiReg achieves a 7.3% relative reduction in the ℓ2 error of FunDPS (Mam-
madov et al., 2024; Yao et al., 2025) on the Helmholtz equation and a 7.5% relative reduction on
the Navier-Stokes equation. Lastly, we include preliminary experiments on EquiReg improving the
realism and plausibility of text-guided image generation, emphasizing that the benefits of EquiReg ex-
tend beyond image restorations. Overall, the flexibility of EquiReg as a plug-and-play regularization
framework suggests that its utility will extend well beyond the specific methods studied in this paper.

2 PRELIMINARIES AND RELATED WORKS

Diffusion models. Diffusion generative models (Ho et al., 2020; Song and Ermon, 2019; Sohl-
Dickstein et al., 2015; Kadkhodaie and Simoncelli, 2021) are state-of-the-art in computer vision for
image (Esser et al., 2024) and video generation (Brooks et al., 2024; Zhang et al., 2025b), with score-
based methods (Song et al., 2021) being among the most widely used. Diffusion models generate data
via a reverse noising process. The forward noising process transforms the data sample x0 ∼ pdata
via a series of additive noise into an approximately Gaussian distribution (pdata → pt → N (0, I)

as t → ∞), described by the stochastic differential equation (SDE) dx = −βt

2 xdt +
√
βtdw,

where w is a standard Wiener process, and the drift and diffusion coefficients are parameterized by
a monotonically increasing noise scheduler βt ∈ (0, 1) in time t (Ho et al., 2020). Reversing the
forward diffusion process is described by (Anderson, 1982)

dx = [−βt

2 x− βt∇xt log pt(xt)] dt+
√
βtdw̄ (2)
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with dt moving backward in time or in discrete steps from T to 0. This reverse SDE is used to
sample data from the distribution pdata, where the unknown gradient ∇xt

log pt(xt) is approximated
by a scoring function sθ(xt, t), parameterized by a neural network and learned via denoising score
matching methods (Hyvärinen and Dayan, 2005; Vincent, 2011). Solving inverse problems is
described as a conditional generation where the data is sampled from the posterior p(x|y):

dx = [−βt

2 xdt− βt(∇xt
log pt(xt) +∇xt

log pt(y|xt))]dt+
√

βtdw̄ (3)
For solving general inverse problems where the diffusion is pre-trained unconditionally, the prior score
∇xt log pt(xt) can be estimated using sθ(xt, t). However, the likelihood score ∇xt log pt(y|xt) is
only known at t = 0, otherwise it is computationally intractable.

Diffusion models for inverse problems. Solving inverse problems with pre-trained diffusion
models requires approximating the intractable likelihood score ∇xt

log pt(y|xt). Training-free
solvers differ in how they approximate pt(y|xt) and combine it with the sampling prior pt(xt) (Peng
et al., 2024). Since pt(y|xt) =

∫
p(y|x0)pt(x0|xt)dx0, the common choice is to approximate

pt(x0|xt) by an isotropic Gaussian N (x0|t, r
2
t I) (Chung et al., 2023; Song et al., 2023b; Zhu

et al., 2023; Zhang et al., 2025a). With an optimal denoising score sθ(xt, t), the posterior mean
x0|t := E[x0|xt] follows from Tweedie’s formula (Robbins, 1956; Miyasawa et al., 1961; Efron,
2011). Although this yields an MMSE estimate, for complex or multimodal distributions, pt(x0|xt)
may not be concentrated around its mean, leading to off-manifold solutions (see Figure 2b-c).

