Non-Asymptotic Length Generalization

Thomas Chen' Tengyu Ma' Zhiyuan Li?

Abstract

Length generalization is the ability of a learning
algorithm to learn a hypothesis which generalizes
to longer inputs than the inputs in the training
set. In this paper, we provide provable guaran-
tees of length generalization for various classes
of functions in an idealized setting. First, we for-
malize the framework of non-asymptotic length
generalization, which requires a computable up-
per bound for the minimum input length that guar-
antees length generalization, as a function of the
complexity of ground-truth function under some
given complexity measure. We refer to this mini-
mum input length to length generalize as length
complexity. We show the Minimum-Complexity
Interpolator learning algorithm achieves optimal
length complexity. We further show that whether
a function class admits non-asymptotic length gen-
eralization is equivalent to the decidability of its
language equivalence problem, which implies that
there is no computable upper bound for the length
complexity of Context-Free Grammars. On the
positive side, we show that the length complexity
of Deterministic Finite Automata is 2n — 2 where
n is the number of states of the ground-truth au-
tomaton. Our main results are upper bounds of
length complexity for a subset of a transformer-
related function class called C-RASP (Yang &
Chiang, 2024). We show that the length complex-
ity of 1-layer C-RASP functions is O(7?) when
the ground-truth function has precision 7', and
that the length complexity of 2-layer C-RASP
functions is O(T°)) when the ground-truth
function has precision 7" and K heads.

"Department of Computer Science, Stanford Univer-
sity, Stanford, USA *Toyota Technological Institute at
Chicago, Chicago, USA. Correspondence to: Thomas Chen
<tchen@cs.stanford.edu>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction

The generalization of a trained model from shorter inputs
seen during training time to longer inputs seen at inference
time is a phenomenon called length generalization. The
question of when length generalization is possible is an
important question in the area of language modeling and
reasoning with Large Language Models (LLMs) (Brown
et al., 2020). Real-world language understanding often re-
quires handling longer contexts that exceed training-time
input lengths, such as long Chain-of-Thought for reasoning
problems, multi-turn conversations, lengthy documents, or
complex code. Many factors limit the ability to train on
long sequences directly, such as the increasing computa-
tional cost and memory requirement of training on longer
sequences and the fact that long sequences are rare. Suc-
cessful length generalization does not only allow efficient
training for good long-context performance, but also is a
natural test on whether the model has robustly learned the
underlying language or reasoning patterns.

Prior works study length generalization in a controlled set-
ting where Transformers (Vaswani et al., 2017) are trained
on algorithmic tasks from scratch. In this context, length
generalization has been empirically observed for certain
algorithmic tasks but not others, and it appears that trans-
formers cannot length generalize for most tasks. Tasks that
have been tested are arithmetic tasks like integer addition
(Nogueira et al., 2021; Nye et al., 2021; Anil et al., 2022;
Zhou et al., 2024), formal-language tasks like PARITY (Anil
et al., 2022), algorithmic tasks in the Chomsky Hierarchy
(Shaw et al., 2021; Delétang et al., 2023; Ruoss et al., 2023),
copying tasks, tasks involving a sequence of integers such
as sorting or finding the mode (Zhou et al., 2023), and de-
ducing the end-assignment of a variable in a block of code
(Anil et al., 2022). Some of these tasks do not exhibit length
generalization in their vanilla form, but do exhibit length
generalization if certain modifications are made to the learn-
ing setup. These modifications include modifying the input
and output format (Zhou et al., 2023; 2024), adding posi-
tional embeddings (Jelassi et al., 2023), and adding access
to a scratchpad (Nye et al., 2021).

On the theoretical side, (Gold, 1967) provides a founda-
tional result in the theory of length generalization, which is
originally stated in a more broad context of language iden-

Non-Asymptotic Length Generalization

Function Class | Complexity of Ground-Truth Function | Length of Training Data Sufficient to Generalize
DFAs number of states, ¢ 2¢ — 2 (Proposition 2.7)
CFGs description length, ¢ no computable bound in c exists (Proposition 3.5)
C-RASP! precision, T’ O(T?) (Theorem 5.5)
C-RASP? precision, T, and number of heads, K O(T°™)) (Theorem 5.6)

Table 1. Summary of results: upper bounds on minimum length of binary strings in training data which suffices for length generalization.

tification. Let X be a finite alphabet, let a hypothesis be a
mapping from all strings ¥* to {0, 1}, and let F be the hy-
pothesis class. Gold (1967) roughly says that there is a learn-
ing algorithm A such that for all hypotheses in F, A will
eventually learn the ground-truth hypothesis, when the train-
ing set inputted to A contains (string, label) pairs for all the
strings up to a sufficiently large length. Gold’s result holds
for all hypothesis classes F satisfying the mild assumption
that F can be enumerated by a Turing machine, including
Regular languages, Context-Free languages, decision prob-
lems that can be solved by finite-precision transformers with
or without Chain-of-Thought, etc. The learning algorithm
A simply returns the first hypothesis in the enumeration of
F that correctly labels all training examples. When this
enumeration lists the functions in F in order of increasing
complexity for some complexity measure, then we call this
learning algorithm the Minimum-Complexity Interpolator,
denoted by Amc.

The gap between the wide range of function classes which
Gold’s theory predicts length generalization for and the lim-
ited classes of functions that transformers empirically length
generalize on presents an opportunity to develop a more pre-
dictive theory of length generalization. There are many po-
tential reasons for this gap, such as the discrepancy between
the learning algorithm A and the gradient-based learning
algorithms used in practice. However, a more fundamen-
tal issue of Gold’s result is that the guarantee is inherently
asymptotic — it does not provide any information on the
minimum input length required to achieve length general-
ization. It is completely possible that even if gradient-based
training methods like SGD are able to find the minimum-
complexity interpolating hypothesis, length generalization
still only happens when the training set contains impracti-
cally long length inputs. In this case, it may appear empiri-
cally that length generalization does not occur at all, despite
the asymptotic theoretical guarantee.

Intuitively, the minimum input length required to achieve
length generalization should be a function of the complexity
of the ground truth hypothesis, and better length generaliza-
tion is expected for simpler hypotheses. To both get a more
useful length generalization guarantee and better understand
the limit of length generalization, the goal of this paper is to
answer the following question:

What is the minimum input length required to

achieve length generalization as a function of
complexity of ground-truth hypothesis, assuming
we have infinite computational resources?

Our Contributions: This paper provides a more fine-
grained analysis of length generalization, by providing a
non-asymptotic guarantee on the minimum input length re-
quired to achieve length generalization, as a function of
complexity of ground-truth. More specifically, we make the
following contributions:

e In Section 2, we introduce the framework of non-
asymptotic length generalization (Definition 2.6), which
requires a non-asymptotic upper bound for the minimum
input length that guarantees length generalization, given
the complexity of ground-truth function under some given
complexity measure C. The latter we call the length
complexity under C (Definition 3.1). We show that the
Minimum-Complexity Interpolator learning algorithm
Amgi, instantiated with complexity measure C, is the opti-
mal with respect to the length complexity under C. As a
concrete example, we show that Amg only needs inputs
up to length 2c— 2 to learn any ground-truth Deterministic
Finite Automata (DFA) of ¢ states.

* In Section 3, we show whether a hypothesis class ad-
mits non-asymptotic length generalization is equivalent
to whether the problem of deciding equivalence of two
finite descriptions of hypotheses is decidable. As a con-
sequence, Context-Free Grammars (CFGs) do not admit
non-asymptotic length-generalization, though they admit
(asymptotic) length-generalization in the limit.

* In Section 5, we prove non-asymptotic length general-
ization for a subset of the transformer-related hypothesis
class, C-RASP (Yang & Chiang, 2024). C-RASP is a su-
perset of functions expressible by transformers. Variants
of the RASP function class, RASP-L and C-RASP, have
been shown to have a good predictive power on the length
generalization performance of transformers (Zhou et al.,
2023; Huang et al., 2024). We study two subclasses of
C-RASP: C-RASP! (Theorem 5.5) and C-RASP? (Theo-
rem 5.6), which are of depth 1 and 2, respectively.

2. Non-Asymptotic Length Generalization

Notation. Fix the alphabet ¥ = {0,1} throughout the
paper. Define computable (recursive) functions as func-
tions which can be computed by a Turing Machine (TM),

Non-Asymptotic Length Generalization

which halts on all inputs. A function f : N — N is
computably bounded if there exists a computable function
g : N — N such that f(n) < g(n) for all n € N. Let
(M) € {0,1}* denote the binary string encoding of M. Let
[N]:={1,2,3,...,N — 1, N}. Denote {0, 1}" as the set
of binary strings of length n, {0, 1}=" := J7_,{0, 1}/, and
{0,1} == U,5010, 1}/. 1[-] denotes the indicator function
and cl(A) as the closure of set A C RY.

Representation of Functions. We are interested in learn-
ing subsets of computable functions mapping {0,1}* to
{0, 1}, denoted by F. Because a learning algorithm can
only return a finite description of the hypothesis it selects,
we need to define the representation of the hypothesis and
the corresponding encoding system below in Definition 2.1.

Definition 2.1 (Encoding System). An encoding system is
a TM R which on input of a finite string p (which can be
thought as the code or description of a function), outputs the
TM description of the computable function f : {0,1}* —
{0,1} represented by p. Here we denote the description
of the TM as (R(p)) and the function f as R(p). We use
FR to denote the function class implicitly defined by the
encoding system R, i.e. F* = {R(p) : p € {0,1}*}.

Often the standard encoding system is only defined on valid
inputs. For convenience we define the encoding system R
for all inputs in {0, 1}* and map invalid inputs to the empty
language. As examples of encoding systems, DFAs and
CFGs are two encoding systems for regular languages and
context-free languages, respectively.

Definition 2.2. An n-state Deterministic Finite Automaton
(DFA) is a tuple M = (Q = [n],X = {0,1},4,qo0, F)
where Q = [n] is the set of states, X = {0, 1} is the input
alphabet, § : Q x X — @ is the transition function, ¢y € @
is the start state, and F' C (is the set of accepting states.
The encoding system Rpga is a TM that reads (M) and
outputs the description of a TM that simulates M. For any
input string = € {0, 1}*, the language characterized by M
is where Rpra((M))(x) = 1 if and only if 6*(qo,z) € F,
where 0* : Q x {0,1}* — @ is the natural extension of § to
strings defined recursively as §*(q, €) = ¢q and §*(q, sa) =
5(6*(g, s),a) forany q € Q, s € {0,1}*, and a € {0, 1}.

Definition 2.3. A Context-Free Grammar (CFQG) is a tuple
G = (N, T ={0,1}, P, S) where N is a finite set of non-
terminal symbols, T = {0, 1} is the terminal alphabet, P
is a finite set of production rules of the form A — a where
AeNanda € (NUT)*, and S € N is the start symbol.
Let (G) € {0,1}* denote the binary string encoding of G.
The encoding system Rcgg is a TM that reads (G) and
outputs the description of a TM that simulates GG. For any
input string = € {0, 1}*, the language characterized by G
is Rerg({(G))(x) = 1if and only if = can be derived from
S by applying a finite sequence of production rules from P.

Finally, a Linear CFG is a CFG G = (N,T = {0,1}, P, S)
where each production rule in P has at most one nonter-
minal symbol on its right-hand side. The encoding system
for Linear CFGs is R|.crg, Where R cra(p) = Rera(p)
for p representing Linear CFGs, and otherwise R|.crg(p)
returns the TM with the empty language.

Learning Setup. With the ground truth function being
denoted f* or R(p), we define the labeled training dataset
consisting all data up to length IV as below, for all N € N:
D (f) = {(a, f*(x)) : 2 € {0,1}", || < N}.

With R as the encoding system, an adversary picks any
ground-truth function f* € FR. A learning algorithm is
a TM A which takes as input a training set Dy (f*) and
outputs some p € {0, 1}*. We say a learning algorithm A
length-generalizably learns a function f* at input length NV
w.r.t. encoding system R iff R(A(Dn(f*))) = f*.

To give context to our notion of non-asymptotic length gen-
eralization, we describe Gold (1967)’s asymptotic notion of
learnability in Appendix B.

Complexity Measure. We are interested in understand-
ing the minimum length of training data which suffices for
length generalization. To this end, a complexity measure
for the functions in F is necessary. We assume a complex-
ity measure C : {0,1}* — N, which assigns a complexity
to each representation p, and define the complexity of the
function f as the minimum complexity of any representa-
tion of f in R, namely C®(f) := min,e o1}« r(p)=7 C(P)-
We may drop the superscript R and just use C for function
complexity when R is clear from the context. We will make
the following mild assumption that C is reasonably simple
throughout the paper, unless otherwise stated.

Assumption 2.4. C is computable and there exists a TM F
which enumerates programs p € {0, 1}* in non-decreasing
order of C(p). In particular, the range of E is {0,1}* and
Vi <i',C(E(i)) < C(E(¢)). In addition, C is such that for
eachce N, [{p € {0,1}* : C(p) < ¢}| < .

This assumption is easily satisfied by a standard choice of C,
namely where C(p) returns the length of p € {0, 1}*. There
is little loss in generality in just thinking of C as this standard
complexity measure. Having a general C provides some
extra flexibility and makes the results easier to understand.

Definition 2.5 (Complexity Measures for DFAs and CFGs).
The complexity measure Cpra for DFAs maps a DFA
M = (Q = [n],%,4,qo, F) (represented by (M)) to n,
the number of states in). The number of states of any
DFA is within a logarithmic factor of the length of its
representation in bits (nlogn). For CFGs, given a CFG
G = (N,T,P,S), let | P| be the total length of the pro-
duction rules in P. The complexity measure of CFG G is
Corc({(G)) = |P| + |N| + |T'|, which is within a constant

Non-Asymptotic Length Generalization

factor of the length of (G in bits.

Now we define non-asymptotic length generalization.

Definition 2.6 (Non-Asymptotic Length Generalization).
A function class F C FR admits non-asymptotic length
generalization w.r.t. encoding system R and complexity
measure C if there exists a learning algorithm .4 and a com-
putable function Nf’f : N — N such that for all f* € F
and for all N/ > NE’F(CR(f*)), A length-generalizably
learns f* at input length N”.

Length Complexity. For notation simplicity, we define
the length complexity of a function f* for a learning algo-
rithm A w.r.t. encoding system R, N5 (f*), as the mini-
mum length of training data which suffices for the learn-
ing algorithm A to length generalize on f*: N (f*) :=
min{N >0:Vn > N, R(A(D,(f*))) = f*}

This quantity is oo if there is no such N where Vn > N,
R(A(D,(f*))) = f*. We also define the length
complexity of functions in F C F7* up to complexity
¢ for a learning algorithm 4 w.rt. encoding system
R, Njf’f(c), as the maximum length complexity of
any function in F C F® with complexity at most c,
given as N}’F(c) = MAXfecFop CR(f4)<c N}(f*) =
maxye (0,1}~ st ¢(p)<err(p)er N4 (R(p)). We denote
N}’fﬁ (¢) by N%(c) for convenience.

As a concrete example, Proposition 2.7 shows that DFAs
admits non-asymptotic length generalization w.r.t. the stan-
dard encoding system Rpga and complexity measure Cpga
in Definition 2.5. Its proof is in Appendix D.

Proposition 2.7 (Non-Asymptotic Length Generalization
for DFASs). Let Rpra be the DFA encoding system defined
in Definition 2.2, and let Cpga be the number of states in
DFA. Regular languages F* admits non-asymptotic length
generalization w.r.t. encoding system R pga and complexity
measure Cpga. More specifically, there exists a learning
algorithm A such that NEDFA(C) <2c—2forallc e N

3. Characterization of Definition 2.6

In Section 3, we characterize the conditions under which a
function class admits non-asymptotic length generalization
w.r.t. an encoding system R and complexity measure C
satisfying Assumption 2.4. First, we introduce Definition
3.1, an algorithm-independent version of length complex-
ity, which coincides with the optimal algorithm-dependent
length complexity, over all learning algorithms .A.

Definition 3.1 (Length Complexity of Function Class).
Given a function class F, we define the length complex-
ity of F as the minimum input length that can distinguish
any two functions in F: N(F) :=min{n e N:Vf # ' €
F,3x € {0,1}="s.t. f(z) # f'(2)}.

R,C
mci)

Hyperparameters: Complexity Measure C, encoding
system R

Input: Finite Training Dataset S C {(z,y) | = €
{0,1}*,y € {0, 1}}.

Output: arg min,c (o 1}+v(z,y)e Dy (f*),y=R (p)(z) C(P)

Algorithm 1 Minimum-Complexity Interpolator (A

3.1. Optimality of Minimum Complexity Interpolator

The Minimum-Complexity Interpolator (Algorithm 1) is the
main learning algorithm which we study in this work. Al-
though it would be ideal to study a learning algorithm closer
to what is used empirically to train transformers, we study
the Minimum-Complexity Interpolator to abstract away the
complex training dynamics of gradient-based methods like
SGD, which are very non-trivial even for training 2 layer
neural networks (Mahankali et al., 2023). We also acknowl-
edge the limitation that the Minimum-Complexity Inter-
polator is computationally intractable for general function
classes and encoding systems. For instance, it was shown
that the problem of finding the minimum-state DFA for a
regular language is NP-hard (Pitt & Warmuth, 1993).

We denote the Minimum-Complexity Interpolator learning
algorithm by .Aznac’ic for short when the encoding system
is R and complexity measure is C. When the complexity
measure C is the length of the program, A?éic is just the
famous Minimum Description Length (MDL) algorithm
(Rissanen, 1978). AZ:c’iC has the nice property that it is
the best possible algorithm over all learning algorithms in
minimizing le’]:(c), in the following sense.

Theorem 3.2 (Optimality of Minimum-Complexity Inter-
polator). Given any encoding system R and complexity
measure C, for all ¢ € N, it holds that NER,C (¢) =

‘mci
ming NX(c) = N(FR). As a consequence, the follow-
ing three statements are equivalent:

* Function class F admits non-asymptotic length gener-
alization;

s Function class F® admits non-asymptotic length gener-
alization, via learning algorithm A7 ;

e For all ¢ € N, length complexity of FX, N(FR), is
computably bounded in c.

The proof of Theorem 3.2 is in Appendix C. Though the
above optimality result of Aﬁc’ic holds for all complexity
measures C, .A?clc may not be computable without restric-
tions on the complexity measure. For example, it is well-
known that Kolmogorov complexity is not computable (Li
& Vitdnyi, 2008). Lemma 3.3 shows that A is indeed

mci
computable under Assumption 2.4.

Lemma 3.3. Under Assumption 2.4, Algorithm 1 is com-
putable and thus a valid learning algorithm.

Non-Asymptotic Length Generalization

The proof of Lemma 3.3 is in Appendix C. In the remaining
sections, we may omit R and C in the superscripts of Afmc
when they are clear from context for convenience.

3.2. Equivalence to Decidability of Language
Equivalence Problem

The main goal of this paper is to seek concrete upper bounds
for the length complexity N % (c) of various function classes.
Surprisingly, such upper bounds are not always computable.
In this section, we show that there exist computable upper
bounds on the length complexity if and only if the Language
Equivalence Problem for encoding system R is decidable,
where the Language Equivalence Problem for encoding
system R is the computational problem where given any
p,q € {0, 1}*, determine whether R(p) = R(q).

Lemma 3.4. For any encoding system R and complexity
measure C satisfying Assumption 2.4, the Language Equiv-
alence problem for R is decidable if and only if length
complexity of F, N(FR), is computably bounded in c.

Thus it is also equivalent to the property that F™ admits
non-asymptotic length generalization.

As a consequence, we have the following impossibility re-
sult for non-asymptotic length generalization for a special
case of CFGs: Linear CFGs. Comparing Proposition B.2
and Proposition 3.5, we see that CFG serves as a concrete
example for the separation between length generalization in
the limit and non-asymptotic length generalization.

Proposition 3.5 ((Linear) CFGs only admit length general-
ization in the limit). Recall R;.crg is the encoding system
for Linear CFGs defined in Definition 2.3 and Copg((G)) is
the complexity measure that maps CFG G = (N, T, P, S =
{0,1}) to |N| + |T'| + |P|. Then for any learning algo-
rithm A, the length complexity, NZSL'CF G, is not computably
bounded. That is, Linear CFGs do not admit non-asymptotic
length generalization (w.r.t. standard CFG encoding system
Rcrg), and neither does the set of all CFGs.

The proofs of Lemma 3.4 and Proposition 3.5 are in Ap-
pendix C and Appendix D, respectively. In Appendix C.3,
we show equivalence between non-asymptotic length gener-
alization to a variant of “finite identification” proposed in
Gold (1967). The results are summarized in Figure 1.

4. Related Work

Solomonoff (1964) proposed Bayesian-inference-based al-
gorithms which when given a sequence of symbols, predict
the next symbol according to the posterior distribution com-
puted from the Solomonoff-Levin prior distribution. Gold
(1967) introduced Identification-in-the-Limit as an asymp-
totic notion of learnability and proved that many classes of
functions can be learned in this sense.

Zhou et al. (2023) propose the RASP-L Conjecture, which
says that whether a transformer length generalizes on a par-
ticular ground-truth function f, is well predicted by whether
f+ has a short RASP-L description. Huang et al. (2024) for-
mulate the problem of length generalization—and the RASP-
L Conjecture—formally as a version of Identification-in-the-
Limit and prove asymptotic results for identifying languages
expressible by Limit Transformers. None of the works
above provide non-asymptotic guarantees. We distinguish
this work from previous work by providing non-asymptotic
bounds on the length of the training data required in order to
guarantee that the learner outputs a single hypothesis which
exhibits perfect length generalization.

(Weiss et al., 2021) (Zhou et al., 2023), (Yang & Chiang,
2024), and (Shaw et al., 2024) study programming lan-
guages which capture the set of functions which transform-
ers can express (like RASP).

Regarding theoretical works for length generalization not
related to transformers, Marsden et al. (2024) prove length
generalization for learning linear dynamical systems with
SGD. Abbe et al. (2024) prove out-of-domain generalization
for boolean functions of a fixed input size.

5. Main Results: Non-Asymptotic Length
Generalization of C-RASP

5.1. Recap: Definition of C-RASP

Our main results pertain to a class of functions called C-
RASP. C-RASP is a variant of RASP that, with alphabet
¥ = {0,1}, defines a class of functions from {0,1}* to
{0, 1}, where only certain sequence-to-sequence operations
are permitted. C-RASP was shown to be a subset to the
class of functions expressible by transformers with infinite-
precision activations and a superset to that expressible by
finite-precision transformers (Yang & Chiang, 2024).

Definition 5.1 (C-RASP, (Yang & Chiang, 2024)). A se-
quence is an element of N*. A C-RASP program over al-
phabet & = {0, 1} is defined as a series of n < oo C-RASP
operations. We denote the h(1), ... h(™ as the output se-
quences of each C-RASP operation. Denote = € {0,1}* as
as the jth element of the sequence h(*), where i € [n] and
j € [|x|]. Table 2 shows the list of allowed operations in
C-RASP. The partial-sum operator ps : {0,1}* — N* is
defined as: Vh € {0,1}*,Vj € [|z[],ps(h); = 21 Iu-
The entire C-RASP program is a mapping {0,1}* —
{0,1}*. We take the last bit of the output sequence as
the output bit, yielding a function {0, 1}* to {0, 1}.

the input sequence to the C-RASP program. Denote h

There are several natural parameters that contribute to the
complexity of C-RASP functions. First, we study the impact
of the following notion of precision of the parameters of

Non-Asymptotic Length Generalization

C-RASP functions on the difficulty of length generalization.

Definition 5.2 (p-precision). An integer of absolute value at
most p is of p-precision. A rational number between [0, 1]
is of p-precision if in simplest form, where the numerator
and denominator are relatively prime, its denominator is at
most p in magnitude. A tuple of rational numbers in [0, 1]
is precision p if the least common denominator of its entries
is at most p in magnitude.

This notion of precision makes sense for C-RASP since
C-RASP only allows integer combinations of previously
computed variables instead of arbitrary linear combinations.

We also study the impact of depth of C-RASP programs
on the difficulty of length generalization where depth is,
loosely, the maximum number of sequentially-applied ps
operations along any part of the C-RASP program. We study
depth-1 and depth-2 programs, which we will also refer to
as 1-layer and 2-layer programs. We will first prove length
generalization results pertaining to the following subset of
1-layer C-RASP, which we call C-RASP'. Note that for
convenience, we use functions f € FR and descriptions
p € {0,1}* interchangeably in the following definitions.

Definition 5.3 (C-RASP!). With integer T, let C-RASPL7T
denote the set of programs of the following form. Each
program f has parameters a,b,d € [-T,T], a > 0.
For any n > 0, on input € {0,1}", f computes:
f(z) =1[a-ps(z)n, —b-n —d > 0]. Then, C-RASP! =
Uy>, C-RASPLT. Given a function f € C-RASP!, the
complexity measure C(f) = max(|al, |b|,|d|), the preci-
sion of f’s parameters in the sense of Definition 5.2.

Here, the encoding system R maps a string p to a C-RASP!
function. The string p is interpreted by R to encode 3
parameters, each taking ©(log T) bits to encode. Invalid
encodings are mapped to a default C-RASP! function. Thus,
the complexity measure proposed above, which takes in p
and returns the maximum precision of its parameters, returns
an integer which is roughly exponential in the length of p.

Our main length generalization result will apply to a subset
of 2-layer C-RASP, which we call C-RASP?. For 2 layer
programs, the width K of the first layer becomes a natural
parameter to study.

Definition 5.4 (C-RASP?). With integers T and 1 < K <
T2, let C-RASP%% T be the set of programs of the follow-
ing form. Each program f has parameters 0 < z < T,
Vi € [K], a®,b® X\ € {~T,...,T}, with a(® > 0. We
require that for all 7 € [K], Z(u; € (0,1) and is distinct from
b(i’)

a(i’)

for i’ # i. We also require Zie[K] Ai > 2.

For any n > 0, on input z € {0,1}", the first layer com-
putes the values of K heads, {h(V)};c(x1, on the n pre-
fixes of z: {{z1}, {z1, 22}, ..., {z1,. .., 2n}} as follows:

Vj € [n],Vi € [K], h{"

o o
;. = 1[ps(z); > %]] Subscript j

indicates the value of a quantity on the jth prefix of x.

The second layer computes the output, which is the nth bit of
the final sequence: f(z) = 1[30,c) Aips(h)), > z - n].

Then, C-RASP® = Uy <x<r» C-RASPZET
Given a function f € C-RASP?, let K(f) be
the number of heads, h(i), in the first layer
of f and let T(f) := max(max;cx(s)] la®)],
maX;e[K(f)] |b(i)|,maxi6[K(f)] |)\i|7 |Z|) The com-
plexity measure is C(f) = T'(f)¥(), the precision of the
function’s parameters to the power of the number of heads.

We refer to functions in C-RASP% 5T as 2 layer, K-head,
T'-precision programs, where each intermediate variable
R i € [K] s called a head.

Here, the encoding system Rc.gaspz maps a string p to a
C-RASP? function. The string p is interpreted by Rc.gasp2
to encode O (K') parameters, each taking ©(log T') bits to
encode, so that the entire encoding of a C-RASP>%T func-
tion is roughly O(K logT) bits long. Invalid encodings
are mapped to a default C-RASP? function. Thus, the com-
plexity measure C(f) = T(f)*) = exp(K (f)log T(f))
returns an integer which is roughly exponential in |p|.

