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Abstract

We study the efficacy of in-context learning (ICL)
from the viewpoint of statistical learning theory.
We develop approximation and generalization
analyses for a transformer composed of a deep
neural network and one linear attention layer, pre-
trained on nonparametric regression tasks sam-
pled from general function spaces including the
Besov space and piecewise γ-smooth class. In
particular, we show that sufficiently trained trans-
formers can achieve – and even improve upon –
the minimax optimal estimation risk in context
by encoding the most relevant basis representa-
tions during pretraining. Our analysis extends to
high-dimensional or sequential data and distin-
guishes the pretraining and in-context generaliza-
tion gaps, establishing upper and lower bounds
w.r.t. both the number of tasks and in-context
examples. These findings shed light on the effec-
tiveness of few-shot prompting and the roles of
task diversity and representation learning for ICL.

1. Introduction
In-context learning (ICL) refers to the ability of pretrained
LLMs to perform a new task by being provided with a few
examples within a prompt, without any parameter updates
or fine-tuning. It has been empirically observed that few-
shot prompting is especially effective in large-scale models
(Brown et al., 2020) and requires only a couple of exam-
ples to consistently achieve high performance (García et al.,
2023), while Raventos et al. (2023) show that sufficient pre-
training task diversity is needed for the emergence of ICL.
However, an understanding of the statistical foundations
of ICL and few-shot prompting is still lacking. Existing
theoretical analyses generally focus on a single attention
layer and do not take into account the depth of transformers;
see Appendix A for an overview of related works.
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Our contributions. In this paper, we analyze the opti-
mality of ICL from the perspective of statistical learning
theory. We study a multi-layer transformer consisting of a
deep neural network with N -dimensional output followed
by one linear attention layer. The model is pretrained on
n input-output samples from T nonparametric regression
tasks, generated from a suitably decaying distribution on a
general function space. Compared to previous works, we
take a crucial step towards understanding practical multi-
layer transformers by incorporating the representation learn-
ing capabilities of the DNN module. From a more abstract
perspective, this work can also be situated as a nonlinear ex-
tension of meta-learning. Our contributions are highlighted
below. All proofs are deferred to the appendix.

• We develop a general framework for upper bounding the
in-context estimation error of the empirical risk mini-
mizer. We also derive an information-theoretic lower
bound for the minimax risk in Appendix F.

• In the Besov space setting which includes the Hölder and
Sobolev spaces, we show that ICL with DNNs achieve
nearly minimax optimal risk n−

2α
2α+d when T is suffi-

ciently large. Since LLMs are pretrained on vast amounts
of data in practice, T can be taken to be nearly infinite,
justifying the emergence of ICL at large scales.

• We show that ICL can improve upon the a priori op-
timal rate when the task class basis resides in a coarser
Besov space by learning informative representations, em-
phasizing the importance of pretraining on diverse tasks.

• We extend the optimality guarantees to nearly dimension-
independent rates in the anisotropic Besov space and
also to learning sequential data with transformers in the
piecewise γ-smooth function class, further justifying the
efficacy of ICL in extremely high-dimensional settings.

2. Problem Setup
2.1. Nonparametric Regression

We analyze ICL of a transformer pretrained on examples
from a family of regression tasks, which we describe below.
Let X ⊆ Rd (d ≤ ∞) be the input space endowed with a
distribution PX and (ψ◦

j )
∞
j=1 a discrete subset of L2(PX ).

A regression function F ◦
β : X → R is generated for each

task by sampling a coefficient sequence β ∈ R∞ from a
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distribution Pβ on B(R∞); the class of tasks F◦ is defined
as

F◦ =
{
F ◦
β =

∑∞
j=1 βjψ

◦
j

∣∣β ∈ suppPβ
}
,

endowed with the induced distribution. Each task prompt
contains n example pairs {(xk, yk)}nk=1. The covariates xk
are i.i.d. drawn from PX and the responses are generated as

yk = F ◦
β (xk) + ξk, 1 ≤ k ≤ n, (1)

where the noise ξk is assumed to be i.i.d. with mean zero
and |ξk| ≤ σ almost surely.1 In addition, we independently
generate a query token x̃ and output ỹ in the same manner.

We proceed to state our assumptions for the regression
model. These will be subsequently verified for specific
function spaces of interest with their natural decay rate.
Assumption 1 (relaxed sparsity and orthonormality of basis
functions). For N ∈ N, there exist integers

¯
N < N̄ ≲ N

with N̄ −
¯
N + 1 = N such that ψ◦

¯
N , · · · , ψ◦

N̄
are indepen-

dent and ψ◦
1 , · · · , ψ◦

¯
N−1 are all contained in the linear span

of ψ◦
¯
N , · · · , ψ◦

N̄
. Moreover, there exist r, C1, C2, C∞ > 0

such that ΣΨ,N :=
(
Ex∼PX [ψ

◦
j (x)ψ

◦
k(x)]

)N̄
j,k=

¯
N

satisfies
C1IN ⪯ ΣΨ,N ⪯ C2IN and∥∥∥∑N̄

j=
¯
N (ψ◦

j )
2
∥∥∥1/2
L∞(PX )

≤ C∞N
r. (2)

Denoting the N̄ -basis approximation of F ◦
β as F ◦

β,N̄
:=∑N̄

j=1 βjψ
◦
j , by Assumption 1 there exist ‘aggregated’ co-

efficients β̄
¯
N , · · · , β̄N̄ uniquely determined by β such that

F ◦
β,N̄

=
∑N̄
j=

¯
N β̄jψ

◦
j . We define the covariance matrices

Σβ,N̄ := (Eβ [βjβk])N̄j,k=1 ∈ RN̄×N̄ ,

Σβ̄,N :=
(
Eβ [β̄j β̄k]

)N̄
j,k=

¯
N

∈ RN×N .

Assumption 2 (decay of β). For s,B > 0 it holds uniformly
over β ∈ suppPβ that ∥F ◦

β∥L∞(PX ) ≤ B and

∥F ◦
β − F ◦

β,N∥2L2(PX ) ≲ N−2s. (3)

Furthermore, Tr(Σβ̄,N ) is bounded for all N and

0 ≺ Σβ,N̄ ≾ diag
[
(j−2s−1(log j)−2)N̄j=1

]
. (4)

Remark 2.1. In the simple case where (ψ◦
j )

∞
j=1 is a basis

for L2(PX ), we may set
¯
N = 1, N̄ = N so that the de-

pendency condition of Assumption 1 is trivially satisfied,
moreover, Σβ̄,N = Σβ,N and boundedness of Tr(Σβ̄,N )
automatically follows from (4). However, the assumptions
in the stated form also allow for hierarchical bases with
dependencies such as wavelet systems. We also note that (3)
and (4) entail basically the same rate but are not equivalent.

1This implies Var ξk ≤ σ2. We require boundedness since the
values yk form part of the prompt input, and we wish to utilize
sup-norm covering number estimates for the attention map.

2.2. In-Context Learning

We now describe our transformer model, which takes
n context pairs X = (x1, · · · , xn) ∈ Rd×n, y =
(y1, · · · , yn)⊤ ∈ Rn and a query token x̃ as input and re-
turns a prediction for the corresponding output. The covari-
ates are first passed through a nonlinear representation or
feature mapping ϕ : X → RN , which we assume belongs to
a sufficiently powerful class of estimators FN . Specifically:

Assumption 3 (expressivity of FN ). ∥ϕ(x)∥2 ≤ B′
N for

some B′
N > 0 for all x ∈ X , ϕ ∈ FN . Moreover, there

exist ϕ∗
¯
N , · · · , ϕ∗N̄ ∈ FN so that ∥ψ◦

j − ϕ∗j∥L∞(PX ) ≤ δN ,

¯
N ≤ j ≤ N̄ for some δN > 0.

The extracted representations ϕ(X) = (ϕ(x1), · · · , ϕ(xn))
are then mapped to a scalar output via a linear attention
layer parametrized by a matrix Γ ∈ SN for SN ⊂ RN×N ,

f̌Θ(X,y, x̃)=
1

n

n∑
k=1

ykϕ(xk)
⊤Γ⊤ϕ(x̃)=

〈
Γϕ(X)y

n
, ϕ(x̃)

〉
where Θ = (Γ, ϕ) ∈ SN × FN . Finally, the output is
clipped by applying clipB̄(u) := max{min{u, B̄},−B̄},
yielding fΘ(X,y, x̃) := clipB̄(f̌Θ(X,y, x̃)). Here, we set
SN = {Γ ∈ RN×N | 0 ⪯ Γ ⪯ C3IN} for some C3 > 0
and fix B̄ = B for simplicity.

The above setup is a reparametrization of linear attention
widely used in theoretical analyses (Zhang et al., 2023; Wu
et al., 2024, see e.g.), where the query and key matrices are
consolidated into one matrix Γ. The form has been shown
to be optimal for a single layer of linear attention for linear
regression tasks (Ahn et al., 2023; Mahankali et al., 2023).
The placement of the attention layer after the DNN module
ϕ is justified by the observation that lower layers of trained
transformers act as data representations on top of which
upper layers perform ICL (Guo et al., 2023).

During pretraining, the model is presented with T prompts
{(X(t),y(t), x̃(t))}Tt=1 where the tasks F ◦

β(t) ∈ F◦,

β(t) ∼ Pβ and tokens X(t) = (x
(t)
1 , · · · , x(t)n ), y(t) =

(y
(t)
1 , · · · , y(t)n )⊤, x̃(t) and ỹ(t) are independently generated

as in Section 2.1, and trained to minimize the empirical risk:

Θ̂= argmin
Θ∈SN×FN

R̂(Θ)=
1

T

T∑
t=1

(
ỹ(t)−fΘ(X(t),y(t), x̃(t))

)2
.

Our goal is to show that learning the optimal Θ̂ allows
the transformer to solve new random regression problems
y = F ◦

β (x) + ξ for F ◦
β ∈ F◦ in context. To this end, we

evaluate the convergence of the mean-squared risk

R̄(Θ̂) := E(X(t),y(t),x̃(t),ỹ(t))Tt=1
[R(Θ̂)],

R(Θ) := EX,y,x̃,β

[
(F ◦
β (x̃)− fΘ(X,y, x̃))

2
]
.
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3. Risk Bounds for In-Context Learning
In this section, we outline our framework for upper bound-
ing the in-context estimation error R̄(Θ̂). Some additional
definitions are in order. The ϵ-covering number N (C, ρ, ϵ)
of a metric space C equipped with a metric ρ for ϵ > 0 is
defined as the minimal number of balls in ρ with radius ϵ
needed to cover C.The ϵ-covering entropy or metric entropy
is given as V(F , ρ, ϵ) := logN (F , ρ, ϵ). The ϵ-packing
number M(ϵ, C, ρ) is given as the maximal cardinality of
a ϵ-separated set {c1, . . . , cM} ⊆ C such that ρ(ci, cj) ≥ δ
for all i ̸= j. The metric is omitted if ρ = ∥·∥L∞ . The trans-
former class is defined as T N := {fΘ | Θ ∈ SN ×FN}.

To bound the overall risk, we first decompose into the ap-
proximation and generalization gaps.
Theorem 3.1 (Schmidt-Hieber (2020), Lemma 4, adapted).
For any ϵ > 0 such that V(T N , ϵ) ≥ 1,

R̄(Θ̂) ≲ inf
Θ
R(Θ) +

B2 + σ2

T
V(T N , ϵ) + (B + σ)ϵ.

See Appendix B.1 for the proof. Here, the second term is
the pretraining generalization error w.r.t. number of tasks
T ; the in-context generalization error w.r.t. prompt length n
manifests as part of the first term. This separation allows us
to compare the difficulty of the two types of learning.

Bounding approximation error. In order to bound the
first term, we analyze the risk of the choice

Θ∗ = (Γ∗, ϕ∗) :=

((
ΣΨ,N + n−1Σ−1

β̄,N

)−1

, ϕ∗

¯
N :N̄

)
where ϕ∗ is given as in Assumption 3 for a suitable δN to be
determined. The definition of Γ∗ approximately generalizes
the global optimum Γ =

(
(1 + 1

n )Λ + 1
n tr(Λ)Id

)−1
for

the Gaussian linear regression setup where x ∼ N (0,Λ)
(Zhang et al., 2023). Since ΣΨ,N ⪰ C1IN we have Γ∗ ⪯
C−1

1 IN and hence we may assume Γ∗ ∈ SN by replacing
C3 with C3 ∨ C−1

1 if necessary.
Proposition 3.2. Under Assumptions 1-3, it holds that

inf
Θ∈SN×FN

R(Θ) ≤ R(Θ∗) ≲
N2r

n
logN

+
N4r

n2
log2N +

N

n
+N−2s +N2δ4N +N2r+1δ2N .

The proof is presented throughout Appendix B.

Bounding generalization error. To estimate the metric
entropy of T N , we first reduce to the representation class
FN . The proof is given in Appendix C.2.
Lemma 3.3. Under Assumptions 1-3, there exists D > 0
such that for all ϵ sufficiently small,

V(T N , ϵ) ≲ N2 log
B′2
N

ϵ
+ V

(
FN ,

ϵ

DB′
N

√
N

)
.

4. Minimax Optimality of In-Context Learning
4.1. Besov Space and DNNs

In this section, we apply our theory to the sample complexity
of ICL when FN consists of (clipped, see (6)) DNNs. We
define the set of DNNs with depth L, width W , sparsity S,
norm bound M and ReLU activation η(x) = x ∨ 0 as

FDNN(L,W, S,M)=
{
(W(L)η+b(L))◦· · ·◦(W(1)x+b(1))

∣∣
W(ℓ) ∈ RW×W ,W(L) ∈ RW , b(ℓ) ∈ RW , b(L) ∈ R,∑L

ℓ=1∥W(ℓ)∥0+ ∥b(ℓ)∥0 ≤ S, ∥W(ℓ)∥∞∨∥b(ℓ)∥∞ ≤M
}
.

The Besov space is a very general function class including
the Hölder and Sobolev spaces (see Appendix D.1.1) which
captures spatial inhomogeneity in smoothness, and provides
a natural setting in which to study the expressive power of
DNNs (Suzuki, 2019). We fix X = [0, 1]d for simplicity.

Definition 4.1 (Besov space). For 2 ≤ p ≤ ∞, 0 < q ≤ ∞,
smoothness α > 0 and r = ⌊α⌋ + 1, the rth modulus of
f ∈ Lp(X ) is wr,p(f, t) := sup∥h∥2≤t∥∆

r
h(f)∥p where

∆r
h(f)(x) = 1{x,x+rh∈X}

∑r
j=0

(
r
j

)
(−1)r−jf(x+ jh).

The Besov space is defined as Bαp,q(X ) = {f ∈ Lp(X ) |
∥f∥Bα

p,q
:= ∥f∥Lp + |f |Bα

p,q
<∞} where

|f |Bα
p,q

:=

{(∫∞
0
t−qαwr,p(f, t)

q dt
t

)1/q
q <∞,

supt>0 t
−αwr,p(f, t) q = ∞.

U(Bαp,q(X )) denotes the unit ball in (Bαp,q(X ), ∥·∥Bα
p,q

).

A natural basis system for Bαp,q(X ) is formed by the B-
splines, a type of wavelet decomposition or multiresolution
analysis (DeVore & Popov, 1988).

