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Abstract

As a fundamental task in natural language pro-001
cessing, named entity recognition (NER) aims002
to locate and classify named entities in unstruc-003
tured text. However, named entities are always004
the minority among all tokens in the text. This005
data imbalance problem presents a challenge to006
machine learning models as their learning ob-007
jective is usually dominated by the majority of008
non-entity tokens. To alleviate data imbalance,009
we propose a set of sentence-level resampling010
methods where the importance of each train-011
ing sentence is computed based on its tokens012
and entities. We study the generalizability of013
these resampling methods on a wide variety014
of NER models (CRF, Bi-LSTM, and BERT)015
across corpora from diverse domains (general,016
social, and medical texts). Extensive experi-017
ments show that the proposed methods improve018
performance of the evaluated NER models es-019
pecially on small corpora, frequently outper-020
forming sub-sentence-level resampling, data021
augmentation, and special loss functions such022
as focal and Dice loss.023

1 Introduction024

In natural language processing, named entity recog-025

nition (NER) is an important task both on its own026

and supports numerous downstream tasks such as027

entity linking and question answering. NER has an028

inherent data imbalance problem: named entities029

of interest are almost always the minority among030

irrelevant (Other type) tokens in a text corpus. Ta-031

ble 1 shows the prevalent imbalanced nature of032

NER corpora from multiple domains. As shown in033

Table 1, entity tokens (tokens associated with any034

named entity) account for 3.9-16.6% of all tokens035

in any of these corpora. Within entity tokens, the036

most frequent entity type may cover 2-200 times037

more tokens than the least frequent entity type. At038

the sentence level, 23-85% sentences contain at039

least one entity, suggesting that 15-77% sentences040

contain no entity at all.041

Data imbalance is even more severe in real-world 042

bespoke NER tasks, which directly motivated this 043

work. For example, given full-text articles from 044

a medical subfield, domain experts may wish to 045

recognize only those concepts related to specific as- 046

pects of the subfield (e.g., symptoms and medicine 047

related to a specific disease). Compared to all to- 048

kens in the full text, extremely few tokens are anno- 049

tated with any entity type. Because domain experts 050

have limited availability, annotated corpus are usu- 051

ally small in such tasks. As a result, some rare 052

entity types may have less than 10 tokens across 053

the corpus. Such severe data imbalance and scarcity 054

makes many NER models suffer. 055

Data imbalance in NER challenges machine 056

learning-based models because their learning ob- 057

jective is dominated by entities of the majority type 058

(Other), causing the model to be reluctant to predict 059

the types of interest. Various techniques have been 060

studied to tackle this challenge. Active learning 061

was applied to collect a more balanced dataset at 062

annotation time (Tomanek and Hahn, 2009). Spe- 063

cial loss functions including focal loss (Lin et al., 064

2017) and Dice loss (Li et al., 2019) are proposed to 065

deal with data imbalance. Data augmentation was 066

shown to be effective by enriching entity-bearing 067

sentences through methods like segment shuffling 068

and mention replacement (Dai and Adel, 2020). 069

The classical method for alleviating data imbal- 070

ance is resampling (upsampling the minority class 071

or downsampling the majority class) and its close 072

relative, cost-sensitive learning (assigning larger 073

weight to the minority class or smaller weight to 074

the majority class in the learning objective) (He 075

and Garcia, 2009). A natural question is: Can we 076

apply resampling to address the data imbalance 077

problem in NER? It turns out that unlike classi- 078

fication tasks, applying resampling to sequence 079

tagging tasks like NER is not straightforward. Re- 080

cent work attempted sub-sentence-level resampling 081

– dropping tokens from the majority class either 082
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Domain NER Corpus
# of

Tokens

# of
Entity
Types

% of Least vs.
Most Freq. Type

Entity Tokens

% of All
Entity
Tokens

# of
Sent.

% of Sent.
w/ Entities

Social WNUT (Derczynski et al., 2017) 59,570 6 0.43 vs. 1.59 5.03 3,394 36.18
General GMB subset (Bos et al., 2017) 66,161 8 0.03 vs. 4.00 15.03 2,999 85.40
Medical AnEM (Ohta et al., 2012) 71,697 11 0.03 vs. 1.08 3.91 2,815 35.38
Medical CADEC (Karimi et al., 2015) 121,307 5 0.21 vs. 6.65 15.76 5,719 58.86
General CoNLL (Sang and De Meulder, 2003) 204,567 4 2.26 vs. 5.46 16.64 14,986 74.28
Medical n2c2 ADE (Henry et al., 2020) 813,277 9 0.19 vs. 2.34 10.89 65,293 22.73
General OntoNotes (Ralph et al., 2013) 2,200,865 18 0.01 vs. 2.59 10.89 115,812 50.11

Table 1: Imbalance ratio statistics in NER corpora from different domains. (‘Sent.’ = Sentences; ‘Freq.’ = Frequent)