Equivariance. Equivariance is a strategy for incorporating symmetries into deep learning (Bronstein
et al., 2021). Prior work has applied equivariance to graph networks (Satorras et al., 2021), convo-
lutional networks (Cohen and Welling, 2016; Romero and Lohit, 2022), Lie groups for modelling
dynamical systems (Finzi et al., 2020), and diffusion models (Wang et al., 2024) with applications in
molecular generation (Hoogeboom et al., 2022; Cornet et al., 2024), autonomous driving (Chen et al.,
2023b), robotics (Brehmer et al., 2023), crystal structure prediction (Jiao et al., 2023), and audio in-
verse problems (Moliner et al., 2023). Equivariance guidance has also been used to improve temporal
consistency in video generation (Daras et al., 2024). The benefits of equivariance as a prior to solve
inverse problems (Scanvic et al., 2025) are theoretically supported in compressed sensing (Tachella
et al., 2023). An equivariant function respects symmetries under group transformations, i.e.,
Definition 2.1 (Equivariance). Let G act on Z via Tg : Z → Z and on X via Sg : X → X . A
function f : Z → X is equivariant if for all g ∈ G and z ∈ Z , f(Tg(z)) = Sg(f(z)).

While prior work leverages exact equivariance as in Definition 2.1 to directly incorporate symmetries
into deep neural networks, recent studies explore approximate equivariant networks to relax strict
mathematical symmetries that may not fully hold in real-world data, aiming to improve perfor-
mance (Wang et al., 2022). They propose a definition of approximate equivariance (Definition 2.2),
along with an equivariance error of functions to quantify the deviation from perfect symmetry.
Definition 2.2 (Approximate Equivariant Functions). Let G act on Z via Tg : Z → Z and on X
via Sg : X → X . A function f : Z → X is ϵ-approximate equivariant if for all g ∈ G and z ∈ Z ,
∥Sg(f(z)) − f(Tg(z))∥ ≤ ϵ. The equivariance error of the function f : Z → X is defined as
supz,g ∥Sg(f(z))− f(Tg(z))∥. Hence, f is ϵ-approximate equivariant iff its error < ϵ.

Finally, this paper uses the term manifold which refers to the data manifold hypothesis (see Appendix
I) (Cayton et al., 2005) that assumes data is sampled from a low-dimensional manifold embedded in
a high-dimensional space. This hypothesis is popular in machine learning (Bordt et al., 2023) and
diffusion-based solvers (He et al., 2024; Chung et al., 2022b; 2023), supported by empirical evidence
for imaging (Weinberger and Saul, 2006).

3 EQUIREG: EQUIVARIANCE REGULARIZED DIFFUSION

We begin by presenting a generalized regularization framework for improving diffusion-based inverse
solvers. We then focus on the property of equivariance and introduce a new class of functions whose
equivariance errors are distribution-dependent (low for on- or near-manifold samples and high for
off-manifold samples). Finally, we leverage these functions to regularize diffusion models, guiding
sampling trajectories toward better inverse solutions.

This paper addresses the propagation error introduced by the approximation of posterior pt(x0|xt)
by incorporating an explicit regularization term. The proposed framework is general and can be
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applied as plug-in on a wide range of pixel and latent-space diffusion models. Given pt(y|xt) =∫
p(y|x0)pt(x0|xt)dx0, let p̃t(x0|xt) denote an approximation of the posterior to make the likeli-

hood tractable. We formulate the regularized reverse diffusion dynamics as

dx = [−βt

2 xdt− βt∇xt
(log pt(xt) + log

∫
p(y|x0)p̃t(x0|xt)dx0 −R(xt))]dt+

√
βtdw̄, (4)

where R(xt) is the regularizer. Applying this to DPS (Chung et al., 2023), as an example, takes
the form in Algorithm 1). This formulation raises two questions: i) how to design the regularizer,
and ii) how to interpret the role of R in regularizing conditional diffusion models and its impact
on the sampling trajectory. We gain insight into the desirable properties of an optimal regularizer
by reinterpreting the reverse conditional diffusion process as a time-inhomogeneous Wasserstein
gradient flow (Ferreira and Valencia-Guevara, 2018) (see Propositions H.1 and H.2 in Appendix).

Algorithm 1 Equi-DPS for Inverse Problems.