Definition 4.2. The tensor product B-spline of orderm ∈ N,
m > α + 1 − 1/p, resolution k ∈ Zd≥0 and location ℓ ∈
Idk =

∏d
i=1[−m : 2ki ] is ωdk,ℓ(x) =

∏d
i=1 ιm(2kixi − ℓi)

where ιm(x) is the (m+ 1)-fold convolution of 1{x∈[0,1]}.
We abuse notation and write ωdk,ℓ = ωd(k,···,k),ℓ for k ∈ Z≥0.

The difficulty of learning a regression function in the Besov
space is quantified by the following minimax risk.

Proposition 4.3 (Donoho & Johnstone (1998)). The min-
imax risk for an estimator f̂n with n i.i.d. samples Dn =
{(xi, yi)ni=1} over U(Bαp,q(X )) satisfies

inf
f̂n:Dn→R

sup
f◦∈U(Bα

p,q(X ))

EDn
[∥f◦ − f̂n∥2L2(X )] ≍ n−

2α
2α+d .

4.2. Estimation Error Analysis

To apply our framework, we set the task class as the unit
ball F◦ = U(Bαp,q(X )) and take as basis {ψ◦

j | j ∈ N} =
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{2kd/2ωdk,ℓ | k ∈ Z≥0, ℓ ∈ Idk} the set of all B-spline
wavelets ordered by increasing k and scaled to counteract
the dilation in x. Abusing notation, we also write βk,ℓ to
denote the coefficient in β corresponding to 2kd/2ωdk,ℓ. The
set of B-splines at each resolution are independent, while
those of lower resolution can always be decomposed into a
linear sum of B-splines of higher resolution with a certain
decay (Proposition D.11). In Appendix D.1.1, we verify
Assumptions 1 and 2 with r = 1/2, s = α/d under:
Assumption 4. F◦ = U(Bαp,q(X )), α > d/p and PX has
positive Lebesgue density ρX bounded above and below on
X . Also, for all k ≥ 0 and ℓ ∈ Idk , βk,ℓ are independent and

Eβ [βk,ℓ] = 0, 0 < Eβ [β2
k,ℓ] ≲ 2−k(2α+d)k−2. (5)

We obtain the following entropy bound in Appendix D.1.2.
Lemma 4.4. For any δN > 0, Assumption 3 is satisfied by

FN = {ΠB′
N
◦ (ϕj)Nj=1 | ϕj ∈ FDNN(L,W,S,M)} (6)

where ΠB′
N

is the projection in RN to the centered ball of
radius B′

N = O(
√
N) and each ϕj is a ReLU network such

that L = O(logN + log δ−1
N ) and W,S,M = O(1). Also,

the entropy is bounded as V(FN , ∥·∥L∞ , ϵ) ≲ N log N
δN ϵ

.

Combining these results, we conclude in Appendix D.1.3:
Theorem 4.5 (minimax optimality of ICL in Besov space).
Under Assumption 4, if n ≳ N logN ,

R̄(Θ̂) ≲ N− 2α
d

(
DNN

approximation
error

)
+

N logN

n

(
in-context

generalization
error

)
+
N2 logN

T

(
pretraining

generalization
error

)
.

Hence if T ≳ n
2α+2d
2α+d and N ≍ n

d
2α+d , ICL achieves the

minimax optimal rate n−
2α

2α+d up to a log factor.

The first term is equal to the N -term optimal error (Dũng,
2011a). For the generalization gaps, n = Ω̃(N) is enough
to learn the basis expansion in context while T = Ω̃(N2)
is needed to learn the attention layer. However if T/N =
o(n), the third term dominates and the overall complexity
scales suboptimally as T− α

α+d , illustrating the importance
of sufficient pretraining. This also aligns with the task
diversity threshold observed by Raventos et al. (2023). Since
the amount of training data for LLMs is practically infinite in
practice, our result justifies the effectiveness of ICL at large
scales with only a small number of in-context examples.

A limitation of ICL. While DNNs can adapt to task
smoothness in supervised settings (Suzuki, 2019), ICL and
other meta-learning schemes are fundamentally constrained
to non-adaptive approximation since they cannot update
at inference time, and hence are lower bounded by the
Kolmogorov width N−α

d +( 1
p−

1
2 )+ (Vybíral, 2008) which is

strictly worse than the optimal rate in the regime 1 ≤ p < 2.

Avoiding the curse of dimensionality. The above optimal
rate inevitably suffers from the curse of dimensionality as
d appears in the exponent. In Appendix D.2, we extend
Theorem 4.5 to the anisotropic Besov space (Nikol’skii,
1975), a generalization to differing degrees of smoothness
(α1, · · · , αd) in each coordinate. Then the ICL rate only
depends on the quantity α̃ := (

∑
i α

−1
i )−1, and becomes

independent of d if only a few coordinates are important.

Sequential input and transformers. In Appendix E,
we also study a more complex setting where inputs x ∈
[0, 1]d×∞ are unbounded sequences of tokens (e.g. whole
documents) and ϕ is itself a deep transformer network. Here,
F◦ is taken to be the piecewise γ-smooth class (Takakura
& Suzuki, 2023) where positional smoothness may vary
depending on the input. Even in this infinite-dimensional
setting, we show that ICL still achieves near-optimal risk,
further justifying the efficacy of ICL for sequential data.

4.3. Learning a Coarser Basis

As another application of our framework, we illustrate how
pretraining can actively mitigate the complexity of ICL.
Consider the case where (ψ◦

j )
∞
j=1 is no longer the B-spline

basis of Bαp,q(X ) but instead is chosen from some wider
function space, say the unit ball of Bτp,q(X ) for a smaller
smoothness τ < α. Without knowledge of the basis, the
sample complexity of regression is a priori lower bounded
by the minimax rate n−

2τ
2τ+d by Proposition 4.3. With ICL,

however, we obtain the modified risk bound:
Corollary 4.6 (ICL for coarser basis). Suppose α > τ >
d/p, the basis (ψ◦

j )
∞
j=1 ⊂ U(Bτp,q(X )) and Assumptions 1,

2 hold with r = 1/2, s = α/d. Then if n ≳ N logN ,

R̄(Θ̂) ≲ N− 2α
d + 1

nN logN + 1
TN

1+α
τ + d

τ log3N.

Hence if T ≳ n1+
d

2α+d
α+d
τ and N ≍ n

d
2α+d , the risk con-

verges as n−
2α

2α+d log n.

The pretraining gap is now dominated by the higher entropy
of the DNN class and strictly worse than Theorem 4.5. Non-
theless, observe that the burden is entirely carried by T ;
with sufficient pretraining, the third term can be made arbi-
trarily small and the risk again attains n−

2α
2α+d . Hence ICL

improves upon the a priori lower bound n−
2τ

2τ+d at inference
time by encoding the coarser basis during pretraining.

5. Conclusion
We analyzed ICL of a transformer consisting of a DNN and a
linear attention layer pretrained on nonparametric regression
tasks from the perspective of statistical learning theory. We
proved that ICL achieves nearly minimax optimal risk in
the (anisotropic) Besov space and γ-smooth class. We also
showed that ICL can improve upon the a priori optimal rate
by learning informative representations. Our work opens up
new ways of understanding emergent properties of LLMs.
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Appendix
A. Related Works
Theory of ICL. A vigorous line of research has been directed towards understanding ICL of single-layer linear attention
models pretrained on the query prediction loss of linear regression tasks (Garg et al., 2022; Akyürek et al., 2023; Zhang
et al., 2023; Ahn et al., 2023; Mahankali et al., 2023; Wu et al., 2024). It has been shown that the global minimizer of the L2

pretraining loss implements one step of GD on a least-squares linear regression objective (Mahankali et al., 2023) and is
nearly Bayes optimal (Wu et al., 2024). Moreover, risk bounds with respect to the context length (Zhang et al., 2023) and
number of tasks (Wu et al., 2024) have been obtained.

Other works have examined ICL of more complex multi-layer transformers. Bai et al. (2023); von Oswald et al. (2023) give
specific transformer constructions which simulate GD in context, however it is unclear how such meta-algorithms may be
learned. Another approach is to study learning with representations, where tasks consist of a fixed nonlinear feature map
composed with a varying linear function. Guo et al. (2023) empirically found that trained transformers exhibit a separation
where lower layers transform the input and upper layers perform linear ICL.

Pretraining dynamics for ICL. While how ICL arises from optimization is not fully understood, there are encouraging
developments in this direction. Zhang et al. (2023) has shown for one layer of linear attention that running GD on the
population risk always converges to the global optimum. This was extended to incorporate a linear output layer by Zhang
et al. (2024), and to softmax attention by Huang et al. (2023); Li et al. (2024); Chen et al. (2024). Kim & Suzuki (2024)
considered a compound transformer equivalent to ours with a shallow MLP component and proved that the loss landscape
becomes benign in the mean-field limit, deriving convergence guarantees for the corresponding gradient dynamics. These
analyses indicate that the attention mechanism, while highly nonconvex, may possess structures favorable for gradient-based
optimization.

Meta-learning. The theoretical setting of ICL is closely related to meta-learning, where the goal is to infer a shared
representation ψ◦ with samples from a set of transformed tasks β⊤

i ψ
◦. When ψ◦ is linear, fast rates have been established

by Tripuraneni et al. (2020); Du et al. (2021), while the nonlinear case has been studied by Meunier et al. (2023) where ψ◦

is a feature projection into a reproducing kernel Hilbert space. Our results can be viewed as extending this body of work to
function spaces of generalized smoothness with a specific deep transformer architecture.

Optimal rates for DNNs. Our analysis extends established optimality results for classes of DNNs in ordinary supervised
regression settings to ICL. Suzuki (2019) has shown that deep feedforward networks with the ReLU activation can efficiently
approximate functions in the Besov space and thus achieve the minimax optimal rate. This has been extended to the
anisotropic Besov space (Suzuki & Nitanda, 2021), convolutional neural networks for infinite-dimensional input (Okumoto
& Suzuki, 2022), and transformers for sequence-to-sequence functions (Takakura & Suzuki, 2023).

B. Proof of Proposition 3.2
B.1. Proof of Theorem 3.1

The convergence rate of the empirical risk minimizer is established for a fixed regression problem y = f◦(z) + ξ in
Schmidt-Hieber (2020) when ξ is Gaussian; we modify the proof to incorporate bounded noise in Appendix C.1. The ICL
setup can be reduced to the ordinary case as follows. We consider the entire batch (β,X, ξ1:n, x̃) including the hidden
coefficient β as a single datum z with output ỹ. The true function is given as f◦(z) = F ◦

β (x̃) and the model class is taken to
be T N implicitly concatenated with the generative process (β,X, ξ1:n, x̃) 7→ (X,y, x̃). Then R(Θ), V(T N , ∥·∥L∞ , ϵ) and
T agree with the ordinary L2 risk, model class entropy and sample size.

B.2. Decomposing Approximation Error

Recall that

Θ∗ = (Γ∗, ϕ∗) =

((
ΣΨ,N +

1

n
Σ−1
β̄,N

)−1

, ϕ∗

¯
N :N̄

)
.

9



Transformers are Minimax Optimal Nonparametric In-Context Learners

We introduce some additional notation in the following fashion. For brevity, we write N̄ : ∞ instead of (N̄ + 1) : ∞ as an
exception.

Φ∗ = (ϕ∗

¯
N :N̄ (x1), · · · , ϕ∗

¯
N :N̄ (xn)) ∈ RN×n, ξ = (ξ1, . . . , ξn)

⊤ ∈ Rn,

Ψ◦ = (ψ◦(x1), . . . , ψ
◦(xn)) ∈ R∞×n, Ψ◦

¯
N :N̄ = (ψ◦

¯
N :N̄ (x1), · · · , ψ◦

¯
N :N̄ (xn)) ∈ RN×n,

Ψ◦
¯
N :∞ = (ψ◦

¯
N :∞(x1), · · · , ψ◦

¯
N :∞(xn)) ∈ R∞×n .

Since clipping f̌Θ does not make its difference with F ◦
β ∈ [−B,B] larger, it holds that

R(Θ∗) = E
[(
F ◦
β (x̃)− fΘ∗(X,y, x̃)

)2]
≤ E

[(
F ◦
β (x̃)− f̌Θ∗(X,y, x̃)

)2]
≤ 2E

[(
F ◦
β (x̃)− F ◦

β,N̄ (x̃)
)2]

+ 2E
[(
F ◦
β,N̄ (x̃)− f̌Θ∗(X,y, x̃)

)2]
≲ N−2s + E

[(
F ◦
β,N̄ (x̃)− ϕ∗(x̃)⊤

Γ∗Φ∗y

n

)2
]

due to Assumption 2 and N̄ ≍ N . Expanding the attention output as

ϕ∗(x̃)⊤
Γ∗Φ∗y

n
= (ϕ∗(x̃)− ψ◦

¯
N :N̄ (x̃) + ψ◦

¯
N :N̄ (x̃))⊤Γ∗

(Φ∗ −Ψ◦

¯
N :N̄

+Ψ◦

¯
N :N̄

)y

n

= (ϕ∗(x̃)− ψ◦

¯
N :N̄ (x̃))⊤Γ∗

(Φ∗ −Ψ◦

¯
N :N̄

)y

n

+ (ϕ∗(x̃)− ψ◦

¯
N :N̄ (x̃))⊤Γ∗

Ψ◦

¯
N :N̄

y

n

+ ψ◦

¯
N :N̄ (x̃)⊤Γ∗

(Φ∗ −Ψ◦

¯
N :N̄

)y

n

+ ψ◦

¯
N :N̄ (x̃)⊤Γ∗

Ψ◦

¯
N :N̄

y

n
,

and the final term further as

ψ◦

¯
N :N̄ (x̃)⊤Γ∗

Ψ◦

¯
N :N̄

y

n
= ψ◦

¯
N :N̄ (x̃)⊤Γ∗

Ψ◦

¯
N :N̄

(Ψ◦⊤β + ξ)

n

= ψ◦

¯
N :N̄ (x̃)⊤Γ∗

Ψ◦

¯
N :N̄

Ψ◦⊤

¯
N :N̄

β̄
¯
N :N̄

n
+ ψ◦

1:N (x̃)⊤Γ∗
Ψ◦

¯
N :N̄

(Ψ◦⊤
N̄ :∞βN̄ :∞ + ξ)

n
,

we obtain that

E

[(
F ◦
β,N̄ (x̃)− ϕ∗(x̃)⊤

Γ∗ Φ∗y

n

)2
]

≲ E

(F ◦
β,N̄ (x̃)− ψ◦

¯
N :N̄ (x̃)⊤Γ∗

Ψ◦

¯
N :N̄

Ψ◦⊤

¯
N :N̄

β̄
¯
N :N̄

n

)2
 (7)

+ E

(ψ◦

¯
N :N̄ (x̃)⊤Γ∗

Ψ◦

¯
N :N̄

(Ψ◦⊤
N̄ :∞βN̄ :∞ + ξ)

n

)2
 (8)

+ E

((ϕ∗(x̃)− ψ◦

¯
N :N̄ (x̃))⊤Γ∗

(Φ∗ −Ψ◦

¯
N :N̄

)y

n

)2
 (9)
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+ E

((ϕ∗(x̃)− ψ◦

¯
N :N̄ (x̃))⊤Γ∗

Ψ◦

¯
N :N̄

y

n

)2
 (10)

+ E

(ψ◦

¯
N :N̄ (x̃)⊤Γ∗

(Φ∗ −Ψ◦

¯
N :N̄

)y

n

)2
 . (11)

We proceed to control each term separately, from which the statement of Proposition 3.2 will follow.

