
Robust Training for AC-OPF (Student Abstract)

Fuat Can Beylunioğlu1, Mehrdad Pirnia1, P. Robert Duimering1, Vijay Ganesh2

1 Management Sciences, University of Waterloo
2 Computer Science, University of Waterloo

{fcbeylun, mpirnia, rduimering, vijay.ganesh}@uwaterloo.ca

Abstract

Electricity network operators use computationally demand-
ing mathematical models to optimize AC power flow (AC-
OPF). Recent work applies neural networks (NN) rather than
optimization methods to estimate locally optimal solutions.
However, NN training data is costly and current models can-
not guarantee optimal or feasible solutions. This study pro-
poses a robust NN training approach, which starts with a
small amount of seed training data and uses iterative feed-
back to generate additional data in regions where the model
makes poor predictions. The method is applied to non-linear
univariate and multivariate test functions, and an IEEE 6-bus
AC-OPF system. Results suggest robust training can achieve
NN prediction performance similar to, or better than, regular
NN training, while using significantly less data.

Introduction
The AC-OPF problem consists of finding optimal system
variables, such as real and reactive power generation and set
points in generator buses, to satisfy user demand and min-
imize costs. System operators update optimization models
frequently to adapt to electricity supply and demand uncer-
tainty. Failure to find optimal and feasible solutions may re-
sult in increased costs, under-utilization of renewables, or
even system failure. Quasi Newton Raphson solvers are tra-
ditionally used to find optimal decision variables of the La-
grangian. The difficulty is that computational cost increases
exponentially with system size due to the Jacobian matrix in-
version procedure. The problem is also nonlinear, so finding
the global minimum is not guaranteed. This led researchers
to train neural networks (NN) on large datasets of matched
input power demands and outputs representing the optimal
supply from each generator (Huang and Wang 2022). Al-
though current NN models provide solutions quickly, they
rely on large training sets reflecting the full range of poten-
tial system behavior. However, this is costly due to the need
to run many traditional optimizations to generate sufficient
data and may not provide accurate solutions due to out-of-
range input variables (Lee et al. 2018).

This study applies a robust NN training approach (Scott,
Panju, and Ganesh 2020; Bengio et al. 2021) to improve
the optimality and feasibility of predictions for the AC-OPF

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

problem, while using substantially less training data than
typical NN approaches. The approach uses iterative feed-
back to generate targeted training data to improve NN per-
formance for cases where model predictions are poor or vio-
late feasibility constraints. Training starts with a seed sample
for validation and a randomly initialized network. At each
iteration the model predicts on a previously generated val-
idation set and prediction errors are assessed. Then poorly
predicted validation examples are selected and populated via
small perturbations to create new training data in the neigh-
borhood of the poor predictions, to be used in the next itera-
tion. Training continues until there are no further validation
losses, or a pre-specified number of iterations is reached.

The method is first applied to two problems representing
highly non-linear univariate and multivariate algebraic func-
tions, to explore the dynamics, strengths and weaknesses of
the procedure and to choose appropriate hyperparameters.
The method is then applied to a 6-bus AC-OPF NN model
to compare the relative performance of robust versus tradi-
tional NN training.

Methodology
The proposed method is illustrated in Figure 1. To reduce
data demands, a randomly sampled portion of the original
training set T is used to create the set T 0, which serves as
initial set T i for the first iteration. Then, a random subset of
T i is used to create the initial robust training set T r, which
is updated through subsequent iterations:
• Initially, the NN is started with random weights.
• The resulting NN is tested for error on each observation

in T i. If the error is greater than the specified threshold,
then the observation is classified as a poor prediction.
Otherwise, the data point is ignored.

• A portion of the resulting poor prediction set is randomly
selected to create set t.

• Each input observation in t is perturbed to create multi-
ple points, and their corresponding target values are cal-
culated via a solver, creating set t′, the size of which is a
multiple of t, depending on the number of perturbations.

• The new set t′ is added to the set T r, which is used to
re-train the NN.

• Set t′ is also added to the original set T i, where its subset
is part of the robust set T r.



Figure 1: Robust Training

Set T i expands after each iteration, as each new set t′ is
generated and added. The size of set T r stays constant, al-
though its components keep changing. Data were generated
two ways: (i) perturbing inputs randomly; (ii) differentiating
validation loss with respect to the inputs to find the direction
that increases the loss and identify challenging examples to
improve performance.