Require: T,y, {ζt}Tt=1, {σ̃t}Tt=1, sθ,R(·), {λt}Tt=1

1: xT ∼ N (0, I)
2: for t = T − 1 to 0 do
3: ŝ← sθ(xt, t)
4: x0|t ← 1√

ᾱt
(xt + (1− ᾱt)ŝ)

5: ϵ ∼ N (0, I)

6: x′
t−1 ←

√
αt(1−ᾱt−1)

1−ᾱt
xt +

√
ᾱt−1βt

1−ᾱt
x0|t + σ̃tϵ

7: xt−1 ← x′
t−1 − ζt∇xt∥y −A(x0|t)∥22

8: xt−1 ← xt−1 − λt∇xtR(xt)
9: end for

10: return x0

This connection suggests that an effective reg-
ularizer, while applied locally to each sam-
ple in each iteration, can be interpreted as pe-
nalizing trajectories deviating from the data
manifold, i.e., exhibiting high error for off- or
far-manifold samples, and low error for on- or
near-manifold ones. This motivates designing
a regularizer that corrects the entire functional
being minimized globally, in contrast to prior
works that focus only on locally reducing like-
lihood error. We focus on equivariance as a
global property that enforces geometric sym-
metries and guides the diffusion process to-
ward the data manifold. To realize this idea, we seek functions that exhibit approximate equivariance
and discriminate on- from off-manifold samples.

Thus, we propose to quantify equivariance of a function relative to a data distribution. Specifically,
while the literature has primarily studied the equivariance properties of functions for general inputs,
we propose a new definition for functions in which their equivariance error is distribution-dependent
and defined under the support of an input data distribution (Definition 3.1).
Definition 3.1 (Distribution-Dependent Equivariant Functions). Let G act on Z via Tg : Z → Z and
on X via Sg : X → X . The equivariance error of the function f : Z → X under the distribution p
is defined as supg Ez∼p[∥Sg(f(z))− f(Tg(z))∥].

The above definition enables us to define functions whose equivariance error can differentiate on-
manifold samples from off-manifold ones. Particularly, we aim to find functions whose equivariance
error is low for on-manifold data and high elsewhere. We also introduce a constrained version of
equivariance error, where the input is implicitly regularized to lie on the manifold M in addition to
minimizing the equivariance error (Definition 3.2). Both equivariance errors are non-local, defined
at the distribution level. When used to regularize the reverse conditional diffusion process, they are
computed via local evaluations over the sampled data.
Definition 3.2 (Manifold-Constrained Distribution-Dependent Equivariant Functions). Let G act on
Z via Tg : Z → Z and on X via Sg : X → X . The manifold-constrained equivariance error of the
function f : Z → X under the data distribution p is supg Ez∼p[∥z − h(S−1

g (f(Tg(z))))∥] where
h : X → Z , and the pair (f, h) forms a vanishing-error autoencoder (see Appendix I).

To define our method, we term a class of manifold-preferential equivariant (MPE) functions, whose
equivariance error is lower for samples on the data manifold than for off-manifold samples. In
practice, MPE functions can emerge in different ways, which we illustrate with examples from
augmented training and from data symmetries. MPE can emerge when functions are trained with
symmetry-preserving mechanisms such as data augmentation. Prior work has studied equivariant
properties of learned representations in deep networks (Lenc and Vedaldi, 2015), showing that
data augmentations (Krizhevsky et al., 2012) and representation compression via reduced model
capacity (Bruintjes et al., 2023) promote equivariant features even when equivariance is not explicitly
built into the architecture. Importantly, the trained network is only approximately equivariant, and
prior studies have noted that symmetry-preserving properties degrade for inputs deviating from
in-distribution data (Azulay and Weiss, 2019). A few studies have leveraged this emergent MPE in
trained networks for out-of-distribution detection (Zhou, 2022; Kaur et al., 2022; 2023).
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Figure 3: MPE function examples.

Table 1: EquiReg improves SITCOM un-
der reduced measurement consistency
steps (Kmeas). We reduce Kmeas and
add an equal amount of EquiReg steps
(KEquiReg). Evaluated on motion deblur
for FFHQ sampled with 50 DDIM steps.