B.3. Bounding Term (7)

Since F ◦
β,N̄

(x̃) = ψ◦
1:N̄

(x̃)⊤β1:N̄ = ψ◦

¯
N :N̄

(x̃)⊤β̄
¯
N :N̄ , we can introduce a (Γ∗)−1 factor to bound

E

(F ◦
β,N̄ (x̃)− ψ◦

¯
N :N̄ (x̃)⊤Γ∗

Ψ◦

¯
N :N̄

Ψ◦⊤

¯
N :N̄

β̄
¯
N :N̄

n

)2


= E

(F ◦
β,N̄ (x̃)− ψ◦

¯
N :N̄ (x̃)⊤Γ∗

(
Ψ◦

¯
N :N̄

Ψ◦⊤

¯
N :N̄

n
− (Γ∗)−1 + (Γ∗)−1

)
β̄
¯
N :N̄

)2


= E

(ψ◦

¯
N :N̄ (x̃)⊤Γ∗

(
Ψ◦

¯
N :N̄

Ψ◦⊤

¯
N :N̄

n
− ΣΨ,N − 1

n
Σ−1
β̄,N

)
β̄
¯
N :N̄

)2


≤ 2E

(ψ◦

¯
N :N̄ (x̃)⊤Γ∗

(
Ψ◦

¯
N :N̄

Ψ◦⊤

¯
N :N̄

n
− ΣΨ,N

)
β̄
¯
N :N̄

)2
 (12)

+ 2E

[(
ψ◦

¯
N :N̄ (x̃)⊤Γ∗

Σ−1
β̄,N

n
β̄
¯
N :N̄

)2
]
. (13)

Denote the operator norm (with respect to L2 norm of vectors) by ∥·∥op. For (12), noting that ΣΨ,N is positive definite,

E

(ψ◦

¯
N :N̄ (x̃)⊤Γ∗

(
Ψ◦

¯
N :N̄

Ψ◦⊤

¯
N :N̄

n
− ΣΨ,N

)
β̄
¯
N :N̄

)2


= E

(ψ◦

¯
N :N̄ (x̃)⊤Γ∗Σ

1/2
Ψ,N

(
Σ

−1/2
Ψ,N

Ψ◦

¯
N :N̄

Ψ◦⊤

¯
N :N̄

n
Σ

−1/2
Ψ,N − IN

)
Σ

1/2
Ψ,N β̄

¯
N :N̄

)2


= EX,β

[
β̄⊤

¯
N :N̄Σ

1/2
Ψ,N

(
Σ

−1/2
Ψ,N

Ψ◦

¯
N :N̄

Ψ◦⊤

¯
N :N̄

n
Σ

−1/2
Ψ,N − IN

)
Σ

1/2
Ψ,NΓ∗Ex̃

[
ψ◦

¯
N :N̄ (x̃)ψ◦

¯
N :N̄ (x̃)⊤

]
× Γ∗Σ

1/2
Ψ,N

(
Σ

−1/2
Ψ,N

Ψ◦

¯
N :N̄

Ψ◦⊤

¯
N :N̄

n
Σ

−1/2
Ψ,N − IN

)
Σ

1/2
Ψ,N β̄

¯
N :N̄

]

= EX

[
Tr

[(
Σ

−1/2
Ψ,N

Ψ◦

¯
N :N̄

Ψ◦⊤

¯
N :N̄

n
Σ

−1/2
Ψ,N − IN

)
Σ

1/2
Ψ,NEβ

[
β̄
¯
N :N̄ β̄

⊤

¯
N :N̄

]
Σ

1/2
Ψ,N

×

(
Σ

−1/2
Ψ,N

Ψ◦

¯
N :N̄

Ψ◦⊤

¯
N :N̄

n
Σ

−1/2
Ψ,N − IN

)
Σ

1/2
Ψ,NΓ∗ΣΨ,NΓ∗Σ

1/2
Ψ,N

]]

≲ EX

Tr[(Σ−1/2
Ψ,N

Ψ◦

¯
N :N̄

Ψ◦⊤

¯
N :N̄

n
Σ

−1/2
Ψ,N − IN

)2

Σ
1/2
Ψ,NΣβ̄,NΣ

1/2
Ψ,N

]
due to the independence of X, x̃ and β. For the last inequality, we have used the fact that both the Σ

1/2
Ψ,NΓ∗ΣΨ,NΓ∗Σ

1/2
Ψ,N

term and the matrix multiplied to it are positive semi-definite, and the former is bounded above as ≾ IN by Assumption 1.
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Furthermore, we utilize the following result proved in Appendix B.6:

Lemma B.1. EX

∥∥∥∥∥Σ−1/2
Ψ,N

Ψ◦

¯
N :N̄

Ψ◦⊤

¯
N :N̄

n
Σ

−1/2
Ψ,N − IN

∥∥∥∥∥
2

op

 ≲
N2r

n
logN +

N4r

n2
log2N .

It follows that (12) is bounded as

E

(ψ◦

¯
N :N̄ (x̃)⊤Γ∗

(
Ψ◦

¯
N :N̄

Ψ◦⊤

¯
N :N̄

n
− ΣΨ,N

)
β̄
¯
N :N̄

)2


≲ EX

∥∥∥∥∥Σ−1/2
Ψ,N

Ψ◦

¯
N :N̄

Ψ◦⊤

¯
N :N̄

n
Σ

−1/2
Ψ,N − IN

∥∥∥∥∥
2

op

Tr
[
Σ

1/2
Ψ,NΣβ̄,NΣ

1/2
Ψ,N

]
≲

(
N2r

n
logN +

N4r

n2
log2N

)
∥ΣΨ,N∥op Tr(Σβ̄,N )

≲
N2r

n
logN +

N4r

n2
log2N

since Tr(Σβ̄,N ) is bounded by Assumption 2.

Moreover for (13), we compute

E

[(
ψ◦

¯
N :N̄ (x̃)⊤Γ∗

Σ−1
β̄,N

n
β̄
¯
N :N̄

)2
]

= E

[
β̄⊤

¯
N :N̄

Σ−1
β̄,N

n
Γ∗ψ◦

¯
N :N̄ (x̃)ψ◦

¯
N :N̄ (x̃)⊤Γ∗

Σ−1
β̄,N

n
β̄
¯
N :N̄

]

= E

[
Tr

[
Σ−1
β̄,N

n
Γ∗ψ◦

¯
N :N̄ (x̃)ψ◦

¯
N :N̄ (x̃)⊤Γ∗

Σ−1
β̄,N

n
β̄
¯
N :N̄ β̄

⊤

¯
N :N̄

]]

= Tr

[
Σ−1
β̄,N

n
Γ∗Ex̃

[
ψ◦

¯
N :N̄ (x̃)ψ◦

¯
N :N̄ (x̃)⊤

]
Γ∗

Σ−1
β̄,N

n
Eβ
[
β̄
¯
N :N̄ β̄

⊤

¯
N :N̄

]]

= Tr

[
Σ−1
β̄,N

n
Γ∗ΣΨ,NΓ∗︸ ︷︷ ︸
positive definite

Σ−1
β̄,N

n
Σβ̄,N

]

≤ 1

n
Tr

[(
ΣΨ,N +

1

n
Σ−1
β̄,N

)
Γ∗ΣΨ,NΓ∗

]

=
1

n
Tr

[
ΣΨ,N

(
ΣΨ,N +

1

n
Σ−1
β̄,N

)−1
]
≤ N

n
.

B.4. Bounding Term (8)

Since the sequence of covariates x1, · · · , xn and noise ξ1, · · · , ξn are each i.i.d.,

E

(ψ◦

¯
N :N̄ (x̃)⊤Γ∗

Ψ◦

¯
N :N̄

(Ψ◦⊤
N̄ :∞βN̄ :∞ + ξ)

n

)2


= E

( n∑
i=1

ψ◦

¯
N :N̄ (x̃)⊤Γ∗

ψ◦

¯
N :N̄

(xi)(β
⊤
N̄ :∞ψ

◦
N̄ :∞(xi) + ξi)

n

)2


=
1

n2
E

( n∑
i=1

ψ◦

¯
N :N̄ (x̃)⊤Γ∗ψ◦

¯
N :N̄ (xi)β

⊤
N̄ :∞ψ

◦
N̄ :∞(xi) +

n∑
i=1

ψ◦

¯
N :N̄ (x̃)⊤Γ∗ψ◦

¯
N :N̄ (xi)ξi

)2


12
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≤ 1

n
E
[(
ψ◦

¯
N :N̄ (x̃)⊤Γ∗ψ◦

¯
N :N̄ (x)β⊤

N̄ :∞ψ
◦
N̄ :∞(x)

)2]
(14)

+
n− 1

n
E
[
ψ◦

¯
N :N̄ (x̃)⊤Γ∗ψ◦

¯
N :N̄ (x)β⊤

N̄ :∞ψ
◦
N̄ :∞(x)ψ◦

¯
N :N̄ (x̃)⊤Γ∗ψ◦

¯
N :N̄ (x′)β⊤

N̄ :∞ψ
◦
N̄ :∞(x′)

]
(15)

+
σ2

n
E
[(
ψ◦

¯
N :N̄ (x̃)⊤Γ∗ψ◦

¯
N :N̄ (x)

)2]
(16)

for independent samples x, x′, x̃ ∼ PX . We now bound the three terms separately below.

For (14), we have that

1

n
E
[(
ψ◦

¯
N :N̄ (x̃)⊤Γ∗ψ◦

¯
N :N̄ (x)β⊤

N̄ :∞ψ
◦
N̄ :∞(x)

)2]
=

1

n
E
[
ψ◦

¯
N :N̄ (x)⊤Γ∗ψ◦

¯
N :N̄ (x̃)ψ◦

¯
N :N̄ (x̃)⊤Γ∗ψ◦

¯
N :N̄ (x)ψ◦

N̄ :∞(x)⊤βN̄ :∞β
⊤
N̄ :∞ψ

◦
N̄ :∞(x)

]
=

1

n
Ex
[
ψ◦

¯
N :N̄ (x)⊤Γ∗ΣΨ,NΓ∗ψ◦

¯
N :N̄ (x)ψ◦

N̄ :∞(x)⊤Eβ
[
βN̄ :∞β

⊤
N̄ :∞

]
ψ◦
N̄ :∞(x)

]
≲

1

n
Ex
[
∥ψ◦

¯
N :N̄ (x)∥2ψ◦

N̄ :∞(x)⊤Eβ
[
βN̄ :∞β

⊤
N̄ :∞

]
ψ◦
N̄ :∞(x)

]
≲

1

n
sup

x∈suppPX

∥ψ◦

¯
N :N̄ (x)∥2 · lim

M→∞
Tr
(
Eβ
[
βN̄ :Mβ

⊤
N̄ :M

]
Ex
[
ψ◦
N̄ :M (x)ψ◦

N̄ :M (x)⊤
])

≲
1

n
sup

x∈suppPX

∥ψ◦

¯
N :N̄ (x)∥2 · lim

M→∞
Tr
(
Eβ
[
βN̄ :Mβ

⊤
N̄ :M

])
since ΣΨ,M ⪯ C2IN as M → ∞ by Assumption 2. As supx∥ψ◦

¯
N :N̄

(x)∥2 ≲ N−2r by (2) and the diagonal of

Eβ [βN̄ :Mβ
⊤
N̄ :M

] decays faster than N̄−2sM−1(logM)−2 when M > N̄ due to (4), it follows that

1

n
sup

x∈suppPX

∥ψ◦

¯
N :N̄ (x)∥2 · lim

M→∞
Tr
(
Eβ
[
βN̄ :Mβ

⊤
N̄ :M

])
≲

1

n
N2rN−2s.

Similarly, for (15), we have that

n− 1

n
E
[
ψ◦

¯
N :N̄ (x̃)⊤Γ∗ψ◦

¯
N :N̄ (x)β⊤

N̄ :∞ψ
◦
N̄ :∞(x)ψ◦

¯
N :N̄ (x̃)⊤Γ∗ψ◦

¯
N :N̄ (x′)β⊤

N̄ :∞ψ
◦
N̄ :∞(x′)

]
≤ E

[(
ψ◦

¯
N :N̄ (x̃)⊤Γ∗ψ◦

¯
N :N̄ (x)β⊤

N̄ :∞ψ
◦
N̄ :∞(x)

)⊤ (
ψ◦

¯
N :N̄ (x̃)⊤Γ∗ψ◦

¯
N :N̄ (x′)β⊤

N̄ :∞ψ
◦
N̄ :∞(x′)

)]
= Ex,x′,β

[
ψ◦
N̄ :∞(x)⊤βN̄ :∞ψ

◦

¯
N :N̄ (x)⊤Γ∗ΣΨ,NΓ∗ψ◦

¯
N :N̄ (x′)β⊤

N̄ :∞ψ
◦
N̄ :∞(x′)

]
= Eβ

[
Ex
[
ψ◦

¯
N :N̄ (x)β⊤

N̄ :∞ψ
◦
N̄ :∞(x)

]⊤
Γ∗ΣΨ,NΓ∗Ex

[
ψ◦

¯
N :N̄ (x)β⊤

N̄ :∞ψ
◦
N̄ :∞(x)

]]
≲ Eβ

[∥∥∥Ex [ψ◦

¯
N :N̄ (x)β⊤

N̄ :∞ψ
◦
N̄ :∞(x)

]∥∥∥2]
≲ Eβ

[
ψ◦
N̄ :∞(x)⊤βN̄ :∞β

⊤
N̄ :∞ψ

◦
N̄ :∞(x)

]
≲ N−2s.

And for (16), we have that

σ2

n
E
[(
ψ◦

¯
N :N̄ (x̃)⊤Γ∗ψ◦

¯
N :N̄ (x)

)2]
=
σ2

n
Tr
[
Γ∗Ex̃

[
ψ◦

¯
N :N̄ (x̃)ψ◦

¯
N :N̄ (x̃)⊤

]
Γ∗Ex

[
ψ◦

¯
N :N̄ (x)ψ◦

¯
N :N̄ (x)⊤

]]
=
σ2

n
Tr
[
Γ∗ΣΨ,NΓ∗︸ ︷︷ ︸
positive definite

ΣΨ,N

]
13
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≤ σ2

n
Tr

[
Γ∗ΣΨ,NΓ∗

(
ΣΨ,N +

1

n
Σ−1
β̄,N

)]
=
σ2

n
Tr [Γ∗ΣΨ,N ] ≤ σ2N

n
.

Therefore, we obtain the following bound:

E

(ψ◦

¯
N :N̄ (x̃)⊤Γ∗

Ψ◦

¯
N :N̄

(Ψ◦⊤
N̄ :∞βN̄ :∞ + ξ)

n

)2
 ≲

N2rN−2s

n
+N−2s +

σ2N

n
.

B.5. Bounding Terms (9)-(11)

For (9), we use the Cauchy-Schwarz inequality and Assumption 3 to bound

E

((ϕ∗(x̃)− ψ◦

¯
N :N̄ (x̃))⊤Γ∗

(Φ∗ −Ψ◦

¯
N :N̄

)y

n

)2


≤ 1

n

n∑
i=1

E
[(

(ϕ∗(x̃)− ψ◦

¯
N :N̄ (x̃))⊤Γ∗(ϕ∗(xi)− ψ◦

¯
N :N̄ (xi))yi

)2]

≤ 1

n

n∑
i=1

E
[
∥ϕ∗(x̃)− ψ◦

¯
N :N̄ (x̃)∥2∥Γ∗(ϕ∗(xi)− ψ◦

¯
N :N̄ (xi))∥2y2i

]
≤ ∥Γ∗∥2op

(
sup

x∈suppPX

∥ϕ∗(x)− ψ◦

¯
N :N̄ (x)∥2

)2

E
[
y2
]

≤ ∥Γ∗∥2op
(
N max

¯
N≤j≤N̄

∥ϕ∗j − ψ◦
j ∥2L∞(PX )

)2

E
[
y2
]

≲ N2δ4N (B2 + σ2).