5.2. Non-Asymptotic Length Generalization of
C-RASP! and C-RASP?

The following result states that in order to identify the
ground-truth function from the set C-RASP! where the
precision of parameters is at most 7, it suffices for the
Minimum-Complexity Interpolator to receive (string, label)
pairs for all strings of length at most O(T?).

Theorem 5.5 (C-RASP! Length Generalization). Let F =
C-RASP! and C(f) = max(|al, |b|,|d|), defined in Defini-
tion 5.3. Then VT € N, we have N ,,(T) < O(T?). That
is, the Minimum-Complexity Interpolator, with complexity
C and function class F, can length generalize given inputs
of length O(T?) when the ground-truth has complexity T.

The following is our main length generalization result. It
states that in order to identify the ground-truth function from
the set C-RASP? where the precision of parameters is at
most 7" and number of heads is at most K, it suffices for the
Minimum-Complexity Interpolator to receive (string, label)
pairs for all strings of length at most O(7° (%)),

Theorem 5.6 (C-RASP? Length Generalization, Main Re-
sult). Let F = C-RASP? and C(f) = T'(f)*), defined in
Definition 5.4. If the ground-truth function f, has T(f,) <
T and K (f.) < K, then the Minimum-Complexity Interpo-
lator, with complexity C and function class F, can length
generalize given inputs of length O(T),

By Theorem 5.6, C-RASP? %7 can be learned in a length
generalizable way with inputs of length O(T°%)). By

Non-Asymptotic Length Generalization

Theorem 5.5, C-RASP”' can be learned in a length gener-
alizable way with inputs of length O(T?). Our upper bound
on the minimum length required to learn C-RASP? %7 jg
much larger than that of C-RASPYT. We don’t have a
lower bound on the length of inputs required to identify
C-RASP%X.T but our best guess is that one of the form
Q(TX) exists in the regime K < O(logT).

The proof of Theorem 5.5 can be found in Appendix E.1.
Below we sketch the proof of Theorem 5.6.

6. Proof Sketch of Theorem 5.6.

Theorem 5.6 follows as a Corollary to the following,
stronger Theorem 6.1, which says that the Minimum Com-
plexity Interpolator with complexity measure C(f) =
T(f)X) will length generalize if it receives inputs of
length N4 (o) < O(a®W), when the ground-truth func-
tion has complexity at most cv.

Theorem 6.1. Let F = C-RASP? and C(f) = T(f)¥\),
as in Definition 5.4. Then Vo € N, N4 (a) < O(a®W),

Theorem 6.1 is proved in Appendix E.2. The proof that
Theorem 5.6 follows as a Corollary to Theorem 6.1 is simple,
and deferred to Appendix A for brevity. Below, we sketch
the proof Lemma 6.2, a weaker version of Theorem 6.1.
Although weaker, our proof sketch of Lemma 6.2 will still
illustrate the key ideas of the proof of Theorem 6.1.

Lemma 6.2. Let F = C-RASP? and C(f) = T(f)*), as
in Definition 5.4. ThenVa € N, N 4 (o) < O(a0(10g2 @),

To prove Lemma 6.2, it suffices to prove Lemma 6.3. We
will upper bound, for any 7" and K, the minimum length
of inputs required to distinguish any two unequal C-RASP?
functions that have at most K heads and T precision.

Lemma 6.3 (Length Bound on C-RASP%%T), For any
1<T,1< K <T? forall f,f € C-RASP>X:T such
that f # ', there exists a string x, € {0,1}* of length at
most O(TO(K2)) such that f(z.) # f'(x).

The proof that Lemma 6.2 is a Corollary to Lemma 6.3 is
simple and is deferred to Appendix A. The rest of the proof
sketch describes how to prove Lemma 6.3. To do this, given
two arbitrary f, f/ € C-RASP?%:T that are not equal, we
show the existence of a short string x, which distinguishes
fand f’, in the sense that f(x,) # f'(x.).

6.1. Key Definitions.

Suppose f,f’ € C-RASP*XT with parameters

(a(i?)ie[K}7(b(i))iG[K]7()‘i)i€[K]’z and ((a(i))/)iE[K]’
(b)Y)iexys (Ah)ierr)» 2/, respectively.
Suppose the set of unique numbers R := {%}ie[}(] U

{%}ie[lﬂ C (0,1) between the first layer of f and f’

has size k, where K < k < 2K. We will refer to these
numbers as “slopes.” We will denote R = {s;};er C
(0,1), where s; is the largest slope and sy, is the smallest
slope, and the slopes are sorted in descending order so that
$1 > ...> 8. Fori € [K], letord(1,:) : [K] — [k] be

Let ord(2,1) :

the index within R of the ith slope of f, Z((l)) .
[K] — [k] be the index within R of the ith slope of f’,
(b0

a7+ In the following exposition, we will refer to “line j’
as the homogeneous, 2D line y = s;x, with slope s;, j € [k].
We will denote “line 5 by the symbol [;. We will call the

set of k& < 2K unique slopes {s; };c[x) a configuration.

Definition 6.4. A (k,T)-configuration is a set of k distinct
T-precision rational numbers {s;};cx C (0,1).

[l

We will refer to strings in {0, 1}* synonymously as dis-
crete test-functions, because there is a one-to-one cor-
respondence between x and the sequence of 2D points
{(j,ps(2);)}jeqz) © R2 The latter set of points acts
as a “test” of whether two programs f, f’ € C-RASP% /T
are different or not.

Definition 6.5 (Discrete Test-Function). Given a (k,T)-
configuration {s;};cx), a discrete test-function X', with
respect to {s;}ie(r) and of length n < oo, is a func-
tion {0,1,...,n} — {0,1,...,n} where X(0) = 0 and
Vi € [n) X(j) = X(— 1) or X(j) = X(j — 1) + L.
The induced activations (B (X), ..., Bx(X)) of X with
respect to the (k,T')-configuration are defined as: Vi €

K], Bi(X) = 3 3271 L[X(5) > si -]

In our proof sketch, we will need to analyze properties of a
continuous analog to discrete test-functions, which can be
thought of as corresponding to infinite-length strings.

Definition 6.6 (Continuous Test-Function). Given a (k,T')-
configuration {s; };c[x], a continuous test-function Y, with
respect to {s;}ic(x), is a 1-Lipschitz, monotone non-
decreasing continuous function [0, 1] — [0, 1], with Y(0) =
0. Continuous test-functions can only intersect the k lines
{li }ieqw) of slopes given by {s; };cx) at finitely many points.
The induced activations (B1(}),...,Bx(Y)) of Y w.rt.

{si}iep) are: Vi € [k], Bi(Y) = fol 1Y) > si- jldj.

We study continuous test-functions as a proxy for dis-
crete test-functions. As each C-RASP? function can be
thought of as a linear threshold function over the in-
duced activations of the input string (test-function) with
respect to the (k,T')-configuration given by the param-
eters of its first layer, it will be important to study
the activations which can be induced by continuous
test-functions: A({s;}icpr)) = {(B1(Y),..., Br(Y)) :
Y continuous test-function w.r.t {s; }ic[x) }-

The importance of the activations induced by continuous
test-functions motivates the segmentation of continuous test-
functions at the points where the continuous test-function

Non-Asymptotic Length Generalization

intersects the k lines, {y = s;x : i € [k]}.

Definition 6.7 (Segment). Given any (k,T")-configuration
{si}icir) C (0,1), a segment is a restricted test-function
S : [a,b] — [0, 1] where [a,b] C [0,1] which maps a con-
tinuous subset [a, b] to [0, 1]. S is 1-Lipschitz and monotone
non-decreasing. The segment’s start-point (a, S(a)) and the
end-point (b, S(b)) each lie on one of the k lines, in the
sense that there exists some ¢, j € [k] where S(a) = s; - a
and S(b) = s; - b, where i = j or |[i — j| = 1. No other
points (x, S(x)), z € (a,b) canlieon aline Iy, ..., .

Figure 2 depicts a continuous test-function. Figure 7 shows
four generic types of segments. Two different test-functions
can share the same schema: roughly, the order which the
test-functions cross the £ lines.

Definition 6.8 (Schema). Given any (k, T')-configuration
{si}icix) € (0,1), a schema Y is a blueprint for a contin-
uous test-function, specifying a sequence of lines {/; }ic[x]
that any test-function of the schema must cross. It consists
of an integer 0 < M < oo and two tuples {idx (%) };c(ar] C
(KM, {seci}iep) C [k+1]M, where [idx (i) —idx(i+1)] <
1foralli € [M — 1. If idx(s) — idx(i + 1)| = 1, then
sec;+1 is unique and must be max(idx(7),idx(i + 1)). If
idx(7) = idx(i + 1), then sec; 11 can be either idx (i 4+ 1) or
idx (i + 1) 4 1. secy can be either idx(1) or idx(1) + 1.

Any continuous test-function of schema Y =
({idx() }ie[ar), {secitie[ar)) conmsists of exactly M
segments S7, .55, . ..,Sy whose domains are a partition of
[0,1]. Foreach i € [M], the ith segment .S;’s end-point lies
on ligx(j)- Fori > 1, S;’s start-point lies on line lig(i—1)»
and S ’s start-point is the origin, (0, 0). In addition, the ith
segment must be contained in Sector.,, where Sector; is
the subset of the positive quadrant of the 2D plane which
lies above y = s1x, Sectory.1 is the subset of the positive
quadrant which lies below y = syx, and for ¢ € {2,...,k},
Sector; is the subset of the positive quadrant which lies
below y = s;,_;x and above y = s;x.

There is a useful approximation property between discrete
and continuous test-functions which we use later.

Lemma 6.9 (Discrete Approximation to Continuous Test—
Function, weaker version of Lemma E.24). Suppose we are
given a (k,T')-configuration {s;};c[r). For any schema'Y
of M segments, suppose Y is any continuous test-function
of schema 'Y, with segment lengths (i1 (Y), ..., ip (V) €
[0, 1] (where we assumed WLOG that > (Y) = 1).
Suppose every T;(Y) is a rational number and that the
common denominator of all (7;(Y))je(n) is p- Then there
exists an ng < O(p - T*) so that for any positive integer
multiple n of ng, there exists a discrete test-function X of
length n so that Vi € [k], | Bi(Y) — Bi(X)| < TEM,

Definition 6.10 (Margin). Given a linear inequality L over
M variables and a point z € RM | define L(z) as the dif-

ference between the left-hand-side and right-hand-side of
the inequality when the coordinates of z are plugged into
L. Let L(z) = 0 <=« satisfies the inequalities with
equality. We say L(x) is the margin of « for L.

6.2. Proof Sketch of Lemma 6.3.

Proof Plan. We want to show that any two C-RASP pro-
grams f, f’ € C-RASP?T that are not equal must be dis-
tinguished by some string ' of length at most O(7°°¥ 2)).
Consider any two C-RASP programs f, f’ € C-RASP% T,
with parameters (a(");c(x), (b));e(x], (Ai)ie[x], 2 and
(@) iexys ())ierr], (Nie(x), 2, respectively.

For any n > 0, consider the induced activations by an ar-

bitrary string = € {0, 1}", defined as {w}‘e[m U

{M}ie[fﬂ’ per Definition 6.5. With k¥ < 2K
being the number of unique slopes (i.e. unique values in

{%}ie[;{] U {(a(ii)%/,}ie[m) among the heads in the first

layers off and f’ denote (By(z), Ba(z),. .., Bg(x)) =
(b (2))n S(BDY (&),

(RN y G (R @y

To argue that the existence of distinguisher z(y for
f and f’ implies existence of a short distinguisher
for for f and f’, it suffices to find an =z €
{0,1}",n < O((KT)°®™) that induces activations
(Bi(x))iew) where either } -,) AiBow(1,5)() > 2 and
Zze[[(] A;Bord(Q,i)(‘T) < 2’ or Zie[}(] /\iBord(l,i) (I) <
z and ZiE[K] A Boa(2,1y(x) > 2. In particular, de-
fine the following halfspaces, H; ", H; , Hy ,Hy . Vj €
{1,2},]‘[}r = {(Bh...,Bk) : Zie[K])\iBord(j,i) > Z}
and Hj_ = {(Bh...,Bk) : Zie[K])‘iBord(j7i) < Z}
With this goal in mind, we use the following proof plan.

1. First, we argue that if f ## f’, then there exists
a continuous test-function)y which induces activa-
tions (B1()o),. .., Br(Jo)) that is either contained
in H* N Hf or H N H,. This is a non-trivial
step which uses a technical Lemma E.30, whose proof
is deferred to Appendix E.6. WLOG, suppose that
(B1(D0),-- -, Bk(Dh)) € H N H.

2. Next, we will show that because the set A({s;}icx)) N
Hi{" N Hy is non-empty, then A({s;};ex)) N H N Hy
must be at least a minimum “‘size.” We accomplish this
via the following steps.

» With Corollary E.14, we first characterize the set
A({si}ie[r)) as the union of a finite number of poly-
topes, where each polytope is equal to the set of ac-
tivations which can be induced by test-functions of
a particular schema. In this way, each polytope cor-
responds to a unique schema, and the finite set of
schemas corresponding to the finite set of polytopes

Non-Asymptotic Length Generalization

serves as a “basis” of all test-functions.

e We convert) into a new test-function which induces
the same activations as)y, but which follows one of
the “basis” schema, Y. This new test-function, which
we call)y, is specified by a tuple of M := M(Y) <
k% numbers (ny,na,...,ny) € [0,1]M, the lengths
of the segments of) in schema Y.

Let AM)(Y) C [0,1]™ denote the polytope of valid
settings of the lengths of segments of schema Y, as ex-
plained in Lemma E.6. Then, there are two halfspaces
H 1(M) and H. éM) over M variables such that the poly-
tope P := cl(AM) (V) H™M 0 HM)) is the set of
settings of the lengths of segments of schema Y, which
correspond to test-functions whose induced activations
are contained in cl(H;") N cl(H;). By the existence
of Y1, P # (). Moreover, P is a polytope whose faces
are low-precision, in the sense of Definition 5.2.

* Denote the set of vertices of P as V. Let ¢ :=
|17‘ > wey ¥ € P be the average of the vertices of
P. We apply Lemma E.18 to P to derive a lower-
bound of the margin of c to the faces of P, of v >

1 1 : M ;
W'W. Since c € P C [0,1] 1S a
valid setting of the lengths of the segments of schema
Y, there is a continuous test-function)5 of schema Y
with segment lengths given by c.

3. It follows from steps 1 and 2 of the proof plan that
if f,f’ are not equal, then there exists a point ¢ €
P whose margin to the faces of P is at least v >

1 1
T oty (K.Y VA’ where we used the fact that

|V| < 3M?, from Lemma E.22.

Using Lemma E.29, we perturb the coordinates of
c € [0,1]M slightly to attain a point that still has

% margin to the faces of P, but whose coordinates
poly (K,T)

have precision at most — in the sense of
Definition 5.2. We will call this perturbed point
e = (Sl nley e [0,1M. Let

(Bf,...,B;) be the activations induced by a test-

function of schema Y with segment lengths set according

to (ngc*), n(;*)7 ... ,ng\‘;[*)).

4. Finally, we apply Lemma 6.9 to the test-function of
schema Y, with segment lengths set according to
(n§”*)7 ngc*), o ngfj*)), to attain a discrete test-function
X’ of length n whose induced activations are such
that [[(By(X"), ..., Bi(X")) = (B,..., Bi)llee <

O(w). Note that there is a minimal value

ng < poly(K,T)-TOF). =, which n must be a multiple
of, as a requirement of Lemma 6.9.

Now, we discuss how large n needs to be so that dis-
crete test-function X’ distinguishes f and f’. First,

n must be larger than ng, which was a prerequi-
site of using Lemma 6.9. There is a second, im-
portant requirement. WLOG, suppose that the con-
tinuous test-function) outputted in step 1 of the
proof plan is such that: (B1(Qb),...,Br(J)) €
H{f N HY. Then, the procedure in steps 2 and
3 are such that (By(J4),...,Bx(Q1)) € Hf N
HY, (Bi(Da),...,Bx(d2)) € Hf n H, and
(Bi,...,B}) € H N Hy. Now, we would like n
to be large enough so that (B (X”), ..., Bx(X")) is also
in H" N H, so that X" would distinguish f and f’.
To do this, we need to ensure the coordinate-wise dis-
tance between (B1(X”), ..., Bx(X’)) and (BY, ..., B})
is smaller than the margin v of c, on the faces of
H fM) NnH Q(M) divided by the maximum L; norm of the
linear inequalities defining the faces of A({s;}ic[x)) N
H{" N H, . It is important that the margin of c, is
large, as the smallest value of n which ensures that
(B1(X'), ..., B(X')) € H" N HJ is proportional to .
In short, we need n 2 ©(max(no, 7p°1y£/K’T))) for the
resulting discrete test-function X’ to distinguish f and
f'. Since M < k2, k < 2K, and K < T?, it suffices for
n = (poly(T))M = O(TOX"). X’ corresponds to a
string 2’ € {0, I}O(TO(K2)) that distinguishes f and f’.

Extra materials for the proof sketch are in Appendix A.2.

7. Conclusion

We prove guarantees of length generalization for various
function classes in an idealized setting. We formalize the
framework of non-asymptotic length generalization, which
requires a computable upper bound for length complexity.
We show the Minimum-Complexity Interpolator learning
algorithm achieves optimal length complexity. We show
that whether a function class admits non-asymptotic length
generalization is equivalent to the decidability of its lan-
guage equivalence problem, which implies that there is no
computable upper bound for the length complexity of CFGs.
On the positive side, we show that the length complexity of
DFAs is 2n—2 where n is the number of states of the ground-
truth automaton. We show that the length complexity of
1-layer C-RASP functions is O(T?) when the ground-truth
function has precision 7', and that the length complexity of
2-layer C-RASP functions is O(T°¥)) when the ground-
truth function has precision 7" and K heads.

It is open whether the proof techniques can be extended to
3-Layer C-RASP programs, or to C-RASP programs whose
layers contain bias terms. It is open how to formalize a
weaker notion of partial length generalization which does
not entail length generalization to arbitrary length inputs.

Non-Asymptotic Length Generalization

Acknowledgements

This work was supported by NSF IIS 2211780 and the
Stanford HAI-Google Cloud Credits Program. TC acknowl-
edges funding from an NSF Graduate Research Fellowship.
ZL acknowledges funding from an OpenAl Superalignment
Grant.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

Abbe, E., Bengio, S., Lotfi, A., and Rizk, K. Generalization
on the unseen, logic reasoning and degree curriculum,
2024. URL https://proceedings.mlr.press/
v202/abbe23a/abbe23a.pdf.

Anil, C., Wu, Y., Andreassen, A., Lewkowycz, A., Misra,
V., Ramasesh, V., Slone, A., Gur-Ari, G., Dyer, E.,
and Neyshabur, B. Exploring length generalization
in large language models, 2022. URL https://
openreview.net/forum?id=zSkYVeX7bC4.

Baker, B. S. and Book, R. V. Reversal-bounded multipush-
down machines, 1974. URL https://doi.org/10.
1016/50022-0000(74)80027-9.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, 1., and Amodei, D. Language
models are few-shot learners, 2020. URL https:
//papers.nips.cc/paper/2020/hash/

1457c0d6bfcb4967418bfb8acld42f6d4a—-Abstrac

html.

Delétang, G., Ruoss, A., Grau-Moya, J., Genewein, T., Wen-
liang, L. K., Catt, E., Cundy, C., Hutter, M., Legg, S., Ve-
ness, J., and Ortega, P. A. Neural networks and the chom-
sky hierarchy, 2023. URL https://openreview.
net/pdf?id=WbxHAzkeQcn.

Freiwald, R. C. An introduction to set theory and topology,
2014. URL https://openscholarship.wustl.
edu/books/20/.

Gold, E. M. Language identification in the limit,
1967. URL https://www.sciencedirect.com/
science/article/pii/S0019995867911655.

10

Hopcroft, J. and Ullman, J. Introduction to automata theory,
languages, and compuation, 1979.

Huang, X., Yang, A., Bhattamishra, S., Sarrof, Y., Krebs,
A., Zhou, H., Nakkiran, P., and Hahn, M. A formal frame-
work for understanding length generalization in trans-
formers, 2024. URL https://openreview.net/
forum?id=U49N5V51rU.

Jelassi, S., d’Ascoli, S., Domingo-Enrich, C., Wu, Y., Li, Y.,
and Charton, F. Length generalization in arithmetic trans-
formers, 2023. URL https://arxiv.org/abs/
2306.15400.

Li, M. and Vitanyi, P. An introduction to kol-
mogorov complexity and its applications, 2008.
URL https://link.springer.com/book/10.
1007/978-0-387-49820-1.

Mahankali, A., Haochen, J. Z., Dong, K., Glasgow,
M., and Ma, T. Beyond ntk with vanilla gradi-
ent descent: A mean-field analysis of neural net-
works with polynomial width, samples, and time,
2023. URL https://openreview.net/forum?
id=Y2hnMZvVDm¬eId=SzifoxR0by.

Marsden, A., Dogariu, E., Agarwal, N., Chen, X., Suo, D.,
and Hazan, E. Provable length generalization in sequence
prediction via spectral filtering, 2024. URL https:
//arxiv.org/abs/2411.01035.

Nogueira, R., Jiang, Z., and Lin, J. Investigating the limita-
tions of transformers with simple arithmetic tasks, 2021.
URL https://arxiv.org/abs/2102.13019.

Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H.,
Austin, J., Bieber, D., Dohan, D., Lewkowycz, A., Bosma,
M., Luan, D., Sutton, C., and Odena, A. Show your
work: Scratchpads for intermediate computation with
language models, 2021. URL https://arxiv.org/
abs/2112.00114.

jtt, L. and Warmuth, M. K. The minimum consistent df a
problem cannot be approximated within any polynomial,
1993. URL https://dl.acm.org/doi/pdf/10.
1145/138027.138042.

Rissanen, J. Modeling by shortest data description*.
Autom., 14:465-471, 1978. URL https://api.
semanticscholar.org/CorpusID:30140639.

Rockafellar, R. T. Convex analysis, 1970.

Ruoss, A., Delétang, G., Genewein, T., Grau-Moya, J.,
Csordés, R., Bennani, M., Legg, S., and Veness, J.
Randomized positional encodings boost length gen-
eralization of transformers, 2023. URL https://
aclanthology.org/2023.acl-short.161/.

https://proceedings.mlr.press/v202/abbe23a/abbe23a.pdf
https://proceedings.mlr.press/v202/abbe23a/abbe23a.pdf
https://openreview.net/forum?id=zSkYVeX7bC4
https://openreview.net/forum?id=zSkYVeX7bC4
https://doi.org/10.1016/S0022-0000(74)80027-9
https://doi.org/10.1016/S0022-0000(74)80027-9
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://openreview.net/pdf?id=WbxHAzkeQcn
https://openreview.net/pdf?id=WbxHAzkeQcn
https://openscholarship.wustl.edu/books/20/
https://openscholarship.wustl.edu/books/20/
https://www.sciencedirect.com/science/article/pii/S0019995867911655
https://www.sciencedirect.com/science/article/pii/S0019995867911655
https://openreview.net/forum?id=U49N5V51rU
https://openreview.net/forum?id=U49N5V51rU
https://arxiv.org/abs/2306.15400
https://arxiv.org/abs/2306.15400
https://link.springer.com/book/10.1007/978-0-387-49820-1
https://link.springer.com/book/10.1007/978-0-387-49820-1
https://openreview.net/forum?id=Y2hnMZvVDm¬eId=SzifoxR0by
https://openreview.net/forum?id=Y2hnMZvVDm¬eId=SzifoxR0by
https://arxiv.org/abs/2411.01035
https://arxiv.org/abs/2411.01035
https://arxiv.org/abs/2102.13019
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2112.00114
https://dl.acm.org/doi/pdf/10.1145/138027.138042
https://dl.acm.org/doi/pdf/10.1145/138027.138042
https://api.semanticscholar.org/CorpusID:30140639
https://api.semanticscholar.org/CorpusID:30140639
https://aclanthology.org/2023.acl-short.161/
https://aclanthology.org/2023.acl-short.161/

Non-Asymptotic Length Generalization

Shaw, P., Chang, M.-W., Pasupat, P., and Toutanova, K.
Compositional generalization and natural language vari-
ation: Can a semantic parsing approach handle both?,
2021. URL https://aclanthology.org/2021.
acl-long.75/.

Shaw, P., Cohan, J., Eisenstein, J., Lee, K., Berant, J., and
Toutanova, K. Alta: Compiler-based analysis of trans-
formers, 2024. URL https://openreview.net/
forum?id=h751wl9xiR.

Solomonoff, R. I. A formal theory of induc-
tive inference. part i, 1964. URL https:
//www.sciencedirect.com/science/
article/pii/s0019995867911655.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit,
J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. Attention is all you need, 2017.
URL https://proceedings.neurips.
cc/paper_files/paper/2017/file/

3f5ee243547dee91£fbd053clc4a845aa—Paper.

pdf.

Weiss, G., Goldberg, Y., and Yahav, E. Thinking like trans-
formers, 2021. URL https://proceedings.mlr.
press/v139/weiss2la/weiss2la.pdf.

Yang, A. and Chiang, D. Counting like transformers: Com-
piling temporal counting logic into softmax transformers,
2024. URL https://openreview.net/forum?
1d=FmhPg4UJ9K#discussion.

Zhou, H., Bradley, A., Littwin, E., Razin, N., Saremi, O.,
Susskind, J., Bengio, S., and Nakkiran, P. What algo-
rithms can transformers learn? a study in length gener-
alization, 2023. URL https://openreview.net/
forum?id=AssIuHnmHX.

Zhou, Y., Alon, U., Chen, X., Wang, X., Agarwal, R., and
Zhou, D. Transformers can achieve length generalization
but not robustly, 2024. URL https://openreview.
net/pdf?id=DWkWIh3vFJ.

11

https://aclanthology.org/2021.acl-long.75/
https://aclanthology.org/2021.acl-long.75/
https://openreview.net/forum?id=h751wl9xiR
https://openreview.net/forum?id=h751wl9xiR
https://www.sciencedirect.com/science/article/pii/S0019995867911655
https://www.sciencedirect.com/science/article/pii/S0019995867911655
https://www.sciencedirect.com/science/article/pii/S0019995867911655
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.mlr.press/v139/weiss21a/weiss21a.pdf
https://proceedings.mlr.press/v139/weiss21a/weiss21a.pdf
https://openreview.net/forum?id=FmhPg4UJ9K#discussion
https://openreview.net/forum?id=FmhPg4UJ9K#discussion
https://openreview.net/forum?id=AssIuHnmHX
https://openreview.net/forum?id=AssIuHnmHX
https://openreview.net/pdf?id=DWkWIh3vFJ
https://openreview.net/pdf?id=DWkWIh3vFJ

Non-Asymptotic Length Generalization

Organization of Appendices.

Section A contains supplementary material to the main paper, particularly the proof sketch. Section B contains a discussion
of Gold (1967)’s asymptotic notions of learnability and the proof of Proposition B.2. Section C contains the proofs of
Theorem 3.2, Lemma 3.4, and Lemma C.6. Section D contains the proof of Propositions 2.7 and 3.5. Section E.1 contains
the proof of Theorem 5.5. Section E.2 contains the full proof of Theorem 6.1, which uses Definitions and Lemmas defined in
the later sections E.3 to E.6. Section E.3 contains proofs of Lemmas relating to completeness of basis schema. Section E.4
contains proofs of Lemmas relating to lower bounding the margin of the average-of-vertices of a polytope with low-precision
faces. Section E.5 contains proofs of Lemmas for approximating a continuous test-function with a discrete test-function.
Section E.6 contains auxiliary Lemmas.