at random (Akkasi, 2018) or using heuristic rules083

(Akkasi et al., 2018; Akkasi and Varoglu, 2019;084

Grancharova et al., 2020). These methods were085

shown to perform well with shallow NER mod-086

els – conditional random fields with local n-gram087

and word shape features. However, sub-sentence-088

level resampling inevitably destroy the structure of089

complete sentences and distort the contextual infor-090

mation around entities of interest. Complete sen-091

tences are essential for state-of-the-art NER mod-092

els based on contextual word representations, e.g.,093

deep Transformers (Devlin et al., 2018). As shown094

in our experiments, incomplete sentences gener-095

ated by sub-sentence-level resampling often hurt096

the performance of deep NER models.097

In this paper, we propose sentence-level resam-098

pling methods for NER, an under-explored prob-099

lem in this area. As sentences are the natural units100

of data in NER, sentence-level resampling leaves101

the contextual information intact in a natural sen-102

tence needed by deep models like Transformers.103

Since a sentence may contain a mixture of entities104

whose types have different levels of rareness, tradi-105

tional resampling method for imbalanced classifi-106

cation (e.g., inverse probability resampling) cannot107

be applied. Instead, we develop a set of methods108

for computing integer-valued importance score for109

a sentence based on its entity composition, and110

resample the sentence accordingly. Experiments111

show that our methods can improve performance of112

a variety of NER models and are especially effec-113

tive on tasks with small annotated corpora, which114

is often seen in real-world bespoke NER tasks.115

2 Related Work116

2.1 Learning from Imbalanced Data117

Class imbalance is a long-standing problem in118

machine learning tasks, posing challenges to re-119

searchers and practitioners in many domains (King120

and Zeng, 2001; Lu and Jain, 2003; He and Garcia,121

2009; Moreo et al., 2016). Classes in real-world 122

data often have highly skewed distribution, leading 123

to substantial gaps between majority and minority 124

classes. While the positive (minority) class is often 125

of interest, the lack of positive examples makes 126

classifiers conservative, i.e., they incline to predict 127

all example as the negative (majority) class. This 128

often results in a low recall of the positive class. 129

Because only a small number of examples are pre- 130

dicted as positive, precision of the positive class 131

tends to be high or unstable. Such a low-recall, 132

high-precision pattern often hurts the F1-score, the 133

standard metric that emphasizes a balanced preci- 134

sion and recall (Juba and Le, 2019). This perfor- 135

mance pattern is observed not only in classification 136

tasks, but also in NER tasks where named entity 137

tokens are the minority compared to non-entity to- 138

kens (Mao et al., 2007; Kuperus et al., 2013). 139

Researchers have proposed various techniques 140

for imbalanced learning, including resampling and 141

cost-sensitive learning (He and Ma, 2013). Both 142

aim to re-balance the representation of different 143

classes in the loss function, such that the classifier 144

is less conservative in making positive predictions. 145

In principle, by equating per-instance resampling 146

frequency with per-instance cost, resampling can 147

be implemented as cost-sensitive learning. How- 148

ever, resampling can be applied to models that do 149

not support cost-sensitive learning, making it con- 150

veniently applicable to all models. 151

2.2 Resampling in Sequence Tagging Tasks 152

Resampling (and cost-sensitive learning) can be 153

conveniently used in classification and regression 154

tasks where a model makes pointwise predictions 155

(a single categorical or scalar value). Each exam- 156

ple has a clearly defined sampling rate (or cost) 157

according to its class label. However, in sequence 158

tagging tasks like NER (more broadly, structured 159

prediction tasks (BakIr et al., 2007; Smith, 2011)), 160
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a model predicts multiple values for a sequence161

(or structured output). For sequence learning al-162

gorithms such as linear-chain conditional random163

fields, while the learning objective is formulated164

at the sequence level, the evaluation metrics are165

defined at the entity span level. This makes it non-166

trivial to determine the sampling rate (or cost) for167

a sequence that contains tokens from both majority168

and minority entity types. Simply resampling enti-169

ties by stripping surrounding context is problematic170

as sequence tagging algorithms depend on context171

to make predictions. Recent works proposed to ran-172

domly or heuristically drop tokens from sentences173

to re-balance NER data, which had success using174

conditional random fields and shallow n-gram fea-175

tures (Akkasi, 2018; Akkasi and Varoglu, 2019;176

Grancharova et al., 2020). However, these methods177

distort the syntactic and semantic structure of com-178

plete sentences, which may generate low-quality179

data for models that are capable of capturing long-180

distance linguistic dependencies (e.g. BERT) and181

hurt performance of those models. In this work, we182

focus on resampling strategies that leaves sentences183

intact.184

2.3 Loss Functions for Imbalanced Data185

Recent literature proposed special loss functions186

for tackling data imbalance, including focal loss187

(Lin et al., 2017) and Dice loss (Li et al., 2019).188

They increase the cost of ‘hard positives’ where189

the correct label has low predicted probability and190

decrease the cost of ‘easy negatives’ where the cor-191

rect label has high predicted probability. However,192

these loss functions do not fully address data im-193

balance in NER. First, the formulation does not194

always emphasize the loss of minority-class tokens195

– majority-class tokens can also be hard to classify,196

and minority-class tokens can also be easy to clas-197

sify. Second, these loss functions only work on198

token-wise prediction outputs. They cannot work199

on sequence-level outputs generated by conditional200

random fields, which is commonly used in NER.201

Our resampling methods can be seen as estimat-202

ing sentence-level losses with explicit emphasis on203

sentences containing minority-class tokens.204

3 Resampling Strategy Design205

For a sequence tagging task like NER, resampling206

cannot be as simple as what it is in classification207

and regression tasks, in which data points can be208

individually replicated, discarded, or synthesized.209

In NER, named entities cannot be resampled out 210

of context. The surrounding context of named enti- 211

ties – albeit tokens from the irrelevant Other type – 212

should be considered as well. Resampling named 213

entities with context is a double-edged sword: pre- 214

serving context will help NER models, but too 215

much context increases the amount of non-entity 216

tokens and aggravates the data imbalance problem. 217

The goal of sentence-level resampling is to find the 218

balance between too little and too much context ac- 219

companying named entities in complete sentences. 220

3.1 Sentence Importance Factors in NER 221

Intuitively, sentences that are worth resampling are 222

those that are more important towards constructing 223

a balanced NER dataset. We start by proposing 224

factors that influence the importance of a sentence 225

in resampling. These factors share the theoretical 226

foundation of retrieval functions in information 227

retrieval (Fang et al., 2004). A retrieval function 228

evaluates the utility of a document with respect to 229

the query terms it contains. By direct analogy, a 230

sentence importance score measures the utility of a 231

sentence respect to the entity tokens it contains. 232

Count of entity tokens. Regardless of entity 233

types, a sentence containing more entity tokens 234

is more important than a sentence filled with non- 235

entity tokens. This factor mirrors term frequency 236

in retrieval functions (Salton and Buckley, 1988). 237

Rareness of entity type. The general idea of re- 238

sampling for minority classes says that the rarer an 239

entity type is, the more times we should resample 240

sentences containing this type of entity. This fac- 241

tor mirrors inverse document frequency in retrieval 242

functions (Salton and Buckley, 1988). 243

Density of tokens labeled as any entity. Includ- 244

ing too much context can aggravate the imbalance 245

problem. While the absolute count of entity tokens 246

matters, the density of entity tokens in a sentence 247

(number of entity tokens compared to the length of 248

a sentence) should also be concerned. The higher 249

the density, the more important a sentence. This 250

factor mirrors document length normalization in 251

retrieval functions (Singhal et al., 1996). 252

Diminishing marginal utility. If one sentence 253

contains twice as many tokens with a specific en- 254

tity type as the other sentence with the same length, 255

does that mean the first sentence is twice as impor- 256

tant as the second? In reality, an entity may contain 257

numerous tokens, or a sentence may include multi- 258

ple entities of the same type. Twice as many tokens 259
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from the same entity type may not offer twice as260