Similarly for (10) and (11), we have

E

((ϕ∗(x̃)− ψ◦

¯
N :N̄ (x̃))⊤Γ∗

Ψ◦

¯
N :N̄

y

n

)2


≤ 1

n

n∑
i=1

E
[(

(ϕ∗(x̃)− ψ◦

¯
N :N̄ (x̃))⊤Γ∗ψ◦

¯
N :N̄ (xi)yi

)2]

≤ 1

n

n∑
i=1

E
[
∥ϕ∗(x̃)− ψ◦

¯
N :N̄ (x̃)∥2∥Γ∗ψ◦

¯
N :N̄ (xi)∥2y2i

]
≤ sup
x∈suppPX

∥ϕ∗(x)− ψ◦

¯
N :N̄ (x)∥2∥Γ∗∥2op sup

x∈suppPX

∥ψ◦

¯
N :N̄ (x)∥2E

[
y2
]

≲ Nδ2N ·N2r(B2 + σ2) = N2r+1δ2N (B2 + σ2)

and

E

(ψ◦

¯
N :N̄ (x̃)⊤Γ∗

(Φ∗ −Ψ◦

¯
N :N̄

)y

n

)2


≤ 1

n

n∑
i=1

E
[(
ψ◦

¯
N :N̄ (x̃)⊤Γ∗(ϕ∗(xi)− ψ◦

¯
N :N̄ (xi))yi

)2]

≤ 1

n

n∑
i=1

E
[
∥ψ◦

¯
N :N̄ (x̃)∥2∥Γ∗(ϕ∗(xi)− ψ◦

¯
N :N̄ (xi))∥2y2i

]
14
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≤ sup
x∈suppPX

∥ψ◦

¯
N :N̄ (x)∥2∥Γ∗∥2op sup

x∈suppPX

∥(ϕ∗(x)− ψ◦

¯
N :N̄ (x))∥2E

[
y2
]

≲ N2r+1δ2N (B2 + σ2).

This concludes the proof of Proposition 3.2.

B.6. Proof of Lemma B.1

We will make use of the following concentration bound and its corollary, proved at the end of this subsection.

Theorem B.2 (matrix Bernstein inequality). Let S1, · · · ,Sn ∈ RN×N be independent random matrices such that E[Si] = 0
and ∥Si∥op ≤ L almost surely for all i. Define Z =

∑n
i=1 Sn and the matrix variance statistic v(Z) as

v(Z) = max
{
∥E[ZZ⊤]∥op, ∥E[Z⊤Z]∥op

}
= max

{∥∥∑n
i=1 E[SiS⊤

i ]
∥∥
op
,
∥∥∑n

i=1 E[S⊤
i Si]

∥∥
op

}
.

Then it holds for all t > 0 that

Pr (∥Z∥op ≥ t) ≤ 2N exp

(
− t2

2v(Z) + 2
3Lt

)
.

Proof. See Tropp (2015), Theorem 6.1.1.

Corollary B.3. For matrices S1, · · · ,Sn satisfying the conditions of Theorem B.2, it holds that

E
[
1

n2
∥Z∥2op

]
≤ 4v(Z)

n2
(1 + log 2N) +

16L2

9n2
(2 + 2 log 2N + (log 2N)2).

We will apply Corollary B.3 to the matrices

Si := Σ
−1/2
Ψ,N ψ◦

¯
N :N̄ (xi)ψ

◦

¯
N :N̄ (xi)

⊤Σ
−1/2
Ψ,N − IN .

It is straightforward to verify that
E[Si] = Σ

−1/2
Ψ,N ΣΨ,NΣ

−1/2
Ψ,N − IN = 0

and

∥Si∥op ≲ ∥ψ◦

¯
N :N̄ (xi)ψ

◦

¯
N :N̄ (xi)

⊤∥op + 1 =

N̄∑
j=

¯
N

ψ◦
j (xi)

2 + 1 ≲ N2r

almost surely by Assumption 1.

Next, we evaluate the matrix variance statistic. Since each Si is symmetric,

v(Z) =

∥∥∥∥ n∑
i=1

E[SiS⊤
i ]

∥∥∥∥
op

=

∥∥∥∥ n∑
i=1

(
EX

[
Σ

−1/2
Ψ,N ψ◦

¯
N :N̄ (xi)ψ

◦

¯
N :N̄ (xi)

⊤Σ−1
Ψ,Nψ

◦

¯
N :N̄ (xi)ψ

◦

¯
N :N̄ (xi)

⊤Σ
−1/2
Ψ,N

]
− 2EX

[
Σ

−1/2
Ψ,N ψ◦

¯
N :N̄ (xi)ψ

◦

¯
N :N̄ (xi)

⊤Σ
−1/2
Ψ,N

]
+ IN

)∥∥∥∥
op

=

∥∥∥∥ n∑
i=1

EX

[
Σ

−1/2
Ψ,N ψ◦

¯
N :N̄ (xi)ψ

◦

¯
N :N̄ (xi)

⊤Σ−1
Ψ,Nψ

◦

¯
N :N̄ (xi)ψ

◦

¯
N :N̄ (xi)

⊤Σ
−1/2
Ψ,N

]
− nIN

∥∥∥∥
op

≤ n+ n

∥∥∥∥Ex [Σ−1/2
Ψ,N ψ◦

¯
N :N̄ (x)ψ◦

¯
N :N̄ (x)⊤Σ−1

Ψ,Nψ
◦

¯
N :N̄ (x)ψ◦

¯
N :N̄ (x)⊤Σ

−1/2
Ψ,N

] ∥∥∥∥
op

for a single sample x ∼ PX . The second term is further bounded as∥∥∥∥Ex [Σ−1/2
Ψ,N ψ◦

¯
N :N̄ (x)ψ◦

¯
N :N̄ (x)⊤Σ−1

Ψ,Nψ
◦

¯
N :N̄ (x)ψ◦

¯
N :N̄ (x)⊤Σ

−1/2
Ψ,N

] ∥∥∥∥
op

15
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≤
∥∥∥∥Ex [Σ−1/2

Ψ,N ψ◦

¯
N :N̄ (x)ψ◦

¯
N :N̄ (x)⊤Σ

−1/2
Ψ,N

] ∥∥∥∥
op

·
∥∥∥ψ◦⊤

¯
N :N̄Σ−1

Ψ,Nψ
◦

¯
N :N̄

∥∥∥
L∞(PX )

≲ ∥IN∥op ·
∥∥∥∥ N̄∑
j=

¯
N

(ψ◦
j )

2

∥∥∥∥
L∞(PX )

≲ N2r,

again by Assumption 1.

Hence we may apply Corollary B.3 with v(Z) ≲ nN2r, L ≲ N2r to conclude:

EX

∥∥∥∥∥Σ−1/2
Ψ,N

Ψ◦

¯
N :N̄

Ψ◦⊤

¯
N :N̄

n
Σ

−1/2
Ψ,N − IN

∥∥∥∥∥
2

op

 = E

[∥∥∥∥ 1n
n∑
i=1

Si

∥∥∥∥2
op

]
≲
N2r

n
logN +

N4r

n2
log2N.

Proof of Corollary B.3. From Theorem B.2 and with the change of variables λ = t2/n2, we have

Pr

(
1

n2
∥Z∥2op ≥ λ

)
≤ 2N exp

(
− n2λ

2v(Z) + 2
3Ln

√
λ

)
.

Since the probability is also bounded above by 1, it follows that

Pr

(
1

n2
∥Z∥2op ≥ λ

)
≤ 1 ∧ 2N exp

(
− n2λ

2(2v(Z) ∨ 2
3Ln

√
λ)

)
≤ 1 ∧ 2N exp

(
− n2λ

4v(Z)

)
+ 1 ∧ 2N exp

(
− 3n

√
λ

4L

)
,

and the expectation can be controlled as

E
[
1

n2
∥Z∥2op

]
=

∫ ∞

0

Pr

(
1

n2
∥Z∥2op ≥ λ

)
dλ

≤
∫ ∞

0

1 ∧ 2N exp

(
− n2λ

4v(Z)

)
dλ+

∫ ∞

0

1 ∧ 2N exp

(
− 3n

√
λ

4L

)
dλ.

For the first integral, we truncate at λ1 := 4v(Z)
n2 log 2N so that∫ ∞

0

1 ∧ 2N exp

(
− n2λ

4v(Z)

)
dλ = λ1 +

∫ ∞

λ1

2N exp

(
− n2λ

4v(Z)

)
dλ

=
4v(Z)

n2
log 2N +

4v(Z)

n2
.

For the second integral, we truncate at λ2 :=
(
4L
3n log 2N

)2
so that∫ ∞

0

1 ∧ 2N exp

(
− 3n

√
λ

4L

)
dλ

= λ2 +

∫ ∞

λ2

2N exp

(
− 3n

√
λ

4L

)
dλ

= λ2 −
16LN

3n

(√
λ+

4L

3n

)
exp

(
− 3n

√
λ

4L

)∣∣∣∣∣
∞

λ=λ2

=

(
4L

3n
log 2N

)2

+
8L

3n

(
4L

3n
log 2N +

4L

3n

)
.

Adding up, we conclude that

E
[
1

n2
∥Z∥2op

]
≤ 4v(Z)

n2
(1 + log 2N) +

16L2

9n2
(2 + 2 log 2N + (log 2N)2)

as was to be shown.
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C. Proofs on Metric Entropy
C.1. Modified Proof of Theorem 3.1

For a full proof of the original statement, we refer the reader to Section B.1 of Hayakawa & Suzuki (2020), which corrects
some technical flaws in the original proof. Here we only outline the necessary modification to incorporate the bounded noise
setting.

Denote an ϵ-cover of the model space by f1, · · · , fM . The only step which relies on the normality of noise ξ1:n is a
concentration result for the random variables

εj :=

∑n
i=1 ξi(fj(xi)− f◦(xi))[

(
∑n
i=1(fj(xi)− f◦(xi))2

]1/2 , 1 ≤ j ≤M,

where it is shown via the normality of εj that

E
[

max
1≤j≤M

ε2j

]
≤ 4σ2(logM + 1).

We will instead rely on Hoeffding’s inequality. By writing εj = w⊤
j ξ1:n =

∑n
i=1 wj,iξi where

wj,i =
fj(xi)− f◦(xi)[

(
∑n
i=1(fj(xi)− f◦(xi))2

]1/2 ,
since |wj,iξi| ≤ σ|wj,i| a.s. it follows that

Pr (|εj | ≥ u) ≤ 2 exp

(
− 2u2∑n

i=1(2σ|wj,i|)2

)
= 2 exp

(
− u2

2σ2

)
.

for all u > 0. Then the squared-exponential moment of each εj is bounded as

E
[
exp(tε2j )

]
= 1 +

∫ ∞

1

Pr
(
exp(tε2j ) ≥ λ

)
dλ

≤ 1 +

∫ ∞

1

2 exp

(
− log λ

2σ2t

)
dλ

≤ 1 + 2

∫ ∞

1

λ−
1

2σ2t dλ ≤ 3

by setting t = 1
4σ2 . Hence via Jensen’s inequality we obtain

exp

(
tE
[

max
1≤j≤M

ε2j

])
≤ E

[
max

1≤j≤M
exp(tε2j )

]
≤

M∑
j=1

E
[
exp(tε2j )

]
≤ 3M

and thus

E
[

max
1≤j≤M

ε2j

]
≤ 4σ2 log 3M,

retrieving the original result up to a constant.

C.2. Proof of Lemma 3.3

Let us take two functions fΘ1
, fΘ2

∈ T N for Θi = (Γi, ϕi), i = 1, 2 separated as

∥Γ1 − Γ2∥op ≤ δ1, max
1≤j≤N

∥ϕ1,j − ϕ2,j∥L∞(PX ) ≤ δ2.

Then it holds that

|fΘ1(X,y, x̃)− fΘ2(X,y, x̃)|
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≤ |f̌Θ1
(X,y, x̃)− f̌Θ2

(X,y, x̃)|

=

∣∣∣∣ 〈Γ1ϕ1(X)y

n
, ϕ1(x̃)

〉
−
〈
Γ2ϕ2(X)y

n
, ϕ2(x̃)

〉 ∣∣∣∣
=

1

n

∣∣∣ϕ1(x̃)⊤Γ1ϕ1(X)y − ϕ2(x̃)
⊤Γ1ϕ1(X)y + ϕ2(x̃)

⊤Γ1ϕ1(X)y

− ϕ2(x̃)
⊤Γ2ϕ1(X)y + ϕ2(x̃)

⊤Γ2ϕ1(X)y − ϕ2(x̃)
⊤Γ2ϕ2(X)y

∣∣∣
≤ 1

n
∥ϕ1(x̃)− ϕ2(x̃)∥∥Γ1∥op∥ϕ1(X)y∥+ 1

n
∥ϕ2(x̃)∥∥Γ1 − Γ2∥op∥ϕ1(X)y∥

+
1

n
∥ϕ2(x̃)∥∥Γ2∥op∥(ϕ1(X)− ϕ2(X))y∥

≤
(√

Nδ2C2

n
+
B′
Nδ1
n

) n∑
i=1

∥ϕ1(xi)∥|yi|+
B′
NC2

n

n∑
i=1

∥ϕ1(xi)− ϕ2(xi)∥|yi|

≤ (
√
Nδ2C2 +B′

Nδ1)B
′
N (B + σ) +B′

NC2

√
Nδ2(B + σ)

= B′2
N (B + σ)δ1 + 2B′

N (B + σ)C2

√
Nδ2.

Hence to construct an ϵ-cover GT of T N , it suffices to exhibit a δ1-cover GS of SN and a δ2-cover GF of FN for

δ1 =
ϵ

2B′2
N (B + σ)

, δ2 =
ϵ

4B′
N (B + σ)C2

√
N

and set GT = GS ×GF . For the metric entropy, this implies

V(T N , ∥·∥L∞ , ϵ) ≤ V(SN , ∥·∥op, δ1) + V(FN , ∥·∥L∞ , δ2).

We further bound the metric entropy of SN with the following result, proved in Appendix C.3.

Lemma C.1. For δ ≤ 1

2
it holds that V(SN , ∥·∥op, δ) ≲ N2 log

1

δ
.

Substituting into the above, we conclude that

V(T N , ∥·∥L∞ , ϵ) ≲ N2 log
B′2
N

ϵ
+ V

(
FN , ∥·∥L∞ ,

ϵ

4B′
N (B + σ)C2

√
N

)
.

The choice of δ2 is not important as long as the metric entropy of FN is at most polynomial in δ2.