Kmeas. KEquiReg PSNR↑ SSIM↑ Runtime (s)

10 N/A 28.06 0.81 21.57
5 5 29.26 0.83 11.09

20 N/A 27.04 0.79 38.85
10 10 28.93 0.82 20.92

30 N/A 27.79 0.80 58.84
15 15 29.63 0.84 30.19

40 N/A 30.40 0.85 78.08
20 20 29.50 0.83 41.02

60 N/A 28.35 0.81 108.57
30 30 31.36 0.87 59.38

Figure 3a illustrates the MPE property, emergent via
training with augmentations, of E-D of a pre-trained
autoencoder, currently used in LDMs. Specifically, it
shows that the equivariance error is lower for natural
images and increases when images deviate from the
clean data distribution. Based on Definitions 3.1 and 3.2,
we propose Equi and EquiCon losses using a pre-trained
encoder-decoder for diffusion-based inverse solvers:

Equipixel R(xt) = ∥Sg(E(x0|t))− E(Tg(x0|t))∥22
Equilatent R(zt) = ∥Sg(D(z0|t))−D(Tg(z0|t))∥22

EquiConlatent R(zt) = ∥z0|t − E(S−1
g (D(Tg(z0|t))))∥22,

(5)
where x0|t and z0|t are function of xt and zt, respec-
tively. MPE can also emerge due to symmetries present
in the data itself during training. This often occurs in
physics systems where coefficient functions, boundary
values, and solution functions of PDEs remain valid un-
der invertible coordinate transformations. Formally, let
G(a) 7→ u be a PDE operator mapping initial condition a to solution u, and let Tg and Sg be invertible
transformations that preserve PDE structure and boundary conditions. Then, Sg(G(a)) = G(Tg(a)).
Neural operators (Kovachki et al., 2021), popular architectures for modelling physics, trained on
PDEs with such inherent symmetries can learn equivariance properties. Figure 3b shows that we can
construct an MPE function with Fourier Neural Operators (FNOs (Li et al., 2021)) trained on non-
augmented physics data for Navier-Stokes, yielding lower error ∥Sg(FNO(x0|t))−FNO(Tg(x0|t))∥22
on in-distribution as opposed to out-of-distribution data, with reflection as the group action.

4 RESULTS

This section provides experimental results on the performance of EquiReg for inverse problems,
including linear and nonlinear image restoration tasks and solving PDEs. To fairly assess EquiReg’s
impact, we deliberately use a duo-setting comparison (e.g., PSLD vs. Equi-PSLD) across experiments,
where all other factors (architecture, training, sampling) remain fixed. This ensures that any observed
improvement can be attributed to EquiReg, not the underlying model or inference procedure. We
also evaluate the impact of EquiReg under reduced measurement consistency and sampling steps,
providing a path toward faster diffusion-based inverse solvers. Results emphasize the usefulness of
EquiReg when the baseline performance deteriorates. Lastly, we provide preliminary analysis on
EquiReg improving the realism of text-guided image generation.

Image restoration tasks. We evaluate the performance of EquiReg when applied to: SIT-
COM (Alkhouri et al., 2025), PSLD (Rout et al., 2023), ReSample (Song et al., 2023a), and
DPS (Chung et al., 2023). We compare against several other methods including MCG (Chung
et al., 2022b), MPGD-AE (He et al., 2024), and DiffStateGrad (Zirvi et al., 2025). We measure
performance via perceptual similarity (LPIPS), distribution alignment (FID), pixel-wise fidelity
(PSNR), and structural consistency (SSIM). We test EquiReg on two datasets: a) the FFHQ 256×256
validation dataset (Karras et al., 2021), and b) the ImageNet 256 × 256 validation dataset (Deng
et al., 2009). For pixel-based experiments, we use i) the pre-trained model from (Chung et al., 2023)
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Table 2: Robustness and computational efficiency of applying EquiReg under various periods
during sampling. EquiReg maintains performance when applied every {1, 2, 5, 10} DDIM steps
while incurring minimal computational overhead.