much information (for the same reason why too261

many tokens from the Other type is not helpful).262

Therefore, as the number of tokens from the same263

entity type increases, they generate diminishing264

marginal utility to a sentence. This factor mirrors265

diminishing marginal gain of repeated query terms266

in retrieval functions (Fang et al., 2004).267

3.2 Resampling Functions268

Based on the above importance factors, we design269

a suite of functions fs ∈ Z+ to determine the num-270

ber of times a sentence s should be resampled in271

a NER training set. These functions incorporate272

progressively more factors discussed previously.273

In a given corpus, let us denote the set of all274

entity types except for the majority type Other as275

T . Let c(t, s) be the count of tokens with entity276

type t ∈ T in sentence s. We define the resampling277

function with respect to the smoothed count (sC)278

of all entity tokens as279

f sC
s = 1 +

∑
t∈T

c(t, s) . (1)280

Here,
∑

t∈T c(t, s) is the total number of entity281

tokens in sentence s. ‘+1’ is to avoid removing282

entity-less sentences from the training set, in remi-283

niscence of add-one smoothing in empirical proba-284

bility estimates. It guarantees that all training sen-285

tences are resampled as least once. This smoothing-286

like process maintains consistency between train-287

ing and test sets. If the training set contains entity-288

less sentences, it is highly likely that the test set289

will contain entity-less sentences as well.290

The next function incorporates entity rareness291

factor. The rareness rt of an entity type t ∈ T is292

measured as the self-information of the event that293

any token carries this type:294

rt = − log2

∑
s∈S c(t, s)

N
,295

where S is the set of all sentences in the training296

set, and therefore
∑

s∈S c(t, s) is the total number297

of tokens with entity type t. N is number of all298

tokens (including Other tokens) in the training set.299

By introducing rareness of an entity type we pro-300

pose another function called smoothed resampling301

incorporating count and rareness (sCR):302

f sCR
s = 1 +


√∑

t∈T
rt · c(t, s)

 . (2)303

Ceiling function ⌈·⌉ ensures f sCR
s ∈ Z+. Square 304

root is to slow down the increase of f sCR
s when an 305

entity type t is extremely rare (when rt is large). 306

According to the density factor in the previous 307

section, the length of sentence s plays a role in 308

determining the density of entity tokens within a 309

sentence. Let ls be the length of sentence s mea- 310

sured in number of tokens. We define the following 311

function called the smoothed resampling incorpo- 312

rating count, rareness, and density (sCRD): 313

f sCRD
s = 1 +

⌈∑
t∈T rt · c(t, s)√

ls

⌉
. (3) 314

We use
√
ls instead of ls because to slow down the 315

decrease of f sCRD
s when a sentence is too long. 316

Lastly, we incorporate the diminishing marginal 317

utility factor and propose a function called the nor- 318

malized and smoothed resampling incorporating 319

count, rareness, and density (nsCRD): 320

fnsCRD
s = 1 +

⌈∑
t∈T rt ·

√
c(t, s)

√
ls

⌉
. (4) 321

Here,
√

c(t, s) applies a sublinearly increasing 322

function on c(t, s) to implement the diminishing 323

marginal utility when a sentence contains many 324

tokens with the same type. 325

In summary, we proposed four functions for 326

determining resampling frequencies for each sen- 327

tence, representing four resampling methods. 328

4 Experimental Evaluation 329

Resampling should be a domain- and model- 330

agnostic strategy in tackling data imbalance. There- 331

fore, the goal of our experiments is to evaluate if 332

the proposed resampling methods are effective in 333

an extensive array of NER corpora and base models. 334

Towards this goal, we apply the four resampling 335

methods (together with baseline methods) on three 336

representative NER models (each has two variants), 337

and evaluate the resulting models on four corpora 338

from diverse domains. 339

4.1 Evaluation Metric 340

We use span-level strict-match macro-averaged F1 341

score as our main evaluation metric. Other is not 342

viewed as an entity type. Macro-averaged metrics 343

emphasize a balanced treatment of all entity types, 344

which align with our main goal. See Appendix C 345

for micro-averaged and per-entity-type results. 346
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4.2 Compared Methods347