C.3. Proof of Lemma C.1

Let Γ1,Γ2 ∈ SN and consider their diagonalizations

Γi = UiΛiU
⊤
i , Λi = diag(λi,1, · · · , λi,N ), i = 0, 1,

where Ui ∈ ON , the orthogonal group in dimension N , and 0 ≤ λi,j ≤ C3 for each 1 ≤ j ≤ N . Assuming

∥U1 −U2∥op ≤ δ

4C3
, |λ1,j − λ2,j | ≤

δ

2
∀j ≤ N,

it follows that

∥Γ1 − Γ2∥op
= ∥U1Λ1U

⊤
1 −U1Λ1U

⊤
2 +U1Λ1U

⊤
2 −U2Λ1U

⊤
2 +U2Λ1U

⊤
2 −U2Λ2U

⊤
2 ∥op

≤ 2∥Λ1∥L∞∥U1 −U2∥op + ∥Λ1 − Λ2∥L∞

≤ 2C3 ·
δ

4C3
+
δ

2
= δ.

Moreover, the covering number of ON in operator norm is given by the following result.
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Theorem C.2 (Szarek (1981), Proposition 6). There exist universal constants c1, c2 > 0 such that for all N ∈ N and
δ ∈ (0, 2], (c1

δ

)N(N−1)
2 ≤ N (ON , ∥·∥op, δ) ≤

(c2
δ

)N(N−1)
2

.

Hence we obtain that

V(SN , ∥·∥op, δ) ≤ V
(
ON , ∥·∥op,

δ

4C3

)
+ V

(
[0, C3]

N , ∥·∥L∞ ,
δ

2

)
≤ N(N − 1)

2
log

c2
δ

+N log
2C3

δ

≲ N2 log
1

δ
.

Finally, we remark that if elements of the domain SN are not constrained to be symmetric, we can alternatively consider the
singular value decomposition and separately bound entropy of the two rotation components, giving the same result up to
constants.

D. Details on Besov-type Spaces
D.1. Besov Space

D.1.1. VERIFICATION OF ASSUMPTIONS

It is known that the Hölder space Cα(X ) = Bα∞,∞(X ) for α > 0, α /∈ N and the Sobolev space Wm
2 (X ) = Bm2,2(X ) for

m ∈ N as well as the embeddings Bmp,1(X ) ↪→ Wm
p (X ) ↪→ Bmp,∞(X ); if α > d/p, Bαp,q(X ) compactly embeds into the

space of continuous functions on X . See Triebel (1983); Giné & Nickl (2015) for more details.

We first give some background on wavelet decomposition. The decay rate s = α/d is intrinsic to the Besov space as
shown by the following result, which allows us to translate between functions f ∈ Bαp,q(X ) and their B-spline coefficient
sequences.

Lemma D.1 (DeVore & Popov (1988), Corollary 5.3). If α > d/p and m > α + 1 − 1/p, a function f ∈ Lp(X ) is in
Bαp,q(X ) if and only if f can be represented as

f =

∞∑
k=0

∑
ℓ∈Idk

β̃k,ℓω
d
k,ℓ

such that the coefficients satisfy

∥β̃∥bαp,q :=

[ ∞∑
k=0

[
2k(α−d/p)

(∑
ℓ∈Idk

|β̃k,ℓ|p
)1/p

]q]1/q
<∞,

with appropriate modifications if p = ∞ or q = ∞. Moreover, the two norms ∥β̃∥bαp,q and ∥f∥Bα
p,q

are equivalent.

We can now check that we have not given ourselves an easier learning problem with (5). In particular, Lemma D.1 implies
that for any f ∈ U(Bαp,q(X )) the p-norm average of β̃k,ℓ for ℓ ∈ Idk at resolution k is bounded as(

1

|Idk |
∑
ℓ∈Idk

|β̃k,ℓ|p
)1/p

≲ (2−kd)1/p · 2k(d/p−α)∥f∥Bα
p,q

≤ 2−kα,

and the coefficients βk,ℓ = 2−kd/2β̃k,ℓ w.r.t. the scaled basis (2kd/2ωdk,ℓ)k,ℓ satisfy(
1

|Idk |
∑
ℓ∈Idk

|βk,ℓ|p
)1/p

≲ (2kd)−α/d−1/2. (17)
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Thus it is natural in a probabilistic sense to assume E[βpk,ℓ]1/p ≲ (2kd)−α/d−1/2. This will be the case if for instance we
sample (βk,ℓ)ℓ∈Idk uniformly from the p-norm ball (17). This matches Assumption 4 up to the logarithmic factor and hence
the rate is nearly tight in variance, even though (17) only applies to the average over locations rather than each coefficient
explicitly. See also the discussion in Lemma 2 of Suzuki (2019).

Assumption 1. We take m to be even for simplicity. The wavelet system (ωdK,ℓ)ℓ∈IdK at each resolution K is linearly
independent; for any g ∈ L2(X ) that can be expressed as

g =
∑
ℓ∈IdK

βK,ℓ2
Kd/2ωdK,ℓ

we have the quasi-norm equivalence (Dũng, 2011b, 2.15)

∥g∥2 ≍ 2−Kd/2
( ∑
ℓ∈IdK

2Kdβ2
K,ℓ

)1/2

= ∥(βK,ℓ)ℓ∈IdK∥2

which implies that the covariance matrix Ex∼Unif([0,1]d)[ψ
◦

¯
N :N̄

(x)ψ◦

¯
N :N̄

(x)⊤] is bounded above and below. Since we assume
PX has Lebesgue density bounded above and below, it follows that ΣΨ,N is uniformly bounded above and below for all
K ≥ 0.

In contrast, any B-spline at a lower resolution k < K can be exactly expressed as a linear combination of elements of
(ωdK,ℓ)ℓ∈IdK by repeatedly applying the following relation.

Lemma D.2 (refinement equation). For even m and r = (r1, · · · , rd)⊤, 1 = (1, · · · , 1)⊤ ∈ Rd it holds that

ωdk,ℓ =

m∑
r1,··· ,rd=0

2(−m+1)d
d∏
i=1

(
m

ri

)
· ωdk+1,2ℓ+r−m

2 1. (18)

Proof. The relation for one-dimensional wavelets is given in equation (2.21) of Dũng (2011b),

ιm(x) = 2−m+1
m∑
r=0

(
m

r

)
ιm

(
2x− r +

m

2

)
,

from which it follows that

ωdk,ℓ(x) =

d∏
i=1

ιm(2kxi − ℓi)

=

m∑
r1,··· ,rd=0

2(−m+1)d
d∏
i=1

(
m

ri

)
ιm

(
2k+1xi − 2ℓi − ri +

m

2

)

=

m∑
r1,··· ,rd=0

2(−m+1)d
d∏
i=1

(
m

ri

)
· ωdk+1,2ℓ+r−m

2 1(x)

as was to be shown.

Therefore we select all B-splines at a fixed resolution K to approximate the target tasks,

N =
∣∣IdK∣∣ = (m+ 1 + 2K)d ≍ 2Kd

and

¯
N =

K−1∑
k=0

∣∣Idk ∣∣+ 1 ≍ N, N̄ =

K∑
k=0

∣∣Idk ∣∣ ≍ N.

20



Transformers are Minimax Optimal Nonparametric In-Context Learners

It is straightforward to see that 0 ≤ ωdk,ℓ(x) ≤ 1 for all x ∈ X and moreover the B-splines (extended to all ℓ ∈ Zd) form a
partition of unity of Rd at all resolutions:∑

ℓ∈Zd

ωdk,ℓ(x) ≡ 1, ∀x ∈ Rd, ∀k ≥ 0.

Then for all x ∈ X we have the bound
N̄∑
j=

¯
N

ψ◦
j (x)

2 =
∑
ℓ∈IdK

2KdωdK,ℓ(x)
2 ≤ 2Kd

∑
ℓ∈Zd

ωdK,ℓ(x) = 2Kd ≲ N,

and hence (2) holds with r = 1/2.

Assumption 2. For any β ∈ suppPβ we have that

∥F ◦
β∥L∞(PX ) ≤

∞∑
k=0

∥∥∥∥∥∑
ℓ∈Idk

βk,ℓ · 2kd/2ωdk,ℓ

∥∥∥∥∥
L∞(PX )

≤
∞∑
k=0

2kd/2 max
ℓ∈Idk

|βk,ℓ| ·

∥∥∥∥∥∑
ℓ∈Idk

ωdk,ℓ

∥∥∥∥∥
L∞(X )

≤
∞∑
k=0

2kd(1/2+1/p)

(
1

|Idk |
∑
ℓ∈Idk

|βk,ℓ|p
)1/p∥∥∥∥∥∑

ℓ∈Idk

ωdk,ℓ

∥∥∥∥∥
L∞(X )

≲
∞∑
k=0

2kd(1/2+1/p) · (2kd)−α/d−1/2∥F ◦
β∥Bα

p,q

≲ (1− 2d/p−α)−1 =: B.

Furthermore, the convergence rate of the truncated approximation F ◦
β,N̄

is determined by the decay rate of β in Lemma D.1
as follows (it does not matter whether we bound F ◦

β,N̄
or F ◦

β,N since N̄ ≍ N ). We consider a truncation of all resolutions
lower than K so that N̄,N ≍ 2Kd. Then it holds that

∥F ◦
β − F ◦

β,N̄∥2L2(PX ) =

∫
X

( ∞∑
j=N̄+1

βjψ
◦
j (x)

)2

PX (dx)

=

∞∑
j,k=N̄+1

βjβkEx[ψ◦
j (x)ψ

◦
k(x)]

≤ lim
M→∞

C2∥βN̄ :M∥2

= C2

∞∑
k=K

∑
ℓ∈Idk

β2
k,ℓ

≲
∞∑
k=K

|Idk |1−2/p

(∑
ℓ∈Idk

|βk,ℓ|p
)2/p

≲
∞∑
k=K

2kd · (2kd)−2α/d−1

=
2−2αK

1− 2−2α
≍ N−2α/d,

where for the last two inequalities we have used the inequality ∥z∥2 ≤ D1/2−1/p∥z∥p for z ∈ RD and p ≥ 2 in conjunction
with (17). Thus our choice of s = α/d is justified. Under this choice, (5) directly implies (4) as

Eβ [β2
K,ℓ] ≲ 2−Kd(2s+1)K−2 ≍ N̄−2s−1(log N̄)−2
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holds for the basis elements at each resolution K, that is for those numbered between
¯
N and N̄ .

Remark D.3. When 1 ≤ p < 2, the truncation up to N̄ does not suffice to achieve the N−2α/d approximation rate, and
basis elements must be judiciously selected from a wider resolution range. More concretely, a size N subset of all wavelets
up to resolution K ′ = ⌈K(1 + ν−1)⌉ where ν = pα/2d − 1/2 > 0 must be used (Suzuki & Nitanda, 2021, Lemma 2).
Hence the exponent is a factor of 1 + ν−1 worse w.r.t. N ′ ≍ 2K

′d, leading to the inevitable suboptimal rate.

To show boundedness of Tr(Σβ̄,N ), we analyze the composition of the aggregated coefficients β̄ using the following result.

Corollary D.4. For any 0 ≤ k < k′ there exists constants γk,k′,ℓ,ℓ′ ≥ 0 for ℓ ∈ Idk , ℓ′ ∈ Idk′ such that∑
ℓ∈Idk

βk,ℓ2
kd/2ωdk,ℓ =

∑
ℓ′∈Id

k′

β̄k′,ℓ′2
k′d/2ωdk′,ℓ′ , β̄k′,ℓ′ =

∑
ℓ∈Idk

γk,k′,ℓ,ℓ′βk,ℓ

holds for all (βk,ℓ)ℓ∈Idk . Moreover, it holds that∑
ℓ∈Idk

γk,k′,ℓ,ℓ′ ≤ 2(k−k
′)d/2,

∑
ℓ′∈Id

k′

γk,k′,ℓ,ℓ′ ≤ 2(k
′−k)d/2.

The statement follows directly from the more general Proposition D.11, stated and proved in Appendix D.3 below, by
restricting to wavelets with uniform resolution across dimensions. Using Corollary D.4, we can refine each lower resolution
component of F ◦

β to resolution K:

F ◦
β,N̄ =

N̄∑
j=1

βjψ
◦
j =

K∑
k=0

∑
ℓ∈Idk

βk,ℓ2
kd/2ωdk,ℓ =

K∑
k=0

∑
ℓ′∈IdK

∑
ℓ∈Idk

γk,K,ℓ,ℓ′βk,ℓ2
Kd/2ωdK,ℓ′ .

Thus each aggregated coefficient, indexed here by ℓ ∈ IdK , can be expressed as

β̄K,ℓ =

K∑
k=0

∑
ℓ∈Idk

γk,K,ℓ,ℓ′βk,ℓ.

Hence it follows that

Eβ [β̄2
K,ℓ] =

K∑
k=0

∑
ℓ∈Idk

γ2k,K,ℓ,ℓ′Eβ [β2
k,ℓ]

≲
K∑
k=0

(∑
ℓ∈Idk

γk,K,ℓ,ℓ′

)2

2−k(2α+d)k−2

≤
K∑
k=0

2(k−K)d · 2−k(2α+d)k−2

≲ 2−Kd ·
K∑
k=0

2−2kαk−2

≍ N−1,

from which we conclude that Tr(Σβ̄,N ) =
∑
ℓ∈IdK

Eβ [β̄2
K,ℓ] ≲ N ·N−1 is uniformly bounded.

Finally for the verification of Assumption 3, see Appendix D.1.2.

D.1.2. PROOF OF LEMMA 4.4

We use the following result to approximate each wavelet ωdK,ℓ at resolution K with the class (6). The proof, in turn, relies
on the construction by Yarotsky (2016) of DNNs which efficiently approximates the multiplication operation.
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Lemma D.5 (Suzuki (2019), Lemma 1). For all δ > 0, there exists a ReLU neural network ω̃ ∈ FDNN(L,W, S,M) with

L = 3 + 2
⌈
log2

(
3d∨m(1 + dm−1/2(2e)m+1)δ−1

)
+ 5
⌉
⌈log2(d ∨m)⌉,

W =W0 = 6dm(m+ 2) + 2d, S = LW 2, M = 2(m+ 1)m

satisfying supp ω̃ ⊆ [0,m+ 1]d and ∥ωd0,0 − ω̃∥L∞(X ) ≤ δ.

Here, δ is also dependent on N .

Now consider N identical copies of ω̃ in parallel, where each module is preceded by the scaling (xi)
d
i=1 7→ (2Kxi − ℓi)

d
i=1

for ℓ ∈ IdK and whose output is scaled by 2Kd/2. In particular, these operations can be implemented by K ≲ logN
consecutive additional layers with norm bounded by a constant. Hence each module ϕ∗

¯
N , · · · , ϕ∗N̄ approximates the basis

2Kd/2ωdK,ℓ with 2Kd/2δ ≲
√
Nδ accuracy, and substituting δN =

√
Nδ gives that

∥ψ◦
j − ϕ∗j∥L∞(PX ) ≤ δN ,

¯
N ≤ j ≤ N̄,

with L ≲ log δ−1 + logN ≲ log δ−1
N + logN . Note that the sparsity S is only multiplied by a factor of N since different

modules do not share any connections. Moreover the target basis has 2-norm bounded as

∥ψ◦

¯
N :N̄ (x)∥2 ≲

( ∑
ℓ∈IdK

2KdωK,ℓ(x)
2

)1/2

≤

(
2Kd

∑
j∈Zd

ωK,ℓ(x)

)1/2

≍
√
N,

where we have again used the sparsity of ωdk,ℓ at each resolution. Hence we may clip the magnitude of the vector output ϕ
by B′

N and the approximation guarantee remains unchanged.

To bound the covering number of FN , we directly apply the following result.
Lemma D.6 (Suzuki (2019), Lemma 3). The covering number of FDNN is bounded as

N (FDNN(L,W,S,M), ∥·∥L∞ , ϵ) ≤
(
L(M ∨ 1)L−1(W + 1)2L

ϵ

)S
.