A. Missing Parts from Main Paper

Here, we put some supporting content which were referred to in the main paper, but omitted due to space constraints.

A.1. List of Allowed C-RASP Operations in (Yang & Chiang, 2024), in the Context of Definition 5.1.

Table 2. Boolean- and count-valued operations allowed in a C-RASP program.

Boolean-Valued Operations Count-Valued Operations
Initial hg.i) = 1[z; = a] fora € {0,1} Partial Sum hy) = ps(h();
Boolean A" := - Conditional (" := a\") 7 n{") : p{™)

‘7- g 2
(@) ._ @) @)
h{ = h{ AR

Addition R = R 4 Al

=
. (1) ._ (i) - 7 =
Sign h;” = 1[h; "~ >0 Subtraction hy) = h;Z) _ hy)

(/L) Py— . v -1
Constant £, :=1 MinMax 'Y := min(h{", n{")

. ./ J 2
h{ = max(h{"), b))

Constant hg.i) =1

A.2. Supporting Material for the Proof Sketch in Section 6.

Proof that Theorem 5.6 follows from Theorem 6.1. Proof of Theorem 5.6. Every function f in C-RASP?%:T" has
at most K heads and T precision, and so C(f) < TX =: a.. Thus, Theorem 6.1 implies that inputs of length at most

Na, (o) < O(ag(l)) = O(T°¥)) suffices to learn C-RASP>%7. R

Proof that Lemma 6.2 follows from Lemma 6.3. Proof of Lemma 6.2. By Theorem 3.2, it suffices to show that for
any two un-equal functions f, f/ € C-RASP? such that T'(f)X(/) < o and T(f)%(/") < , there is a string of length
at most O(a©U°s” @) which distinguishes them. If T(f)5X(") < a and T(f")XU") < a, then T(f),T(f’) are upper
bounded as T'(f),T(f") < «, maximized when K(f), K(f') = 1. Meanwhile, K(f), K(f’) are upper bounded as
K(f), K(f') < loga, maximized when K (f) = T(f)?, K(f') = T(f')%. Thus, f, f’ € C-RASP?!°s % Applying
Lemma 6.3 implies that there is a string of length O(ozo(10g2 @)) distinguishing f and f’. B

Formal Summary of Each Step of Proof Plan in Section 6.2. Below, we formalize the conclusions drawn from each
step of the proof plan in the proof sketch of Lemma 6.3. Putting these Lemmas together yields Lemma 6.3.

Lemma A.1 (Analysis of Step 1). If f # f € C-RASP>%T then there exists a continuous test-function Yy such that
(Bi(V0))icw) € (HY NHY) U (Hy N Hy). WLOG, suppose (B;(Vo))icix) € Hi N Hy .

Lemma A.2 (Analysis of Step 2). Given continuous test-function Yo where (B;(Yo))icx) € Hy” N Hy, then there exists
a continuous test function Vs of a schema Y of M < k? segments, where lengths of the segments of Vs is given by

12

Non-Asymptotic Length Generalization

1 1

3M?2 (poly(K,T)\/M)M to

(ngc))ie[M] € [0, 1]™. In addition, the M-dimensional point (ngc))ie[M] has margin at least y >

the faces of polytope P := cl(AM)(Y) N HfM) N HQ(M)).

Lemma A.3 (Analysis of Step 3). Given any point ¢ := (ngc))ie[M) € [0, 1M which are segment lengths of a particular

test-function of schema 'Y, suppose ¢ has margin at least v > 0 to faces of polytope P = cl(AM)(Y) N HfM) N HQ(M)).

Then, one can perturb the coordinates of c to get a point c, € [0, 1™ such that (1) the margin of c. to the faces of P is at
(K'VT)

least % and (2) the coordinates of ¢, have precision at most poly -
Lemma A.4 (Analysis of Step 4). If there exists v > 0,c. € P such that the margin of c. to the faces of P is at
least % and the coordinates of c, have precision at most W, then there exists discrete test-function X' such that

(Bi(X'))icrr) € HY N Hy and the length of X' is at most O(M -TH).

With M < k2, k < 2K, and K < T?, we conclude that if f # f’, then there exists a string 2/, |2’| < O(TO(Kz)) such that
@) # f'(@).

Details of Key Steps of Proof Plan of Section 6.2. We now elaborate on key steps of the proof plan. We will focus
on Step 2, because Step 1 just applies Lemma E.30, Step 3 just applies Lemma E.29, and Step 4 applies Lemma 6.9 and
analyzes how large n needs to be so that the final discrete test-function distinguishes f, f’.

Details of Step 2. First, we characterize A({s;};cx)) as the union of a finite number of polytopes.

Lemma A.5 (Characterization of A({s;};c[x)). combination of Corollary E.14 and Lemma E.16). For any (k,T)-
configuration {s;};c(x), there are a finite number of k-dimensional convex polytopes { A;} je(n,), Nk < oo, such that

A{sitien) = | 4

JE[Nk]

Figure 9 pictorally depicts the completeness Lemma for k& = 2, which shows that A({s;};c[2)) is the union of two triangles.

The way Lemma A.S5 is proved is by showing that for any continuous test-function), there exists another continuous
test-function of one of a finite number of possible schemas which induces the same activations { B;(J) };c[x]. We call these
Ny, schemas “basis” schema; they are a “basis” in the sense that any continuous test-function is equivalent to a continuous
test-function which follows some basis schema. Figure 8 depicts a basis schema. We defer the details to Appendix E.3. The
main take-away is that each polytope A; C [0, 1]* corresponds to a schema Y;, and A; is the set of activations which can be
induced by a test-function of schema Y;.

Vj € [Ni], Aj := {(B1(Y), ..., Bx(Y)) : Y valid test-function of schema Y; } C [0, 1]*

Thus, given Y from Step 1 such that, WLOG, (B;()))iex) € Hy N Hy , then there is an equivalent test-function Yy of
one of the basis schema, Y € {Y;};¢(n,], such that (B;(D1))icin) = (Bi(J0))iein) € HY N Hy . Denote the set A(Y') as
the particular A; which corresponds to schema Y.

A(Y) :={(B1(Y), ..., Br(¥)) : Y valid test-function of schema Y } C [0, 1]*

Now, suppose that schema Y consists of M segments, whose lengths we denote (ny,na,...,na) € [0,1]M with
Zie[MM = 1. Note that not all settings of (ny,ns,...,ny) are valid, because there are linear constraints which
must be met by (n1, 7, ..., n), which are described in Lemma E.6. Define AXM)(Y') € [0,1]™ as the set of all valid
settings of (11, na, ..., nas), per Lemma E.6. A(M)(Y") is an (M — 1)-dimensional polytope, whose faces are parameterized
by linear inequalities whose coefficients are at most poly (K, T') in magnitude (i.e. poly(K, T')-precision).

13

Non-Asymptotic Length Generalization

AM(Y) :={(n1,...,nu) : valid segment lengths of schema Y and Z n; =1} c [0,
i€[M]

Further, define H I(M) and H. Q(M) as the analogous halfspaces to ;" and H," but in the space of segment lengths as follows.
There exists a linear map L : R™ — R which maps points in A)(Y') to points in A(Y). L € {0,1}**M is such that
L;; =1 <= segment j in schema Y lies above line ¢ (that is, for every x in the domain of segment j, the y-value of the
segment at x is at least s; - x) and hence contributes to the ith activation B;()) of any test-function) of schema Y. Using

L, we can rewrite the inequalities which characterize Hy, Hy in terms of (nq,...,nar).
K K
M
Hl() .= {(nl,...,nM):Z)\iBord(Li)>z}:{(n17...,nM):Z)\i Z n; > z}
i=1 i=1 J st Lord(l,i),jzl
K K
M
H2() .= {(n17...7nM):Z)\QBM(Q,Z') <Z}y={(ng,...,nn) :Z)\; Z nj < z'}
i=1 i=1 J st Lord(2,i),j=1

With P := cl(AM(Y) n HM 0 HSM™), we use the fact that (B;(V1)iepy € Hi N Hy to deduce that AM) (Y) N

H 1(M) N HQ(M) # (). Let V be the set of vertices of P. This next Lemma is for lower-bounding the margin of point
c= ﬁ > vev v € [0,1]M on the faces of P, when the latter is non-empty.

Lemma A.6 (Margin lower bound, slightly informal version of Lemma E.18). Consider a nonempty d-dimensional polytope
P C R? with vertices V and N faces. Suppose the faces of P are each defined by a linear inequality over variables
{®i}ic|a), with integer coefficients of magnitude at most prace, where points on the face satisfy the linear inequality with
equality. For j € [N), define L; as the linear inequality for the jth face of P. Then, for any j € [N], for any vertexx € V
which does not lie on the jth face of P, we have the following lower bound on the margin of x on the jth face of P.

1
(pface \/E)d

Li(z) £
With d = M and pgee = poly (K, T) and using the linearity of the margin, it follows that the margin of ¢ = ‘71| Yowev ¥
1 1
VT (poly (K, T) VM) *
test-function of schema Y, since c has positive margin to the faces of P, so it is contained in P C AM) (Y). The activations
of the test-function with segment lengths given by ¢ will be contained in H;” N H; sincec € P C H EM) N H. Q(M). This
concludes Step 2.

on any face of P is at least cis a pointin [0, 1]™, and it is a valid setting of segment lengths for a

B. Asymptotic Length Generalization, Adapted from (Gold, 1967)

Define the following asymptotic notion of learnability.
Definition B.1 (Length Generalization in the Limit, adapted from Gold (1967)). A function class F C F R admits length

generalization in the limit w.r.t. encoding system R if there exists a learning algorithm A such that for all f* € F, there
exists a natural number N such that for all N" > N, A length-generalizably learns f* at input length N”.

The above definition of length generalization in the limit is a special case of the so-called identification in the limit in the
informant model in (Gold, 1967). The major difference is that (Gold, 1967) requires the function class F to be learnable
in arbitrary order of data presentation, while in our case, we are only interested in a particular order of data presentation,
namely the order of increasing input length.

Proposition B.2 is a result about which function classes are learnable in the sense of Definition B.1. We provide a proof here,
which is similar to that of Theorem 1.4 of (Gold, 1967)

Proposition B.2 (Adapted from Theorem 1.4 of Gold (1967)). For all encoding systems R, the function class F* admits
length generalization in the limit, and thus so does any function class F C FR.

14

Non-Asymptotic Length Generalization

Proof. Consider a learning algorithm which enumerates functions in F7*. It maintains a current hypothesis, which is
initialized to the first element of the enumeration. Given an input training set, the learning algorithm checks whether the
current hypothesis interpolates the training data. If it does not, then the current hypothesis is updated to the next function in
the enumeration until the current hypothesis interpolates the training data, at which point the current hypothesis is outputted.

First, because R maps {0, 1}* to F*, then we can enumerate F " simply by enumerating all strings p € {0, 1}*, say in the
order of increasing binary-representations of natural numbers, and then computing R (p) for each string p. The computation
of R(p) will always halt by Definition 2.1. Every function in ™ appears at some point in this enumeration by the definition
of F®. Suppose that we denote this enumeration by & = {fo, f1, f2,. ..}, with & = {fo, f1, f2, .., f-} being the first
c + 1 elements of the enumeration, for any ¢ € N.

Second, because the output of R is always a computable function which halts on every input, the learning algorithm
described in the first paragraph is computable.

By Theorem 3.2 with C(-) being the mapping from a binary string to the integer it represents in binary (so that each
finite representation is mapped to its order in the aforementioned enumeration), it suffices to show that for any ¢ € N,
N(&) = min{n : Vf # f € &,3z € {0,1}5"s.t. f(x) # f'(z)} < oo. This follows directly from the fact that
|€:] = ¢ < oo and that for any f # f' € &, there exists some string x, |x| < co where f(x) # f’(z). For each pair of
unequal functions in &, pick the shortest such string = which distinguishes them, and take N (&) to be the maximum of the
lengths of these distinguishers. This must be finite. l

C. Proofs on Equivalence of Different Non-Asymptotic Length Generalization Definitions

C.1. Properties of Apci

We will prove that Am is optimal with respect to the quantity N4, (c). Note we will drop the superscripts for F,C, R
from the notation for convenience.

Theorem 3.2 (Optimality of Minimum-Complexity Interpolator). Given any encoding system R and complexity measure C,
forall c € N, it holds that NER*.C (¢) = ming N%(c) = N(FR). As a consequence, the following three statements are

equivalent:
s Function class F™ admits non-asymptotic length generalization;

* Function class F® admits non-asymptotic length generalization, via learning algorithm A
e Forall c € N, length complexity of F.X, N(FR), is computably bounded in c.

R.C.
mci ’

Proof of Theorem 3.2. For any c € N, we have

N(FF) :=min{n € N:Vf # f' € Fwith C*(f'),C*(f) <,
there exists « € {0,1}=" s.t. f(2) # f'(x)}

We will show separately that N 4, ,(c) > ming Na(c) > N(FE)and N, (c) < N(FR).

(1). ming N4(c) > N(FF) follows from the fact that for any N < N (FX), there exists f # f’ with CR(f'),C*(f) <
c that agree on all inputs « € {0,1}=". Given training set {(x, f(z)) : Vo € {0,1}5N} = {(=z, f'(z)) : Vo € {0,1}=V},
any algorithm A which outputs an encoding of a function which is not equal to f will be wrong in the case the ground truth
is f. Meanwhile, any algorithm .4 which outputs an encoding of a function which is not equal to f’ will be wrong in the
case the ground truth is f’. Thus, N4(f) > N or N4(f’) > N, so Na(c) > N.

(2). Na,,(c) < N(FR). For f with CR(f) < ¢, suppose that on input of {(z, f(z)) : V& € {0,1}SNFO}, Ang
outputs p’, where R(p') # f. This implies that C(R(p’)) < C(p') < CR(f) < c and that R(p’) is consistent with
{(z, f(z)) : Vo € {0,1}SNF)}. This is a contradiction of the definition of N'(FR), which says that all pairs of unequal
functions f, f’ with C®(f),C®(f’) < c can be distinguished from each other by some input of length at most N (FX).H

Denote p = p’ if R(p) = R(p’). The following Lemma is also useful for showing that the same bounds on the length com-
plexity hold whether we think of Amg as operating over finite descriptions p € {0, 1}* (which is the actual implementation)
or as operating over functions f € F (which is a more abstract way to think of Ap).

15

Non-Asymptotic Length Generalization

Lemma C.1. Given (F,R,C), withC*(f) := min,e (o1} r(p)=f C(p), then for all ¢ € N:

min{n :Vf # f' € F,CR(f),CR(f") < ¢,3x,|z| < n, f(z) # f(2)}
=min{n :Vp #p’ € {0,1}",C(p),C(p)) < ¢, 3z, |z| <n,R(p)(x) # R(p)(x)}

Proof. Every function f € F with CR(f) < c has some finite description p with R(p) = f and C(p) < c. No function
f € F with C*(f) > c has any finite description p with R(p) = f and C(p) < c. B
We also have the following result which says that A is computable if C satisfies Assumption 2.4.

Lemma 3.3. Under Assumption 2.4, Algorithm 1 is computable and thus a valid learning algorithm.

Proof of Lemma 3.3. By Assumption 2.4, we use TM FE to enumerate all programs p € {0, 1}* in non-decreasing order of
C(p) and at each iteration check if R(p) is consistent with the training data. If it is, we output p and stop. Otherwise, we
continue to the next program. Both the enumeration and checking-consistency procedures are computable, as assumed by
Assumption 2.4 and Definition 2.1.

C.2. Equivalence of Non-Asymptotic Length Generalization with Decidability of Language Equivalence Problem
Now, we will prove that Definition 2.6 is equivalent to a few other definitions. First, recall the definition of non-asymptotic
length generalization and the language equivalence problem.

Definition 2.6 (Non-Asymptotic Length Generalization). A function class F C F? admits non-asymptotic length
generalization w.r.t. encoding system R and complexity measure C if there exists a learning algorithm A and a computable
function le’f : N — N such that for all f* € F and for all N' > NZ}’F (CR(f*)), A length-generalizably learns f* at
input length N’.

Definition C.2 (Language Equivalence Problem). The Language Equivalence Problem for encoding system R is the
computational problem where given any p, g € {0, 1}*, determine whether R(p) = R(q).

We now prove the following equivalences.

Lemma 3.4. For any encoding system R and complexity measure C satisfying Assumption 2.4, the Language Equivalence
problem for R is decidable if and only if length complexity of F.X, N(FF), is computably bounded in c. Thus it is also
equivalent to the property that F™* admits non-asymptotic length generalization.

Proof. Suppose TM E enumerates elements in {0, 1}* in non-decreasing order of their complexity according to C.

N(FR) computably bounded in c = Language equivalence problem for R decidable.

Suppose there is a computable procedure F' that, for any c, receives as input ¢ and outputs an upper bound on N (FR).
We will describe an algorithm that is given any two finite representations, p,q € {0,1}*, and uses F to determine if

R(p) = R(q).

Given p, ¢ € {0, 1}, compute ¢ = max(C(p),C(q)) and generate the training dataset Dp(.)(R(q)). Now, check whether
V(z,R(q)(x)) € Dp)(R(q)), that R(p)(z) = R(q)(w). If this is the case, return “equivalent.” Otherwise, return
“non-equivalent”.

To argue correctness, if there is some (z,R(q)(x)) € Dp)(R(q)) where R(p)(x) # R(q)(x), then clearly these two
functions are not equal. If V(z,R(q)(x)) € Dp()(R(q)), R(p)(z) = R(q)(x), then since C(R(p)) < C(p) < c and
C(R(q)) < C(q) < ¢, then it must be that R(p) = R(q), or else F(c) is not an upper bound of N (FF).

Language equivalence problem for R decidable — N(F7) computably bounded in c. Suppose TM M solves
the Language Equivalence Problem for R. By Lemma C.1, it suffices to show that the following quantity is computably
bounded in ¢ € N.

min{n : Vp # p' € {0,1}",C(p),C(p') < ¢, 3w, [z < n, R(p)(z) # R(p)(2)}
Algorithm 2 computes an upper bound of this quantity.

16

Non-Asymptotic Length Generalization

Algorithm 2 Computation of N(F?)
Require: Integer c € N
Ensure: N(FR)
I: N«0
2: for all pairs of programs (p, ¢) (enumerated by E) with C(p),C(q) < c do

3: if M(p,q) = “non-equivalent” then

4: for all strings = € {0, 1}* with non-decreasing length do
5: if R(p)(x) # R(q)(x) then

6: N « max(N, |z|)

7: break

8: end if

9: end for

10: end if

11: end for

12: return N

Algorithm 2 always terminates, since the for-loop in line 4 only is performed on p, ¢ € {0, 1}* which are not equivalent,
which are distinguished by a finite string. It returns the smallest length required to distinguish every two non-equivalent

p,q € {0,1}*.

Finally, it follows from Theorem 3.2 that the language equivalence problem for R being decidable is equivalent to
non-asymptotic length generalization of 7 w.r.t. R,C when C satisfies Assumption 2.4. B

C.3. Connection to Finite Identification, (Gold, 1967)

Our notion of non-asymptotic length generalization is related to Gold’s notion of Finite Identification (Gold, 1967), which is
restated as follows in the context of length generalization.

Definition C.3 (Finite Length Generalization (“Identification”, (Gold, 1967))). A function class F C F admits Finite
Length Generalization w.r.t. encoding system R if there exists a Turing Machine (TM) A, where for any f. € F, on input
of a training set Dy (f.) for some N € N, A satisfies:

1. A can only output either “pass” or some program p € {0, 1}*. A outputs p at least for one N € N.

2. Whenever A outputs some program p € {0, 1}*, it must be correct in the sense that R(p) = f..

It is clear that Finite Length Generalization implies Length Generalization in the limit — one can replace “pass” by arbitrary
program p and sticks to the same (correct) output once .A outputs any program p. Intuitively, a function class admits Finite
Length Generalization if there exists a learning algorithm which can perfectly length generalize at some finite input length
(and where the learning algorithm knows the length at which it length generalizes), rather than only generalizing in the
limit. Thus, Finite Length Generalization is a very desirable property. However, it is in general too good to be true. We give
a characterization of Finite Length Generalization in Lemma C.4. As a consequence of Lemma C.4, functions classes as
simple as the set of all languages that are finite do not admit Finite Length Generalization.

Lemma C.4 (Characterization of Finite Length Generalization). A function class F™ admits Finite Length Generalization
w.r.t. encoding system R if and only if for any f, € F*, there exists a natural number N such that f* is the only function
that is consistent with the training set Dy (f.).

The proof of Lemma C.4 is straightforward and omitted.

Since Finite Length Generalization is in general too restrictive, we relax the definition to allow the learning algorithm
to output a program p with some information on the complexity measure of ground truth f,, namely some ¢ > C(f.).
This leads to the definition of Finite Length Generalization with Complexity Information in Definition C.5. Interestingly,
Definition C.5 is equivalent to non-asymptotic length generalization (Definition C.3).

Definition C.5 (Finite Length Generalization with Complexity Information). A function class 7 C F® admits Finite
Length Generalization w.r.t. encoding system R and complexity measure C if there exists a Turing Machine (TM) A, which
for any f,. € F, on input of a training set Dy (f.) for some N € N and a natural number ¢ > C®(f,), it satisfies that:

17

Non-Asymptotic Length Generalization

1. A can only output either “pass” or some program p € {0, 1}*. A outputs p at least for one N € N.
2. Whenever A outputs some program p € {0, 1}*, it must be correct in the sense that R(p) = f..

Lemma C.6 (Equivalence of Finite Length Generalization Definitions). For any encoding system R and complexity measure
C satisfying Assumption 2.4, function class F™ admits Finite Length Generalization with Complexity Information w.r.t. R
and C if and only if length complexity of F,X, N(FRX), is computably bounded in c. Thus it is also equivalent to F~ admits
non-asymptotic length generalization.

Proof of Lemma C.6. Suppose TM E enumerates elements in {0, 1}* in non-decreasing order of their complexity according
to C.

N (FR) computably bounded in c = F” admits Finite Length Generalization with Complexity Information w.r.t.
RandC. Let F: N — N be a computable upper bound on N(FF). Let A be given by Algorithm 3, on input Dy (f+)
and ¢ > CR(f.) € N.

Algorithm 3 Learning Algorithm A

Require: Dataset Dy (f.); c € N with ¢ > CR(f,)
Ensure: Either “pass” or an program p
if N < F(c) then
return “pass”
else
P Amci(Dn(f2))
return p
end if

AN AN R A s

First, A only ever returns “pass” or some p € {0,1}* since Amg only ever returns elements of {0,1}*. Second, by
Theorem 3.2, for ¢ > CR(f.) and YN > F(c), then R(Amci(Dn(f+))) = f+. Thus, whenever A returns an element
p € {0,1}*, itis such that R(p) = f, and there is at least one N where R(Amci(Dn(fx))) = f«.

F admits Finite Length Generalization with Complexity Information w.r.t. R and C = N(FF) computably
bounded in c. We need to prove that there exists some computable F' which upper bounds N (F?). Suppose A satisfies
Definition C.5. Let F' be given by Algorithm 4.

Algorithm 4 Algorithm for '
Require: Integer c € N
Ensure: N .«
1: Npax <0
2: for all p € {0,1}* with C(p) < ¢ (Enumerate with E') do
33 N<+O0
4: while A(Dyx(R(p)),C(p)) = “pass” do
5 N+ N+1
6: end while
7
8
9

Nmax < max(Npax, N)
: end for
: return Ny,

Algorithm 4 is computable, due to the guarantee of A4 that for any f,, given ¢ > CR(f+), there exists some N where
R(A(DnN(f+))) = f«, which ensures termination of Algorithm 4.

Regarding correctness, if there exists some ¢, € N where F'(c.) < min{n : Vp # p’ € {0,1}*,C(p),C(p’) < ¢y, Tz, |2| <
n, R(p)(z) # R(p')(x)}, then there must exist two p,q € {0, 1}* with C(p),C(q) < c., which are not equivalent, but
which agree on all inputs of length at most F'(c,). WLOG, suppose that C(p) < C(q).

There exists N, < F(c.) where A(Dy,(R(q)),C(q)) # “pass”. In particular, A(Dx, (R(q)

),C(q)) must return a p which
is equivalent to ¢, where ¢ # p. On the other hand, since N, < F'(c.), we have Dy, (R(q)) =

N, (R(p)). Thus, we

18

Non-Asymptotic Length Generalization

have shown that A(Dy, (R(p)),C(q)) # “pass” and is a finite representation which is not equivalent to the ground-truth p.
Since C(p) < C(q), this yields a contradiction with the fact that whenever A is given an upper bound on the ground-truth
complexity and .A does not return “pass”, it must return a finite description p which is equivalent to the ground-truth. l

Figure C.3 sums up all these equivalences.

Non-Asymptotic Decidability of
Length Generalization Equivalence Problem
(Definition 2.6) (Definition C.2)

\ ‘/Le:nma 34
Length complexity N (FX)
Theorem 3.2 computably bounded in ¢
emma C.6
Non-Asymptotic Length Fmite Length Generalization
Generalization by Minimum with Complexity Info
Complexity Interpolator (Definition C.3)

Figure 1. Summary of equivalence results between different characterizations of length generalization in Section 3 under some mild
simplicity assumptions on the complexity measure C (Assumption 2.4). Each arrow represents an implication proven by the corresponding
theorem.

D. Proofs on Length Generalization for DFAs and CFGs.

Proposition 2.7 (Non-Asymptotic Length Generalization for DFAs). Let Rpga be the DFA encoding system defined
in Definition 2.2, and let Cpga be the number of states in DFA. Regular languages F* admits non-asymptotic length
generalization w.rt. encoding system Rpra and complexity measure Cppa. More specifically, there exists a learning
algorithm A such that NEDFA(C) <2c—2forallc e N.

In the following proof, we essentially describe and analyze the State Minimization Algorithm (Hopcroft & Ullman, 1979).
Before proving the proposition, we will need a few concepts and Lemma D.1.

Suppose there is some ground-truth minimal DFA, D, of n states, with language L := L(D). Define ¢ as the empty string,
of length 0. For two strings u, v, denote wv as their concatenation. For any « € {0,1}*, denote f.(z) =1 < =z € L.
Denote () as the set of n states for D and §(-,-) : @ x {0,1} — @ as the state transition function for D, with start state go.
Let F' C @ be the set of accepting states. We say that states ¢, ¢’ € @ are distinguished by string v € {0, 1}* if 6(¢,v) € F
and §(¢',v) ¢ F,orif §(¢q,v) ¢ F and 6(¢’,v) € F.

In general, applying a string from the start state gy in the DFA will cause the DFA to end up in some state ¢ €), and an
identification can be made between the input string and the state it causes the DFA to end up in. Thus, to learn the DFA, we
would like to find a mapping from {0, 1}* to [n], which tells us which strings correspond to which states in the ground-truth
DFA. To do this, we claim it is sufficient to consider the equivalence class given by the sets { E(u) },,c {0,1y<n, Where:

Vu € {0,1}5", BE(u) :== {v € {0,1}=" "% :uw € L}

If for u,u’ € {0,1}=", E(u) = E(u'), then we will claim that these two strings correspond to the same state. Otherwise,
u, u’ correspond to different states. This is what is meant by an equivalence class over { £(u)},e(0,1}<n-

Once a learning algorithm can make this identification between strings and the states they correspond to, then the learning
algorithm can infer the transition function of the DFA by considering, for each u € {0,1}=<""1, the states E(u), E(u0),
and E(ul), via the sets {E(u)},ec0,13<n-1 and {E(u)},e(0,13<»- This gives the transition function. E(e) corresponds
to the start state. Strings u corresponding to accept states will be such that e € F(u). Note that we just need to consider

19

Non-Asymptotic Length Generalization

{E(u)}yeqo,13<n instead of { E(u)}ye(ejufo,1}+ to characterize the states of D, since any u of length larger than n will
cause the DFA to reach some state that is also reached by a string of length at most n.