We compare the following baseline methods for348

dealing with data imbalance in NER.349

Original corpus: training data untreated.350

Balanced undersampling: We implement the351

algorithm proposed in (Akkasi et al., 2018) as a352

representative of sub-sentence-level resampling.353

Data augmentation: The data augmentation354

techniques that includes all transformations as pro-355

posed in (Dai and Adel, 2020).356

Focal loss(Lin et al., 2017), Dice loss (Li et al.,357

2019): We apply these loss functions on token-358

wise predictions made by a softmax output layer.359

Note that they are not applicable to sequence-level360

predictions made by a CRF output layer.361

sC, sCR, sCRD, nsCRD: the four resampling362

methods proposed in this work.363

4.3 NER Corpora364

We select four corpora from different domains. The365

first three are of small scale, representing bespoke366

NER tasks in practice where entity types are task-367

specific and annotation efforts are limited.368

AnEM (Ohta et al., 2012): The Anatomical En-369

tity Mention (AnEM) corpus consists of 500 doc-370

uments selected randomly from citation abstracts371

and full-text papers concerning both health and372

pathological anatomy. With only 3.91% entity to-373

kens and 35.38% sentences having any entity, this374

is a very imbalanced corpus in Table 1.375

WNUT (Derczynski et al., 2017): This is a so-376

cial domain corpus released in the 2017 Workshop377

on Noisy User-generated Text (W-NUT). It con-378

tains noisy user-generated texts found in social me-379

dia, online review, crowdsourcing, web forums,380

clinical records, and language learner essays. This381

is another very imbalanced corpus in Table 1.382

GMB subset (Bos et al., 2017; Kaggle, 2018):383

The Groningen Meaning Bank (GMB) corpus con-384

sists of public domain English texts with corre-385

sponding syntactic and semantic representations.386

The GMB subset is extracted from the larger GMB387

2.0.0 corpus which is built specially for NER.388

To test the generalizability of our methods, we389

also include a standard NER benchmark dataset.390

CoNLL (Sang and De Meulder, 2003): The391

CoNLL-2003 English news NER corpus.392

For AnEM, WNUT, and CoNLL, we use their393

pre-existing training/test split. For GMB subset,394

we use 3:1 training/test split.395

4.4 Base NER Models and Variants 396

To comprehensively evaluate the combinations 397

of our upstream resampling strategies with many 398

downstream sequence tagging models, we select 399

the following models: 400

Shallow Model. We construct shallow NER 401

models that use pretrained word embeddings as 402

per-word feature vectors. We consider two variants: 403

one using a softmax output layer making token- 404

wise predictions; the other using a CRF (condi- 405

tional random fields) output layer making sequence- 406

level predictions. Considering domains of the cor- 407

pora, we select embeddings trained on biomedical 408

literature (Huang et al., 2016), tweets (Glove-27B- 409

twitter-27B),1 and Wikipedia+news (Glove-6B),2 410

for AnEM, WNUT, and datasets from general do- 411

main (GMB subset and CoNLL), respectively. All 412

are 50-dimensional embeddings. CrfSuite3 is ap- 413

plied with default hyperparameters. 414

Bi-LSTM (Bidirectional Long Short-Term 415

Memory). LSTM is a special recurrent neural net- 416

work architecture in which the vanishing gradient 417

problem can be effectively mitigated. Bi-LSTM 418

consists of two LSTMs taking inputs in both for- 419

ward and backward directions. Even though more 420

recent models (e.g., GPT-2, BERT) are shown to 421

outperform Bi-LSTM, it is still regarded as one 422

of the most prevalent tools for solving sequence 423

tagging problems. We implement two variants of 424

Bi-LSTM: one with a softmax output layer mak- 425

ing token-wise predictions; the other with a CRF 426

decoding layer4, to ensure the local consistency of 427

output tags. Different from the default hyperparam- 428

eters, batch size and number of epochs are set to 429

32 and 20, respectively. Embeddings are used in 430

the same way as in the shallow models above. 431

BERT (Bidirectional Encoder Representa- 432

tions from Transformers). BERT is widely re- 433

garded as the most significant improvement in nat- 434

ural language processing. Its outstanding capabil- 435

ity of learning contextualized word representations 436

makes it the representative of advanced NER model 437

in this work. Again, we implement two variants 438

of BERT: one with a softmax output layer making 439

token-wise predictions; the other with a CRF de- 440

coding layer5. Default hyperparameters are used. 441

More implementation details are in Appendix A. 442

1http://nlp.stanford.edu/data/glove.twitter.27B.zip
2http://nlp.stanford.edu/data/glove.6B.zip
3https://github.com/scrapinghub/python-crfsuite
4https://github.com/guillaumegenthial/sequence_tagging
5https://github.com/kyzhouhzau/BERT-NER
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Shallow model Bi-LSTM BERT
Softmax CRF Softmax CRF Softmax CRF

Original corpus 27.36 52.39 41.76 45.21 58.60 57.68
Balanced undersampling 24.17 52.06 21.22 26.19 62.59 63.03
Data augmentation 22.78 53.20 40.73 41.05 61.34 63.38
Focal loss 27.65 40.73 58.39
Dice loss 25.87 2.31 47.36

sC 30.39 52.13 44.69 47.55 62.86 65.47
sCR 30.94 53.38 48.37 48.90 65.22 62.41
sCRD 29.98 50.67 45.69 44.31 61.70 60.50
nsCRD 30.57 53.41 39.54 46.10 64.63 62.59

Table 2: Macro F1 scores on AnEM. The three NER models using either softmax or CRF output layer are reported.
‘ ’ means that focal loss and Dice loss do not apply to CRF outputs. In each column, the highest F1-score is shown
in boldface and the second highest is shown in underline.

Shallow model Bi-LSTM BERT
Softmax CRF Softmax CRF Softmax CRF

Original corpus 14.56 4.31 18.27 18.46 37.67 39.98
Balanced undersampling 16.94 4.45 15.81 16.68 33.73 30.86
Data augmentation 11.05 4.49 20.10 10.06 35.03 36.08
Focal loss 14.25 17.73 39.20
Dice loss 15.74 15.26 31.62

sC 16.20 4.58 16.90 19.21 37.16 49.44
sCR 15.94 4.39 21.52 21.40 44.60 45.06
sCRD 15.95 4.94 17.15 19.80 43.82 42.34
nsCRD 16.06 4.62 18.31 23.71 41.65 41.71

Table 3: Macro-averaged F1-scores on the WNUT corpus. See the caption of Table 2 above for details.

Shallow model Bi-LSTM BERT
Softmax CRF Softmax CRF Softmax CRF

Original corpus 28.71 41.42 45.73 44.91 50.20 54.32
Balanced undersampling 29.56 40.52 41.73 42.70 57.01 56.89
Data augmentation 27.53 41.24 47.63 49.76 54.78 55.25
Focal loss 28.47 41.25 53.66
Dice loss 33.42 40.16 52.10

sC 29.17 41.34 44.52 48.39 54.52 54.58
sCR 29.85 40.39 45.85 46.91 52.96 54.33
sCRD 30.99 41.54 44.60 48.07 52.72 55.12
nsCRD 29.37 41.76 46.16 45.69 55.14 54.60

Table 4: Macro-averaged F1-scores on the GMB subset corpus. See the caption of Table 2 above for details.

Shallow model Bi-LSTM BERT
Softmax CRF Softmax CRF Softmax CRF

Original corpus 42.66 67.71 75.78 78.63 88.20 88.45
Balanced undersampling 42.55 66.77 66.36 76.54 86.91 86.75
Data augmentation 42.73 67.06 77.70 77.31 87.98 88.37
Focal loss 43.47 77.24 88.44
Dice loss 48.58 72.80 88.82

sC 42.20 66.84 76.82 75.03 88.94 88.81
sCR 42.22 66.63 77.72 74.13 88.36 89.11
sCRD 42.98 66.97 78.06 77.63 88.30 88.61
nsCRD 41.98 67.04 78.80 78.87 87.58 88.03

Table 5: Macro-averaged F1-scores on the CoNLL corpus. See the caption of Table 2 above for details.
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4.5 Results and Discussion443