Numerical Examples
The robust training method was implemented on highly non-
linear function (HNL), f(x) = sin(x) + cos(x) + x/5 with
x = [x] for the univariate case and x = [x1, x2] for the multi-
variate case, and also deployed on a 6-bus AC-OPF problem.
For both traditional and robust training a deep NN architec-
ture was used, with two hidden layers of 300 neurons, Tanh
activation function between layers, and a batch normaliza-
tion layer after the input layer to normalize the wide range
of input values. Additionally for the AC-OPF case, a final
sigmoid layer is added to the output layer.

For the HNL functions, 10000 datapoints were generated
by randomly drawing inputs xj ∼ U(0, 20), and calculat-
ing the output as y = f(x). For the AC-OPF problem,
a base input demand series was populated by multiplying
with a constant drawn from U(0.6, 1.4) and running the Pan-
daPower AC-OPF solver to generate 20000 datapoints. In-
puts included real and reactive power demand PD and QD

at each demand bus, and target values y consisted of real,
reactive, and voltage magnitude PG, QG, VG for each gen-
erator bus in the output layer. Unlike the HNL examples,
optimal target values were not calculated for each new per-
turbed input data point generated during the robust training
iterations due to time limitations. Instead, a set of 16000 ex-
amples were sampled prior to the analysis; then during each
robust training iteration, target values for new inputs were
selected from this set by identifying examples with the clos-
est euclidean distance to the newly generated inputs.

The data were randomly split using a 70/10/20 ratio for
train, validation and test sets, respectively. For regular train-
ing, the network was trained for 100 epochs using Adam
optimizer with learning rate = 0.001 and batch size = 512.
For robust training, cut-off threshold = 0.01, maximum iter-
ation = 10 for 70 training epochs. At each epoch, data points,
yielding poor predictions were selected and downsized ran-
domly to 150 examples. For each example, 2 new data points
were generated by perturbing the inputs with a uniform ran-
dom multiplier (Random Samp) drawn from U(0.80, 1.20).
For the HNL functions, new data were also generated using

Training Univar Multivar 6-Bus
Regular (large set) 0.0101 0.0896 1.7030
Regular (small set) 0.0165 0.0975 2.1582
Random Samp [Rand] 0.0110 0.0449∗∗ 1.1963∗∗
Random Samp [Eq] 0.0054∗∗ 0.2092
Dir Samp [Rand] 0.0066∗∗ 0.1560
Dir Samp [Eq] 0.0090∗∗ 0.1800

Table 1: MSE for HNL and 6-Bus examples (∗∗ p ≤ 0.01)

directional sampling (Dir Samp) by adding noise in the di-
rection that maximizes the the loss. The initial robust sample
(T 0) was selected randomly ([Rand]) for the AC-OPF case;
and either randomly or using evenly spaced inputs ([Eq]),
e.g. [0, 0.001, 0.002, . . . 20] for the HNL cases.

To show the effectiveness of robust training, regular train-
ing was repeated with smaller samples, equal to those used
in robust training (small set). NN training was repeated 300
times for each method and average mean squared errors
(MSE) are reported in Table 1. Two-sided Welch’s t-tests
were used to compare robust and regular training MSE per-
formance on 300 sample outcomes. The robust models re-
quired less intial training data than regular training but re-
sulted in similar or lower MSE and also took less time to
train. For example, the robust HNL multivariate (Random
Samp [RAND]) model required 19% less training time than
regular training (avg. 7.0 vs. 8.6s per training).

Conclusion and Future Work
The univariate, multivariate, and 6-bus AC-OPF results sug-
gest that robust training can improve the performance of
NN-aided AC-OPF solvers, achieving similar or better pre-
dictions, while using significantly less training data than
traditional methods. The method offers potential efficiency
gains relative to regular training, because a feedback mech-
anism is used to generate new training data only for regions
of the input domain where predictions are poor. Further re-
search is needed to investigate the performance of robust
training on larger, more complex AC-OPF problems, and to
better understand the effects of various hyper-parameters on
performance.

References
Bengio, E.; Jain, M.; Korablyov, M.; Precup, D.; and Ben-
gio, Y. 2021. Flow network based generative models for
non-iterative diverse candidate generation. Adv. in Neural
Information Processing Systems, 34: 27381–27394.
Huang, B.; and Wang, J. 2022. Applications of Physics-
Informed Neural Networks in Power Systems-A Review.
IEEE Trans. on Power Systems. Forthcoming.
Lee, K.; Lee, H.; Lee, K.; and Shin, J. 2018. Train-
ing Confidence-calibrated Classifiers for Detecting Out-of-
Distribution Samples. In Proc. ICLR.
Scott, J.; Panju, M.; and Ganesh, V. 2020. Lgml: Logic
guided machine learning. Proc. AAAI, 34(10): 13909–
13910.