We claim that proving the following property about our sets F/(u) suffices to prove that there is a learning algorithm which
identifies the ground-truth DFA.

Lemma D.1. For any minimal DFA D with n > 2 states and transition function §, then with E(u) defined as above for
eachu € {0,1}=", we have Yu,u’ € {0,1}=",8(qo,u) = 0(qo,v') <= E(u) = E(u).

First, we will show how to prove Proposition 2.7 with this Lemma.

Proof of Proposition 2.7. Suppose a DFA learning algorithm is given inputs of length 2n — 2. For n > 2, Lemma D.1
implies that the learning algorithm can identify the states of D by constructing the sets { £(u) },c(0,1}<n, using its training
data {(w, f«(z)) : |z| < 2n — 2}. Each state is identified with an equivalence class of {E(u)},c(0,1}<n-1, since each
state in an n state DFA can be reached by a string of length at most n — 1. The state transitions can be identified from
{E(u)}ye(0,1}<» by considering, for each u € {0,1}=""*, the states E(u), E(u0), and E(ul). E(e) corresponds to the
start state. Strings u corresponding to accept states will be exactly those such that € € F(u). In the case that the learning
algorithm only receives inputs of length at most 0 (i.e. it only receives (e, f«(€))) or 1, it will simply output the DFA with
language () if the labels of all inputs received are 0 and it will output the DFA with language {0, 1}* if the labels of all inputs
received are 1. This handles the case where n = 1.

The learning algorithm above identifies the ground-truth DFA, requiring inputs of length at most 2n — 2 when the ground-
truth DFA has n states. By Theorem 3.2, the Minimum Complexity Interpolator Amc will also require inputs of length at
most 2n — 2 to identify the ground-truth DFA. This proves the Proposition. ll

Now we prove Lemma D.1.

Proof of Lemma D.1. Showing 6(qo,u) = §(qo,v’) = E(u) = E(u’) is easy, since if §(go,u) = d(qo,w’), then
the states reached by u, v’ from ¢ are the same, so no string of any length can distinguish them §(qq,), §(go, '), so
E(u) = E(u).

We now show &(qo,u) # 6(qo,u') = FE(u) # E(u'). We are given that the ground truth DFA has n states and is the
minimal DFA for its language, so that there are no DFAs of fewer states with the same language. Given this, we claim that
there are exactly n equivalence classes among {E(u)}, ¢ {0,13<~- Bach equivalence class must correspond to a unique state,
so each of n unique states can be identified with a unique E'(u), finishing the proof of Lemma D.1.

We will now show that there are exactly n equivalence classes among { E(u)},c(q,13<n. For 0 <i <n —2,u € {0,1}=",
define E;(u) := {v € {0,1}=" : wv € L}. To do this, we claim that for any i < n — 2, i the number of equivalence classes
in { E;(u)},eq0,13<n is less than n, then there must be some u, v’ € {0,1}=" and v;1; € {0,1}**! such that

Ei(u) = Ey(u)
and f.(uvig1) # fo(u'vigr)
Suppose this were not the case. That is, suppose that for some ¢ < n — 2, (1) the number of equivalence classes in

{Ei(u)}yeqo,132n is less than n. (2) Yet, Vu,u’ € {0,1}5", V41 € {0,1}' Ei(u) = Ei(v) = fu(uvipr) =
fx(u'v;41). We want to show that together, (1) and (2) contradict the minimality of the ground-truth DFA.

We claim that, by induction, (2) implies that for every k > i, for every u,u’ € {0,1}=" and v 1 € {0, 1}**L, Ey(u) =
Er(v') = fi(uvgs1) = fu(uw'vgy1). This is true for base case k = i by (2).

For the inductive step, suppose the claim is true for k > i. Suppose u,u’ € {0,1}=" are such that Ex(u) = Ex(u’). Then
Yop € {0,1}5F, f,(uvy) = f.(u'vy,). For any such string vy, with length &, we can break vy, into a prefix of & — 4 bits and
a suffix of ¢ bits. Thus,

Vo € {0, 13778 Vo, € {0,1}, fu(uvgp_iv;) = folt'vg_iv;)
Each string uvy,_; and u'v;_; will correspond to some state reachable by some strings u”, u/”’ € {0,1}=", in the sense

20

Non-Asymptotic Length Generalization

that 0(qo, uvk—;) = 6(qo,u”) and §(qo, u'vg—;) = I(go,u”’), as each state in the DFA can be reached by a string of
length at most n — 1. Thus, E;(u”) = E;(u"), so that by (2), Vv;11 € {0,1}FL fu(uvig1) = fu(u"'viy1). Since
8(go, uvk—;) = 8(qo, w") and 6(qo, u'vig—;) = 6(qo, u”’) imply that for any such v;41, fi(uvg—;v;+1) = fe(vv;41) and
f*(u/Uk,iUiJrl) = f* (UH/’UZ'+1), then V’UiJrl S {0, 1}i+1, f* (uvk,iviﬂ) = f* (U/Uk,ivlqu). In short,

Vop—i € {0,171 oy € {0, 1}, fu(uvp—ivig1) = fu(u've_ivigs)

Thus, Yug41 € {0, 1}’”1, fs(uvgs1) = fu(u'vgi1), completing the induction. We have proved the claim for all k& > i.

However, this will lead to a contradiction if we take k — oo, since applying the guarantee for all k£ > ¢, we have that

Vu,u' € {0,1}=5", Ei(u) = Bi(v/) = Eu(u) = Ex(u))

Where Eo(u) := {v € {e¢}U{0,1}* : wv € L}. We know that any two distinct states in a minimal DFA will be
distinguished by some finite string (See Theorem 4.24 of (Hopcroft & Ullman, 1979)). Thus, for any u,u’ € {0,1}=",

E;i(u) = E;(u)
= FEy(u) = Ex(u)
= 0(qo,u) = d(qo, u’)

So n = #(Equivalence classes in { Eo () }yeq0,13<n) = #(Equivalence classes in { £;(u) },c(0,13<n) < n, where the
last inequality is due to (1). This is a contradiction.

Thus, while the number of equivalence classes in {E;(u)},,c (0,13 <~ is less than n, there must be some u,u’ € {0,1}="
and v; 41 € {0,1}**! such that

EZ(U) = Ez (u’)
and f.(uvip1) # fo(u'vigr)

This implies that the number of equivalence classes in {E;11(u)},¢c {0,1}<n is at least 1 greater than the number of
equivalence classes in { F; () },c{0,13<~ While the latter is less than n.

Finally, { Fo(u)}yeq0,13<n has 2 equivalence classes for any non-trivial DFA that whose language isn’t () or {0, 1}*, and
any n > 2 state minimal DFA must be non-trivial, as the minimal trivial DFAs have at most one state. The two equivalence
classes of { Eo(u)},eq0,13<» are given by the states that are accepting and those that are not. For all i < n — 2, the number
of equivalence classes in { £y 1(u)},c0,13<» grows by at least 1 from that of { E£;(u)},c(0,13<»- We can have no more
equivalence classes than n, and the ¢ where {Ei(u)}ue{071}gn has n equivalence classes will be at most n — 2. This implies
Lemma D.1 is true if we let F(u) = E,,_2(u),Vu € {0,1}=". &

Now, we will prove an impossibility result for linear CFGs.

Proposition 3.5 ((Linear) CFGs only admit length generalization in the limit). Recall R;.cgg is the encoding system for
Linear CFGs defined in Definition 2.3 and Ccorg({G)) is the complexity measure that maps CFG G = (N, T, P, S = {0, 1})
to |[N|+ |T| + |P|. Then for any learning algorithm A, the length complexity, N}L'CF @, is not computably bounded. That is,
Linear CFGs do not admit non-asymptotic length generalization (w.r.t. standard CFG encoding system R crg), and neither
does the set of all CFGs.

Proof of Proposition 3.5. This follows directly from Lemma 3.4 and Theorem 3.2, with R being an encoding system
which maps string encodings of linear CFGs to the corresponding language, F = F* being the languages recognized by
linear CFGs, and C being the complexity measure described in Definition 2.3. Because R .crg satisfies Assumption 2.4,
Lemma 3.4 and Theorem 3.2 imply that encoding system F”* admits non-asymptotic length generalization w.r.t. R, C iff the
language equivalence problem for R is decidable. However, by (Baker & Book, 1974), the latter is undecidable. B

21

Non-Asymptotic Length Generalization

E. Proofs for Length Generalization of C-RASP

E.1. Proof of Theorem 5.5

Theorem 5.5 (C-RASP! Length Generalization). Let F = C-RASP! and C(f) = max(|al, |b|, |d|), defined in Definition 5.3.
Then VT € N, we have N 4, ,(T) < O(T?). That is, the Minimum-Complexity Interpolator; with complexity C and function
class F, can length generalize given inputs of length O(T?) when the ground-truth has complexity T.

Proof. With integer T and integers a, b,d € [~T,T], a > 0, recall C-RASP"7 is the set of functions of the form:

fapa(x)=1la-ps(xz) —b-n—d >0

By Theorem 3.2, it is sufficient to show that for any tuples of integers (a, b,d), (a’,V',d’) € [-T,T]® with a,a’ > 0, if
there exists an z € {0, 1}* with fo 4.4(2) # farp,a(x), then there exists an 2’ € {0,1}* with |2/| < O(T?) such that

fa,b,d(x’) # far o ().

Suppose there is a string « that distinguishes f, 4 and fo/ 17 o-. We can rewrite f and f’ as follows.

F@) = fupal@) = 1fps(@) — 20— L5 0
F(a) = fusale) = Ups(a) - 2 on— & > 0

: i . bbb b d _ d
Since f, f differ on x, either 7 # Z; or 2 but £ £ &,

a a’ a a
cb LV
Casel: | #

There are 3 categories for the value of a slope g (resp. Z—:).

e Type (i): g > 1 (resp. Z—l, >1)
* Type (ii): 2 < 0 (resp. & < 0)
* Type (iii): 2 € (0,1) (resp. & € (0,1))

Below we will consider how to distinguish two functions f, f” whose slopes %, Z—/, are in each of the categories.

. % is type (iii); 2—/, is either type (iii), (ii), or (i)
For any two 2D linesy = 2x+% andy = Z—l,x—&— g—:, there is a lattice point of x—coordinate x, := |aa’|(2 max(| <], | Zl—:)+
1) that lies strictly above the line with smaller slope and un-strictly below the line with greater slope. This follows from

the fact that when Z—l, # L, then the smallest that |2 — 2| canbe is faq7- Thus, |2 — 2. |aa’|(2 max(| 2|, |Z—:|) +1) >

1
a’ aa a’ a
2max(|4],|%]) + 1 so that | 2x, + ¢ — (£x, + £)| > 1. Because the vertical gap between the two lines at horizontal
coorldinate X, is at least 1, there is a lattice point (x,,y,) € Z* withy, € (min(2x, + 2, Zx, + %) max(®x, +
4 Px, + L)) In fact, for any x > x,, one can find such a lattice point with horizontal coordinate x, since the gap
between the two lines will continue to grow as x increases for x > x,, and so the gap will always be at least 1.

We want to pick such a lattice point (X, y) subject to four constraints:

S b d Vg d
Ly <max(2x+ 2, 5X+ %)

<

. ~ o !’
> min(2x+ ¢, b4+ L)

2.y o
3.y <%
4.9>0

22

Non-Asymptotic Length Generalization

Since g € (0, 1), then it suffices to find such a lattice point either between y = gx + % andy = x, betweeny = gx + g

andy = 0, or betweeny = gx + g andy = Z—l,x + Z—i. For each of the 3 cases, any lattice point between the two lines
specified in that case will satisfy all four constraints.

By the argument in the previous paragraph, for each of the three cases, we can construct such a lattice point with
horizontal coordinate x,, which will be at most the following, across the three cases.

!

d, d d d
x < max [|aa’|(2max(|2], |2]) + 1),]a - 1|2 max(|1,0) + 1), a- 1|2 max(| 51,0 + 1)

< 2max(|dd’, |ad'|) + ad’
<3717

Denote the vertical coordinate of this lattice point as 0 < y < x. Finally, any string 2’ € {0,1}* with |2/| = X,

consisting of y > 0 ones and x — ¥ > 0 zeros will distinguish f and f’. This string will have length at most 37°2.
. g and Z—,, are type (ii)

Since g =+ 2—/,, say WLOG that % < 0.
If Z—l/ < 0, then after x coordinate at most 7" 4 1, then lines {y = gx + g, y = 2—,,x + Z—:} go below y = 0 and no lattice
point of nonnegative y coordinate can be below one but above the other (i.e. both f, /' become the all-ones function on
strings of length at least 7' + 1). Thus, any distinguisher of f, f’ (in particular, the x presumed in the beginning of the
proof of this Theorem) must have length at most 7T, and we take z’ = z.

If Z—l, = 0, then in the case ¢ < 0, the same argument implies that |z| < T

In the case that ¢ > 0, then a lattice point which lies between the two lines is (7' + 1,0). Thus, the string 2’ = 071
distinguishes f, f" and has length 7' + 1.

* Y is type (ii) and ¥ is type (i)
The analysis of this case is similar to the Types (iii) versus (iii), (ii), (i) case. One can take the line of slope > 1 and
modify just its slope to be between (0, 1), apply the analysis in the Types (iii) versus (iii), (ii), (i) case to attain a lattice
point which lies below the original line of slope > 1 and above the line of slope < 0. Such a lattice point corresponds
to a string of length at most 27" which distinguishes f, f’.

. g and Z—/, are type (i)

Analogous to the argument about Type (ii) versus (ii). There will be a string of length at most 7"+ 1 which distinguishes

L

Case 2: g = Z—l, but g #+ % If the slopes are at least 1 or at most 0, an analogous argument as Case 1, Type (ii) versus (ii) or
(i) versus (i) will suffice, where it must be the case that the string = which was presumed to distinguish f, f has length at
most 7" + 1.

Otherwise, if both slopes are in (0, 1), then we can take a lattice point (x., y) which lies on the one of larger intercept. Such
lattice points occur periodically with spacing ¢ < T, and we need only take one such lattice point where x, >y, > 0. We
can find one such lattice point where x,, < 37. B

Notation and Conventions. For the remaining sections, we will use lower-case x to denote bit-strings in {0, 1}*.
We define [k] := {1,2,...,k — 1, k} as the first k positive integers.

We will use symbol f to denote functions in the relevant hypothesis class, like C-RASP or DFAs. These will be mappings
from {0, 1}* to {0, 1}. We will sometimes refer to functions in C-RASP! and C-RASP? as programs, which is synonymous
with “functions.” We will say that two functions are equal if they agree on all strings {0, 1}*, and that they are unequal if
they are distinguished by at least one string 2z € {0, 1}*. We will call such an z a distinguisher of the two functions. To be
clear, the word function here has a distinct meaning and type from test-functions.

23

Non-Asymptotic Length Generalization

We will use &X' to denote discrete test-functions and) to denote continuous test-functions. When we say “test-function”
without specifying whether it is discrete or continuous, assume we mean a continuous test-function. We will use (B;(Y))ie(x)
(or (B;)ie[r) When clear from context) to represent the activations induced by a continuous test-function (see Definition 6.6).
We will use symbol Y to denote a schema of continuous test-functions (see Definition E.5). When we talk about a 2D
coordinate system, in the context of test-functions, we will use symbol x to denote the horizontal axis of this 2D coordinate
system and y to denote the vertical axis. To be clear, x is distinct from the symbol z, which we use to denote bit-strings.

Regarding geometric objects, denote cl(,S) as the closure of a set S. Denote S€ as the complement of set S. For a convex
set S, the affine hull of S is the set of linear combinations of points in S. Denote dim(.S) as the dimension of the affine
hull of S. Denote the interior of a convex set S as int(.5) and the relative interior of convex set .S as ri(S), which is the set
of points in S such that there is some non-zero radius such that the Euclidean ball centered at that point with that radius,
intersected with the affine hull of S, is contained in S. Finally, sometimes we will talk about a geometrical set in R¥ and its
“analog” in RM, where M > k (what “analog” means, we won’t go into here). Notationally, if we use symbol A € R* for
the set in R¥, we will use symbol AM) to denote a set that’s analogous to A, but in RM .

A halfspace of R? is a subset of R? which satisfy a linear inequality over the d coordinates of R?. A polytope is the
intersection of a finite number of halfspaces. The polytopes we will be working with will be restricted to [0, 1]¢ for some
dimension d. The faces of a polytope P C [0, 1]¢ refer to the d — 1 dimensional polytopes which form the boundary P.
Each face is associated with a linear inequality (halfspace) which defines the face in the sense that points on the face satisfy
the linear inequality with equality. A d-dimensional simplex is a d-dimensional polytope with d + 1 vertices and d 4 1 faces.

E.2. Proof of Theorem 6.1.
We reiterate the definition of C-RASP? here.

Definition 5.4 (C-RASP?). With integers 7 and 1 < K < T2, let C-RASP? %7 be the set of programs of the following
form. Each program f has parameters 0 < z < T, Vi € [K], a0 \; € {~T,..., T}, with a®) > 0. We require that

forall i € [K] b ¢ (0,1) and is distinct from LA

O] alh

for ¢’ 7 i. We also require 3, e Ai > 2.

For any n > 0, on input = € {0, 1}", the first layer computes the values of K heads, {h(!},c(x], on the n prefixes of :

Hz1}, {x1, 22}, .. {x1, ..., 2, }} as follows: Vj € [n],Vi € [K],h;i) = l[ps(z); > %j] Subscript j indicates the
value of a quantity on the jth prefix of z.

The second layer computes the output, which is the nth bit of the final sequence: f(z) = 1>,k \ips(h®),, > z - n.

Then, C-RASP? = UlST’lSKSTQ C-RASP%%.T Given a function f € C-RASP?, let K (f) be the number of heads, h),
in the first layer of f and let T'(f) := max(max;c|x ()] la®)|, max;e |k (f)] b, max;e(r(f) |Ail, [2]). The complexity
measure is C(f) = T(f)X /), the precision of the function’s parameters to the power of the number of heads.

We will prove the following length generalization guarantee.

Theorem 6.1. Let F = C-RASP? and C(f) = T(f)X), as in Definition 5.4. Then Yoo € N, N 4, (o) < O(a®M).
Note that Theorem 6.1 is actually stronger than a result which says that we can learn C-RASP? /7 with length O(T°(%)).
This is because for a fixed 7" and K, C-RASP?%T only contains functions of precision at most 7" and at most K heads,
whereas Theorem 6.1 also provides length generalization guarantees for C-RASP? functions f with T'(f) > T, K(f) < K
or T(f) < T,K(f) > K such that T(f)X(/) < TK,

Proof of Theorem 6.1. By Theorem 3.2, to upper bound N gni(), it suffices to bound:

min{n € N:Vf # f' € C-RASP? with C(f),C(f') < a, exists z € {0, 1}=" s.t. f(x) # f'(z)}

Suppose f, f' € C-RASP? are not equal and differ on 2y € {0,1}*. For any n > 0, suppose f and f’ have the following
2-layer form on an arbitrary input z € {0,1}".

24

Non-Asymptotic Length Generalization

i b
vj € [n),Vi€ K], ><x> = Llps(x); > 7]

Z Aips(h(Z))p > 2+ 1]
i€[K]

(b(z))]
@

Z Nps((hDY (z)), > 2 - n]

1€[K]

Vj € [n], Vi € [K7], (h(i))}(x) = l[ps(x); >

Where f has K first-layer heads and integer parameters of precision 7" and f has K first-layer heads and integer parameters
of precision 7", where C(f) = T < aand C(f') = (T")X < a,and K < T? and K’ < (T")%2. WLOG, suppose that
T > T'. We will find a short string z. € {0, 1}0(“0(1)) such that f(x.) # f/(xy).

Suppose the set of unique slopes R := {a(5 bielx) U {(a(5 }lE[K'] C (0, 1) between the first layer of f and f’ has size k,
where max (K, K') < k < K + K'. We will denote R = {s}cx C (07 1), where s; is the largest slope and sy, is the
smallest slope, and the slopes are sorted in descending order so that s; > ... > sj. Let ord(1,4) : [K] — [k] be the index
within R of the ith slope of f, % Let ord(2,4) : [K'] — [k] be the index within R of the ith slope of f’ In the
following exposition, we will refer to “line i”” as the homogeneous, 2D line y = s;x, with slope s;,i € [k].

(L
’ (())/

Definition 5.4 requires that z, 2" > 0, and that 3, g Ai > z and } ;¢ A} > 2’ Since f differs from f” on discrete
test-function given by z(, then the non-trivial Lemma E.37 implies that there exists a continuous test-function)); that
induces activations (B1(Y1), . .., Br()1)) which satisfies either Case I or Case II.

Case I: Z /\iBord(l,i) (yl) > z and Z /\;Bord(2,i)(yl) <z

i€[K] i€[K’]
Case II: Z AiBora(1,iy (V1) < z and Z NiBora(2,i) (V1) > =
i€[K) i€[K’]

For the remainder of the proof, we will suppose Case I is true. The proof for Case II is entirely analogous to what we will
present below, since we will not use the direction of the signs of the two halfspaces in the following proof. Denote the two
halfspaces induced by the second-layer of f and f’ by H; and H> respectively.

H,:={B¢e RF Z)\iBord(Li) >z}
i€[K]

Hy = {B € R . Z A;Bord(li) < Z/}
1€[K']

By Corollary E.14 (Completeness of Basis Schema), there exists a continuous test-function) of a basis test-function
schema, Y, specified in Corollary E.14, such that (B1()%), ..., Bi(Y2)) = (B1(J1), - .., Bx(Q1)). Thus,

(B1()2),-..,Br()2)) € HiN Hy

25

Non-Asymptotic Length Generalization

Let M be the number of segments in the basis schema Y of }». Note that our previous application of Lemma E.37 guarantees
that Y is a basis schema of either one or two monotone curves (see Definition E.9), ensuring that

M <2k ey

as opposed to the naive bound of M < k2 via Corollary E.15. This fact will be useful at the end for achieving a better final
bound.

Denote the lengths of the M segments of schema Y as (11, . ..,na7) € [0,1]M. Let AM)(Y) be the set of valid segment
lengths (n1,...,ns) for a continuous test-functions of schema Y, where a particular setting of (n1,...,nas) is valid if it
obeys the constraints described by Lemma E.6 for schema Y and } _, e i = 1.

AM (YY) :={(ny,...,ny) : valid segment lengths of schema Y and Z n; =1} c [0,1M
i€[M]

Additionally, define A(Y") as the analogous set to A*)(Y') in the space of activations rather than the space of segment
lengths.

A(Y) :={(B1(Y),...,Br(¥)) : Y valid test-function of schema Y } C [0, 1]*

There exists a linear map L : R™ — R which maps points in A)(Y') to points in A(Y). L € {0,1}**M is such that
L;; =1 <= segment j in schema Y lies above line ¢ (that is, for every x in the domain of segment j, the y-value of the
segment at x is at least s; - x) and hence contributes to the ith activation B;()) of any test-function) of schema Y. Using

L, we can rewrite the inequalities which characterize Hy, Hy in terms of (nq,...,nar).
K K
M
Hl();: {(n17~-~7nM)52)\1'Bord(1,i)>Z}:{(n17~-~,nM):Z)\i Z nj>z}
i=1 i=1 jst Loa(1,iy,;=1

K K’
H2(IV[) ={(n1,...,nm): Z)\gBurd(Q,i) <Z}={(m,....,num): Z)‘; Z ny <}
i=1 1

i— J st Low(z2,4),5=1

Since (\;);e[k, 2 are integers at most T"in magnitude and (A});c[x, 2’ are integers at most 7" in magnitude, the coefficients
. . . M M K K’

of the linear inequality for H1() (resp. H2(), Doim1 N Dis Logiiy y=1 " > 7 (1esp. Dim1 NP Dis Lowia.iy =14 <

2') are integers of at most KT' < T2 (resp. K'T" < (T")?) in magnitude, since for each j € [M], at most every i € [K]

(resp. i € [K']) can contribute to the jth coefficient.

Now, we describe a few more properties of A(M)(Y). Suppose the segment lengths of) in schema Y is
(n1(V2), ..., na(Y2)) € [0,1]M. Then, we have:

(1), .. na(V2)) € AMD (V)N HMD A HM £ ¢

By Lemma E.16 A(M) (Y') is a polytope: the intersection of a finite number of halfspaces. It follows that AMM) (Y) is convex.
Moreover, by Lemma E.16, we have dim(A®M)(Y)) = M — 1. Because AM)(Y) N HI(M) N HZ(M) # () and Hl(M), HQ(M)
are open sets of dimension M, then by Lemma E.27, dim(A®) (v) 0 H™ 1 HM)) = dim(A®) (v)) = M — 1.

We have that cl(AM) (V)N H fM) N HQ(M)) is the intersection of a finite number of halfspaces. Each face of the polytope
Ad(AM(Y)nH 1(M) N HéM)) is defined by one of these halfspaces. We now discuss the precision of the linear inequalities

26

Non-Asymptotic Length Generalization

which define the faces of cl(AM) (Y) N H I(M) N HZSM)), where precision of an linear inequality with integer coefficients
is the maximum magnitude of the integer coefficients, per Definition 5.2. The linear inequalities of the halfspaces which
form the faces of A(M)(Y) are such that there is a subset of at most 6K of them with precision at most 72, while the
remaining faces of A)(Y") have precision at most (7”)2. This is due to the following argument. First, because the
(k, T)-configuration {s; };c[x] is such that there is a subset of at most K of the & elements of {s; };c[x) Which are precision at
most 7', while the rest of {s; };c[x] are precision at most 7". Next, referring to Lemma E.6, the only faces of AM) (V) with
T? precision are ones that correspond to a segment of Y whose start-point or end-point is on one of the K lines of slope
whose precision is 7°2. Third, by Corollary E.14, any basis schema of one or two monotone curves will cross each of the k
lines at most three times. Since each of the (at most) K slopes of precision 7" correspond to at most 3 crossing-points of Y’
with that the line of that slope, and each crossing point is adjacent to at most two segments of Y, then there are at most 2 - 3K
segments of Y such that the start-point or end-point is on a line of slope that is precision 7'. Thus, at most 6K of the faces
of AM)(Y') are defined by linear inequalities of precision at most 72, while the remaining faces of A(*)(Y) are defined
by linear inequalities of precision at most (7”)2. Note that the square (i.e. in 7 and (T")?) comes from the form of the
inequalities defining the faces of A(M) (Y), stated in Lemma E.6. Finally, as argued in an earlier paragraph, the face given
by H 1(M) has precision at most 7 while that given by HQ(M) has precision at most (7")3. In summary, there is a subset of
at most 7K faces of cl(AM)(Y) N HEM) N HQ(M)) such that each face of the subset has precision at most 7% while the
faces not in the subset all have precision at most (7). In short, we’ve shown that polytope cl(AM)(Y) N H fM) N H2(M))
satisfies the pre-conditions of Corollary E.21, which we will apply in the next step.