Super Resolution Gaussian Blur

Method Period Runtime (s) PSNR↑ LPIPS↓ FID↓ Runtime (s) PSNR↑ LPIPS↓ FID↓

DPS N/A 46.20 22.99 (1.93) 0.20 (0.05) 135.7 46.50 24.59 (2.25) 0.15 (0.03) 88.70
Equi-DPS 1 51.10 26.73 (1.99) 0.12 (0.03) 87.97 52.20 26.08 (2.25) 0.12 (0.03) 87.11
Equi-DPS 2 48.90 26.73 (1.99) 0.12 (0.03) 87.98 49.10 26.06 (2.24) 0.12 (0.03) 87.19
Equi-DPS 5 47.10 26.73 (1.99) 0.12 (0.03) 87.98 47.30 26.06 (2.24) 0.12 (0.03) 87.32
Equi-DPS 10 46.90 26.73 (1.99) 0.12 (0.03) 87.99 47.00 26.05 (2.24) 0.12 (0.03) 87.04

Figure 4: Advantages of EquiReg under reduced DDIM steps. Super-resolution on FFHQ.

on FFHQ, and ii) the pre-trained model from (Dhariwal and Nichol, 2021) on ImageNet. For latent
diffusion experiments, we use i) the unconditional LDM-VQ-4 model (Rombach et al., 2022) on
FFHQ, and ii) the Stable Diffusion v1.5 (Rombach et al., 2022) model on ImageNet.

Table 3: EquiReg for ReSample on linear and non-
linear tasks. FFHQ 256× 256 with σy = 0.01.

Task Method LPIPS↓ FID↓ PSNR↑ SSIM↑

Linear

Gaussian
deblur

ReSample 0.253 55.65 27.78 0.757
Equi-ReSample 0.197 64.86 29.08 0.825
EquiCon-ReSample 0.156 54.72 28.18 0.777

Motion
deblur

ReSample 0.160 40.14 30.55 0.854
Equi-ReSample 0.120 46.28 30.92 0.870
EquiCon-ReSample 0.078 37.61 30.73 0.860

Super-res.
(×4)

ReSample 0.204 40.46 28.02 0.790
Equi-ReSample 0.098 43.56 29.74 0.849
EquiCon-ReSample 0.112 40.38 28.27 0.801

Box
inpainting

ReSample 0.198 108.30 19.91 0.807
Equi-ReSample 0.150 59.69 22.56 0.832
EquiCon-ReSample 0.171 110.70 21.04 0.815

Random
inpainting

ReSample 0.115 36.12 31.27 0.892
Equi-ReSample 0.047 29.88 31.47 0.908
EquiCon-ReSample 0.047 28.81 31.21 0.904

Nonlinear

HDR
ReSample 0.190 49.06 24.88 0.819
Equi-ReSample 0.133 49.52 24.71 0.815
EquiCon-ReSample 0.135 49.98 24.67 0.817

Phase
retrieval

ReSample 0.237 97.86 27.61 0.750
Equi-ReSample 0.155 85.22 28.16 0.770
EquiCon-ReSample 0.159 88.75 28.11 0.774

Nonlinear
deblur

ReSample 0.188 56.06 29.54 0.842
Equi-ReSample 0.128 55.09 29.45 0.840
EquiCon-ReSample 0.125 54.62 29.55 0.843

We evaluate EquiReg on a variety of linear
and nonlinear restoration tasks for natural
images (see Appendix F for task details).
We adopt the pre-trained encoder-decoder
E-D as our MPE function. For FFHQ,
we use vertical reflection as the symmetry
group, which preserves upright facial orien-
tation. For ImageNet, we define a rotation
group G = {0, π/2, π, 3π/2}, and uniformly
at random select the group action for each
sample. Finally, the loss functions given
in Equation (5) are used to regularize.

First, we show that adding EquiReg op-
timization steps consistently enables SIT-
COM to achieve superior performance with
significantly faster runtime using fewer
measurement consistency steps (Table 1).
Next, we show that EquiReg maintains
strong performance even as the number of
DDIM steps is reduced, whereas DPS suf-
fers a significant drop; Equi-DPS consis-
tently outperforms DPS, with the perfor-
mance gap widening at lower step counts
(Figure 4). We also show that EquiReg is
able to preserve performance when applied
with lower frequency (Table 2).