Macro-averaged F1-scores of different methods ap-444

plied to four corpora and three base NER models445

are reported in Tables 2-5.446

Our goal is not to compete with state-of-the-447

art methods on these corpora. Instead, we aim to448

present an interesting and under-explored problem449

(sentence-level resampling for NER) and a set of450

simple yet promising methods. In principle, our451

proposed resampling methods are model-agnostic452

and can provide an additional performance boost453

for a variety of NER models. We observe the fol-454

lowing trends in Tables 2-5.455

Overall performance of our resampling meth-456

ods: Across Tables 2-5, our methods (sC, sCR,457

sCRD, nsCRD) generally performed well, achiev-458

ing the highest or second highest F1-scores in al-459

most every column (except for the condition ‘Shal-460

low model, Softmax’ on CoNLL). Although no461

specific method consistently outperforms others462

in every condition, it is clear that sentence-level463

resampling is overall a promising approach to tack-464

ling the data imbalance problem in NER. The best465

resampling method depends on the specific base466

model, output layer, and corpus used. Just as the467

best hyperparameter values have to be empirically468

determined, so could be the most suitable resam-469

pling method. Fortunately, all our resampling meth-470

ods are simple and straightforward, which allows471

for convenient experimentation.472

Shallow vs. deep models: We observe a clear473

trend that shallow models using word embedding as474

features and softmax/CRF as the output layer under-475

perform deep models such as Bi-LSTM and BERT.476

We view this as a sanity check. Bi-LSTMs and477

BERT can learn word representations that account478

for long-distance dependencies, and BERT should479

be even more powerful with contextual word repre-480

sentations pretrained on massive texts.481

Softmax vs. CRF output layer: Using the482

same base model, CRF output layer often (but not483

always) outperforms softmax output layer. The484

performance gap is larger on shallow models and485

small corpora (AnEM, WNUT, GMB) than on deep486

models and large corpus (CoNLL). Indeed, Bi-487

LSTM and BERT are capable of learning word488

representations that account for long-distance word489

dependencies, reducing the benefit of tag dependen-490

cies offered by a CRF layer. Similar observations491

was made by previous work (Devlin et al., 2018).492

An exception is the combination (WNUT, Shallow493

model), where the CRF layer suffered from severe 494

overfitting caused by noisy text and extremely im- 495

balanced data distribution in WNUT corpus. 496

Small vs. large corpus: On small corpora 497

(AnEM, WNUT, GMB subset), our resampling 498

methods usually outperform the original corpus 499

baseline by a big margin. These benefit becomes 500

less salient on large corpus (CoNLL). This implies 501

that our methods are especially effective when the 502

corpus is small and annotations are few. As corpus 503

size gets large, even rare entity types are covered by 504

many examples and therefore sufficiently trained. 505

Sub-sentence resampling and data augmen- 506

tation: Sub-sentence resampling (balanced under- 507

sampling) has large variance in its performance. In 508

some cases it gives the highest gain (GMB subset, 509

BERT model), and in other cases it performs worse 510

than just using the original corpus (all corpora, 511

Bi-LSTM models). It suggests that sub-sentence 512

resampling is highly sensitive to the corpus and 513

model choice. Data augmentation also shows high 514

variance in its performance. It gives the highest 515

gain on (GMB subset, Bi-LSTM model), and per- 516

forms worse than the original corpus on (WNUT, 517

BERT model). Sentences generated by data aug- 518

mentation generally have correct syntax but garbled 519

semantics (e.g., one entity is replaced by another 520

same-type, out-of-context entity). The nonsensical 521

sentences may confuse NER models. In contrast, 522

whole-sentence resampling methods give more sta- 523

ble improvements over the original corpus baseline 524

largely because they preserve the naturalness of 525

resampled sentences. 526

Focal loss and Dice loss: These loss functions 527

are applicable only on pointwise predictions made 528

by the softmax output layer. A major trend is that 529

their performance tend to be unreliable across sce- 530

narios. We attribute this behavior to the difficulty 531

in optimizing these losses. For shallow models, 532

we optimize them by feeding gradients of either 533

loss function (see Appendix B for their derivation) 534

into a L-BFGS optimizer (Liu and Nocedal, 1989) 535

in Scikit-Learn. As shown in the (Shallow model, 536

Softmax) column of GMB subset and CoNLL cor- 537

pora, the two loss functions (especially the Dice 538

loss) performed well. For deep models (Bi-LSTM 539

and BERT), we rely on TensorFlow’s automatic dif- 540

ferentiation and Adam gradient descent optimizer 541

(Kingma and Ba, 2014) because manually deriving 542

gradients for deep models is infeasible. The two 543

loss functions sometimes give poor performance. 544
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Figure 1: Displacement vectors of F1-scores in
precision-recall plots for WNUT corpus. BUS: balanced
undersampling. DA: data augmentation. All models use
softmax output layer. The downward curves are con-
tours of F1-scores in the precision-recall space. Each
NER model (Shallow, Bi-LSTM, BERT) is associated
with a cluster of vectors sharing the same starting point
in the space, which represents the performance on the
original corpus.

The Bi-LSTM model with Dice loss failed com-545

pletely on AnEM (F1-score: 2.31). A possible546

explanation is that Dice loss is non-convex and it547

may be difficult for first-order optimizers in current548

deep learning toolkits (e.g. Adam in TensorFlow)549

to find high-quality local minima than second-order550

methods like L-BFGS.551

Precision and recall: To illustrate performance552

changes in terms of precision and recall, Figure553

1 visualizes the changes before and after resam-554

pling as displacement vectors in precision-recall555

plots with F1-score contour lines. Some arrows are556

pointing to the upper right corner of the plots, indi-557

cating the associated methods improve F1-score by558

improving both precision and recall. Other arrows559

point to the upper left, indicating the associated560

methods increase recall at the sacrifice of precision.561

In this case, most of our methods improve macro-562

averaged precision and recall of the BERT model563

on WNUT. See Appendix C.2 for more details.564

4.6 Effect on Training Corpus Size565

Table 6 shows the effect of training corpus size as566

a result of resampling or data augmentation. These567

factors are the average across four corpora.568

The balanced undersampling method drops to-569

kens from sentences, and therefore reduces training570

corpus size. Data augmentation method doubles571

the corpus size as many sentences are paraphrased572

Methods Size increase factor

Original corpus 1.00
Balanced undersampling 0.32
Data augmentation 2.00

sC 3.80
sCR 4.60
sCRD 3.91
nsCRD 2.82

Table 6: Effect of data resampling/augmentation meth-
ods on training corpus size. The factors are averaged
across four evaluated corpora.

into multiple versions. Our proposed methods in- 573

creases corpus size by a larger factor because sen- 574

tences that contain rare entity types are resampled 575

many times. Although increased training corpus 576

size leads to increased training time, note that our 577

methods are especially suitable for scenarios where 578

the annotated corpus is small and hence the training 579

time is still relatively short. 580

5 Conclusion 581

Our proposed sentence resampling methods gener- 582

alize well across diverse NER corpora and models. 583

They enjoy the following advantages: 584

Model-agnostic: Since resampling only manip- 585

ulates datasets and not models, the proposed meth- 586

ods can be directly applied to any NER model, 587

requiring no knowledge of its functioning or any 588

change to it. Resampling is also more convenient 589

than cost-sensitive learning as the latter still re- 590

quires changing the model training process. 591

Domain-agnostic: Compared with data pre- 592

processing methods such as data augmentation, 593

sentence-level resampling methods are simple and 594

do not require domain- or language-specific ma- 595

nipulations such as synonym replacement, saving 596

practitioners from excessive data engineering. 597

There are multiple avenues for future work. First, 598

further theoretical and empirical research can ex- 599

plore more effective resampling functions that de- 600

liver consistently better performance across cor- 601

pora and base models. Second, more corpora and 602

models can be examined under these resampling 603

strategies. Third, the variance of performance in 604

different scenarios may potentially relate to charac- 605

teristics of specific corpora. Future research may 606

seek for corpora-level statistics that can assist prac- 607

titioners in the process of selecting the appropriate 608

resampling method(s). 609
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A Implementation Details749