Now, we return to the process of converting) into a short distinguisher of f, f’. Let V denote the set of vertices of the
polytope cl(AMD (V) n H™M n HM)). Let ¢ € [0,1]™ be the average of the vertices in V.

1
”:WZ

zeV

Label the coordinates of ¢ as ¢ := (ngc)7 . ,ng\fl)). ¢ is in the relative interior of cl(AM)(Y) N HfM) N HéM)) (which is
non-empty by Lemma E.25) so that c € A (Y') N Hl(M) N HQ(M). In particular,

i=1 jst Lou(1,4),;=1

P
Z A, Z n§c) <z
1

i= J st Lou(z2,i),5=1

We will now lower bound the margin (see Definition 6.10) of ¢ to the faces of cl(AM)(Y) N H 1(M) NH Q(M)), which includes
the faces given by Hl(M)7 HéM). Suppose cl(AM) (V) N Hl(M) N HéM)) has NV faces, and let { L;};c[n] denote the linear
inequalities which define each face of cl(A) (V)N H EM) N HQ(M)), so that L;(c) € R is the non-negative margin of ¢ on
the ith face. Noting that M < 2k < 2(K + K'), we apply Corollary E.21 on polytope cl(A®) () n M n H{M™)) to
get the following lower bound on the margin of ¢ on the faces of cl(A)(Y) N Hl(M) N HéM)).

1 1

vi € IN), Li(e) = Q7 com)

Then by Lemma E.22, we have |V| < 3M?2, so we deduce that:

1 1

Vi € [N], Li(e) = 37 —5ay)

27

Non-Asymptotic Length Generalization

In particular, the margins, 71, y2 of ¢ on the two inequalities defining H fM) and H. Q(M) will be at least:

i=1 j st Loggiy =1
1 1
MZ o)

K/
- (¢)
V2 =2 = Z Ai Z "
i=1 js.t Loa(z,i),;=1
1 1
SO~
et Q(M2 0[0(1))

Now that we have shown that c has large margin, we need to augment it one final time before converting it into a discrete
test-function. This process will find a nearby point ¢, € Ball(c) N {> ;cpymi = 1} := {(n1,...,nm) € RM .
[(n1, ... nar) = clloc <730 {325¢(0r ns = 1} such that ¢, has both large margin to the faces of c(AM(Y) N Hl(M) N

H. Q(M)) and low-precision coordinates. With ||L;||; denoting the sum of the magnitudes of the coefficients of the linear
inequality which defines the ith face of cl(AM)(Y) N Hl(M) N HQ(M)), let:

-~ <y
YLB [O(M2a0M)] = 71,72
- VLB
2 [maxjeqny || Lill1]
By linearity of the margin of a point in its coordinates (r1, . .., nar), each point ¢’ € Ball}® (¢) N {>_;c(py ne = 1} will

have margin at least v, p — 7 - max;eny ||Li|[1 > 25 to each face of (A (Y) N H{M) N HéM))

that every such ¢ is contained in A (V) 0 H™ 0 B as v > 0.

. This also means

By Lemma E.29, there exists a low-precision point ¢, € Ball®(¢) N {3 ;c(5sy i = 1}, denoted ¢, := (n(lc*), e ng\z*)),

such that for all ¢ € [M] ngc*) is a rational number, and the least common denominator of all elements in the tuple

(ngc*)v e 7715\(/:1*)) is p., , where:

De, < [M

1
< O(M[max ||L;|[1] - [3M?a®™7)
i€[N]
<OM?- (M -T?)-a®W)
Let the tuple ¢, = (ngc*), . 7n§\ff*)) be the segment lengths of the continuous test-function), of schema Y. Note that c,
has positive margin 2% to all the faces of cl(A)(Y) N HM 7HM) and is contained in A (V) 0 HM) o M),
S0 ¢, is a valid setting of segment lengths of schema Y, respecting the constraints of Lemma E.6.

Finally, applying Lemma E.24 on the continuous test-function of schema Y with segment lengths c, = (ngp)) je[m]> We

deduce that there exists a ng < O(p., - ozo(l)) so that for any integer multiple n of ng, there exists a discrete test-function
X.:{0,...,n} = {0,...,n}, of length n, corresponding to string x, € {0, 1}" of length n, such that

2
<T+M

Vi € [k], |Bi(Vs) — Bi(X.))| -

28

Non-Asymptotic Length Generalization

Where (B;(Ys))ie[x) are the activations induced by ., a test-function of schema Y” with segment lengths (ngc*))ie[M)» and
(B i(X.))ic[x) the activations induced by X,. Because Vi, |\;| < T, |\j| < T" < T, then the difference between the margin

of (B;(V«))ielx) and (B;(X.));e[x) on Hy and Hy can be bounded by a term proportional to 1.

Z Ai Bord(l i) y* Z Ai Bord(l z))l 2
=1
K
< (e |B.0%) ~ B (e 3) ®
2
_(+TJL\4)KT @
KMT3
< O(-) &)

Using an analogous argument, the difference between ZZ 1 AiBord(2,5) (V) and ZZ 1 i Bord(2,5) (X+) is also bounded by
an analogous expression.

K’

K'MT3
|Z)\Bord21 y* Z)\Bord21)‘<O(7)

n
i=1

Together, these imply that for sufficiently large n, the difference in the margin of (B;(X.))iex) and (B;(Vx))icx) on Hi
and Hy, caused by the discrete test-function approximation, will be smaller than the margin of (B;(Vx))ic[x] on H 1 and Hs.
The latter equals the margin of c, on H; (M) and HQ(M), by the definition of H 1(M) and HQ(M) as the analogous halfspaces to
H, and H,, which is lower bounded by 1LE . More precisely,

KMT3
ZAB) > 2 +7LTB—O(

l 3
S B < - 258 4 o KT

To this end, since vy = Q(m), it suffices for n to be the following value in order for activations (B;(Xx))ie[x]
induced by X to be in H; N Hs (and therefore to cause f and f” to differ, as)1 and), do).

1 max (K, K'YMT3
)= O ()

M2000) ") >0 <= n>O0(M?max(K, K’)T3a0(1)) 6)
!

€

Let z, be the string of length n corresponding to X, which is uniquely determined by X,. For n = max(l +
O(M3 max(K, K"\T3a®M), O(p., - a®M)), n will be sufficiently large to make the approximation error smaller than
the margin of ¢, per Equation 6, and also satisfy the condition required to apply Lemma E.24 in the previous part of this
proof. Thus, with this value of n, x, will cause f(z.) =1, f'(z«) = 0.

We noted previously in Equation (1) that M < 2k < 2(K + K') for the basis schema Y as a result of Lemma E.37.
Plugging this in for M, and noting that o > max (T, (T")X"), we conclude that the length of such an z’ distinguishing
f, f' need only be at most

29

Non-Asymptotic Length Generalization

n = max(1l + O(M3 max (K, K’)T3a0(1))’ O(pe, - aO(l)))
< max(1 + O(M? max(K, K')T3a°W), O(M? - (MT?) - oW . o01))))

< O(ao(l))

E.3. Lemmas for Completeness of Basis Schema

Goal. In the main proof, we will fix two arbitrary unequal f, f' € C-RASP? and prove they have a short distinguisher.
The goal of this section is to prove that the set of realizable activations A({s;};c[x]) equals the union of the set of activations
of a small number of basis test-function schema. This culminates in Corollary E.14.

Basic Definitions. Recall the definition of precision.

Definition 5.2 (p-precision). An integer of absolute value at most p is of p-precision. A rational number between [0, 1] is of
p-precision if in simplest form, where the numerator and denominator are relatively prime, its denominator is at most p in
magnitude. A tuple of rational numbers in [0, 1] is precision p if the least common denominator of its entries is at most p in
magnitude.

Note we will say a halfspace defined via a linear inequality with integer coefficients has p-precision if each coefficient is at
most p in magnitude.

Suppose f and f’ have K and K’ heads, respectively, and consider the set of max(K, K') < k < K + K’ distinct slopes

i QN
from the parameters of the first layer of f and f: {%}le[KU {%}ie[- Disregard for now which slope belongs to f
or to f’, and denote these k slopes as {s; };ic(x) C (0, 1), sorted descending so that s; is largest and sy, is smallest. We will

refer to {s;};ck C (0,1) as a (k, T')-configuration.

Definition 6.4. A (k,T')-configuration is a set of & distinct T-precision rational numbers {s;};cfx) C (0, 1).

These k slopes {s; };c[x) specify & homogeneous, 2D lines, of the form y = s; - x. Denote these k lines as I, . .., [with
line I; having slope s; for all i € [k].

Recall the definition of Discrete Test-Functions.

Definition 6.5 (Discrete Test-Function). Given a (k, T')-configuration {s; };c[x), a discrete test-function X', with respect to
{si}icix) and of length n < oo, is a function {0, 1,...,n} — {0,1,...,n} where X(0) = 0and Vj € [n], X(j) = X(j—1)
or X(j) = X(j — 1) + 1. The induced activations (B (X), ..., Bi(X)) of X with respect to the (k,T')-configuration are
defined as: Vi € [k], Bi(X):= £ >0 1[X(j) > si - J]

T n

For a string € {0, 1}*, the discrete test-function induced by x is the set of 2D points {(j, ps(x);)} e[| Where we will
associate the y-axis for ps(z); and the x-axis for j.

Recall two central objects: continuous test-functions and A({s; }ic[x))-

Definition 6.6 (Continuous Test-Function). Given a (k, T")-configuration {s; };c[], a continuous test-function), with
respect to {s;};e[x], is a 1-Lipschitz, monotone non-decreasing continuous function [0,1] — [0, 1], with Y(0) = 0.
Continuous test-functions can only intersect the & lines {/; };c[x) of slopes given by {s; };c[s) at finitely many points. The

induced activations (B1(Y), ..., Br(Y)) of Y w.rt. {s;},cp are: Vi € [k], B;(Y) := fol 1Y) > s - jldj.

Definition E.1. (A({s;};c[x))) Given (k, T')-configuration {s; };c[x), define A({s;};c[x)) as the set of activations induced
by continuous test-functions with respect to {s; } ;-

A({si}iew)) == {(B1(Y), ..., Br(¥)) : Y continuous test-function w.r.t. {s;};cx]}

Regarding properties of continuous test-functions, first note that the scaling of) can be set WLOG because of the
homogeneity of the k lines. Thus, we let their domain be [0, 1].

30

Non-Asymptotic Length Generalization

Second, for any continuous test-function), we can let the end point of) be on one of the lines {/;};c[x]. Suppose the
last line crossed by) is ;. Then we can adjust the segment of)} between its last crossing point at /; and its endpoint
so that the endpoint is also on line /;. We can make this tweak so that no other lines {l;},c[;] are crossed and so that
(B1(Y), ..., Bx())) remains unchanged by this tweak. In short, the endpoint of any continuous test-function Y is, WLOG,
(1, s;) where [; is the last line crossed by .

Lemma E.2. For any configuration {s;};c(x), for any continuous test-function) w.r.t. {s;}ic), suppose the last line
{li}iepw) crossed by Y is l;, for i € [k]. Then, WLOG, we can let Y’s end point be (1, s;) without changing the activations
induced by Y.

Proof. Suppose that the last line) crosses is I; at the point (x, s; - x). Then, the portion of) on the interval [x, 1] is wedged
between either the two lines /; and [; 1 or the two lines [; and /;_1, since) will not cross any other line on the interval. The
quantity of interest are the activations with respect to the & lines induced by):

Vi € [K], Bi(Y) = / 1Y() > s - 1]

Suppose that Vj € (x,1],s;5 > Y(j) > si41]. The k quantities { B;()) };cx) Will be unchanged if we adjust the values of
Y(j) for j € (x,1] so long as we retain that Vj € (x, 1], ;5 > V(j) > s;+17 except on a set of measure 0. With) allowed
to be any continuous function with slopes in [0, 1] and with s; € (0,1), we can adjust Y(j) to stay between lines /; and
l;+1 but closely follow the line /; in the sense that |Y(j) — s,j| > 0 can be made arbitrarily small at all points j € (x, 1),
and J(1) = s; (note, this end-point (1, s;) violates the condition that s;j >)(j) > s;4+17 but only at a single point). This
ensures that the modified test-function, call it)’ is such that Vi € [k], B;(Y) = B;()’).

Suppose that Vj € (x,1],8;-17 > Y(j) > s;j. Then an analogous adjustment to V(j) on the interval j € (x, 1] can be
made so that the endpoint is (1, s;). B

From now on, assume that each test-function will have starting-point at the origin (0, 0) and have end point on some line
l; €{l1,...,lx}, at point (1, s;). This will make the following definitions about segments and schema cleaner.

Define the span of a continuous test-function as the set of lines in {; };c[x) which the continuous test-function intersects at
some point.

Definition E.3. The span of a test-function is the set of lines {l1, ..., [} that the test-function crosses at least once. That is,
Y crosses [; if there exists x where J(x) = s; - x. Note that the span must be a contiguous subset of [k].

We’ll also give names to the regions of the positive quadrant of the 2D plane between consecutive lines in {/; };c[x)-

Definition E.4. (Sectors) Givena (k, T')-configuration {s; };c [k]» @ sector is a region of the 2D space between two consecutive
lines. Define Sector; as the sector strictly above line I1, and Sectory 1 as the sector below line Ij. Fori € {2, ..., k} define
Sector; as the sector below line /;_1 and strictly above line /;.

Sectors are depicted in Figure 7. We’ll now define segments and schema.

Definition E.5. (Segments and Schema) Given any (k, T')-configuration {s; };c[x) C (0, 1), define the following.

1. A segment is a restricted test-function S : [a, b] — [0, 1] where [a, b] C [0, 1] which maps a continuous subset [a, b] to
[0,1]. S is 1-Lipschitz and monotone non-decreasing. The segment’s start-point (a, S(a)) and the end-point (b, S(b))
each lie on one of the k lines, in the sense that there exists some 4, j € [k] where S(a) = s; - @ and S(b) = s; - b, where
i =jorl|i— j| = 1. No other points (x, S(x)), « € (a,b) canlie on a line Iy, ..., lg.

2. A schema Y is a blueprint for a continuous test-function, specifying a sequence of lines {/; } ;<[] that any test-function
of the schema must cross. It consists of an integer 0 < M < oo and two tuples {idx (i) }ie(ar C [K]M, {sec;}iepar) C
[k + 1]M where [idx(i) —idx(i 4+ 1)| < 1 foralli € [M — 1]. If [idx (i) — idx(i + 1)| = 1, then sec; 1 is unique and
must be max(idx(z), idx(¢ + 1)). If idx(¢) = idx(¢ + 1), then sec;41 can be either idx(i + 1) or idx(é 4+ 1) 4 1. secy
can be either idx(1) or idx(1) + 1.

Any continuous test-function of schema Y = ({idx(¢)};c[as], {s€ci}icas]) consists of exactly M segments
S1,82,...,5y whose domains are a partition of [0,1]. For each i € [M], the ith segment S;’s end-point lies

31

Non-Asymptotic Length Generalization

ps(x);
Ly
l2
l3
i 1 l4
i l5
r J
Seg. Seg. Seg. Seg.
#1 #2 #3 #4

Figure 2. Depiction of a Test-Function consisting of 4 segments. y-axis shows the prefix sum of input string . x-axis shows the length of
the prefix of input string x. The five lines have slopes {s1, ..., s5}. Sector; is the portion of the quadrant which is above ;. Sector is
the portion of the quadrant below /5. For 2 < ¢ < 5, Sector; is the portion of the quadrant below /;,_; and above ;.

on ligy(s)- Fori > 1, S;’s start-point lies on line ligy(;—1), and Sy ’s start-point is the origin, (0,0). In addition, the ith
segment must be contained in Sectorse, .

Notationally, we denote n; € [0, 1] as the length of the ith segment .S;, but note that different test-functions of the same
schema may have different segment lengths {n; };c[s], subject to some constraints we detail below. For a schema Y,
denote

AY) == {(B1(Y),...,Bx(Y)) : Y continuous test-function of schema Y w.r.t. {s;};cp}

Figure 2 shows a test-function of a schema with 4 segments. Figure 7 shows four generic types of segments.

We will think of a schema as a list of M segments, for some M > 0. We will denote the length of the ith segment as n;. Let
idx(+) be the mapping from [M] to [k] that gives the index of the line that segment i’s endpoint is on.

For continuous test-functions, the first segment of length 7, has start-point at the origin, (0,0). The last segment of length
ns has end-point which lies on the line ligy(as). The ith segment has start-point (E;;ll Nj, Sidx(i—1) ° Z;;ll n;) on line
liax(i—1) (as long as ¢ > 2) and end-point (Z;Zl N, Sidx(4) * Z;Zl nj) on line ligy(;y and has length n;. There is freedom in
choosing {n;};car, so long as they satisfy the following constraints.

Lemma E.6. For any segment in any schema, the constraints given in Definition E.5 exactly characterize the range of
values allowed for that segment. For all i € [M], these constraints are:

* (Segment Starts and Ends on Same Line) If idx(i — 1) = idx (i) or i = 1, the only constraint on the segment’s length is

32

Non-Asymptotic Length Generalization

ps(x); ps(x);
A
Sectory Iy Sector, I
" Sector, " Sector
) o) o
Sector Sectory
R I3 o I3
Sector, P Sector,
R P >
j j
Figure 3. * Figure 4. *
Start-point on 1, End-point on I5. Start-point on /5, End-point on /;.
ps(x); ps(x);
Sectory L Sectory I
- ’ Sector, - B Sector,
- P b
Sectors) Sectory
o — b o I3
Sector,) Sector,
]]
Figure 5. * Figure 6. *
Start-point and End-point on /5, and in Sectors. Start-point and End-point on /5, and in Sectors.

Figure 7. Four types of Segments, based on which lines their start-point and end-point lie on, and the sector they are in.

* (Segment Crosses Down) If idx(i — 1) = idx(i) — 1 and i > 2, then n; > (82;7(’)1) -1) Z;;ll n;

* (Segment Crosses Up) Ifidx(i — 1) = idx (i) + 1 and i > 2, then n; > (117_827:(_)” -1) E;;ll n;

Proof. Case: Segment Starts and Ends on Same Line. For segment ¢ with length n;, if idx(¢ — 1) = idx(¢), then n; can
be any nonnegative number. This is because for each n1,...,n;_1 and for all n; > 0, there exists a segment of length
n; that crosses line idx(é) at the start-point (3_;; ; 7, Siax(i) D_j<;_1 7j) and end-point (3_, -, nj, Siax(i) 2 ;<; Mj) and
nowhere in between. An example of such a segment is one which stays arbitrarily close to the line /gy (;) but doesn’t cross
it until the end-point (3, ; 7y, Siax(i) 2_;<; j)» Which is possible since each line has slope in the range (0, 1) while the
test-function can have slopes at each point be in the range [0, 1].

Case: Segment Crosses Down. If idx(i — 1) = idx(¢) — 1, then for any n4, ..., n;_1, the minimum value of n; in terms
of ny,...,n;—; is achieved if the segment has slope of 0 at all points, the “minimal segment”, which will let the segment
cross lines ligy(;—1) and ligx(;) most efficiently. Such a minimal segment will cross lines ligx(;—1) and ligx(;) at start-point
(ngi—l Nj, Siax(i—1) Ejgi—l n;) and end-point (ngi Nj, Siax(3) ngi n;), respectively. The value of n; required for this
minimum traversal can be calculated by:

33

Non-Asymptotic Length Generalization

i i—1
Sidx (i) E N5 = Sidx(i—1) E n;
J=1 Jj=1

Sidx (i— 1
— n; = n;
(Sidx(i) Z !

The first equation follows from the fact that the zero-slope trajectory will enforce that the y-coordinate of the start-point of
the segment sjgx(;—1) S e 1 n; equals that of the end-point sjux ;) S 1 M- Having n; be any smaller will not suffice to
make the crossing, under the trajectory of the minimal segment (where the slope is 0 everywhere) and certainly under any
other trajectories.

Now, having n; > (&‘:%(’)1) —-1) Zj;ll n; is always possible, since the segment can always follow the trajectory of the

minimal segment to cross to line idx (i), and then use the extra slack, n; — (220=1 1) S % 5, > 0 to closely follow line

Sidx (i) J=
idx(#) until it crosses it at the designated end-point, (3_;; 7;, Siax(i) 2_j<; 7;j)- The latter phase reduces to the case where

idx(i — 1) = idx (7). Thus, the allowed values for n; are n; > (‘s‘:i](xi(’;) -1) Z;;ll n;.

Case: Segment Crosses Up. The setup of lines and [0, 1]-slope test-functions has a “reflection” symmetry about the line
y = 2x. Thus, the argument for the constraint on values of n; for the idx(i — 1) = idx(i) + 1 case reduces to that of the
case idx(i — 1) = idx(i) — 1, except with “reflected” slopes 1 — sjy(;—1) and 1 — sjqx(;). Plugging in these reflected slopes

. . . 1= Sia(i— -
into the constraint for the Cross Down case yields n; > (1:‘75(;) -1) 23211 n;.

Another way to see how to derive the constraint by considering the minimal trajectory as one where the segment has slope 1
everywhere; and arguing that n; can be anything larger than the length required by the minimal trajectory.

i—1
(1 = siax(s))i = (Siax(i) — Sidx(i—1)) Z n;
J=1

1 — Siax(i—1) =
m = 1 — Siax(s)) Z "

The first equation above is derlved as “Object 1 of relative speed of (1 — sjax(;)) to Object 2 takes n; time to close the initial
gap Of(1dx() — SldX(Z—l)) Zl 1 7- "l

Partial Test-functions and Monotone Curves. We’ll now define partial test-functions, which is a slight generalization of
continuous test-functions where the start-point does not need to be (0, 0), which will be later in the later proofs.

Definition E.7. (Partial Continuous Test-Function) Given a (k, T')-configuration {s; };c[x], a continuous test-function) is
partial if it is allowed to have a start-point at (n1, s;,n1),n1 € [0,1),% € [k], instead of (0, 0). A partial test-function is
undefined on [0, n). The induced activations (B1()),. .., Bx(Y)) of partial continuous test-function) given k slopes
{si}ici) C (0,1) are defined as:

Vielk], Bi(Y) :=/ 1Y) > si- jldj

1

Schemas of partial test-functions can be thought of as a schema of a continuous test-function. We will still denote the
lengths of the segments of the schema as {n; };c[as) for some M > 1, except that the test-function is undefined on the first
segment’s domain [0, ny).

Note that by a re-scaling argument, due to the homogeneity of the & lines {; };c[x), this definition also captures continuous
test-functions where the start-point does not need to be at (0, 0) and the end-point need not have x-coordinate of 1.

We’ll define type (I, k) and (II, k) partial test-functions, which are particular partial test-functions whose start-point is on a
line whose index is either the smallest or largest element in the span of the test-function.

34

Non-Asymptotic Length Generalization

Definition E.8. (Partial test-functions of type (I, k), (I, k)) Given a (k, T')-configuration {s; };c[x]

* Define a type (I, k) partial test-function as a test-function [0,1] — [0,1] that is undefined on [0,n;) for some
0 < ny < 1. It may span any consecutive subset of lines {a,...,b} C {1,2,...,k — 1,k}, a < b. With this span, we
require that its start-point is at (nq, s,n1), that it is 1-Lipschitz and monotone non-decreasing, and that it can only
intersect the k lines at finitely many points.

* Define a type (II, k) partial test-function similarly as a test-function [0, 1] — [0, 1] undefined on [0, n;). It may span
any consecutive subset of lines {a,...,b} C {1,2,...,k — 1,k},a < b. With this span, we require that its start-point
is (n1, spn1), that it is 1-Lipschitz and monotone non-decreasing, and that it can only intersect the k lines at finitely
many points.

Note that for both type (I, k) partial test-functions, if the start-point is on [, with @ > 1, then its span cannot contain /; and it
cannot intersect [at any point. An analogous observation holds for type (II, k) partial test-functions.

We’ll describe one primitive (partial test-function) schema that will be important for our basis test-function schema later:
monotone curves.

Definition E.9. (Monotone Curve) Given a (k, T)-configuration {s; };c[x), we define two schemas: Monnotone Up Curve
and Monotone Down Curve. Both schema have k£ + 2 segments.

* (Monotone Down) Begins at line 1 at (nq,s1 - n1), goes above and recrosses line 1 at (n; + ng, s1 - [n1 + na]), crosses
each intermediate line {2, . . — 1} once, then crosses line & twice at (D, +11 N, Sk * Z ah ' n;) and (Zfif N, Sk -

ST).

* (Monotone Up) Begins at line k at (n1, s - n1), goes below and recrosses line kat (nq + ng, Sk - [n1 + mal), crosses
each intermediate line once, then crosses line 1 twice at (Y5 n;, 51 - S5 ny) and (02 ng, 50 - 2002 ny).

Note ny € [0, 1) denotes the length of the first, “empty” segment on which the test-function is undefined; there are k + 1

nonempty segments. WLOG by homogeneity of the £ lines that Zk+22 n; = 1.

Remark E.10. Test-functions of the monotone curve schema are monotone in the sense that they don’t re-cross lines which
they previously crossed, except for line 1 and line k.

Remark E.11. Type (I, k), (I, k) test-functions are strictly more general than test-function since we can just set n; = 0 to
recover the usual test-function definition. Type (I, k) test-functions start on the top-most line while (IL, k) test-functions start
on the bottom-most line. Monotone Down Curves are Type (I, k) while Monotone Up Curves are Type (II, k)

Rearrangement Lemma for Monotone Curve.

Definition E.12. (Equivalence) Define two partial test-functions as equivalent if both test-functions have the same
start-point, end-point, length, and induced activations over the % lines.

We will now introduce a central Lemma in proving that a certain set of schema is complete. This Lemma is about rearranging
a test-function into an equivalent test-function with a simpler schema.

Lemma E.13. Given a (k, T)-configuration {s;};c[x), suppose a type (1, k) test-function (resp. a type (II, k)) has its start
point on line 1 and end point on line k (resp. start point on line k and end point on line 1) and spans lines {1, ... k}. Then
there is an equivalent, monotone curve of the same length, start point, end point, and that induces the same (By, . .., By).

Proof. We will only prove the conversion of a type (I, k) test-function to a monotone (down) curve. The conversion of a type
(11, k) test-function to a monotone (up) curve is an analogous argument with effective slopes s, = 1 — s;, Vi € [k].

Suppose the type (I, k) test-function,), has M segments of length n1, ..., nys, where ny is the x-coordinate of the starting
point of). Consider a monotone line () that, like), starts at (n, s1 - n1) and ends at (Zgl N, Sk - Zf\il ni). YM) is
comprised of k& + 2 segments of length 1, n, ..., nj,nj_ 1, , (Where n is an empty segment, denoting the coordinate
of the start point), calculated from n1, ..., ns as follows.

35

Non-Asymptotic Length Generalization

nj =ny
Vielk+1], nj = Z n;
j€{2,3,...,M}:n; ESector;
First, we must show that this “rearrangement” forms a valid test-function that meets the constraints that would be enforced
on MY, M, ..., Ny, Ny g, Ny, o described in Lemma E.6.
First, the only constraint on nj and nj_ , is that they must be nonnegative.