Since clipping the magnitude of the outputs does not increase the covering number, we conclude:

V(FN , ∥·∥L∞ , ϵ) ≤ N · V(FDNN(L,W, S,M), ∥·∥L∞ , ϵ)

≤ SN logL+ SLN logM + 2SLN log(W + 1) + SN log
1

ϵ

≲ N log
N

δN
+N log

1

ϵ
.

D.1.3. PROOF OF THEOREM 4.5

By Lemma 3.3 and Lemma 4.4, the metric entropy of T N is bounded as

V(T N , ∥·∥L∞ , ϵ) ≲ N2 log
N

ϵ
+N log

N2

δN ϵ
.

Combining with Theorem 3.1 and Proposition 3.2 with r = 1/2 and s = α/d gives

R̄(Θ̂) ≲
N

n
logN +

N2

n2
log2N +N−2α/d +N2δ2N +

1

T

(
N2 log

N

ϵ
+N log

N2

δN ϵ

)
+ ϵ.

Substituting δN ≍ N−1−α/d and ϵ ≍ N−2α/d yields the desired bound.
Remark D.7. We can see that the N2 logN term in the pretraining generalization gap is due to the covering bound of the
attention matrix Γ, while the entropy of the DNN class is only N logN . Hence the required task diversity may be lessened
by considering low-rank structure or approximation of attention heads (Bhojanapalli et al., 2020; Chen et al., 2021).
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D.2. Anisotropic Besov Space

D.2.1. DEFINITIONS AND RESULTS

For 1 ≤ p, q ≤ ∞, directional smoothness α = (α1, · · · , αd) ∈ Rd>0 and r = maxi≤d⌊αi⌋ + 1, we define ∥·∥Bα
p,q

=
∥·∥Lp + | · |Bα

p,q
where

|f |Bα
p,q

:=

{(∑∞
k=0

[
2kwr,p(f, (2

−k/α1 , · · · , 2−k/αd))
]q)1/q

q <∞
supk≥0 2

kwr,p(f, (2
−k/α1 , · · · , 2−k/αd)) q = ∞.

The anisotropic Besov space is defined as

Bαp,q(X ) = {f ∈ Lp(X ) | ∥f∥Bα
p,q

<∞}.

The definition reduces to the usual Besov space if α1 = · · · = αd; see Vybíral (2006); Triebel (2011) for details. We also
write α = maxi αi, α = mini αi and the harmonic mean smoothness as

α̃ :=
( d∑
i=1

α−1
i

)−1

.

For the anisotropic Besov space, we need to redefine the wavelet basis so that the sensitivity to resolution k ∈ Z≥0 differs
for each component depending on α. Define the quantities

∥k∥α/α :=

d∑
i=1

⌊kα/αi⌋, Id,αk :=

d∏
i=1

{−m,−m+ 1, · · · , 2⌊kα/αi⌋} ⊂ Zd .

We then set for each k ≥ 0 and ℓ ∈ Id,αk

ωd,αk,ℓ (x) := ωd(⌊kα/α1⌋,··· ,⌊kα/αd⌋),ℓ(x) =

d∏
i=1

ιm(2⌊kα/αi⌋xi − ℓi),

and take the scaled basis
{ψ◦

j | j ∈ N} = {2∥k∥α/α/2ωd,αk,ℓ | k ∈ Z≥0, ℓ ∈ Id,αk }

with the natural hierarchy induced by k.

The minimax optimal rate for the anisotropic Besov space is equal to n−
2α̃

2α̃+1 (Suzuki & Nitanda, 2021, Theorem 4). Our
result for in-context learning is as follows.

Theorem D.8 (minimax optimality of ICL in anisotropic Besov space). Let α ∈ Rd>0 with α̃ > 1/p and F◦ = U(Bαp,q(X )).
Suppose that PX has positive Lebesgue density ρX bounded above and below on X . Also suppose that all coefficients are
independent and

Eβ [βk,ℓ] = 0, Eβ [β2
k,ℓ] ≲ 2−kα(2+1/α̃)k−2, ∀k ≥ 0, ℓ ∈ Id,αk . (19)

Then for n ≳ N logN we have

R̄(Θ̂) ≲ N−2α̃ +
N logN

n
+
N2 logN

T
.

Hence if T ≳ nN and N ≍ n
1

2α̃+1 , in-context learning achieves the rate n−
2α̃

2α̃+1 log n which is minimax optimal up to a
polylog factor.

D.2.2. PROOF OF THEOREM D.8

The overall approach is similar to Appendix D.1. The decay rate of functions in the anisotropic Besov space is characterized
by the following result which extends Lemma D.1.
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Lemma D.9 (Suzuki & Nitanda (2021), Lemma 2). If α̃ > 1/p and m > α + 1 − 1/p, a function f ∈ Lp(X ) is in
MBαp,q(X ) if and only if f can be represented as

f =
∑
k∈Zd

≥0

∑
ℓ∈Id,αk

β̃k,ℓω
d,α
k,ℓ (x)

such that the coefficients satisfy

∥β̃∥bαp,q :=

[ ∞∑
k=0

[
2kα−∥k∥α/α/p

( ∑
ℓ∈Id,αk

|β̃k,ℓ|p
)1/p

]q]1/q
≲ ∥f∥Bα

p,q
.

Moreover, the two norms ∥β̃∥bαp,q and ∥f∥Bα
p,q

are equivalent.

We again select all B-splines (ωd,αK,ℓ)ℓ∈IdK at each resolution K to approximate the target functions. By repeatedly applying
the refinement equation for one-dimensional wavelets as many times as needed to each dimension separately, we may
express any B-spline at a lower resolution k < K as a linear combination of (ωd,αK,ℓ)ℓ∈IdK similarly to Lemma D.2. See
Proposition D.11 for details. We thus have

N = |Id,αK | =
d∏
i=1

(m+ 1 + 2⌊Kα/αi⌋) ≍ 2∥K∥α/α .

Since ∥k∥α/α = kα/α̃+Ok(1) always holds, it also follows that

N̄ =

K∑
k=0

|Id,αk |+ 1 ≍
K∑
k=0

2∥k∥α/α ≍
K∑
k=0

(2α/α̃)k ≍ 2Kα/α̃ ≍ N

and similarly
¯
N ≍ N . Therefore,

N̄∑
j=

¯
N

ψ◦
j (x)

2 ≤ 2∥K∥α/α

∑
ℓ∈Id,αk

ωd,αK,ℓ(x)
2 ≤ 2∥K∥α/α ≍ N

and the scaled coefficients decay in average as(
1

|Id,αk |

∑
ℓ∈Id,αk

|βk,ℓ|p
)1/p

≲

(
d∏
i=1

2⌊kα/αi⌋

)−1/p

2−∥k∥α/α/2

( ∑
ℓ∈Id,αk

|β̃k,ℓ|p
)1/p

≲ 2−∥k∥α/α/2−kα∥f∥Bα
p,q

≍ N−(α̃+1/2)∥f∥Bα
p,q
.

For Assumption 2, we can check that

∥F ◦
β∥L∞(PX ) ≤

∞∑
k=0

∥∥∥∥∥ ∑
ℓ∈Id,αk

βk,ℓ · 2∥k∥α/α/2ωd,αk,ℓ

∥∥∥∥∥
L∞(PX )

≤
∞∑
k=0

2(1/2+1/p)∥k∥α/α

(
1

|Id,αk |

∑
ℓ∈Id,αk

|βk,ℓ|p
)1/p

≲
∞∑
k=0

2(1/2+1/p)∥k∥α/α · 2−∥k∥α/α/2−kα

≲
(
1− 2α/α̃(1/p−α̃)

)−1

=: B
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and for a resolution cutoff K > 0, N̄ ≍ 2∥K∥α/α the truncation error satisfies

∥F ◦
β − F ◦

β,N̄∥2L2(PX ) ≲
∞∑

k=K+1

∑
ℓ∈Id,αk

β2
k,ℓ

≲
∞∑

k=K+1

|Id,αk |1−2/p

( ∑
ℓ∈Id,αk

|βk,ℓ|p
)2/p

≲
∞∑

k=K+1

2∥k∥α/α · 2−∥k∥α/α−2kα

≍ 2−2Kα ≍ N−2α̃.

Thus we may set r = 1/2, s = α̃ and take the variance decay rate (19) as

Eβ [β2
k,ℓ] ≲ 2−∥k∥α/α(2α̃+1)k−2 ≍ 2−kα(2+1/α̃))k−2.

For boundedness of Tr(Σβ̄,N ), we use the following result which is also obtained from Proposition D.11 by considering
resolution vectors (⌊kα/α1⌋, · · · , ⌊kα/αd⌋) and (⌊k′α/α1⌋, · · · , ⌊k′α/αd⌋).

Corollary D.10. For any 0 ≤ k < k′ there exists constants γk,k′,ℓ,ℓ′ ≥ 0 for ℓ ∈ Id,αk , ℓ′ ∈ Id,αk′ such that∑
ℓ∈Id,αk

βk,ℓ2
∥k∥α/α/2ωd,αk,ℓ =

∑
ℓ′∈Id,α

k′

β̄k′,ℓ′2
∥k′∥α/α/2ωd,αk′,ℓ′ , β̄k′,ℓ′ =

∑
ℓ∈Id,αk

γk,k′,ℓ,ℓ′βk,ℓ

holds for all (βk,ℓ)ℓ∈Id,αk
. Moreover, it holds that∑

ℓ∈Id,αk

γk,k′,ℓ,ℓ′ ≤ 2(∥k∥α/α−∥k′∥α/α)/2,
∑

ℓ′∈Id,α
k′

γk,k′,ℓ,ℓ′ ≤ 2(∥k
′∥α/α−∥k∥α/α)/2.

We apply Corollary D.10 to refine all components of F ◦
β,N̄

to resolution K:

F ◦
β,N̄ =

K∑
k=0

∑
ℓ∈Id,αk

βk,ℓ2
∥k∥α/α/2ωd,αk,ℓ =

K∑
k=0

∑
ℓ′∈Id,αK

∑
ℓ∈Id,αk

γk,K,ℓ,ℓ′βk,ℓ2
∥K∥α/α/2ωd,αK,ℓ′ .

Hence it follows that

Eβ [β̄2
K,ℓ] =

K∑
k=0

∑
ℓ∈Id,αk

γ2k,K,ℓ,ℓ′Eβ [β2
k,ℓ]

≲
K∑
k=0

( ∑
ℓ∈Id,αk

γk,K,ℓ,ℓ′

)2

2−kα(2+1/α̃)k−2

≤
K∑
k=0

2∥k∥α/α−∥K∥α/α · 2−kα(2+1/α̃)k−2

≲ 2−∥K∥α/α ·
K∑
k=0

2−2kαk−2

≍ N−1,

and we again conclude that Tr(Σβ̄,N ) is uniformly bounded.

The rest of the proof proceeds similarly to the ordinary Besov space.
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D.3. Wavelet Refinement

In this subsection, we present and prove an auxiliary result concerning the refinement of B-spline wavelets and the recurrence
relations satisfied by their coefficient sequences.

Proposition D.11. For any k, k′ ∈ Zd≥0 such that k′ − k ∈ Zd≥0 there exists constants γk,k′,ℓ,ℓ′ ≥ 0 for ℓ ∈ Idk , ℓ′ ∈ Idk′
such that ∑

ℓ∈Idk

βk,ℓ2
∥k∥1/2ωdk,ℓ =

∑
ℓ′∈Id

k′

β̄k′,ℓ′2
∥k′∥1/2ωdk′,ℓ′ , β̄k′,ℓ′ =

∑
ℓ∈Idk

γk,k′,ℓ,ℓ′βk,ℓ (20)

holds for all (βk,ℓ)ℓ∈Idk . Moreover, it holds that∑
ℓ∈Idk

γk,k′,ℓ,ℓ′ ≤ 2−∥k′−k∥1/2,
∑
ℓ′∈Id

k′

γk,k′,ℓ,ℓ′ ≤ 2∥k
′−k∥1/2.

Proof. We proceed by induction on ∥k′ − k∥1. When k′ = k + ej for some 1 ≤ j ≤ d, we can refine each ωdk,ℓ using
equation (2.21) of Dũng (2011b) as

ωdk,ℓ(x) =
d∏
i=1

ιm(2kixi − ℓi)

= 2−m+1
∏
i̸=j

ιm(2kixi − ℓi)

m∑
r=0

(
m

r

)
ιm

(
2kj+1xj − 2ℓj − r +

m

2

)
= 2−m+1

m∑
r=0

(
m

r

)
ωdk+ej ,ℓ+(ℓj+r−m

2 )ej
(x).

Since ℓ+ (ℓj + r − m
2 )ej matches a given location vector ℓ′ ∈ Idk+ej if and only if ℓi = ℓ′i (i ̸= j) and ℓ′j = 2ℓj + r − m

2 ,
comparing coefficients in (20) yields

γk,k+ej ,ℓ,ℓ′ = 2−m+1/21{ℓi=ℓ′i (i ̸=j)}

(
m

ℓ′j − 2ℓj +
m
2

)
.

Here, 1A denotes the indicator function for condition A. It follows that γk,k+ej ,ℓ,ℓ′ ≥ 0 and

∑
ℓ∈Idk

γk,k+ej ,ℓ,ℓ′ ≤
∑
ℓj∈Z

2−m+1/2

(
m

ℓ′j − 2ℓj +
m
2

)
≤ 2−1/2,

∑
ℓ′∈Idk+ej

γk,k+ej ,ℓ,ℓ′ ≤
∑
ℓ′j∈Z

2−m+1/2

(
m

ℓ′j − 2ℓj +
m
2

)
≤ 21/2,

by considering parities.

Now suppose the claim holds for a fixed difference ∥k′ − k∥1. Applying the above derivation to further refine resolution k′

to k′′ = k′ + ej for arbitrary j gives∑
ℓ∈Idk

βk,ℓ2
∥k∥1/2ωdk,ℓ =

∑
ℓ′∈Id

k′

β̄k′,ℓ′2
∥k′∥1/2ωdk′,ℓ′ =

∑
ℓ′′∈Id

k′+1

¯̄βk′+1,ℓ′′2
(∥k′∥1+1)/2ωdk′+ej ,ℓ′′

where

¯̄βk′+ej ,ℓ′′ =
∑
ℓ′∈Id

k′

2−m+1/21{ℓ′i=ℓ′′i (i ̸=j)}

(
m

ℓ′′j − 2ℓ′j +
m
2

)
β̄k′,ℓ′

=
∑
ℓ∈Idk

∑
ℓ′∈Id

k′

2−m+1/21{ℓ′i=ℓ′′i (i ̸=j)}

(
m

ℓ′′j − 2ℓ′j +
m
2

)
γk,k′,ℓ,ℓ′βk,ℓ.
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Hence we obtain the recurrence relation

γk,k′+ej ,ℓ,ℓ′′ =
∑
ℓ′∈Id

k′

2−m+1/21{ℓ′i=ℓ′′i (i ̸=j)}

(
m

ℓ′′j − 2ℓ′j +
m
2

)
γk,k′,ℓ,ℓ′ ,

from which we verify that γk,k′+ej ,ℓ,ℓ′′ ≥ 0 and

∑
ℓ∈Idk

γk,k′+ej ,ℓ,ℓ′′ =
∑
ℓ′∈Id

k′

2−m+1/21{ℓ′i=ℓ′′i (i̸=j)}

(
m

ℓ′′j − 2ℓ′j +
m
2

)∑
ℓ∈Idk

γk,k′,ℓ,ℓ′

≤ 2−m+1/2−∥k′−k∥1/2
∑
ℓ′j∈Z

(
m

ℓ′′j − 2ℓ′j +
m
2

)
= 2−(∥k′−k∥1+1)/2,

and furthermore ∑
ℓ′′∈Id

k′+ej

γk,k′+ej ,ℓ,ℓ′′ =
∑
ℓ′∈Id

k′

∑
ℓ′′∈Id

k′+ej

2−m+1/21{ℓ′i=ℓ′′i (i ̸=j)}

(
m

ℓ′′j − 2ℓ′j +
m
2

)
γk,k′,ℓ,ℓ′

≤ 2−m+1/2
∑
ℓ′∈Id

k′

∑
ℓ′′j ∈Z

(
m

ℓ′′j − 2ℓ′j +
m
2

)
γk,k′,ℓ,ℓ′

≤ 21/2
∑
ℓ′∈Id

k′

γk,k′,ℓ,ℓ′ ≤ 2(∥k
′−k∥1+1)/2.