Highlighting the benefits of EquiReg for
latent diffusion models, Table 3, Table 4a,
and Table 5 show that EquiReg consistently
improves the performance of ReSample and PSLD across several tasks on both FFHQ and ImageNet.
We attribute this improvement in part to the reduction of failure cases (Figure 6b). EquiReg also
significantly improves the performance of pixel-based methods (see Equi-DPS vs. DPS, Table 4b).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 5: EquiReg is effective across a range of measurement noise levels. a) Equivariance error
computed over a pre-trained decoder on increasingly noisy inputs. b) EquiReg performance computed
over a range of measurement noise levels on the FFHQ dataset.

Figure 6: Robustness of EquiReg, demonstrated on PSLD. a) EquiReg is robust to the choice of λt.
b) EquiReg reduces failure cases and enhances reconstruction fidelity for super-resolution on FFHQ.

We observe that EquiReg achieves its largest improvements on perceptual metrics (FID and LPIPS),
suggesting it generates more realistic images that lie closer to the data manifold (see Appendix E
for supporting qualitative results). EquiReg improves performance under high measurement noise
(Figure 5b). This result aligns with Figure 5a, which shows the equivariance error is lower on clean
images than noisy ones, indicating that EquiReg enforces an effective denoising. Lastly, we note that
EquiReg is robust to regularizing hyperparameter λt (Figure 6a, see Appendix B for details).

Solving PDEs from sparse observations. EquiReg is evaluated on two important PDE problems:
the Helmholtz and Navier-Stokes equations (see Appendix G). The objective is to solve both forward
and inverse problems in sparse sensor settings. The forward problem involves predicting the solution
function or the final state using measurements from only 3% of the coefficient field or the initial state.
The inverse problem, conversely, aims to predict the input conditions from observations of 3% of
the system’s output. This task is challenging due to the nonlinearity of the equations, the complex
structure of Gaussian random fields, and the sparsity of observations.

Table 6: Solving PDEs from sparse observations.

Steps (N)
Helmholtz Navier-Stokes

Forward Inverse Forward Inverse

DiffusionPDE 2000 12.64% 19.07% 3.78% 9.63%
FunDPS 500 2.13% 17.16% 3.32% 8.48%
Equi-FunDPS (ours) 500 2.12% 15.91% 3.06% 7.84%

Recent studies (Huang et al., 2024; Mam-
madov et al., 2024; Yao et al., 2025)
have demonstrated the superiority of
diffusion-based approaches over deter-
ministic single-forward methods for solv-
ing PDEs. DiffusionPDE (Huang et al.,
2024) decomposes the conditional log-
likelihood into a learned diffusion prior
and a measurement score. FunDPS (Yao et al., 2025) further extends the sampling process to a more
natural infinite-dimensional spaces, achieving better accuracy and speed via function space models.

We integrate EquiReg into the state-of-the-art FunDPS framework (Mammadov et al., 2024; Yao
et al., 2025), where we compute the Equi loss with respect to equivariance learned by an FNO trained
on the corresponding inverse problem. We use reflection symmetry (i.e., flipping along the y = x
axis), and observe no significant performance difference when using other transformations such as
rotations or alternating flips. Equi-FunDPS improves performance (Table 6), measured by relative ℓ2
loss, across various tasks, especially in inverse problems where a strong data prior is critical.
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Table 4: EquiReg for diffusion models on FFHQ. 256× 256 with σy = 0.05.

Method Gaussian deblur Motion deblur Super-resolution (×4) Box inpainting Random inpainting

LPIPS↓FID↓PSNR↑LPIPS↓FID↓PSNR↑LPIPS↓FID↓ PSNR↑ LPIPS↓FID↓PSNR↑LPIPS↓FID↓PSNR↑

PSLD 0.357 106.2 22.87 0.322 84.62 24.25 0.313 89.72 24.51 0.158 43.02 24.22 0.246 49.77 29.05
Equi-PSLD 0.344 94.09 24.42 0.338 99.14 24.83 0.289 90.88 26.32 0.098 31.54 24.19 0.188 41.61 30.43
EquiCon-PSLD 0.320 83.18 24.38 0.322 89.87 25.14 0.277 79.39 26.14 0.092 35.07 24.26 0.204 40.75 29.99

(a) Latent diffusion.