Second, Vi € [3,k + 1], the ith segment traverses sector ¢ — 1 and must cross from /;_» to /;_;. By Lemma E.6, the
following constraint is satisfied iff this crossing is possible:

s i—1
-2
n, > (== —1) E n’;
j
Si—1 =

We would like to show that (72});e[r-2] meets these constraints. First, Vi € [3, k + 1], define j; := max{j € {2,3,..., M} :
nj Crosses Sector;_1 } as the index of the last segment where) crosses Sector;_1, starting on line /;,_5 and ending on line

l;—1. Then because the curve) is continuous and its endpoint is on line k, then j; is monotone in i: jz < jg < ... < Jr+1-
Then,

[.
n; = E n;

j€{2,3,...,M }:n; ESector; _1
> nj, just the last segment crossing Sector;_; suffices

(Ji)—1

Si—2
> (=1 Y
Si—1 j=1
s Ji—1
> (ﬁ —1) Z n; monotonicity of j;
1—]:1

Si—2
>(—-1 > n;
Si—1 ;
§<gi—1 st nyelUi 2, Sectorp,

< i—1
i—2

—1) E nj
Si-1 ‘

—

= (

Thus, the monotone curve)}(M) is a valid monotone test-function. y<M) has the same length as) since it just rearranged
the segments while preserving their length. J(™) starts at line 1 and ends at line k, and it starts at (n;, s;71) just like),
so it must also end at the same point as YM) on line k. YM) induces the same activations (B1,...,By) as Y since the
rearranged segment lengths stay in their original sectors in (M),

The proof for type (II, k) test-function is analogous. l

Basis Schema. The following is the main result of this section. It says that the following finite set of basis schema is
complete, in the sense that any continuous test-function is equivalent to some test-function whose schema is one of the basis
schema.

Each basis schema described below is indexed by integer m € [k] and a set of m tuples {(y},y5) ticim) C {1,...,k}™.
These m tuples parameterize m — 1 monotone-curves that, when concatenated, yield the schema. For ¢ € [m — 1], the ith
tuple (yi, %) € [k]? indicates that the ith monotone curve in the schema will have start-point on line 4 and end-point on

line y5. The concatenation of all m — 1 monotone curves yield the basis schema.

36

Non-Asymptotic Length Generalization

Corollary E.14. (Completeness of Basis Schema) Given a (k, T)-configuration {s;}ick), for any 1 < m < k, say that the
list of tuples {(y1,y5) }icim) C {1, .., k}™ is valid if they satisfy the following.
yit =y
Vi€ [m—1],y1 # v
vie[m—2lyi <y = o=yt >yt
Vie[m—2yi >y = y=y1 <y
(W1,92) = (LK) or (y1,93) = (k, 1)

For any m € [k] and valid {(yt, y%)}ie[m], define the basis schema, Y (i i Mieim 95 the concatenation of m — 1 monotone

>y
<yl

curves, where for i € [m — 1], the ith monotone curve has start-point on line yi € [k] and end-point on line y4 € [k]. The
st monotone curve has start-point at the origin, (0, 0).

Then, the set of basis schemas over all m and valid { (v}, yé)}ie[m] satisfying the above is complete in the following sense.
A({Si}ie[k]) = U A(Y{(yﬁyé)}ie[m])
me [k] yvalid {(yi 1y;)}i6[7n]

Where A(Y{(yi yi)},cim) [0, 1]* denotes the set of (By, . . ., By) induced by any test-function of schema Y
Finally, note that the number of basis schema with respect to {5} is Ny, = k=1,

yi vyé)}ie [m]”

Refer to Figure 8 to get a sense for what the basis schema look like. Note that the y axis of the figure shows the normalized
prefix sum. Also, Figure 9 is a depiction of the Completeness result for the case where k& = 2.

Proof of Corollary E.14. Recall that A({s;};c[x]) and A(Y{(yi’yé)}ie[m]) for schema Yy(,: 4i)y, ., are defined follows.

A(Y{(yiayé’)}ie[m]) = {
Al{sitiem) = {(

(B1(Y), .., Br(Y)) : Y continuous test-function of schema Yy y: yiyy. ., Wt {si}iep
Bi(}),...

, Br(Y)) : Y continuous test-function w.r.t. {s;};c[x}

First, because every test-function of a basis schema is a test-function,

A({Si}ie[k]) D) U A(Yt{(yi'vy%)}ielm])

melk],valid {(y{,y3) }iem)

It suffices to show that the converse inclusion holds.

A{sitiem) C U AY (i i) i)
me[k],valid {(yi 7y;)}i€[7n]

To do this, we will prove that any arbitrary continuous test-function can be converted into an equivalent test-function (in the
sense of Definition E.12), but which follows one of the basis schema. This conversion process is done via Algorithm 5,
which partitions the input test-function into pieces, and then uses Lemma E.13 to convert each piece into a monotone curve,
yielding a test-function of a basis schema.

More precisely, given an arbitrary test-function), the main idea is to partition) into pieces, such that each piece is
either a partial Type (I, 8) or Type (I,) test-function for some 1 < 8 < k. Each piece can then be rearranged into a
monotone curve via an application of Lemma E.14. We use Algorithm 5 to attain {(y{', ¥5') } ac[m—1] Which characterize the
appropriate basis-schema for which there exists an equivalent test-function to).

Recall that the span of a partial test-function is the set of lines {l,...,l;} that it crosses at some point in its domain
(where the lines are indexed from 1, ..., k). The span of a test-function is a continuous subset of [k] since we assume that

37

Non-Asymptotic Length Generalization

ps(x);

S1

S2

S3

v

Monotone Monotone Monotone| Monotone
Curve #1 Curve #2 Curve #3 Curve #4

Figure 8. Depiction of a Basis Schema consisting of 4 monotone curves. y-axis shows the normalized prefix sum of input string x. x-axis
shows the length of the prefix of input string . The five horizontal lines correspond to five lines with slopes {s1,...,s5}. Curve
corresponds to Basis Schema with m = 5, (y1,y3) = (1,5), (v, v3) = (5,2), (v3,45) = (2,4), (¥1,v3) = (4,3). Finally, note that
each monotone curve consists of multiple segments. The first one has 5 segments, the second one has 4 segments, the third one has 3
segments, and the fourth one has 3 segments.

l; has the highest slope s; and {s; };c[x) is sorted descending. Regarding notation in Algorithm 5, Span, is a tuple of two
integers in [k]%, which represent the smallest and largest index of lines in the span of some partial continuous test-function.
min(Span;) is the smaller element in the tuple, and max(Span;) is the larger element. {s; };c[x) are the k slopes we fixed at
the beginning, and Y (j) = s;J indicates that test-function) intersects the line y = s;x at (j, s;5). Also, when we say that
Y intersects the line /; on [t, 1] to mean that there is some j € [¢, 1] where Y(j) = s;7, for t < 1.

Towards proving completeness of the basis schema, we will prove the following three claims. At the end, we will use these
claims to argue that A({s; };e(x)) C Ume[k],valid {(wivd) bem) A(Y{(y{’yé)}ie[m])-
1. Algorithm 5 terminates.

2. Algorithm 5 returns valid YPairs := {(y},y%);c[m—1]} Where m := |YPairs| + 1 with m < k, and where the valid
predicate is defined in the statement of Corollary E.14.

3. MaxTB := {T; }o<i<m—1 C [0, 1] is a set of real numbers where for each i € {0,1,,...,m — 2}, Y restricted to the

interval [T}, T;11] can be rearranged into an equivalent monotone curve by Lemma E.13.

Proving Termination. At each iteration «, Algorithm 5 maintains variables Span,, ¢,—1, and b,_1, which we claim satisfy
the property that Span,, holds the smallest and largest index of lines {1, ..., %k} which) spans when Y is restricted to
interval [max(to—1,ba—1), 1].

38

Non-Asymptotic Length Generalization

S2
B, (g: 1) (1,1)
0,1)
S1— 82
033
(0,0) a0 B

Figure 9. Depiction of A({s;};c[x)) for k = 2 with two slopes s1 > s2. B is on the horizontal axis while By is on the vertical axis.
When k£ = 2, there are only two basis schema: a single monotone (up) curve and a single monotone (down) curve. The dark blue triangle
with vertices {(0,0), (0,1), (£2,1)} is the set of activations induced by test-functions of the monotone (down) curve basis schema. The

light blue triangle with vertices {(1, 1), (0, 1), (0, §=22)} is the set of activations induced by test-functions of the monotone (up) curve.

The completeness result says that the union of these two triangles equals A({s1, s2}).

First, suppose the span of) is a single line (recall that the span of) is always at least one line, since by Lemma E.2, we let
the endpoint of any test-function be on some line). Then, Algorithm 5 initializes Span; to be the span of), when restricted
to interval [0, 1]. Algorithm 5 computes y1,y3, then terminates. Our claim holds.

For Y that span 2 or more lines, we will prove via induction that for each iteration «, Span,, t,—1, and b,_1 satisfy our
claim. As a base case, Span; = Span(}) satisfies our claim. As the inductive step, suppose Span_, holds the smallest and
largest index of lines {1, ..., k} which) spans, when restricted to interval [max(tq—1, bo—1), 1]. Then, in iteration «, the
variables ¢,, and b,, exist (recall that a continuous test-function only intersects the lines at finitely many points, so the max is
well defined). We can never have that ¢, = b, as long as min(Span,_,) < max(Span,,_), which must be true at the start
of iteration v, otherwise the algorithm would have terminated in iteration o — 1. Thus, either t, > b, ort, < by. If t,, > by,
then the last point where) intersects line min(Span,,) is later than the last point where) intersects line max(Span,,).
On the interval [max (¢, by), 1], J never intersects line max(Span,,) again. Thus, the smallest index of any line which)
intersects on the interval [max(¢q, by), 1] is min(Span,,). The largest index of any line which) intersects on the interval
[max(tq, ba), 1] must be less than max(Span,,) as t, > b,. Thus, the largest index line which) intersects on the interval
[max(tq,ba), 1] is given by the expression, max{i < max(Span,) : ¢ € [k],) intersects line /; on [max(tq, by), 1]}. This
shows that line 9 correctly sets Span,, , ,, completing the induction. A similar correctness argument can be made for the case
where t,, < b,. This proves that for all o, Span,, correctly holds the smallest and largest index of lines {1, ..., k} which Y
spans when it is restricted to interval [max(t4—1,bq—1), 1].

39

Non-Asymptotic Length Generalization

Algorithm 5 Decompose-Into-Monotone-Curves
1: Initialize: Span, < Span(}), to < 0, by < 0
2: YPairs < [| % List of all (y$, y&) pairs
3: MaxTB « [0] % List of all max(ty, by) values
4: fora € {1,2,...,k—1} do

5: to < Inax{j > maX(tafla bafl) : y(]) = Smin(Span,,) j}

6: bo + maX{j > maX(taflv bafl) : y(]) = Smax(Span,)]}

7. ift, > b, then

8: yY < max(Span,) and yg < min(Span,)

9: Span,, | < (min(Spana), max{ ¢ < max(Span,) : i € [k], Y intersects line ; on [max(ta, ba), 1]})
10: else

11: yY < min(Span,) and y$ < max(Span,)

12: Span, | + (min{z’ > min(Span,) : ¢ € [k], Y intersects line /; on [max(tq, ba), 1]}, max(Spana)>
13: end if

14: YPairs < YPairs U {(y$, v3)}
15 MaxTB + MaxTB U {max(ta, ba)}
16: if max(Span,) = min(Span,) then

17: break
18: end if
19: end for

20: return (YPairs, MaxTB)

For all o, we have that max(Span,,) —min(Span,,) < max(Span,_,)—min(Span,_,)—1. Thus, the Algorithm terminates
after at most [Span())| — 1 < k — 1 iterations since the largest that |Span())| can be is k, when) spans all k lines (by
|Span())|, we mean the number of lines which) spans). In particular, if we let m := |YPairs| + 1 returned by Algorithm
5, then m < |Span())| < k.

Proving Validity of YPairs. Towards the second claim, first note that if £, > b, in iteration o of Algorithm 5 and the
minimum and maximum of Span,,_, ; are not equal, then in the next iteration o + 1, it will be the case that bo41 > to41.
This is because the last point where) crosses line min(Span,,) has x-coordinate ¢, by line 5 in iteration o. However,
by lines 8 and 9 in iteration c, it must also be true that in the next iteration «« + 1, t,41, defined in line 5 of iteration
a + 1, equals max(ty,by) = to. Since we cannot have t,+1 = bo41 (argued previously) and ¢441, bot1 are both
at least max(t,, by), we have that b,11 > tat1 = tq. By lines 11 and 12 in iteration o + 1, Algorithm 5 will set
yr > ygﬂ > y?“ = y5'. Analogously, if £, < b, and Span,, ,; has a distinct minimum and maximum element, then
bat+1 < tat1, and yf¥ < yg‘“ < yf‘“ = y5. This proves that the algorithm returns YPairs which is a set of at most
m —1 < |Span(Y)| — 1 < k — 1 pairs {(yf', ¥5') }ae[m—1) Where each pair has a distinct minimum and maximum and
satisfies the properties in Corollary E.14, except potentially for the property that (yi,y3) = (1,k) or (y1,v3) = (k,1).

The last issue about ensuring YPairs satisfies the property that (yi,y3) = (1,k) or (y1,v3) = (k, 1) is simple to deal with.
The issue arises when Span()’) C [k], so that) does not span all k lines. However, we can note that any test-function which
does not span all £ lines can be thought of as part of a schema which does span all k lines, except that the segments of the
schema which cross lines in [k] — Span())) are the first segments of the schema, and their lengths are set equal to 0 for the
particular case of) (which is a valid setting of the lengths of the first segments, per Lemma E.6). Thus, though) does not

span k lines, it can be thought of as belonging to a schema which does. We will discuss this more at the end.

Converting Each Part into a Monotone Curve, to Convert) into a Continuous Test-function of a Basis Schema.
Third, with MaxTB := {7} }o<i<m—1, for each & € [m — 1], the pair (y{,y$) generated by an iteration of Algorithm 5
corresponds to the interval [T,,—1,T,], in the sense that

(Taflay(Tafl)) = (Tathafl . 51/1"‘)
(Tavy(Ta)) = (Ta’Ta : Syg)

40

Non-Asymptotic Length Generalization

We have already argued that the span of the partial test-function given by restricting) to [T, 1] is given exactly by Span,,,
where either y{ = min(Span_) and y$' = max(Span,,); or y{ = max(Span,,) and y3' = min(Span,,). Thus, the restriction
of Y on interval [T,,_1,T,] is a Type (I, max(Span,) — min(Span,) + 1) or Type (II, max(Span,) — min(Span,) + 1)
partial test-function, for which Lemma E.13 applies.

By Lemma E. 13, the restriction of) on interval [T, _1, T,] is equivalent to a monotone curve of span Span,,, which has
start-point (T 1, $yo - T,—1) and end-point (T4, sye - T). The monotone curve will have the same start-point, end-point,
length, and induced activations as) restricted! to [Tw-1,Tw]. Thus, we can construct such a monotone curve for each
a € [m — 1] and concatenate these monotone curves together. The resulting test-function is equivalent to), as each
individual monotone curve is equivalent to the corresponding restriction of).

We claim the resulting test-function is of one of the basis schema described in Corollary E.14. This essentially follows
from the validity of YPairs outputted by Algorithm 5, which we justified in the previous section. To reiterate a key point,
if Span()) = [k], then YPairs satisfies the conditions of Corollary E.14 exactly. On the other hand, if Span()) C [£] is
a strict (continuous) subset of [k], then still we can view the concatenation of monotone curves above as a test-function
of a basis schema in Corollary E.14. To see this, we observe that for any such), there is a basis schema Y such that
if we set the lengths of the segments of the monotone curves in schema Y whose span is a strict superset of Span()) to
0, then the remaining monotone curves are given by YPairs outputted by Algorithm 5 on input). This basis schema Y
would be given as follows. Given YPairs outputted by Algorithm 5 on input), we pre-pend either one or two pairs to
YPairs. If min(Span())) = 1 or max(Span()’)) = k, we pre-pend a single pair to YPairs: (k, 1) in the first case and (1, k)
in the second case. If min(Span())) > 1 and max(Span())) < k, we pre-pend two pairs (1, k), (k, min(Span()))) to
YPairs. The resulting list of pairs with one or two pairs pre-pended, which we call L, will have at most & — 1 pairs total. L
will satisfy all requirements in Corollary E.14. As we argued that we can simply set the lengths of the monotone curves
corresponding to the pre-pended pairs in L to 0, the final test-function we attained by concatenating all the monotone curves
together in the previous paragraph is of the basis schema corresponding to the list of pairs L.

Thus, the concatenation of monotone curves described above, based on the output by Algorithm 5, is of some basis
schema specified in Corollary E.14. This proves that any continuous test-function) is equivalent (in particular,
induces the same activations) to some test-function of a basis schema specified in Corollary E.14. This implies that

Allsitien) © Ul vatia (i) Vi A0 8 g) 28 desired.

Finally, regarding the number of basis schemas, we can first partition up the schema based on which of the k
lines the end-point is on. Let f(k,) be the number of basis schema w.r.t. a configuration of k slopes whose end-point
is on line ¢ € [k]. We claim that f(k,i) = (k_l), from which it follows that the total number of basis schema is

i—1
S (21) =257

For i € [k], to see that f(k,i) = (1::11)’ let I; := [k + 1] — {4,% + 1}. Consider all permutations o (I;) which contain
{1,2,...,i— 1} and {k + 1,...,i + 2} as a subsequence. We claim there is a one-to-one correspondence between
any such o(I;) e'lnd a basis scherpa Y{(yi,yé)}ie[m]' Givc?n Y;{(yiyyé)}ie[m]’ let g({(y}, yé)}ie[m]? be a permutation o'f 1;
where the ordering of element j € I; in the permutation is the relative ordering of sector j based on the last time
where schema Y{(yi i) Yictml passed through sector j. The mapping is injective because for any two {(yi, y%)}ie[m] #*
{((})', (%)) Yicme)» the first pair such that (yi,y5) # ((y1)’, (¥4)") will be such that y5 (y4)’, and one of these schema
will have visited Sector,; or Sector,;) for the last time while the other will return to it later. The surjectivity of the mapping
can be checked easily.

k—1

There are ¢ — 1 elements in {1,2,...,7 — 1} and k — 1 elements in I;, so there are (2._1) such permutations. l

Corollary E.15. Given a (k, T)-configuration {s;}c |y, each basis test-function schema specified in Corollary E.14 crosses
the k lines of slopes {s; };c(x] a total of at most k* times.

Proof. By Corollary E.14, each basis schema consists of at most £ monotone curves. The ith monotone curve has a span at
most the span of that of the previous monotone curve minus 1, so since the first monotone curve spans k lines, there will be
at most k£ monotone curves. Each monotone curve intersects the k lines each once, except for the two lines at the top and
bottom of its span. However, these can be reduced to one intersection when you concatenate alternating monotone lines

"Here we are applying Lemma E.13 on restrictions of test-functions where the end-point is not at 1, but we can do this due to the
homogeneity of the setup

41

Non-Asymptotic Length Generalization

together as such.

Thus, the number of times the test-functions of any basis schema crosses the k lines is Zle 1= k(k; L <k n

Convexity of Schema.

Lemma E.16. (Convexity of activation set of test-functions of a schema) Given a (k, T')-configuration, {s;};c[x), consider

any schema continuous test-functions. Suppose the schema specifies M segments. Let AM) be the set of valid (n1,...,n0)
of segment lengths with Ziﬁl n; = 1, where a valid setting of (n1, ..., nyr) satisfies the constraints described in Lemma

E.6. Then AM) is a convex set of dimension M — 1. Moreover, AM) is a simplex.

Proof. AM) is the intersection of the linear subspace over (n1,...,np) given by Zfil n; = 1 along with M halfspaces
of the form in Lemma E.6:

i—1
Vi € [M],nz > %ZTLJ
i

Each p;, ¢; will be determined from the slopes of the lines that segment ¢ first intersects and last intersects. By Lemma E.6,
there are three cases:

Case 1: Segment i Crosses From Line j to Line j + 1. Then, n; > (=2 — 1) Z;;ll n;.

Sj+1

Case 2: Segment i Crosses From Line j + 1 to Line j. Then, n; > (11_&7”1 -1) Z;;ll nj.

—s;

Case 3: Segment ¢ Crosses From Line j to Line j. Then, Z— =0.

First, since A(M) is the intersection of convex sets, it is convex.

Second, regarding dimension of A(*), since all elements {si}iek of the configuration are distinct and in (0, 1), each of the
M halfspaces acts on a different subset of the variables {ni}ie[M

{nl}, {7117712}7 {n1,n2,n3}, ceey {7117 cee JLMA}, {nh cee JLM}

In particular, no combination of inequality constraint can form an equality constraint which implies that the intersection of
the M halfspaces has dimension M. Thus, A®*) has dimension M — 1 due to the additional constraint Zf\il n; = 1.

Third, A can be thought of as a polytope over M — 1 variables, once we substitute in ny; = 1 — Zf‘i;l n;, while it has

exactly M faces given by the M halfspaces, withny; =1 — Zﬁ;l n; substituted into the inequalities. The M faces of
AM) remain distinct even after the substitution since the only face whose linear inequality included n; will have a bias
term of 1 after the substitution, while the other faces’ linear inequality remain homogeneous. Since A has M faces and

has dimension M — 1, it is a simplex.

E.4. Lemmas for Margin of Point in a Polytope.

Average of Vertices of a Polytope. As a motivation for the following definition, recall that the centroid of a d-dimensional
simplex is the average of its d 4 1 vertices. Informally speaking, the centroid has the nice property that it is far from each
face of the simplex. This property is useful for our proof, though we will need to extend this average of vertices notion to
general convex polytopes.

Definition E.17. (Average of Vertices) Given a convex polytope P of IV vertices v1, ..., vy, we will define the average-of-
vertices of P asc = 3 >, c(n Vi € P.

Note that for a general convex polytope P, the average of its vertices will not, in general, be its centroid.
Margin of Average of Vertices of Polytope with poly(7T’) - poly(K) Precision Faces.

42

Non-Asymptotic Length Generalization

Definition 6.10 (Margin). Given a linear inequality L over M variables and a point 2 € R, define L(x) as the difference
between the left-hand-side and right-hand-side of the inequality when the coordinates of x are plugged into L. Let
L(z) =0 <= = satisfies the inequalities with equality. We say L(z) is the margin of « for L.

Often, we will mention the notion of margin in the context of a polytope P, where we are interested in the margin of a point
x € P onto a face of P. For any face F' of P, I’ will be defined as the boundary of the halfspace given by some linear
inequality L. In this case, WLOG, we will define the margin of any point = in P to F to be L(x). Moreover, we will define
L so that L(x) is non-negative for x € P. As such, we will sometimes refer to the margin of a point € P onto a face of P
as the “positive” margin to emphasize this point.

We start with the following Lemma.

Lemma E.18. Consider a nonempty (M — 1)-dimensional convex polytope P C RM =1, Suppose the faces of P consists of
N halfspaces over variables {n;};cnr—1), where each halfspace is given by a linear inequality with integer coefficients of
magnitude at most p. For j € [N], define L; as the linear inequality for the jth face.

Then, for any j € [N], for any vertex x of P which does not lie on the jth face of P, then the positive margin L;(x) is lower
bounded as follows.

1

bale) 2 (VMp)M

!
Proof. For each j € [N], represent the linear inequality L; as a vector in v; € [—p, p) M such that Vo' € RM—1, va (fl)

is the margin of & on the constraint given by L;. In addition, in our definition of the vector representations v;, we want to

) x
ensure that the vectors v; are such that Vj € [N], va _1

This is always possible due to the convexity of the polytope, which is contained in the intersection of the halfspaces defined
by each of its faces.

> () for all vertices = which do not lie on the jth face of P.
As an example of vector representations of inequalities,

ny + 2n92 + 3ng > 4 <= (1,2,3,4)
2n1 — 3ng + 10ng < -9 <— (-2,3,-10,9)

WLOG, we will prove the statement for the 1st face of P. Pick any vertex which does not lie on the 1st face of P (i.e.
|L1(z)| > 0). x is the intersection of M — 1 distinct faces of P, whose indices we denote as {j; };cjar—1] C [IN] — {1}. Let
A € [—p, p/M*M be a matrix such that for all i € [M — 1], the ith row of A is vj, the vector representation for L;,. Let the
Mth row be vy, the vector representation of L;. Write A in block form as:

- A4 b
A= LT d]

c

where A € [—p,p]M=DX(M=1) and b, ¢ € [—p,p|™ ' and d € [—p, p], so that <d

> is the vector representation of L.

We have that Vi € [M — 1], L, (z) = (A4;)T (_x , where A; denotes the ith row of A. Since z lies on all the faces whose

1
indices are in {j; }ic(pr—1)»

43

Non-Asymptotic Length Generalization

Vie [M—1],L;,(z) =0
= Arx =10
= z=A""

L) = ()" (1))

_[c A
~—\d -1
=c'A%h—d

Next, we note that

— A b
A=100 g_ctany]!

=|A|(d —c"A7'D)
Thus,
4]
Ll(l’) = 7‘ >0
A
where the margii is strictly positive since 1 does not lie on face 1. Its margin has a minimum value of | ﬁ | > W since
the numerator |A| is an integer while the denominator is upper bounded by (v/Mp)* . The upper bound on the determinant
M-—-1

of A is by the Geometric-Mean-Quadratic-Mean inequality on the eigenvalues of A, where [4| < [/~ ||A||%] 7z <
(VM - p)M.

Finally, this lower bound holds for any other face of P and any vertex of P which does not lie on that face by an analogous
argument. ll

We now provide a Lemma which can improve the margin lower bound in the case that we know some additional information
about the aforementioned matrix A defined in the setting of Lemma E.18.

Lemma E.19. Suppose (T, K), (T', K') € N are such that K < T? and K' < (T")?. WLOG, suppose T > T'. Suppose
M € N such that max(K, K') < M < 2(K + K'), and suppose constants ¢, d = O(1). Suppose matrix A € ZM~1*M=1
such that:

1. V1 <i <min(cK, M — 1), 4; € {=O(T%),...,0(T*)}M-1

2. Vmin(eK,M —1)<i< M —1,A; € {-O0(T"?),...,0(T")4)}M-1
Then |A| < O(TO(K) . (TI)O(K’)).

Proof. If T, T" > 2, by the homogeneity of the determinant, we can factor out a factor of O(T'?) from each of the first
min(cK, M — 1) rows of A and a factor of O((7")?) from the remaining rows of A.

|A| < (O(Td))min(cK,]w—l) . (O((T/)d))M_l_min(CK’M_l)‘;H

Where A is an (M — 1) x (M — 1) matrix such that the largest magnitude of any entry in A is 1. Since 7, 7" > 2, then
there is a universal constant 1 < € = O(1) such that:

44

Non-Asymptotic Length Generalization

|A| < (Te‘d)min(cK,M—l) . ((T/)ed)JW—1—min(cK,M—1)|A|

By the same Quadratic-Mean-Geometric-Mean argument in Lemma E.18,

Suppose that K < K'. Then M < 4K’ so that (Téd)min(cK,fol) . ((T/)ed)Mflfmin(cK,Mfl) < TecdK (T/)4edK'-
Meanwhile, since M < 4K’ and K’ < (T")2, then M2 < (4(T")2)2K', so that |[A| < (Ted)min(cK.M=1)
((T/)ed)Mflfmin(cK,Mfl)M% < TecdK (T/)4edK’ . (4(T/)2)2K’ < O(TO(K) . (T')O(K/)).