This concludes the proof.

D.4. Proof of Corollary 4.6

In order to approximate arbitrary ψ◦
j ∈ U(Bτp,q(X )), we need the following construction instead of Lemma D.5. Note that

N ′ corresponds to the number of B-splines used to approximate the target function and can be freely chosen to match the
desired error, which however affects the covering number of FN .

Lemma D.12 (Suzuki (2019), Proposition 1). Setm ∈ N,m > τ+2−1/p and ν = (pτ−d)/2d. For allN ′ ∈ N sufficiently
large and ϵ = N ′−τ/d(logN ′)−1, for any f◦ ∈ U(Bτp,q(X )) there exists a ReLU network f̃ ∈ FDNN(L,W,S,M) with

L = 3 + 2
⌈
log2

(
3d∨m(1 + dm−1/2(2e)m+1)ϵ−1

)
+ 5
⌉
⌈log2(d ∨m)⌉,

W = N ′W0, S = ((L− 1)W 2
0 + 1)N ′, M = O(N ′1/ν+1/d)

satisfying ∥f◦ − f̃∥L∞(X ) ≤ N ′−τ/d.

Also note that from Assumption 1 it follows that ∥ψj∥L∞(PX ) ≤ C∞N
1/2. Setting N ′ ≍ δ

−d/τ
N and applying the covering

number bound in Lemma D.6, after some algebra we obtain the following counterpart to Lemma 4.4.

Corollary D.13. For any δN > 0, Assumption 3 is satisfied by taking

FN = {ΠB′
N
◦ ϕ | ϕ = (ϕj)

N
j=1, ϕj ∈ FDNN(L,W, S,M)}

where B′
N = C∞N

1/2 and

L = O(log δ−1
N ), W = O(δ

−d/τ
N ), S = O(δ

−d/τ
N log δ−1

N ), logM = O(log δN ).

Also, the metric entropy of FN is bounded as

V(FN , ∥·∥L∞ , ϵ) ≲ Nδ
−d/τ
N log

1

δN

(
log

1

ϵ
+ log2

1

δN

)
.
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Then by combining with Lemma 3.3 and Proposition 3.2 via Theorem 3.1, it follows that

V(T N , ∥·∥L∞ , ϵ) ≲ N2 log
N

ϵ
+Nδ

−d/τ
N log

1

δN

(
log

N

ϵ
+ log2

1

δN

)
.

and

R̄(Θ̂) ≲
N

n
logN +

N2

n2
log2N +N−2α/d +N2δ2N

+
N2

T
log

N

ϵ
+
N

T
δ
−d/τ
N log

1

δN

(
log

N

ϵ
+ log2

1

δN

)
+ ϵ.

Substituting δN ≍ N−1−α/d and ϵ ≍ N−2α/d concludes the desired bound.

E. Sequential Input and Transformers
E.1. Definitions and Results

We now consider a more involved setting where the inputs x ∈ [0, 1]d×∞ are bidirectional sequences of tokens and ϕ is
itself a transformer network.2 For sequential data, it is natural to suppose the smoothness w.r.t. each coordinate can vary
depending on the input. For example, the position of important tokens in a sentence will change if irrelevant strings are
inserted. To this end, we adopt the piecewise γ-smooth function class introduced by Takakura & Suzuki (2023), which
allows for arbitrary bounded permutations among input tokens. They show in such a setting that transformer networks still
achieve near-optimal sample complexity due to their parameter sharing and dynamical feature extraction capabilities; we
extend this guarantee to ICL of trained transformers.

γ-smooth class. We first define the γ-smooth function class introduced by Okumoto & Suzuki (2022). Let r ∈ Zd×∞
0 and

s ∈ N̄d×∞
0 , where N̄ = N∪{0} and the subscript 0 indicates restriction to the subset of elements with a finite number of

nonzero components. Consider the orthonormal basis (ψr)r of L2([0, 1]d×∞) given as

ψr(x) =
∏
i∈Z

d∏
j=1

ψrij (xij), ψrij (xij) =


√
2 cos(2πrijxij) rij < 0

1 rij = 0√
2 sin(2πrijxij) rij > 0

.

The frequency s component δs(f) of f ∈ L2([0, 1]d×∞) is defined as

δs(f) :=
∑

⌊2sij−1⌋≤|rij |<2sij

⟨f, ψr⟩ψr.

For a monotonically nondecreasing function γ : N̄d×∞
0 → R and p ≥ 2, q ≥ 1, the γ-smooth norm and function class are

defined as

∥f∥Fγ
p,q(PX ) :=

( ∑
s∈N̄d×∞

0

2qγ(s)∥δs(f)∥qp,PX

)1/q

and
Fγ
p,q(PX ) :=

{
f ∈ L2([0, 1]d×∞) | ∥f∥Fγ

p,q(PX ) <∞
}
.

The γ-smooth class over finite-dimensional input space [0, 1]d×m is similarly defined.

In particular, we consider two specific cases of γ for the component-wise smoothness parameter α ∈ Rd×∞
>0 , for which

we also define the corresponding degrees of smoothness α† ∈ R>0. Denote by (α̃j)
∞
j=1 all components of α sorted by

ascending magnitude.

2We clarify that this is not equivalent to a multi-layer transformer setting where ϕ is the rest of the transformer. Instead, ϕ operates
on tokens xi separately, which may now themselves be sequences of unbounded dimension. The extracted per-token features are
cross-referenced only at the final attention layer fΘ.
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• Mixed smoothness: γ(s) = ⟨α, s⟩, α† = α̃1 = maxi,j αij .

• Anisotropic smoothness: γ(s) = maxi,j αijsij , α† = (
∑
i,j α

−1
ij )−1.

Furthermore, the weak lη-norm of α is defined as ∥α∥wlη := supj j
ηα̃−1

j for η > 0.

Piecewise γ-smooth class. The piecewise γ-smooth class is an extension of the γ-smooth class allowing for arbitrary
bounded permutations of the tokens of an input (Takakura & Suzuki, 2023). For a threshold V ∈ N and an index set Λ, let
{Ωλ}λ∈Λ be a disjoint partition of suppPX and {πλ}λ∈Λ a set of bijections from [2V + 1] to [−V : V ]. Further define the
permutation operator Π : suppPX → Rd×(2V+1) as

Π(x) = (xπλ(1), · · · , xπλ(2V+1)), if x ∈ Ωλ.

Then the piecewise γ-smooth function class is defined as

Pγ
p,q(PX ) :=

{
g = f ◦Π | f ∈ Fγ

p,q(PX ), ∥g∥Pγ
p,q(PX ) <∞

}
,

where

∥g∥Pγ
p,q(PX ) :=

( ∑
s∈N̄d×[−V :V ]

0

2qγ(s)∥δs(f) ◦Π∥qp,PX

)1/q

.

Transformer network. Also borrowing from their setup, we consider multi-head sliding window self-attention layers with
window size U , embedding dimension D, number of heads H with key, query, value matrices K(h), Q(h) ∈ RD×d, V (h) ∈
Rd×d and norm bound M defined as3

FAttn(U,D,H,M) =

{
g : Rd×∞ → Rd×∞

∣∣∣∣
∥K(h)∥∞ ∨ ∥Q(h)∥∞ ∨ ∥V (h)∥∞ ≤M, g(x)i = xi+

H∑
h=1

V (h)xi−U :i+USoftmax
(
(K(h)xi−U :i+U )

⊤Q(h)xi

)}
.

We also consider a linear embedding layer Enc(x) = Ex+ P , E ∈ RD×d with absolute positional encoding P ∈ RD of
bounded norm. Then the class of depth J transformers is

FTF(J, U,D,H,L,W, S,M) ={
fJ ◦ gJ ◦ · · · ◦ f1 ◦ g1 ◦ Enc | ∥E∥ ≤M,

fi ∈ FDNN(L,W, S,M), gi ∈ FAttn(U,D,H,M)
}
.

Next, we state the set of assumptions inherited from Takakura & Suzuki (2023). In particular, the importance function
makes precise a notion of relative importance between tokens which is preserved by permutations.

Assumption 5 (smoothness and importance function). 1 < q ≤ 2 and:

1. The smoothness parameter α satisfies ∥α∥wlη ≤ 1 and αij = Ω(|i|η) for some η > 1. For mixed smoothness, we also
require α̃1 < α̃2.

2. There exists a shift-equivariant map µ : suppPX → R∞ such that µ0 ∈ U(Fγ
∞,q), ∥µ0∥ ≤ 1 and Ωλ = {x ∈

suppPX | µ(x)πλ(1) > · · · > µ(x)πλ(2V+1)} for all λ ∈ Λ. µ is moreover well-separated, that is µ(x)πλ(v) −
µ(x)πλ(v+1) ≥ Cµv

−ϱ for Cµ, ϱ > 0.
3Here the ith column and (j, i)th component of x ∈ Rd×∞ for i ∈ Z, j ∈ [d] are denoted by xi and xij , respectively. These are not

to be confused with sample indexes (1) as those will not be used in this section.
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We focus on parameter ranges 1 < q ≤ 2 and η > 1 strictly for simplicity of presentation, but the cases q = 1, q > 2 and
η > 0 can be handled with some more analysis. Note that η > 1 ensures α† > 0 for anisotropic smoothness.

Additionally, the assumption pertaining to our ICL setup is stated as follows.

Assumption 6. For r ∈ Zd×∞
0 the coefficients βr corresponding to ψr are independent and satisfy for s ∈ N̄d×∞

0 such that
the frequency component δs(f) contains the element ψr,

Eβ [βr] = 0, Eβ [β2
r ] ≲ 2−(2+1/α†)γ(s)γ(s)−2. (21)

Also ΣΨ,N ≍ IN holds, for example PX is bounded above and below with respect to the product measure λd×∞ on
B([0, 1]d×∞) of the uniform measure λ on B([0, 1]).

We then obtain the following result for ICL with transformers:

Theorem E.1 (minimax optimality of ICL for sequential input). Let F◦ = {f ∈ U(Pγ
p,q(PX )) | ∥f∥L∞(PX ) ≤ B} for

some B > 0 where γ corresponds to mixed or anisotropic smoothness. Suppose Assumptions 5 and 6 hold. Then for
n ≳ N logN we have

R̄(Θ̂) ≲ N−2α†
+
N logN

n
+
N2∨(1+1/α†) polylog(N)

T
.

Hence if T ≳ nN1∨1/α†
and N ≍ n

1

2α†+1 , ICL achieves the rate n−
2α†

2α†+1 polylog(n).

This matches the optimal rate in finite dimensions independently of the (possibly infinite) length of the input or context
window. The dynamical feature extraction ability of attention layers in the FTF class is essential in dealing with input-
dependent smoothness, further justifying the efficiacy of ICL of sequential data.

E.2. Proof of Theorem E.1

Since the system (ψr)r is orthonormal, we may take
¯
N = 1, N̄ = N following Remark 2.1. We mainly utilize the following

approximation and covering number bounds.

Theorem E.2 (Takakura & Suzuki (2023), Theorem 4.5). For a function F ◦ ∈ U(Pγ
p,q(PX )), ∥F ◦∥L∞(PX ) ≤ B and any

K > 0, there exists a transformer F̂ ∈ FTF(J, U,D,H,L,W, S,M) such that

∥F̂0 − F ◦∥L2(PX ) ≲ 2−K ,

where

J ≲ K1/η, logU ≲ logK ∨ log V, D ≲ K2(1+ϱ)/η log V, H ≲ (logK)1/η,

L ≲ K2, W ≲ 2K/α
†
K1/η, S ≲ 2K/α

†
K2+2/η, logM ≲ K ∨ log log V.

Theorem E.3 (Takakura & Suzuki (2023), Theorem 5.3). For ϵ > 0 and B ≥ 1 it holds that

logN (FTF(J, U,D,H,L,W, S,M), ∥·∥L∞ , ϵ) ≲ J3L(S +HD2) log

(
DHLWM

ϵ

)
.

To analyze the decay rate in the γ-smooth class, we approximate a function f ∈ L2([0, 1]d×∞) by the partial sum of its
frequency components up to ‘resolution’ K, measured via the γ function:

RK(f) :=
∑

γ(s)<K

δs(f).

The basis functions ψr are thus ordered primarily ordered by increasing γ(s).

Lemma E.4 (Okumoto & Suzuki (2022), Lemma 17). For 1 ≤ q ≤ 2 it holds that

∥f −RK(f)∥L2(PX ) ≲ 2−K∥f∥Fγ
p,q(PX ).
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Note that if γ(s) < K then sij < K/aij ≲ K/ |i|η for all i, j for both types of smoothness and so ∥s∥0 ≲ dK1/η. In
addition, the number of basis functions ψr used in the sum for δs(f) is exactly 2∥s∥1 =

∏
i,j 2

sij . Theorem D.3 of Takakura
& Suzuki (2023) shows that the number of basis elements used in the sum RK(f) satisfies

N ≍
∑

γ(s)<K

2∥s∥1 ≲ 2K/α
†

for both mixed and anisotropic smoothness. Hence the N -term approximation error decays as N−α†
so that the choice

s = α† leading to the assumed variance bound N−2α†−1 ≍ 2−(2+1/α†)K in (21) is justified. Moreover for large K,∑
γ(s)<K

∑
⌊2sij−1⌋≤|rij |<2sij

∥ψr∥2L∞(PX ) ≤
∑

γ(s)<K

2∥s∥1(
√
2
∥s∥0

)2 ≲ 2K/α
†+O(K1/η)

since ∥r∥0 = ∥s∥0, so that (2) of Assumption 1 is satisfied with r = 1/2. The second part of Assumption 1 holds
since (ψr)r∈Zd×∞

0
is orthonormal w.r.t. λd×∞. Furthermore, the discussion thus far immediately extends to the piecewise

γ-smooth class for any partition {Ωλ}λ∈Λ by composing with the permutation operator Π.