A.1 Software and Hardware Environment750

All the deep learning models are implemented in751

Tensorflow 1.12.0 environment.752

Softmax regression (or multinomial logistic re-753

gression) model is from Scikit-Learn package in754

version 0.23.2. The CRF model is implemented by755

the package sklearn-crfsuite in version of 0.3.6.756

Data resampling and CRF training/evaluation757

were performed on 2.60 GHz Intel CPUs and 8GB758

RAM. Bi-LSTM and BERT training/evaluation759

were performed on GPUs (GeForce GTX1080 8GB760

and Tesla V100 16GB).761

A.2 Hyperparameters for Machine Learning762

Models763

For shallow models and BERT, all hyperparameters764

are set by default. For details of them, please see765

documents of sklearn, crfsuite and BERT-NER.766

For Bi-LSTM, we adjust a few of parameters as767

there are some drawbacks of the default settings:768

20 is not a commonly used number for batch size,769

and loss of Bi-LSTM model fails to converge under770

some circumstances. So we set them to 32 and771

20, instead of default values 20 and 15. Other772

hyperparameters are applied according to default773

settings.774

For the fairness in the comparison, we do not775

alter any hyperparameters while switching resam-776

pling methods and loss functions without changing777

dataset and models. We believe that it is totally778

appropriate in the process of comparing, despite779

that better performance of specific methods may780

be obtained after tuning hyperparameters, which781

beyond the scope of this exploring research.782

A.3 Hyperparameters for Loss Functions783

There are two hyperparameters in the focal loss784

and Dice Loss, determining converging speed and785

smooth degree. For focal loss, we set γ to 2, as786

what authors of (Lin et al., 2017) recommend. Ac-787

cording to (Li et al., 2019), it is appropriate to set788

γ of Dice loss to 1 for the purpose of smoothing.789

In our implementation of loss function in shallow790

model, this setting is found effective. However,791

while using it in deep learning model, its effective-792

ness cannot be ensured. Hence, we adopt another793

setting of γ = 10−5 in the tensor computing and794

obtain better results compared with those obtained795

with a larger γ.796

B Derivation of Loss Function Gradients 797

for Softmax Regression 798

When using the shallow model with softmax output 799

layer and focal/Dice loss functions, we optimize 800

the model parameters by the quasi-Newton method 801

L-BFGS provided by Python Scikit-Learn. This 802

approach requires us to provide the gradients of 803

current model parameters. Below we show our 804

derivation of these gradients. 805

Notations and Preliminaries. Scalar values are 806

denoted by non-bold, lowercase letters such as x. 807

Row vectors are denoted by bold, lowercase letters 808

such as x. Matrices are denoted by bold, uppercase 809

letters such as X. 810

Softmax regression has the following compo- 811

nents: 812

• Feature vector: x ∈ Rm,x = 813

[x1, · · · , xi, · · · , xm]. 814

• Label vector: y ∈ {0, 1}k,y = 815

[y1, · · · , yj , · · · , yk]. If the ground truth is 816

the c-th class, 1 ≤ c ≤ k, then yc = 1, and 817

yj = 0 if j ̸= c. 818

• Weight vector for the j-th class: wj ∈ 819

Rm,wj = [wj1, · · · , wji, · · · , wjm]. 820

• Weight matrix W ∈ Rm×k, W = 821

[w⊤
1 , · · · ,w⊤

j , · · · ,w⊤
k ]. “⊤” is the trans- 822

pose operation. w⊤ is the transpose of w, 823

which is a column vector. 824

• Bias for the the j-th class: bj ∈ R. 825

• Predicted probability vector: p ∈ [0, 1]k,p = 826

[p1, · · · , pj , · · · , pk]. 827

pj = Pr(yj = 1|x) (5) 828

=
exp(⟨wj ,x⟩+ bj)∑k

j′=1 exp(⟨wj′ ,x⟩+ bj′)
(6) 829

⟨w,x⟩ is the inner product of vector w and 830

vector x. 831

One can verify that the partial derivative of pc 832

with respect to wji, the weight of the j-th class, the 833

i-th dimension, is the following: 834

∂pc
∂wji

= [1{j = c} − pj ] pcxi (7) 835
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B.1 Focal Loss Gradient836

Suppose the ground truth is the c-th class for a837

given example x.838

LFL(x,y) = −(1− pc)
γ log pc (8)839

∂LFL(x,y)

∂wji
(9)840

=− ∂

∂pc
[(1− pc)

γ log pc] ·
∂pc
∂wji

(10)841

=−
[
−γ(1− pc)

γ−1 log pc +
(1− pc)

γ

pc

]
· ∂pc
∂wji

(11)

842

=−
[
−γ(1− pc)

γ−1 log pc +
(1− pc)

γ

pc

]
843

· [1{j = c} − pj ]pcxi (12)844

=− [−γpc(1− pc)
γ−1 log pc + (1− pc)

γ ]845

· [1{j = c} − pj ]xi (13)846

=ac[pj − 1{j = c}]xi (14)847

Here we set848

ac = −γpc(1− pc)
γ−1 log pc + (1− pc)

γ (15)849

to reduce notational clutter. ac has nothing to do850

with i or j; it only has to do with c, the index of851

the ground truth label for the training example x.852

When γ = 0, ac = 1. When γ > 0, ac decreases853

when pc increases from 0 to 1. This means the854

gradient for an easy example (when pc is close to855

1) have a smaller magnitude than the gradient for a856

hard example (when pc is close to 0).857

Generalizing the scalar gradient in Equation (14)858

to matrix gradient, we have859

∂LFL(x,y)

∂W
= ac · x⊤(p− y) . (16)860

The shape of ac · x⊤(p − y) is m × k, the same861

shape as W.862

An important note is that here ac is specific to863

that single example x, which has ground truth la-864

bel yc = 1. If we have n different training ex-865

amples x(1), · · · ,x(n), then every example will866

have a different ac value: a
(1)
c , · · · , a(n)c . Let’s867

create a diagonal matrix Ac ∈ Rn×n, Ac =868

diag(a
(1)
c , · · · , a(n)c ).869

If we have n training examples, then the fea-870

ture matrix X ∈ Rn×m, the label matrix Y ∈871

{0, 1}n×k, and the predicted probability matrix 872

P ∈ [0, 1]n×k. We have: 873

∂LFL(X,Y)