Now suppose that K > K'. Then M < 4K so that (Ted)min(cKJWfl) . ((Tl)ed)lelfmin(cK,]Wfl) < TecdK (T/)4edK <
TecdK . 74K Meanwhile, since M < 4K and K < T?, then M2 < (472)*K, so that [A| < (Ted)min(K,M—1) .
((T/)ed)M—l—min(cK,M—l)M% < Tech . T4edK A (4T2)2K < O(TO(K) . (T/)O(K/))_

Inthe case T'=1and 7" = 1, then M = O(1), so |A| < O(1). In the case T > 2 but 7" = 1, then K’ = (T7")? = 1, and
following a similar argument as the case where T, 7" > 2 and K > K’ yields the desired bound. l

As a consequence, we have the following finer-grained version of Lemma E.18.

’

Lemma E.20. Suppose o € N, (T, K),(T',K') € N? are such that TX < « and (T")X < aand K < T? and
K' < (T")% WLOG, suppose T > T'. Suppose M € N such that max(K,K') < M < 2(K + K'). Suppose
dy,ds = O(1).

Consider a nonempty (M — 1)-dimensional convex polytope P C RM 1. Suppose the faces of P consists of N halfspaces
over variables {n;};c(nj—1). Suppose that there is a subset of at most dy - K faces of P such that each face of the subset is
given by a linear inequality whose coefficients have precision at most O(T) while the faces not in the subset all have
precision at most O((T')®). For j € [N|, define L; as the linear constraint for the jth face.

Then, for any j € [N], for any vertex x of P which does not lie on the jth face of P, then the positive margin L;(x) is lower
bounded as follows.

L#) > A)

Proof. We follow the proof of Lemma E.18 up to the step where we’ve defined A and A and where we deduce that for any
vertex x of P which does not lie on the first face of P,

A
Lu() = |:A: >0

Because A satisfies the pre-conditions Lemma E.19 once we swap of rows appropriately, then | A| < O(T°F)(T7)0(K")) <
O(a®M). Thus, L (z) > Q(=oay). An analogous argument holds for all the other faces of P. B

The following corollary applies Lemma E.20 to our setting of interest.

Corollary E.21. Suppose a € N, (T, K),(T',K') € N? are such that TX < a and (T')%
K' < (T")% WLOG, suppose T > T'. Suppose M € N such that max(K,K') < M <
dy,ds = O(1).

’

< aand K < T? and
2(K + K'). Suppose

Denote the coordinates in an M-dimensional Euclidean space E as (n1,...,ny). Consider a nonempty (M — 1)-
dimensional polytope P C E, such that cl(P) has vertices V, with |V| > M, and N faces. Suppose P is contained in the

45

Non-Asymptotic Length Generalization

(M — 1)-dimensional subspace given by Zie[M] n; = 1. Suppose there is a subset of at most dy - K faces of P such that

each face of the subset is given by a linear inequality whose coefficients have precision at most O(T) while the faces not
in the subset all have precision at most O((T")%2). For j € [N), define L; as the linear constraint for the jth face.

Then the average of the |V| vertices of P will have margin at least Q(ﬁ ﬁ) Sfor all (M — 2)-dimensional faces of P.

Proof. To reduce this to the setting of Lemma E.20, first substitute ny; = 1 — Zf‘i;l n; in the inequalities for all IV faces
of P so that each inequality is an equivalent inequality over (nq, ..., n/—1) with integer coefficients increased by a factor
of at most 2 (which will ultimately be absorbed by the Big-O notation).

Applying Lemma E.20 on P, where npy = 1 — Zf\izl n; was substituted into the inequalities defining faces of P, implies

that for every (M — 2)-dimensional face F' of cl(P) and every vertex « of cl(P) which does not lie on F, then the margin
of 2 on F'is at least (7). All vertices which lie on F* have margin 0.

Consider c, the average of vertices {1, ..., 7y} of P.
1 VI
c=—= >
Vi
For any face F' of P with constraint given by Lg(-), at least one of the |V| vertices {x1, ..., x|y} does not lie on F', as F’

is (M — 2)-dimensional while P is (M — 1)-dimensional. By linearity of the margin,

\4

1
Lp(c) = W ;LF(%)

1 1
> Q(mm)

Finally, we need one more Lemma to bound the number of vertices of the polytope of interest in the main proof.

Lemma E.22. Denote the coordinates in an M -dimensional Euclidean space E as (n1,...,nyr). Consider a nonempty
(M —1)-dimensional polytope P C E, such that cl(P) has vertices V., with |V| > M, and N faces. Suppose P is contained
in the (M — 1)-dimensional subspace given by Zie[M] n; = 1, and P is the intersection of an (M — 1)-dimensional
simplex and two halfspaces. Then, the number of vertices of P is at most 3M?.

Proof. Let P = AN Hy N Hy, where A is the (M — 1)-dimensional simplex, and H;, Hs are the halfspaces. First, A will
have M vertices and M faces.

The new vertices formed by intersecting H; with A can be upper bounded by counting the number of tuples of M — 1
faces of A, as each vertex is formed by the intersection of M faces. Hy, when intersecting A will be able to form at most

(M]\fl) = M new vertices. H», when intersecting A N H;, will be able to form at most (%ﬂ) = %

The total vertices of A N H; N Ho is at most 2M + W <3M2. 1

new vertices.

E.5. Lemmas for Discrete Approximation.

In this section, we are interested in showing that an activation (B, . . ., By) realized by some continuous test-function)
can also be approximately realized by some discrete test-function X'. The difficulty is that discrete test-functions consist of a
sequence of lattice points {(j, ps(x);)} e[|=|)» Where successive lattice points differ by a step of (+1,0) (corresponding to
xj = 0) or (+1,+1) (corresponding to z; = 1).

First, here is an auxiliary Lemma that provides a strategy to construct a trajectory of lattice points where successive lattice
points differ by a step of (+1,0) or (+1,+1) and where the trajectory stays between two lines y = gx andy = gx. The
strategy offers a way to iteratively find the next lattice point in the trajectory.

46

Non-Asymptotic Length Generalization

Lemma E.23. For any two 2D lines with slopes 1 > g > % > 0 where a,b,c,d < T, there exists an infinite sequence of
bits € {0,1}°° such that for all n > T? we have that gn > ps(z), > %n. That is, the discrete test-function given by x is
above the lower line and below the upper line.

Proof. min0§a7b,c7dST,§¢%(g — %) > 5, soforn > T2, (g — %)n > 1. Thus, for every n > T, there is at least one

lattice point (n, y,,) € Z* with 2n >y, > 9n.

Now let’s consider a strategy to jump from (n,y,) to (n + 1, y,41). For all n > T2, from any such lattice point, (n,y,),
either (n + 1,y,) or (n + 1,y, + 1) will bein (¢(n + 1), 2(n + 1)]. Thus, there is always a continuation of the trajectory
that remains between the two lines; one either takes a step along (+1, 0) (corresponding to 2,1 = 0) or along (+1,+1)
(corresponding to x,,+1 = 1) to reach (n + 1,y,) or (n + 1,y, + 1), respectively.

Finally, the trajectory from (0, 0) to (T2, y72) can always be made by some trajectory using increments (+1,+1) and
(+1,0) since yp2 < T?2 < 72. W

The following Lemma says that we can approximate any continuous test-function) with a length n discrete test-function,
for n above some threshold.

Lemma E.24. (Discrete Approximation to Continuous Test-Function) Suppose € N, (T, K), (T', K') € N? are such that
TK < « and (T')K/ <aand K < T? and K' < (T")%. WLOG, suppose T > T'. Suppose we are given a (k,T)-
configuration {s;};cx), where a subset of {s;},c i) of size at most K have precision at most T, while the remaining entries
of {si}iek) have precision at most T'. For any schema 'Y of M segments, suppose) is any continuous test-function of
schema Y, with segment lengths (711()), ..., iar (V) € [0, UM (where we assumed WLOG that > (Y) = 1). Suppose
every mi; () is a rational number and that the common denominator of all (7;(Y)) ;e[is p-

Then there exists an ng < O(p - &) so that for any positive integer multiple n of n, there exists a discrete test-function X
of length n so that

2
<TJrM

Vi € [k],|Bi(Y) — Bi(X)] .

Proof. Denote idx(z) € [k] as the line which the end-point of segment ¢ of the schema Y (the schema of) lies on.

First, given the k slopes s1, s2,...s, € (0,1), suppose that the denominators of these slopes are a®, ... a® where

Vi e [k],s; = Z((Z)) . There is a subset U C [k] of size at most K such that {a(?) : i € U} are all positive integers of precision

at most T'. Further, {a(?) : i ¢ U} is a set of at most K positive integers of precision at most 7”. Let d be the least common
multiple of {a(V), ..., a(®}. Note that d < TX - (T")X" < a2

Now, set ng = d - p, and consider any multiple n of ng. Consider the quantities, {n;(Y) }ic(ar] := {7 - () }ie[ar)> Which
are the segment lengths)/, rescaled by a factor of n. We will refer to this rescaled) instead of) for convenience of
notation in the proof; like a discrete test-function of length n, the rescaled) will be a map from [0, n] — [0, n]. Denote
8; = 22:1 n;(Y) forall i € [M] and dy = 0.

We will construct a discrete test-function which follows the same schema as the rescaled) on the interval [T, n], though
on the interval [0, 7?2], X’ will have no guarantees.

First, we will define M + 1 lattice points where the discrete test-function will cross over the £ lines (“‘crossing points”).
Second, we show how to connect those crossing points with a sequence of lattice points, where consecutive lattice points
differ by increments of the 2D vectors, (+1,41) and (41, 0) (so that the sequence of lattice points is like a discrete
test-function). At the end, we will argue that the constructed discrete test-function X" and the rescaled) will satisfy the
guarantee that Vi € [k],|B;(Y) — Bi(X)| < M£L%,

Step 1: Defining the Crossing Points of the Discrete Test-Function on the k Lines. The rescaled continuous test-function
Y, where the input domain and the output is scaled by n, will cross the & lines l1, . . ., l; at the M + 1 points,

{04, Siax(s)0i) yie(an U {(0,0)}

47

Non-Asymptotic Length Generalization

Due to the way we have set n, these are all lattice points. Since n = d - p, and all 77;()’) have common denominator p,
then 72;()) is an integer for all i € [M], so J; is an integer for all i € [M]. Second, because of the factor of d, siq(;)d;
is an integer. They are therefore valid points for the discrete test-function to go through, and we will design a discrete
test-function that crosses the k lines at {(8;, Siax(s)0:) Yicpa) U {(0,0)} for all §; > T2

Step 2: Connecting the Crossing Points. We’ll describe a strategy for constructing the discrete test-function that connects
these crossing points. For any segment in the continuous schema, it will either cross between two consecutive lines, or it will
cross a line and then recross the same line. We need only show how to do these types of crossings in a way that only crosses
the appropriate lines at the start and endpoint of the segment {(J;, sidx(i)éi)}ie[] and at no point in between. Consider the
(i + 1)th segment of), which has start-point (d;, siax(;)d;) and end-point (8;4 1, Siax(i+1)0i+1). There are three cases:

o The segment crosses down (segment start-point on line [; and end-point on line {1 for some j € [k — 1])
* The segment crosses up (segment start-point on line ;1 and end-point on [; for some j € [k — 1])

* The segment crosses and re-crosses the same line (segment start and end-point on {; for some j € [k])

The strategies below will apply when the segment’s start-point’s x-coordinate is at least T2 (i.e. §; > T?). After describing
these, we will handle the corner case where a segment’s start-point’s x-coordinate is less than 72 but its end-point’s
x-coordinate is larger than T2,

Case 1: Segment Crosses Down. Suppose that we must connect the following start and end-point with a sequence of lattice
points which lie between lines [, [;1:

(85, 85+ 0i), (6i41, 5541 - Gig1) € Z°

The corresponding segment of the rescaled continuous test-function is the (i + 1)th segment with length 1,11 ())) € Z.

First, there exists a sequence (trajectory) of lattice points {(x¢,Yt)}o<t<n,,,(») Where (xo,yo) = (ds, 85 - 04),
(Knis1 (V) Ynosa) = (Jig1,8j41 - 6ip1) where for all 0 < ¢ < n1(Y),xe41 = x¢ + 1; and y;11 = y; + 1 or
ye+1 = Y. This is because the rescaled) is a continuous test-function which connects these two lattice points and which is
1-Lipschitz and non-decreasing. We want to further show that there exists such a trajectory of lattice points {(x;,y:)} such
that V1 <t <1 (Y) — 1,85 - X¢ >y > 841 - X¢.

The strategy to do so constructs a trajectory from the start-point (J;, s; - d;) to the end-point (J;+1, Sj+1 - d;41) and consists
of two phases:

* (Phase 1) First, the following iterative procedure is applied, starting with (xq,yo) = (J;,s; - ;) and t = O:

From the current lattice point (x¢, y¢), choose (X¢+1,Yyi+1) = (Xt + 1,y:) or (x; + 1,y + 1) depending on which
one satisfies s; - x¢+1 > yi41 > Sj+1 - Xe+1. At least one of the two will always satisfy this condition if xg > T2,
as argued in Lemma E.23. If both are possible, then choose either.

This is repeated until, y;, the y-coordinate of the current lattice point equals s;410;41.

¢ (Phase 2) The trajectory only takes steps along the direction (+1,0) so that (x¢41,y:+1) = (x¢ + 1,y:) until the
end-point is reached.

In Phase 1, we will always be able to find a next point (x¢+1, y¢+1) between ;, ;1 from a current point (x;, y;) between
lj,lj+1,if xg > T? as argued in Lemma E.23. By induction, all such lattice points will lie between the two lines 1, [j 1.
Phase 1 will terminate because y; is non-decreasing in ¢ and cannot remain bounded by any constant as ¢ increases to oo, in
order to stay between [, [;1, since s;;1 > 0. Thus, there exists some minimal ¢, such thaty;, = s;;10;4; for the first
time. Because the lattice points always stay between [;, [; 1, then at time ., we must have that x;, < d;1. Thus, Phase 1
terminates and Phase 2 can commence.

It is clear that Phase 2 will yield a set of lattice points that are between [, 111 with the last lattice point being (8;41, Sj+1 -
di+1) as desired.

48

Non-Asymptotic Length Generalization

This connects the two points with a trajectory that does not intersect /; and /11 at any points besides the start and endpoint,
as neither phase crosses the two lines.

Case 2: Segment Crosses Up.

Suppose that we must connect the following start and end-point with a sequence of lattice points which lie between lines
Liyligq:
g lj+1

(06,8541 - 0i), (Oiy1, 85 - Oig1)

The argument is analogous. First, there exists a sequence of lattice points {(x,y:)} wWhere (xo,yo0) = (&;, Sj+1 - 6;),
(Xni+1(y),yni+1(y)) = (6i+17 S5 5i+1) where forall 0 < t < ni+1(y)7xt+1 =x;+landyy) =y +1orye = yy.
This is because the rescaled Y is a continuous test-function which connects these two lattice points and which is 1-Lipschitz
and non-decreasing. We want to further show that there exists such a trajectory of lattice points {(x,y:)} such that
Vi<t< nH_l()}) — 1,.5]‘ CXg 2 Y > Sj+1 - X¢-

The strategy to do so consists of two phases:

* (Phase 1) First, the following iterative procedure is applied, starting with (xo,yo) = (J;, 841 - 0;) and t = O:

From the current lattice point (x¢, y¢), choose (X¢+1,Yi+1) = (Xt + 1,y:) or (x; + 1,y + 1) depending on which
one satisfies s - X¢41 > Y¢41 > Sj41 - X¢4+1. At least one of the two will always satisfy this condition if xg > T2,
as argued in Lemma E.23. If both are possible, then chose either.

This is repeated until the current lattice point (x¢, y;) and the end-point (d;41, s; - d;41) can be connected with a line of
slope 1. Thatis, s; - 641 — Yyt = di+1 — X

* (Phase 2) The trajectory only takes steps along the direction (+1, +1) so that (x¢41,Yt+1) = (¢ + 1,y¢ + 1) until the
end-point is reached.

The analysis of this strategy is analogous to that in Case 1.
Case 3: Segment Crosses and Recrosses the Same Line, /;.

Suppose that we must connect the following start and end-point with a sequence of lattice points.

(03,85 - 03)s (6ig1, 85 - Oig1)

This can always be accomplished by a discrete test-function if §; > T2. There are two subcases: (1) if the trajectory needs
to cross above line j then recross line j, and (2) if the trajectory needs to cross below line 5 and then recross line j. In case
(1), we require the sequence of lattice points to lie between lines [;_1,[; while in case (2), we require the sequence of lattice
points to lie between lines /5, 1.

A simple strategy for subcase (1) is to first set (x1,y1) = (J; + 1, s;0; + 1) (i.e. move one step along to (+1, +1) from
the start-point). Note that (6; + 1,s;0; + 1) will not lie above line j — 1 since §; > T2, so (s;_1 — s;)d; > 1 and
5j0; +1 < s;_1(0; + 1). The trajectory will now be above line j and below line j — 1. Next, use Lemma E.23 to iteratively
find the next lattice point (x¢41,y++1) from the current lattice point (x;,y;) by taking steps that are either (+1,+1) or
(+1,0) while staying between I;, ;_; until y; = s; - d;4.1. Then, take the remaining steps along (41, 0) until the end-point
is reached.

An analogous strategy exists for subcase (2). Move one step according to (+1, 0) so that (x;,y1) is below line j and above
line j+ 1. Use Lemma E.23 to move to the next lattice point strictly between line j and j+1 until (6;41 —X¢ = $;j-0i41—VY¢)-

Notice that this strategy is similar to those in Cases 1 and 2, and the analysis of them is the same.

49

Non-Asymptotic Length Generalization

Step 3: Constructing the Final Discrete Test-Function. We have proved that for each i € [M], the two crossing points
(0i—1, Siax(i—1)0i—1) and (J4, Sigx(3)0;) can be connected by some sequence of lattice points that only crosses the k lines
{l1,...,lx} at the crossing points, as long as 6; 1 > T2. The lattice points differ from each other by increments of (+1,0)
and (41, +1), like a discrete test-function. Each sequence of lattice points can be identified with one segment of the rescaled
Y so that the number of lattice points, excluding (0;_1, Siax(i—1)di—1), equals n;()).

Before constructing the final discrete test-function, we will need to construct the rest of the lattice points of the discrete
test-function corresponding to segments of) whose start-point is not larger than 772,

Suppose that the Myth segment of) is such that 0 < dp7,—1 < T2 — 1 < &py,, where My € [M]. We split the Myth
segment up into two pieces. Consider the restriction of the Myth segment to the following domains: [§pz,—1,77] and
[T, a1,]. We will construct a sequence of lattice points for the restriction of the Myth segment on [T, §py,] using similar
techniques as in Step 2. We will then construct a sequence of lattice points from (0, 0) to (72,y,) for some y., to complete
the discrete test-function. There are three cases to consider.

Case 1: idx(My — 1) = j,idx(My) = j + 1 for some j € [k — 1].

We have that (s; — sj41)(T?) > 1, so there exists a lattice point (72, y.) such that y. € (s;1177,s;T?], withy, € Z. We
then construct a sequence of lattice points from (72, y.) to (8, , Siax(Mo)0M,) using the same strategy as in Step 2, Case 1.
This sequence of lattice points will be such that consecutive lattice points differ by an increment of (41, +1) or (+1,0) and
all lattice points are between [; and /5.

We also construct a sequence of lattice points from (0,0) to (72,y,). The only requirement of this sequence of lattice
points is that consecutive lattice points differ by an increment of (41, 41) or (+1,0). Since y. < s;7% < T, this will be
possible.

Case 2: idx(My — 1) = j + 1,idx(My) = j for some j € [k — 1].

Similar to Case 1. We have that (s; — s;41)(T%) > 1, so there exists a lattice point (72, y,) such that y, € (s;417172, s; T2,
with y, € Z. We then construct a sequence of lattice points from (T2, y..) to (8, , Siax(ns,)001,) Using the same strategy
as in Step 2, Case 2. This sequence of lattice points will be such that consecutive lattice points differ by an increment of
(+1,+1) or (+1,0) and all lattice points are between [; and ;1.

We also construct a sequence of lattice points from (0,0) to (T2,y,). The only requirement of this sequence of lattice
points is that consecutive lattice points differ by an increment of (+1,+1) or (+1,0). Since y, < ;77 < T2, this will be
possible.

Case 3: idx(My — 1) = j,idx(Mp) = j for some j € [k].

There are two subcases: either segment M is contained in Sector; or in Sector; 11 (Sectors are defined in Definition E.4).
We will just consider the first subcase, as the second is analogous. Define so = 1 and [y as the homogeneous, 2D line with
slope sg.

We have that (s;_1 — s;)(T%) > 1, so there exists a lattice point (72, y.) such that y, € (s;T?, s;_1T?], withy, € Z. We
then construct a sequence of lattice points from (72, y..) to (az, Sidx(Mo)91M,) using the same strategy as in Step 2, Case 1.
This sequence of lattice points will be such that consecutive lattice points differ by an increment of (41, +1) or (+1,0) and
all lattice points are between [;_1 and [;.

We also construct a sequence of lattice points from (0, 0) to (T2, y.). The only requirement of this sequence of lattice points is
that consecutive lattice points differ by an increment of (+1, +1) or (+1,0). Since y, < s;_17% < T2, this will be possible.

We now construct the full discrete test-function by concatenating all these sequences of lattice points into a sin-
gle sequence of lattice points. For each i € [My, M], use the aforementioned constructions to construct a sequence of lattice
points with start-point (max(&;_1,T?), Sidx(i—1) - max(d;_1, T?)) and end-point (6;, Siax(i)0i). Remove the start-point
from each of these sequences of lattice points, and concatenate all the sequences of lattice points for ¢ € [M]. Finally,
concatenate the sequence of lattice points from (0,0) to (72,y.), for y, as described in Case 3 above. This sequence of
lattice points is a valid discrete test-function since consecutive lattice points differ by an increment of (+1,+1) or (+1, 0).
We will refer to the constructed discrete test-function as X'

50

Non-Asymptotic Length Generalization

Properties of the Final Construction. For i € [Mj, M], there is a correspondence between the ith segment of) and
the sequence of lattice points with start-point (max(8;—1,T?), Sigx(i—1) - max(d;—1,7?)) and end-point (&;, Siax(s)9;). The
difference between the number of lattice points in the latter and the length of the former is at most 7. In addition, all except
possibly one of those lattice points (the end-point) lie in the sector in which the ith segment of) lies in.

Define (B;(Y))icix) and (B;(X'));e) as follows.

1
Vi € (K], Bi(Y) == / 1Y) > s - 1dj

VZE[] Z:ﬂ. >sz]

For any i € [k], B;(X) depends on the total number of lattice points (out of n) which are strictly above line 4, while B;())
depends on the total length of segments which lie above line i. The maximum deviation between B;(X) and B;(}) is
upper bounded by - multiplied by the number of lattice points (j, X'(j)),j € [n], which are not in the Sector which their

. 2 1 1 y 2 1 . .
corresponding segment is in, which is upper bounded by L~ + #timesYcrosseslinei — I-4M “More precisely, for any i € [k],

|B;(X) — Z Z 1[(4, X(j)) is not in the same Sector that segment m of Y is in]
[M] Om—-1<j<0m

%[TQ +#(€ [0,1]: Y(j) = 5 j))
LM

IN

The %2 term arises from the lattice points (j, X (j)) for j € [T%], which have no guarantee of being in the Sector of the
corresponding segment of). The w term arises from the fact that for j > T2, only (j, X'(j)) which lie on
line 7 may potentially lie in a different Sector than that of the corresponding segment of). This is upper bounded by M
since) has only M segments and so can cross line ¢ at most M times. H

E.6. Auxiliary Lemmas

Convex Geometry Lemmas.

Lemma E.25. (Theorem 6.2 of (Rockafellar, 1970)) Let C be a nonempty convex set. Then its relative interior, ri(C), is
also nonempty.

Lemma E.26. (Theorem 6.1 of (Rockafellar, 1970)) Let C' be a convex set in R™. Let x € 1i(C) and z € cl(C). Then for
all0 <A <1, (1=XNz+ Az eri(0).

Lemma E.27. Let C be a nonempty convex set in R™. Consider an open halfspace H := {x € R™ : Zie[n] Xix; > at If
CNH #0, then dim(C N H) = dim(C).

Proof. Suppose that p € C' N H. If p € ri(C), then since H is an open set, we are done.

If not, p € C := cl(C) —ri(C). By Lemma E.25, since C' # (), there exists = € ri(C). By Lemma E.26, V0 < A < 1,
pa = Ap+ (1 — Nz €ri(C).

We claim there exists some setting of A & 1 such that p) € H. Since H is open, there exists 6 > 0 such that Balls(p) :=
{z/ € R" : ||/ —p|l]2 < 6} C H. Taking A > 1 — ensures that |[py — p|l2 < 6 = p) € H. Thus,
px € HNri(C). A

5
[lz—pll2

Lemmas Regarding Existence of Low Precision Element in L, Ball.

Lemma E.28. Let N > 0 be an integer. For any x € R, the interval [z, z + + ~] contains at least one element of the form %
for integer m.

51

Non-Asymptotic Length Generalization

Proof. For N > 0, the set S = {% : m € Z} is such that the minimum distance between any two consecutive elements is
%. Since the length of the interval [z, z + %] is % it must contain some element of .S, or else this would imply that there is
some pair of consecutive elements in .S such that the distance between them is greater than % |

Lemma E.29. Let N > 0 be an integer. For any v = (x1,...,74) € R with Zie[d] x; = 1, the Lo, ball {z' € R :

|z — 2/||oo < %3N {: > icla) T = 1} contains a point 2" € Q® whose fractional coordinates have a least common
denominator of at most d - N.

Proof. Consider Ball‘;iN () ={2' €eR?: ||z — 2|00 < 5} N {2’ € R?: Dic T =1}

Along each dimension i € {1,2,...,d — 1}, there must exist a number in the interval [z; — 7, ; + 7] of the form
m; m;

7 for integer m; by Lemma E.28. We can set z' = 73 for all i € [d — 1]. The last coordinate z;; will need to be set to
1= icia) an sothata” € {a’ : 37,y o = 1}, Finally, |27 — xa| < 320 4_qy 2] — @il < 41 < L. Hence, we

have that 2" € BallY () and that each coordinate is of the form of 7% for some integer ;. W
N

Relating to Technical Lemma E.30.

Lemma E.30. If for every f € C-RASP? with K(f) heads, we have that z > 0 and Zie[K(f)] Ai > z, then for any

f, f' € C-RASP? that are not equal, with K and K' heads respectively, then f and f' will differ on some continuous
test-function,), which strictly satisfies the second layer inequalities. That is, with max(K, K') < k < K + K’ distinct
heads between f and f', let (B1(Y), ..., Bx())) be the activations induced by . Then, either:

K
Z AiBora1,5) (V) > 2
i1

K/
Z A Bora(2,i) (V) < 2/
i1

K
> AiBo(.i)(Y) < 2
i=1

K/
> XiBo2,i) (V) > 2
i=1

To prove this, we will need Lemma E.33 and E.34. First, define the following notion of connectedness for subsets of
Euclidean space.

Definition E.31. (Definition 2.4 of (Freiwald, 2014)) Two subsets A and B of a metric space X are said to be separated if
both cl(A)N B =0and ANcl(B) = 0. Aset E C X is connected if E is not the union of two nonempty, separated sets.

We will utilize the following Lemma (implicitly) in the proof below to show that a union of sets | J eV A; is connected, by
iteratively arguing that for each j € [N] — {1}, A; is not separated from | J, _; A; (i.e. they “share an edge”).