We proceed to use Theorem E.2 to approximate each basis function ψr ◦Π up to resolution K. Moreover, we can see from
the proof of Lemma 17 of Okumoto & Suzuki (2022) that we do not need to account for the sup-norm scaling of ψr and
thus it suffices to find the parameter K ′ ∈ N such that the approximation error 2−K

′ ≍ δN . Hence combining Theorems
E.2 and E.3, we conclude that

V(FTF(J, U,D,H,L,W, S,M), ∥·∥L∞ , ϵ) ≲ K ′3/ηK ′2 · 2K
′/α†

K ′2+2/η ·K ′ log
1

ϵ

≲

(
1

δN

)1/α†

polylog

(
N,

1

δN

)
log

1

ϵ

is sufficient to satisfy Assumption 3. Therefore, we can now apply our framework with B′
N ≍ N to obtain the bound

R̄(Θ̂) ≲
N

n
logN +

N2

n2
log2N +N−2α†

+N2δ2N

+
N2

T
log

N

ϵ
+

1

T
δ
−1/α†

N polylog

(
N,

1

δN

)
log

1

ϵ
+ ϵ.

Substituting δN ≍ N−1−α†
and ϵ ≍ N−2α†

concludes the theorem.

F. Minimax Lower Bounds for ICL
In this section, we provide a scheme for obtaining lower bounds for the minimax rate in the ICL setup by extending the
theory of Yang & Barron (1999). The result is purely information-theoretic and hence applies to not just ICL but any
meta-learning scheme for the regression problem of Section 2.1 depending on the data Dn,T = {(X(t),y(t), x̃(t))}T+1

t=1 ,
where the index T + 1 corresponds to the test task.

For this section we assume that the noise (1) is i.i.d. Gaussian, ξk ∼ N (0, σ2), instead of bounded. We also suppose the
support of Pβ is included in B := {β ∈ R∞ | |βj | ≲ j−2s−1(log j)−2, j ∈ N} and that the aggregated coefficients β̄j for

¯
N ≤ j ≤ N̄ satisfy Eβ [β̄2

j ] ≤ σ2
β for some σβ dependent on N . The proof of the following statement is given in Appendix

F.1.
Proposition F.1. For εn,1, εn,2, δn > 0, let Q1 and Q2 be the εn,1- and εn,2-covering numbers of FN and B respectively,
and M be the δn-packing number of F◦. Suppose that the following conditions are satisfied:

1
2σ2

(
n(T + 1)σ2

βε
2
n,1 + C2nε

2
n,2

)
≤ logQ1 + logQ2,

8(logQ1 + logQ2) ≤ logM, 4 log 2 ≤ logM. (22)

Then the minimax rate is lower bounded as

inf
f̂ :Dn,T→R

sup
f◦∈F◦

EDn
[∥f̂ − f◦∥2L2(PX )] ≥

1

4
δ2n.
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Finally, Proposition F.1 is applied to obtain concrete lower bounds for the settings analyzed above throughout Appendices
F.2-F.4. We prove the following rates: n−

2α
2α+d for the Besov space, n−

2α
2α+d + (nT )−

2τ
2τ+d for the coarser basis setting, and

n
− 2α†

2α†+1 for the piecewise γ-smooth class. In particular, we can check that insufficient pretraining indeed leads to a worse
complexity for the second setting, while large T retrieves the faster rate n−

2α
2α+d . These results verify the optimality of our

previous results from the perspective of the sample complexity of meta-learning.

F.1. Proof of Proposition F.1

Let {(ψ(j), β
(j)
T+1)}Mj=1 be a δn-packing of the class F◦ with respect to the L2(X )-norm such that

∥β(j)⊤
T+1ψ

(j) − β
(j′)⊤
T+1 ψ

(j′)∥2L2(X ) ≥ δ2n, 1 ≤ j < j′ ≤M,

where M is the corresponding packing number. Then we have the following proposition as an application of Fano’s
inequality (Yang & Barron, 1999).

Proposition F.2. Let Θ be a random variable uniformly distributed over {(ψ(j), β
(j)
T+1)}Mj=1. Then, it holds that

inf
f̂n:Dn,T→R

sup
f◦∈F◦

EDn [∥f̂ − f◦∥2L2(PX )] ≥
δ2n
2

(
1− EX[IX(1:T+1)(Θ,y(1:T+1))] + log 2

logM

)
,

where IX(1:T+1)(Θ,y(1:T+1)) is the mutual information between Θ,y(1:T+1) for given X(1:T+1).

The mutual information IX(1:T+1)(Θ,y(1:T+1)) is formulated more concretely as

∑
θ∈suppΘ

w(θ)

∫
p(y(1:T+1)|θ,X(1:T+1)) log

(
p(y(1:T+1)|θ,X(1:T+1))

pw(y(1:T+1)|X(1:T+1))

)
dy(1:T+1),

where p(y|θ,X) is the probability density of y conditioned on θ,X and pw is the marginal distribution of y(1:T+1) where
w(·) ≡ 1

M is the probability mass function of Θ. We let Py(t)|θ (and Py(1:t)|θ) be the distribution of y(t) conditioned on
θ,X(t) (and X(1:t)) respectively, and let

P̄y(1:T+1) =
1

M

M∑
j=1

Py(1:t)|θ(j)

be the marginal distribution of y(1:T+1) conditioned on X(1:T+1).

Next, we define the set {ψ̃(j)}Q1

j=1 to be a εn,1-covering of FN w.r.t. the norm d(ψ,ψ′) :=
√
Ex[∥ψ(x)− ψ′(x)∥2] with

εn,1-covering number Q1, and {β̃(j)}Q2

j=1 to be a εn,2-covering of B w.r.t. the L2 norm with εn,2-covering number Q2. By
taking all combinations of (ψ̃(j), β̃(j′)) for 1 ≤ j ≤ Q1 and 1 ≤ j′ ≤ Q2, we obtain the covering {θ̃(j)}Qj=1 with respect to
the quantity ε2n = σ2

βε
2
n,1 + C2ε

2
n,2 where Q = Q1Q2 and each θ̃(j) is given by θ̃(j) = (ψ̃(j1), β̃(j2)) for some indices j1

and j2.

Then as in the discussion of (Yang & Barron, 1999), the mutual information is bounded by

IX(1:T+1)(Θ,y(1:T+1)) =
1

M

M∑
j=1

D(Py(1:T+1)|θ(j)∥P̄y(1:T+1))

≤ 1

M

M∑
j=1

D(Py(1:T+1)|θ(j)∥P̃y(1:T+1)),

where D(·∥·) is the Kullback-Leibler divergence and P̃y(1:T+1) = 1
Q

∑Q
j=1 Py(1:T+1)|θ̃(j) . If we let

κ(j) := argmin
1≤k≤Q

D(Py(1:T+1)|θ(j)∥Py(1:T+1)|θ̃(k)),
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then each summand of the right-hand side is further bounded by

logQ+D(Py(1:T+1)|θ(j)∥Py(1:T+1)|θ̃κ(j)).

Moreover, for θ = (ψ, β(T+1)) it holds that

p(y(1:T+1)|θ,X(1:T+1))

=

T∏
t=1

p(y(t)|ψ,X(t)) · p(y(T+1)|ψ, β(T+1),X(T+1))

=

T∏
t=1

∫
p(y(t)|ψ, β(t),X(t))pβ(β

(t))dβ(t) · p(y(T+1)|ψ, β(T+1),X(T+1)).

Then the KL-divergence can be bounded as

D(Py(1:T+1)|θ(j)∥Py(1:T+1)|θ̃κ(j))

=

T∑
t=1

D
(
Py(t)|ψ(j)∥Py(t)|ψ̃(κ(j))

)
+D

(
P
y(T+1)|ψ(j),β

(j)
T+1

∥P
y(T+1)|ψ̃κ(j),β̃

(κ(j))
T+1

)
≤

T∑
t=1

∫
D
(
Py(t)|ψ(j),β(t)∥Py(t)|ψ̃(κ(j)),β(t)

)
pβ(β

(t))dβ(t)

+D
(
P
y(T+1)|ψ(j),β

(j)
T+1

∥P
y(T+1)|ψ̃κ(j),β̃

(κ(j))
T+1

)
,

where the joint convexity of KL-divergence was used for the last inequality. Since the observation noise is assumed to be
normally distributed, the integrand KL-divergence can be bounded as

D
(
Py(t)|ψ(j),β∥Py(t)|ψ̃κ(j),β

)
=

n∑
i=1

1

2σ2

(
β⊤ψ(j)(x

(t)
i )− β⊤ψ̃(κ(j))(x

(t)
i )
)2
.

Hence, its expectation with respect to β,X(t) becomes

EX(t),β

[
D
(
Py(t)|ψ(j),β∥Py(t)|ψ̃κ(j),β

)]
=
nσ2

β

2σ2
∥ψ(j) − ψ̃κ(j)∥2L2(PX ) ≤

nσ2
β

2σ2
ε2n,1,

In the same manner, we have that

D
(
P
y(T+1)|ψ(j),β

(j)
T+1

∥P
y(T+1)|ψ̃κ(j),β̃

(κ(j))
T+1

)
=

1

2σ2

n∑
i=1

(
β
(j)⊤
T+1ψ

(j)(x
(t)
i )− β̃

(κ(j))⊤
T+1 ψ̃(κ(j))(x

(t)
i )
)2

≤
n∑
i=1

1

2σ2

[(
β
(j)
T+1 − β̃

(κ(j))
T+1

)⊤
ψ̃(κ(j))(x

(t)
i )

]2
+

n∑
i=1

1

2σ2

[
β
(j)⊤
T+1 (ψ

(j)(x
(t)
i )− ψ̃(κ(j))(x

(t)
i ))

]2
.

The expectation of the right-hand side with respect to X(T+1), β
(j)
T+1 is bounded as

E
X(T+1),β

(j)
T+1

[
D
(
P
y(T+1)|ψ(j),β

(j)
T+1

∥P
y(t)|ψ̃κ(j),β̃

(κ(j))
T+1

)]
≤ C2n

2σ2
∥β(j)

T+1 − β̃
(κ(j))
T+1 ∥2 + n

2σ2
σ2
β∥ψ(j) − ψ̃(κ(j))∥2L2(PX )

≤ C2n

2σ2
ε2n,2 +

n

2σ2
σ2
βε

2
n,1 =

n

2σ2
ε2n.

Therefore, the expected mutual information can be bounded as

EX [IX(1:T+1)(Θ,y(1:T+1))] ≤ logQ1 + logQ2 +
nT

2σ2
σ2
βε

2
n,1 +

n

2σ2
ε2n.

Applying Proposition F.2 together with (22) concludes the proof.
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F.2. Lower Bound in Besov Space

Here, we derive the minimax lower bound when F◦ = U(Bαp,q(X )). Recall that in this setting s = α/d. We fix a
resolution K and then consider the set of B-splines ωdK,ℓ, ℓ ∈ IdK of cardinality N ′ ≍ 2Kd. Considering the basis
pairs (ωdK,1, ω

d
K,2), . . . , (ω

d
K,N ′−1, ω

d
K,N ′), we can determine which one is employed to construct the basis ψ(j). The

Varshamov-Gilbert bound yields that for Ω = {0, 1}N ′/2, we can construct a subset Ω′ = {w1, . . . , w2N′/16} ⊂ Ω such
that |Ω| = 2N

′/16 and w ̸= w′ ∈ Ω′ has a Hamming distance not less than N ′/16. Using this Ω′, we set N = N ′/2 and
M = 2N

′/16 and define (ψ(j))Mj=1 as ψ(j)
i = ωdK,2i−1 if wj,i = 0 and ψ(j)

i = ωdK,2i if wj,i = 1. We use the same B-spline

bases with resolution more than K for ψ(j)
i (i ≥ N) across all j.

By the construction of (ψ(j)), if we set β(1) = (σβ , . . . , σβ , 0, 0, . . . ), then

∥β(1)⊤ψ(j) − β(1)⊤ψ(j′)∥2L2(PX ) ≥ σ2
βN/8.

Hence, for δ2n ≤ σ2
βN/8 ≲ 1, the δn-packing number is not less than 2N/8. Moreover, the logarithmic δn-packing number

of {β⊤ψ(j) | β ∈ B} for a fixed j is Θ(δ
−1/s
n ) by the standard argument.

Hence taking δn = N−s, we obtain logM ≳ N and the upper bound of the covering numbers logQ1 + logQ2 ≲ N
for σ2

βε
2
n,1 ≤ δ2n and ε2n,2 = Cδ2n where C is a constant. Then, by choosing C appropriately and εn,1 ≲ N−1−s (so that

Q1 ≲ 2N ), as long as
nTσ2

βε
2
n,1 + nδ2n ≲ logQ1 + logQ2 ≲ N

is satisfied, the minimax rate is lower bounded by δ2n. Taking N ≍ n
1

2s+1 , we obtain the lower bound

δ2n ≳ n−
2s

2s+1 . (23)

F.3. Lower Bound with Coarser Basis

We consider a generalized setting where X = Rd×Rd× · · · × Rd︸ ︷︷ ︸
(N+1)times

and take ψ(j)
i ∈ U(Bτp,q(R

d)) and assume that

β1 ∈ [−1, 1] and βj ∈ [−σβ , σβ ]. Since the logarithmic ε̃1-covering and packing numbers of U(Bτp,q(R
d)) are Θ(ε̃

−d/τ
1 ),

those for the basis functions on j = 2, . . . , N +1 become Θ(Nε̃
−d/τ
1 ), and those for B are Θ(N log(1+

Nσ2
β

ε2n,2
)). Therefore,

by taking ε2n,1 = Nε̃21 we see that

nT (ε2n,1 + σ2
βε

2
n,1) + nε2n,2 ≲ ε

−d/τ
n,1 +N

(
εn,1√
N

)−d/τ

+N log

(
1 +

Nσ2
β

ε2n,2

)

should be satisfied. Moreover, by taking ε(2τ+d)/τn,1 = 1/nT and ε2n,2 = N log(1 + N−2s/ε2n,2)/n we can balance both
sides. In particular, we may set

ε2n,1 = (nT )−
2τ

2τ+d , ε2n,2 =
N

n
∧N−2s.

Taking the balance with respect to N to maximize ε2n,2, we have N = n
d

2α+d and ε2n,1 = (nT )−
2τ

2τ+d . Therefore, the
minimax rate is lower bounded as

δ2n ≃ (1 + σ2
β)ε

2
n,1 + ε2n,2 ≃ n−

2α
2α+d + (nT )−

2τ
2τ+d . (24)

F.4. Lower Bound in Piecewise γ-smooth Class

Suppose that we utilize the basis functions up to resolution K. Then, by the argument by (Nishimura & Suzuki, 2024), the
number of basis functions ψr in the K-th resolution is N ′ ≍ 2K/a

†
. Moreover, the δn-packing number of the γ-smooth

class is also lower bounded by

logM ≥ N ′ polylog(δn, N
′). (25)
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Here, by noticing the approximation error bound in Appendix E.2, we take N ′ ≍ δ
−1/a†

n where the basis functions are
chosen from the Kth resolution. As in the case of the Besov space, we construct (ψ(j))M

′

j=1 where M ′ = 2N
′/16 and

ψ(j)(x) ∈ RN for N = N ′/2 and ∥ψ(j) − ψ(j′)∥2L2(PX ) ≥ N/8 for j ̸= j′. Following the same argument as in the Besov
case, we need to take εn,1 and εn,2 as

nTσ2
βε

2
n,1 + nε2n,2 ≲ δ−1/a†

n

up to logarithmic factors. This is satisfied by taking ε2n,2 = Cδ2n ≍ n
− 2a†

2a†+1 with a constant C and balancing N so that

σ2
βε

2
n,1 = (nT )

− 2a†
2a†+1σ

2

2a†+1

β ≍ T−1n
− 2a†

2a†+1 . Combining this evaluation and (25) yields that the minimax lower bound is
given by

δ2n ≳ n
− 2a†

2a†+1 . (26)
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