Method Gaussian deblur Motion deblur Super-resolution (×4) Box inpainting Random inpainting

LPIPS↓FID↓PSNR↑LPIPS↓FID↓PSNR↑LPIPS↓FID↓ PSNR↑ LPIPS↓FID↓PSNR↑LPIPS↓FID↓PSNR↑

DPS 0.145 104.8 25.48 0.132 99.75 26.75 0.191 125.4 24.38 0.133 56.89 23.10 0.113 51.32 29.63
Equi-DPS (ours) 0.114 48.76 26.32 0.094 41.71 28.23 0.120 51.00 27.15 0.099 40.47 23.39 0.068 33.65 32.16

DiffStateGrad-DPS 0.128 52.73 26.29 0.118 50.14 27.61 0.186 73.02 24.65 0.114 47.53 24.10 0.107 49.42 30.15
MCG 0.340 101.2 6.72 0.702 310.5 6.72 0.520 87.64 20.05 0.309 40.11 19.97 0.286 29.26 21.57
MPGD-AE 0.150 114.9 24.42 0.120 104.5 25.72 0.168 137.7 24.01 0.138 248.7 21.59 0.172 339.0 25.22

(b) Pixel-based diffusion.

Table 5: EquiReg for latent diffusion models on ImageNet. 256× 256 with σy = 0.05.

Method Gaussian deblur Motion deblur Super-resolution (x4) Box inpainting Random inpainting

FID↓ PSNR↑ FID↓ PSNR↑ FID↓ PSNR↑ FID↓ PSNR↑ FID↓ PSNR↑

PSLD 263.9 20.70 252.1 21.26 224.3 22.29 151.4 16.28 83.22 26.56
EquiCon-PSLD 214.5 22.01 196.3 22.69 198.5 22.34 137.6 19.25 65.14 27.03

Text-to-image guidance. Given the “source” image, DreamSampler (Kim et al., 2024) transforms
the source image using the prompt. Applying EquiReg to DreamSampler, we observe perceptual
improvement of generated images as well as artifact reduction. Figure 1 shows the “source” cat, being
transformed into the prompt (e.g., “corgi”). Equi-DreamSampler generates more realistic images
than DreamSampler. Notably, EquiReg resolves the three-front-legged corgi into a two-front-legged
one (for an implicit acceleration of image generation when EquiReg is imposed, see Appendix A).

5 CONCLUSION

We introduce Equivariance Regularized (EquiReg) diffusion for inverse problems. EquiReg regu-
larizes sampling trajectories to stay closer to the data manifold, leveraging manifold-preferential
equivariance (MPE): functions with low equivariance error on-manifold and high error off-manifold.
Such functions arise naturally in trained networks and can serve as plug-and-play regularizers without
modifying the diffusion denoiser. EquiReg is agnostic across pixel- and latent-space diffusion models
and remains robust under reduced sampling, effectively accelerating convergence. Across diverse
inverse problems, it consistently improves perceptual and reconstruction metrics while reducing
failure cases, highlighting its generality and efficiency.

Limitations and future work. EquiReg’s effectiveness depends on the quality of the pre-trained
backbone diffusion. EquiReg is a plug-and-play regularization framework that can be applied to a
variety of guidance-based diffusion models; thus, it does not directly address the approximations
of the underlying diffusion models, but instead regularizes for improved performance. Also, since
EquiReg is a regularization mechanism, it improves performance precisely in regimes where baseline
methods degrade or fail. Hence, one cannot expect EquiReg to improve the performance of a diffusion
model beyond the capability of a regularization framework. Finally, applying EquiReg requires
task-specific design choices: selecting an appropriate symmetry group and identifying suitable MPE
functions for the problem at hand. While we presented two systematic approaches to construct MPE
functions for imaging and PDEs, the process of identifying MPE functions varies across applications
and represents an important area for methodological development. This task-specific design also
makes EquiReg broadly adaptable across diverse domains beyond the considered applications.
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