∂W
= X⊤Ac(P−Y) . (17) 874

The shape of X⊤Ac(P−Y) is m× k, the same 875

as W. 876

B.2 Dice Loss Gradient 877

Dice loss computes per-class F-1 scores. Suppose 878

the ground truth is the c-th class for a given exam- 879

ple x. 880

LDL(x,y) (18) 881

=
k∑

j′=1

[
1− 1{c = j′} γ + 2pc

γ + p2c + 1
882

+1− 1{c ̸= j′} γ

γ + p2j′

]
(19) 883

=1− γ + 2pc
γ + p2c + 1

+
∑
j′ ̸=c

[
1− γ

γ + p2j′

]
(20) 884

=k − γ + 2pc
γ + p2c + 1

−
∑
j′ ̸=c

γ

γ + p2j′
(21) 885

Take gradient with respect to wji, the weight of 886

the j-th class, the i-th dimension. 887

∂LDL(x,y)

∂wji
(22) 888

=− ∂

∂pc

[
γ + 2pc

γ + p2c + 1

]
· ∂pc
∂wji

889

−
∑
j′ ̸=c

∂

∂pj′

[
γ

γ + p2j′

]
·
∂pj′

∂wji
(23) 890

=− 2(γ + p2c + 1)− (γ + 2pc)2pc
(γ + p2c + 1)2

· ∂pc
∂wji

891

−
∑
j′ ̸=c

−γ · 2pj′
(γ + p2j′)

2
·
∂pj′

∂wji
(24) 892

=− 2(γ + p2c + 1)− (γ + 2pc)2pc
(γ + p2c + 1)2

893

· [1{j = c} − pj ]pcxi 894

−
∑
j′ ̸=c

−γ · 2pj′
(γ + p2j′)

2
· [1{j = j′} − pj ]pj′xi

(25)

895

=− 2(1− pc)(1 + γ + pc)pc
(γ + p2c + 1)2

· [1{j = c} − pj ]xi 896

(26) 897
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898

+
∑
j′ ̸=c

γ · 2p2j′
(γ + p2j′)

2
· [1{j = j′} − pj ]xi (27)899

=ac[pj − 1{j = c}]xi −
∑
j′ ̸=c

bj′ [pj − 1{j = j′}]xi

(28)

900

Here we set901

ac =
2(1− pc)(1 + γ + pc)pc

(γ + p2c + 1)2
(29)902

bj′ =
γ · 2p2j′

(γ + p2j′)
2

(30)903

ac depends on the ground truth label of example x.904

bj′ depends on the current predicted probabilities905

for x.906

Generalizing the scalar gradient in Equation (28)907

to matrix gradient, we have908

∂LDL(x,y)

∂W
(31)909

=x⊤ac(p− y)910

− x⊤

· · · ,
∑
j′ ̸=c

bj′ [pj − 1{j = j′}], · · ·︸ ︷︷ ︸
j=1,··· ,k


(32)

911

=x⊤ac(p− y)− x⊤v (33)912

v is a vector specific to the example x.913

If we have n training examples, then the fea-914

ture matrix X ∈ Rn×m, the label matrix Y ∈915

{0, 1}n×k, and the predicted probability matrix916

P ∈ [0, 1]n×k. We have:917

∂LDL(X,Y)

∂W
= X⊤Ac(P−Y)−X⊤V (34)918

where V has shape n×k, and the l-th row in matrix919

V is a k dimensional vector computed in the same920

manner as Equation (32) with respect to the l-th921

training example, 1 ≤ l ≤ n .922

C Additional Performance Analysis923

C.1 Micro-averaged Metrics924

In the main paper we reported macro-averaged F1925

scores for each dataset. To provide a more com-926

plete comparison of performance changes, here we927

report micro-averaged F1 scores in Tables 7-10. 928

Micro-averaged metrics lump together all named 929

entities without distinguishing their types, and 930

therefore the majority types have more influence 931

on these metrics than minority types. Overall, the 932

trend is consistent with the macro-averaged met- 933

rics. Sentence-level resampling methods tend to 934

deliver more stable gains and generally outperform 935

baseline methods. 936

C.2 Per-Entity-Type Metrics 937

To further examine the impacts of our method on 938

entity types, we also report per-entity-type preci- 939

sion, recall, and F1 scores for each dataset in Tables 940

11-14. We compare the performance of using the 941

original corpus and a representative of our meth- 942

ods (sCR). Red up-arrows (↑) means sCR obtains 943

better precision/recall/F1 score compared to using 944

the original corpus. 945

Here we observe that at the level of entity types, 946

either precision and recall simultaneously improve 947

or drop, or precision improves at a slight cost of 948

recall. It is rare that recall improves at the cost of 949

precision (only the GPE type in Table 13). This 950

pattern indicates that the BERT-CRF model trained 951

on the original corpus has many ‘false negatives’ 952

(tagging entity tokens as “other”). In other words, 953

the model is extremely reluctant to predict non- 954

other entity types. Our sentence-level resampling 955

methods encourage the model to correctly assign 956

entity types to more tokens. Another trend is that 957

improvements on small corpora (AnEM, WNUT, 958

GMB subset) are more salient than on large corpus 959

(CoNLL). Note that sentence resampling does not 960

necessarily favor minority entity types as all entity 961

types are very rare already, compared to the Other 962

tokens (see the last column of Tables 11-14, “Token 963

%”). 964
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Shallow model Bi-LSTM BERT
Softmax CRF Softmax CRF Softmax CRF

Original corpus 33.96 56.74 55.94 58.81 67.02 66.69
Balanced undersampling 31.12 56.03 24.95 30.90 69.62 69.38
Data augmentation 32.70 56.80 53.12 56.19 68.09 71.63
Focal loss 28.89 53.12 68.24
Dice loss 35.62 8.62 64.50

sC 35.00 55.75 57.03 59.24 70.90 70.55
sCR 35.25 55.89 57.12 60.37 71.76 69.71
sCRD 34.04 55.65 55.57 57.02 70.22 69.57
nsCRD 35.28 56.87 54.08 58.52 71.08 69.82

Table 7: Micro-averaged F1-scores on AnEM. The three NER models using either softmax or CRF output layer are
reported. ‘ ’ means that focal loss and Dice loss do not apply to CRF outputs. In each column, the highest F1-score
is shown in boldface and the second highest is shown in underline.