Lemma E.32. (Theorem 2.9 in (Freiwald, 2014)) Suppose C and {C\y,} w1 are connected subsets of X and that for each
a, Cy and C are not separated. Then C' U UaE ; Co is connected

Next, fix f, f" and the k distinct slopes {s; };c[r) across the first layers of both programs. Let’s consider the k-dimensional
set A({si}ieiry) € [0,1]%. A({s;}:) is equal to the union of a finite number of convex polytopes by Corollary E.14 and
Lemma E.16.

A{sitien)) = U AV i w3} setm)
me[k]7valid {(yi ’y;)}me[m] C{lvuvk}m
Here are two key Lemmas we will need.

52

Non-Asymptotic Length Generalization

Lemma E.33. (Dimension of Polytopes) Given a (k,T')-configuration {s;},c(x], then for each basis schema Y,
the set of activations A(Y(

7y§)}ie[m]’

Vi i) }eerm) 10 dimension k.

Proof. Consider any basis schema Y that spans % lines with M’ segments, as described in Corollary E.14. It suffices to show
k independent degrees of freedom in A(Y).

Given (By, ... By) consider the full-rank linear map, Q : R* — R*

Q(By,...,By) = (B1,Bo — B1,B3s — By,...,B, — By,_1)

Denote Q o A(Y") as the set consisting of points attained by applying @ on all points in A(Y"). We have dim(Q o A(Y)) =
dim(A(Y)) — dim(ker(Q) N A(Y")) so since @ has rank k, dim(ker(Q) N A(Y")) < dim(ker(Q)) = 0. So to prove that
dim(A(Y")) = k, it suffices to prove dim(Q o A(Y")) is k.

By Lemma E.16, schema Y will span all k lines and will have at least one segment in each of the k + 1 sectors. First, set
the lengths of all the segments that are in sector k£ + 1 to 0. This can always be done because by Lemma E.6, there is no
constraint on any segment in Sector; since such a segment would not be crossing two distinct lines. Say that there are M
non-zero-length segments left that are each in the sectors {1,2,...,k}. Let (n1,...,np) be the lengths of these segments.

There is a linear mapping QL : RM — RF that maps (n1,...,nys) to a vector v € R¥, where for all i € [k], v; is the
sum of the length of segments that are contained in in Sector;. This map is the multiplication of () and L, where L is a
linear map L : R™ — R* which maps segment lengths of Y, (n1, . ..,na), to activations (By, . .., By). In matrix form,
L € {0, 1}**M js such that L;; =1 <= segment j in schema Y lies above line i and hence contributes to activation B;.

Now, for each sector 7 € [k], let:

Jji = max{j € [M] : n; € Sector; }

be the index of the last segment in the schema that is in Sector i.

Now, for each i € [k], consider a setting of (n1,...,ny) where for all j < j;, n; = 0, but nj, > 0. Denote the
setting for i € [k] as N; := (ngl), . ,ng\l/[)) We claim that the & vectors, {QL(N;)};cpy are linearly independent. Since

{QL(N:)}ie) € Q o A(Y'), this would imply the first point of the Lemma. The claim that {QL(N;)};cp are linearly
independent can be argued by induction.

As a base case, suppose that ig € [k] is the sector where the M th segment of the schema lies in. Then QL(N;,) = e;,. The
singleton set is linearly independent.

For each 1 < r < k, denote I, := {i € [k] : j; is one of the r-largest of the set {4; }icx) }» 50 I1 = {i0}. Suppose by the
inductive hypothesis that for 1 < r < k, the r vectors {QL(N;) : i € I,.} are linearly independent. Now, let 7, be the sector
such that j;, is the (r 4 1)th largest of the set {j; }ic[)- (ngz*), e nx[)) will be such that ngz) is nonzero, which implies
that the 4,th entry of QL(N;,) is nonzero. In contrast, for all ¢ € I,., the i.th entry of QL(N;) is zero, because for all
J > Ji., there is no segment n; that lies in sector i, by definition of j;_, so by the construction of N; where all segments of
index less than j; are set to 0, then the i.th entry of QL (V) is O for all ¢ € I,.. Thus, the 7+ 1 vectors {QL(N;) : i € I,41}
are linearly independent. It follows that I}, is a set of k linearly independent vectors in @ o A(Y'), so dim(Q o A(Y)) = k.
]

Lemma E.34. (Connectedness of Interiors of Polytopes) Given a (k,T)-configuration {s;};cy, the set

.....

Proof. Let us first recall the set of basis schemas in Corollary E.14. For any 1 < m < k and {(y{, y5)}icpm) C {1,...,k}™
such that

53

Non-Asymptotic Length Generalization

Y=y
Vi € [m—2],yi <y§ - yézyi“ >y§+1
Vie[m—2,yi >yh = yh=yi"" <yit!

(yi,v2) = (1, k) or (y1,93) = (k, 1)

>yt

<y

‘We can the test-function schema, Y{(y’i i)} as the concatenation of m — 1 monotone curves, where the 7th monotone

.) i€[m] .]
curve goes from lines yj to y5 for i € [m — 1]. The set of these test-function schemas over all valid { (47, ¥5) }sc[m satisfying

the above is complete by Corollary E.14.

Let A(Y{(yi 4i)},c(.,) denote the set of activations induced by test-functions of schema Yy(,: i)y, - AV (g1 yi))icm)
is a convex set by Lemma E.16. Thus, each set int(A(Y{(y}',yé)}ie[m])), by itself, is connected.

Now, imagine a graph where each basis schema Y{(y{ W) iciml is a node. Create an edge between basis schema Y and Y if

int(A(Y)) Nint(A(Y”)) # 0. By Lemma E.32, to prove our desired conclusion, it is sufficient to show that this graph is
connected. For this, we will need to prove which edges exist and that these edges suffice to connect the graph.

Categorize the basis schema into levels, where schema of the same levels have the same number of monotone curves (i.e.
the parameter m € [k]).

Edges Within Same Level. Consider any two basis test-function schemas, Y{(y’i W) Yierml and Y{((yi) (u3)) i pm)? with m
monotone curves. Suppose the two schemas’ 1st through (m — 2)-th monotone curves are the same, but the (m — 1)th (i.e.
their last) monotone curve’s endpoint is different by 1 index. That is,

We claim that the set of activations of these two “adjacent” schema must share an interior point:

It (AY(y108) ey) VA (), 05 }rcpmy)) 70

Suppose Y{(yi',yé)}ie[m] has M segments and Y{((yi)lv(y;),)}ie[m] has M’ segments®. Because the two schema have the same
monotone curves except the last monotone curve, then there are two possibilities:

* Either "' < y7" ' and (37" ')’ < (y5"~')". One can interpret these monotone curves as “moving downward”,

since the (m — 1)th monotone curve of Yyt i) Vocrm TSP Y{((y1) . (43))}scrm DBS M) has start-point on line 3"~

m—1 m—1

(resp. (y"~')") and end-point on line y5*~* (resp. (y5"~')’). Note the lines with lower index have higher slope by
convention (i.e. s is largest).

« Ory™ ' >yy tand (y" ') > (y5"~')". One can interpret these monotone curves as “moving upward”.

WLOG, consider just the first case (the second one utilizes an analogous argument). Then, since y{”fl < y;’kl, the last
monotone curve is moving downward. Suppose WLOG that the monotone curve which starts at line (7"~ ')’ and ends at

line (y5"~')" moves down one more line than the monotone curve which starts at line y}"~* and ends at line y5* !

“Note: the two schema have the same number of monotone curves, but different numbers of segments

54

Non-Asymptotic Length Generalization

Thus, M’ = M + 1. Moreover, the set of segments which make up the two schema are similar: for all j € [M], segment j of
Y{(yhyé)}ie[m] lies in the same sector as segment j of Y{((yi)’,(yé)’)}ie[m] . Meanwhile, segment M + 1 of Y{((yi')ﬂ(y;)’)}ie[m]

has no counterpart in Y{(yi,yé)}ie[m] .
To show connectedness, we need to exhibit a point (By, ..., By) € [0, 1]’c that is in the interior of A(Y{(and
AV (i) W) hieim)-

For schema Y{(

y1,y5) Yiem)

v) iem) (resp. Y{((yi)’#(yé)’)}ie[m]), there is a linear transformation L (resp. L) that maps the set of valid

M M M’ M’
segment lengths A (YVi(ys 43)3 () € 10,11 (resp. A)(Y{<<y§>x<y3)')}i%m1) € 10 11" of schema ¥ g4 41)) ey
(resp. Y{((yi) . (y3))}iepmy) 1O the set of activations A(Yyy: yiyy,c0,,) € [0, 1] (resp. A(Y{((yi) (43))}icimy) € [0, 1]
Being rank % (see bullet point 1 of Lemma E.33), L (resp. L’) will map interior points in A() (Y{(y17y;)}i€[m]) (resp.
AM)(}q((yi)’»(yé)’)}ie[m])) to interior points of A(Y¢(y: o3y,) (eSP. A(Y((yi) (y3))},cp,) Thus, it suffices to exhibit
two settings of the lengths of the segments of the two schema (ay, ...,ap) and (by,...,bar) = (b1,...,bar,bars1), that
are interior points in their respective polytopes A(M) (Y{(yiyyé)}ie[m]) (resp. AM)(Y{((y’l‘%(y;)’)}ie[m]), that give rise to
the same (By, ..., By) € [0, 1]*.

Towards this goal, we are interested in the regime where by41 = 6 < 1 and Vj € [M], a; =~ b;, and where each segment
length has slack e with respect to its constraint defined in Lemma E.6. Suppose by Lemma E.6 that the constraints for the
first M segments for schema Y{((yi)’,(yé)’)}iew are:

j—1
b > %Zbi,w € [M]
J =1

We’ll now describe how to set {a;};car) and {b;};e[asrr). We will largely ignore the normalization conditions that
> jen @ = land Y- 0y b5 = 1, but only require that the total length is the same: 3,y a5 = > e a0 b5 > 0.

Fore,6 > 0,set by = 1 and for j € {2,..., M}, sequentially assign b; = % Zz;ll b; + €. Set bprr1 = & (where the
only constraint for bys 41 is that it is nonnegative, being the last segment). {b;} c[ar41 is a valid set of segment lengths

respecting the constraints imposed by schema Y{((yi) () Y icm) 45 PET Lemma E.6. {b;};c(as41] is also an interior point

of A(M/)(Y{((yi)',(yé)’)}ie[m]), since each constraint has slack € > 0 or § > 0.

Now, suppose that the (M + 1)th segment of Y{((yi)ﬂ(yé)’)}ie[m] lies in sector 7,. Because each basis schema spans all k

lines, then there exists some j,. € [M] such that segment j, in Y{(yi ui)} is also in sector i,. Set {a;} as follows.

i€m]

Vj e [M] - {]*}, seta; = bj
Finally, seta;, = b;, + 6

We now need to argue this is a valid assignment of {a;}, respecting the constraints on segments imposed by the schema
Y{(yi}yé)}ie[m]' Because the first M segments of Y{((yi')ﬁ(yé)/)}iew are the same as the M segments of Y ,i i . then
these segments have the same constraints.

}ie[m

It follows that for all j < j,, a; meets its constraint. For subsequent segments, due to the extra § contribution on a;,, we
will need to argue that their constraint is still met with some nonzero slack. The ¢th constraint after 7* will have its slack
lessened by at most J - [maxp,qezJqu‘ST(%)t} < 8TM < §T*, where we used that ¢ < M < k? by Corollary E.15.

Thus, as long as 0 < —z, then this setting of {a; }je(ar) will still satisfy each constraint of Yy(,: 1) with nonzero

slack.

}ie[m]

j—1

a; > &Za“Vj S [M]
%33

55

Non-Asymptotic Length Generalization

Thus, {a;} e[is an interior point of A(M)(Y{(y;) Yectm)-

Finally, the segments {a;} jc[as) and {b;} je[ar+1) induce the same {B; };c[] since the sum of the segment lengths in each
sector is the same. This proves that:

(AN 8 b)) VAV (1), @) e) 7 0
Edges Between Levels L and L + 1. Consider any two schema Y{(yi,yé)}ie[mq] , Y{((yi)’»(yé)’)}ie[m] withm —2and m — 1

monotone curves, respectively, where Y{((yi)’,(yé)/)}iew ’s first m — 2 monotone curves are the same as Y, i)y
m — 2 monotone curves. Moreover, let schema Y{((yi)’a W) Yietm) be such that:

>
i€[m—1] §

* In the case that (37"~ ") < (y5" =)', then (y7" 1) +1 = (y3'~1)".

* In the case that (y7"~1)' > (55" 1)', then (471 — 1 = (55)

Instead of a schema of m — 2 monotone curves, schema Y can also be thought of as a schema of m — 1

yi,u8) Yicim
monotone curves, where the last monotone curves will only cross the line with index y{”_Q = yé”_Q. Thus, these two
schema can be thought of as having their final (m — 1)-th monotone curves’ endpoints differ by one line, which reduces to
the case above with two schema in the same level. Using exactly the same argument as in the previous section with two

schema in the same level, we can conclude that

It (A (g1)}, pm)) VAN (1) 0 i) # 0

Edges Between Two Connected Components. In our graph where basis schema are nodes, we now have two connected
components:

* Schemas where the first monotone curve is a monotone (up) curve from lines & to 1

¢ Schemas where the first monotone curve is a monotone (down) curve from lines 1 to k.
Within each of these connected components, we have proved connectedness with the previous two cases, by connecting
schemas of the same prefix (of monotone curves) and the same level, and schemas of the same prefix and different levels.

The nodes in the first connected component will all connect in a tree to the schema consisting of a single monotone curve
from lines £ to 1. The nodes in the second connected component will all connect in a tree to the schema consisting of a
single monotone curve from lines 1 to k.

Let Y be the schema for m = 2 with a single monotone (up) curve from line k to 1, and Z be the schema for m = 3 with
two monotone curves: one monotone (down) curve from line 1 to k£ and then a monotone (up) curve from k to 2. These are
two representatives from the two aforementioned connected components. We claim that:

int(A(Y)) Nint(A(Z)) # 0

We will start with an interior point for Z. Suppose it has segment lengths 21, ..., 241, .. ., 225, Where z; is above line 1,
Zk+1 18 below line k, and segment zo, lies above line 2 and below line 1, with end-point on line 2.

Again, ignore the normalization condition that), cfok) % = 1. Fore >0, we assign values to the segments as follows.

2’1:1
'171
V2<i<2%—1z="2% 24
q; ©
j=1

56

Non-Asymptotic Length Generalization

Note that since 2z, is the last segment of the schema, it need not cross a sector and need only cross and re-cross line 2.
Therefore, it has no constraints under schema Z except that zo;, > 0. However, the key idea is that we can choose for 2o, to
be sufficiently large so as to satisfy the constraint needed to cross to line 1 from line 2.

» 2k—1

2k

Zop = — E zjt+¢€
Pk

Such a {z; };e[2x], after normalization, exists in the (relative) interior of AD (7).

We claim that rearranging the segments {2; },¢[2x) into a monotone (up) curve (y1, ..., yr+1) With slack e will always be

possible for any € > 0. This essentially follows from Lemma E.13 as we have intentionally set 2o = % Z?i}l zj+e€
large enough to cross from line 2 to line 1 (and have its end-point on line 1). More precisely, the following constraints are

met by {z; }icon-

i—1
Vk+2§i§2k,z1;:&22j+e

% =

Z& Z zj+e

% j<i—1:z; in sector >(2k+3—1)
Then, we obtain a valid monotone curve with segment lengths (y1,. .., yx+1) by setting:
Y1 = Zk+1
Yk+1 = 21

Yi = Zigk + 2p12-,2 <1<k

Thus, the large value of 291 enables the re-arranged test-function of monotone schema to cross from line 2 to line 1.
Finally, there is no constraint on y 1, so all constraints of the schema Y are satisfied. This re-arrangement will have
slack min(e, y1,yr+1) > € because each of the original constraints in Z on the segments z1, ..., 2251 as well as the
“pseudo-constraint” we imposed on zgj, only got looser in this rearrangement, and there is no constraint on y41. Thus, the
rearranged monotone curve, after normalization of the segment lengths, is in the interior of A (V).

{y:} and {z;} are both interior in their respective polytopes and induce the same activations (B, . . ., By) since the segments
of {y;} are just a re-arrangement of the segments of {z;}, and Ziep K] i = Zie[k 1] Yi- Thus, they give rise to the same
interior point (By, ..., By) € int(A(Y)), (B1,...,Bg) € int(A(Z)), so int(A(Y)) Nint(A(Z)) # 0.

These edges demonstrate that the graph is connected, proving the Lemma. B

Proof of Lemma E.30.

Lemma E.35. (Lemma E.30, restated) If for every f € C-RASP? with K (f) heads, we have that z > 0 and Zz‘e[K(f)] A >

z, then for any f, f' € C-RASP? that are not equal, with K and K' heads respectively, then f and f' will differ on some
continuous test-function, Y, which strictly satisfies the second layer inequalities. That is, with max(K,K') < k< K + K’
distinct heads between f and ', let (B1(Y), ..., Br(Y)) be the activations induced by). Then, either:

K
Z AiBora(1,i) (V) > 2
i=1
K
Z)‘;Bord(2,i) (y) <z
i=1

57

Non-Asymptotic Length Generalization

K
Z)\iBord(l,i) (y) <z
i=1

K/
> XiBoa.) (V) > 2
i=1

Proof of Lemma E.30. Fix f, f" and their k distinct slopes {s;};c[x]. Suppose f, " differ on some discrete test-function
X. We want to show that there must be a continuous test-function that strictly satisfy the two inequalities strictly and
distinguishes f and f’.

Let’s consider the k-dimensional set A({s;};) C [0,1]*. A({s;};) is equal to the union of a finite number of convex sets by
Corollary E.14 and Lemma E.16.

A{sitiem) = U AY (i 98 Y iem)
me[k]vvalid{(yi.’y;)}iehn]c{l 1111 k}m

Now consider two halfspaces H;, Hs, induced by the second layers of f and f”.

K

H,:={Be€ RF Z)\iBord(l,i) >z}
=1
K/

H2 = {B S Rk . Z)\;Bord(li) > Z/}
i=1

First, we cannot have that H; = Ho, as then f and f’ must share the same heads in their first layer and also have the
same coefficients in the second layer. Thus, f = f’, contradicting the original assumption that f and f’ are not equal (as
witnessed by X).

Thus, H; # Hs. Denote

K
Ly = {B € Rk : Z)‘iBord(l,i) = Z}
i=1
K/
Ly:={B€R¥: Y X Buq,) = '}
i=1

H, # H, implies Ly # Lo. Now, there are two cases, given by whether Ly and Ly have a nonzero intersection or not.
Casel: Ly N Ly # ()

H,, H, divide R* into 4 quadrants. Denote the (+, +) quadrant as H; N Ho, (+, —) quadrant as H; N HS, (—, +) quadrant
as H{ N Hy and (—, —) quadrant as H{ N HS.

Towards contradiction, let us consider all possible A({s;};) such that the following Condition I holds.

* (Condition I) there is no B € A({s;};) in the (—, +) and (+, —) quadrants such that:

58

Non-Asymptotic Length Generalization

K
Z AiBord(l,i) >z
i=1
K/
Z)‘;Bnrd(li) <7
i=1
or
K

Z AiBora(1,i) < 2
i=1

K/
Z)‘gBord(Q,i) > 2
i=1

For ease of notation, index each basis schema of Corollary E.14 with j € [Nj], where N, (= 2k=1y is the total number of
basis schema, so that A({s;};) = U;V:’H A;. Thus, Condition I must also apply to each A;,Vj € [Ng].

In order that A; satisfies Condition I, there is only three convex possibilities:

1. (TypeI) A, is a convex subset of a (k — 1)-dimensional plane that has nonzero intersection with the (k — 2)-dimensional
intersection of O = L1 N Lo and that is a subset of

Lel(Hy) Nel(Ha)] U [H5 0 H3)

2. (Type II) A, is a convex subset of the quadrant cl(H;) N cl(Hs), where:

K
> AiBo(1i) >

i=1
K/
Z)\;Bord(Q,i) > -4
i=1

3. (Type III) A; is a convex subset of the quadrant, H{ N H5, where:

K
> XiBo(ii) < 2
i=1

K/
Z)\;:Bord(zi) <7

i=1

Lemma E.33 implies that it is impossible for any A; to be Type I since the dimension of Type I sets is £k — 1 but A; is
dimension k.

Lemma E.34 implies that either all A; are type II or all A; are type III, which can be seen as follows. Suppose towards
contradiction that there was an A; of type Il and a separate A;, of type III. First, no point O = L; N Ly can be an interior
point of any A;, because O is a k — 2 dimensional subspace, and it is impossible for an Lo-ball centered at any point
in O of any nonzero radius and dimension k to be completely contained in [cl(H7) Ncl(Hs)| U [HE N HS] D Ujvz"l Aj,
as such a ball would always have a non-empty intersection with Hy N int(H$) and Hy N int(HY). Thus, O is disjoint
from (J; ¢y, Int(A;). Because there is an A; of type Il and a separate A;: of type III, part of U;V:k]_ int(A;) is contained
in cl(Hy) N cl(Hz) and part of it is contained in H{ N HS. However, since no point in O can be in Ujvzkl int(A;), then
UN’“” int(A;) is not connected (i.e. it is the union of two non-empty, separated sets). This contradicts Lemma E.34. Thus,

j=1
all A; must be type II or they must all be type III.

59

Non-Asymptotic Length Generalization

Finally, observe that (0,...,0) € A({s;}:) = UjV:)H A;, realized by a test-function which has slope 0 everywhere. Also,

(1,...,1) e A{s:}s) = UI.V’“1 A;, realized by a test-function which has slope 1 everywhere.

=
Suppose all A; were type II. At least one A; must contain (0, ..., 0), butif (0,...,0) is in the quadrant, cl(H;) N cl(H2),
this implies:

K’

= Z()\; -0) > 2
i=1
K

0= ()\l . O) Z z
=1

This contradicts the assumption that z, 2’ > 0.

Now, suppose all A; were type III. At least one A; must contain (1,...,1), butif (1,...,1) is in the quadrant, H{ N HS,
this implies:

This contradicts the assumption that Zfil A; > z and Zfil AL > 2
Inshort, 2 > 0and 3, c¢(s) Ai > # for all functions in f € C-RASP? = A({s;};) does not satisfy Condition I.

Thus, there exists B € A({s;}), realized by a continuous test-function, in the (—, +) and (+, —) quadrants such that:

K
> AiBoa1,i) > 2
i=1

K’

> XiBoa(z,i) < 7

=1
or

K
> AiBoau,i) < 2
i=1

K/
Z AiBow(2,i) > 7'
i=1

Case2: L1 N Ly = 0.

The argument here is similar. We know L, Lo are parallel hyperplanes which never intersect. We will argue that it is still
true that { A, } e[, are either all type IT or all type III, and then reach a contradiction with the assumption that z > 0 and
Zie[K(f)] X; > z for all functions in C-RASP2. Given that L, Lo are parallel, consider two subcases.

Let (+,—), (4, —) denote the subcase where halfspace H;, Hy have the same parity, but their intercept term is different.
An example of this are two halfspaces: “z +y > 2,z +y > 1".

60

Non-Asymptotic Length Generalization

Let (—,4), (4+, —) be the subcase where H;, Ho have opposite parities. An example of this are the two halfspaces:“z +y <
2,z +y>1"

Subcase 1: (+, —), (4, —) In this case, in order that the planes are not identical, there is a nonzero difference in the intercept
term between Ly, L. By Lemma E.34, since ¢, int(4;) is connected, then {A; } (v, are either all type IT or all type

11, via a similar argument as Case 1, which contradicts that z, 2’ > 0, and .5 | \; > zand Y5, X/ > 2/ respectively.
Thus, Condition I cannot hold.

Subcase 2: (+, —), (—, +) In this case, either cI(H;) N cl(H2) # 0 or int(H{) Nint(Hg) # 0. Once again, {A;} (v,

are either all type II or all type III, contradicting that z, 2’ > 0, and Zfil A > z and ngl A, > 7z’ respectively. Thus,
Condition I cannot hold. l

Here is a Corollary of Lemma E.34 which will be useful in strengthening Lemma E.30, which will let us improve the final
bound from O(TOE*)) (0Ues ™) 1o O(TOEK)) (a,O0M),

Corollary E.36. (Connectedness of int(As 3({s;}icr)))) Define Aa 3({s;}ic[r)) as the set of activations by basis schema
where m € {2,3}. That is, there is only either one or two monotone curves in the schema.

Az s({sitiem) = U AN i v ierm)
"L€{273}1valid {(yivy;)}ie[m] C{lv"'vk}m

Then, we claim that \J,,,¢ 5 3. e (A (g1 i3y,) i connected.

valid {(y4,y5) Yictm) C{1,..

Proof. We have that Ass({siticw) = ANVam,kmy) Y Ujera.n-1y AR KNG Y
A(Y{(k71)7(1,1)}) U Uje{Q,...,k—l}A(Y{(k,l),(l,j),(j,j)})' The connectedness of int(A(Y{(Lk),(k,k)})) U

Ujega,n1y AN @0, 000, 6.01)) Y 0t (A e1),a,01) U Ujeqa,. o1y (A (,1),1,9),6,5)3)) - follows
from inspecting the edges in the graph construction in Lemma E.34.

In the sections where we analyzed edges between nodes in the same level and between consecutive levels, it follows that:

Vj €1{2,...,k — 1}, node Y{(1),k k)} is connected to node Yi(1 k) (k.5,(j.j)}

And

Vje{2,...,k -1}, node Y{(;1),(1,1)} is connected to node Y{(x1),(1,5),(.j)}

In the final section of the proof of Lemma E.34, we showed that

node Y{(k71)7(171)} is connected to node Y{(17k)7(k,2)7(272)}

As a corollary, we can strengthen Lemma E.30 to the following.

Lemma E.37. (Stronger version of Lemma E.30) If for every f € C-RASP? with K (f) heads, we have that z > 0 and
Zie[K(f) N > % then for any f, f' € C-RASP? that are not equal, with K and K' heads respectively, then f and

f" will differ on some continuous test-function,), which strictly satisfies the second layer inequalities. That is, with
max(K, K') < k < K + K’ distinct heads between f and f', let (B1(}), ..., Br())) be the activations induced by).
Then, either:

K
Z AiBora(1,i) (V) > 2
i=1
K
Z)‘;Bord(2,i) (y) <z
i=1

61

Non-Asymptotic Length Generalization

K
Z AiBora(1,1) (V) < 2
i=1

K/
> XiBo.) (V) > 2
=1

In addition, Y will be of a basis schema Y with either one or two monotone curves: Y € {Y{(y’l”,y;‘)}ie[m] tm €

{2,3},valid {(y}, y5) Yicpm) C {1,...,k}™}. In particular, the number of segments M in the schema of Y will be at most
2 - k instead of k? for general basis schema.

Proof. We repeat the proof of Lemma E.30, but with int (Ao 3({s; };c[x))) substituted for A({s;};c[x]) and Corollary E.36
substituted for Lemma E.34. Note that int(As 5({s;};c()) still contains the points (0, ...,0) € [0,1]* and (1,...,1) €
[0, 1]% as well, as both of these are realized by a test-function of where the slope everywhere is equal to 0 everywhere and 1
everywhere, respectively, which are both of schemas with just one monotone curve. B

62