Shallow model Bi-LSTM BERT
Softmax CRF Softmax CRF Softmax CRF

Original corpus 21.74 5.28 27.89 29.32 61.31 60.70
Balanced undersampling 22.77 5.69 22.51 24.64 53.70 51.66
Data augmentation 17.33 5.47 28.73 14.37 60.00 61.86
Focal loss 21.62 30.23 62.18
Dice loss 24.01 29.53 57.14

sC 22.74 5.62 25.49 28.55 63.54 64.62
sCR 23.25 6.48 31.38 27.76 65.67 65.99
sCRD 23.09 6.01 27.74 32.69 66.02 64.68
nsCRD 23.17 5.68 28.83 34.29 62.00 63.41

Table 8: Micro-averaged F1-scores on the WNUT corpus. See the caption of Table 7 above for details.

Shallow model Bi-LSTM BERT
Softmax CRF Softmax CRF Softmax CRF

Original corpus 50.60 66.67 75.92 76.87 80.43 81.68
Balanced undersampling 50.94 66.18 70.91 73.86 77.87 78.41
Data augmentation 49.09 66.13 74.75 76.17 81.48 81.86
Focal loss 49.84 72.44 81.61
Dice loss 57.70 70.46 80.02

sC 50.68 66.32 75.85 77.11 81.26 81.16
sCR 51.68 66.09 74.76 76.29 80.45 82.12
sCRD 51.12 66.58 72.43 74.21 80.71 81.09
nsCRD 50.76 66.87 73.38 74.62 81.69 81.54

Table 9: Micro-averaged F1-scores on the GMB subset corpus. See the caption of Table 7 above for details.

Shallow model Bi-LSTM BERT
Softmax CRF Softmax CRF Softmax CRF

Original corpus 42.47 71.11 79.84 81.03 92.08 92.23
Balanced undersampling 43.22 70.43 71.46 76.75 90.97 90.78
Data augmentation 42.37 70.84 81.87 81.40 91.96 92.33
Focal loss 43.78 81.53 92.15
Dice loss 48.77 77.51 91.94

sC 43.42 70.86 81.10 78.70 92.53 92.48
sCR 42.77 70.57 82.26 78.18 91.88 92.59
sCRD 44.48 70.84 82.29 81.36 91.93 92.07
nsCRD 43.24 70.67 83.05 83.42 91.37 91.87

Table 10: Micro-averaged F1-scores on the CoNLL corpus. See the caption of Table 7 above for details.
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Original corpus sCR

Entity Type P R F P R F Token %

Developing anatomical structure 86.96 90.91 88.89 87.50↑ 95.45↑ 91.30↑ 0.03
Immaterial anatomical entity 24.14 23.33 23.73 40.00↑ 40.00↑ 40.00↑ 0.06
Anatomical system 52.17 85.17 64.86 41.38↓ 85.71↑ 55.81↓ 0.08
Organism subdivision 42.86 54.00 47.79 64.44↑ 58.00↑ 61.05↑ 0.16
Cellular component 26.37 27.27 26.81 41.79↑ 31.82↑ 36.13↑ 0.21
Tissue 35.62 52.34 42.46 46.97↑ 52.54↑ 49.60↑ 0.27
Organism substance 57.58 77.87 66.21 74.62↑ 80.83↑ 77.60↑ 0.30
Organ 78.95 75.47 77.17 78.47↓ 71.07↓ 74.59↓ 0.35
Pathological formation 62.18 65.54 63.82 72.73↑ 59.46↓ 65.43↑ 0.51
Multi-tissue structure 50.17 60.08 54.68 56.45↑ 57.61↓ 57.02↑ 0.86
Cell 77.02 79.07 78.03 79.79↑ 76.33↓ 78.02↓ 1.08

Macro-avg 54.00 62.89 57.68 62.19↑ 64.44↑ 62.41↑ -

Table 11: Per-entity-type precision (P), recall (R), and F1 scores (F) on AnEM corpus using BERT-CRF model.

Original corpus sCR

Entity Type P R F P R F Token %

Corporation 33.33 66.67 44.44 20.00↓ 33.33↓ 43↓ 0.43
Creative work 0 0 0 100.00↑ 20.00↑ 33.33↑ 0.55
Product 33.33 33.33 33.33 25.00↓ 16.67↓ 20.00↑ 0.55
Group 30.77 12.90 18.18 47.37↑ 29.03↑ 36.00↑ 0.66
Location 70.00 72.41 71.18 91.30↑ 72.41 80.76↑ 1.27
Person 71.11 74.42 72.72 76.19↑ 74.42 75.29↑ 1.59

Macro-avg 39.76 43.29 39.98 59.98↑ 40.98↓ 45.06↑ -

Table 12: Per-entity-type precision (P), recall (R), and F1 scores (F) on WNUT corpus using BERT-CRF model.

Original corpus sCR

Entity Type P R F P R F Token %

NAT 0 0 0 0 0 0 0.03
ART 12.00 10.34 11.11 0↓ 0↓ 0↓ 0.07
EVE 26.67 36.36 30.77 35.71↑ 45.45↑ 40.00↑ 0.11
GPE 54.38 52.49 53.41 54.20↓ 52.99↑ 53.59↑ 1.58
TIM 76.69 88.73 88.27 77.22↑ 89.71↑ 83.00↑ 2.40
ORG 74.39 77.06 76.72 77.43↑ 75.76↓ 76.59↓ 3.31
PER 86.87 87.31 87.09 88.56↑ 89.90↑ 89.22↑ 3.56
GEO 93.19 93.19 93.19 92.26↓ 92.26↓ 92.26↓ 4.00

Macro-avg 53.27 55.68 54.32 53.17↓ 55.86↑ 54.33↑ -

Table 13: Per-entity-type precision (P), recall (R), and F1 scores (F) on GMB subset using BERT-CRF model.

Original corpus sCR

Entity Type P R F P R F Token %

MISC 77.26 81.76 79.44 82.61↑ 82.49↑ 82.54↑ 2.26
LOC 92.17 92.50 92.33 91.76↓ 91.49↓ 91.62↓ 4.07
ORG 86.16 88.83 87.47 85.92↓ 88.59↓ 87.23↓ 4.92
PER 94.44 94.66 94.55 95.11↑ 94.97↑ 95.03↑ 5.46

Macro-avg 87.51 89.44 88.45 88.85↑ 89.38↓ 89.11↑ -

Table 14: Per-entity-type F1 scores on CoNLL using BERT-CRF model.
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