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Abstract: Robotics research is slowed by three challenges: building a robotics
lab is expensive (few participants), everyone uses different robots (participants’
findings often don’t generalize outside their lab), and there is no internet-scale
robotics dataset (no lab has the resources to make many robots do many different
tasks to generate data and there is no data in the wild). The solution is to build
a “Robotics Research Cloud” consisting of centers filled with remotely operable
robots in standardized environments. This would be a valuable resource in pushing
forward robot learning as a field by making cutting-edge robotics research broadly
accessible, helping the field identify promising new approaches that succeed on
agreed benchmarks, and creating a massive real-world robotics dataset similar to
those that have revolutionized machine learning for vision and language.
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1 Introduction

Robotics is stuck in its pre-ImageNet phase. Two major image classification competitions, the PAS-
CAL VOC Challenge [1] and its much larger successor, the ImageNet Large Scale Visual Recog-
nition Challenge [2], ushered in the modern era of machine learning. This was not only because
of these datasets’ scale but because they gave every aspiring machine learning researcher a plat-
form on which to succeed: if you could build a program that empirically outperformed every other
superstar researcher’s attempt, then the field immediately paid attention to you. By expanding the
number of participants in machine learning and defining a way by which they could agree on the
best algorithms, ImageNet launched the modern machine learning revolution.

This transformation has not yet happened in robotics, for essentially the same reasons that plagued
machine vision before ImageNet. The startup costs to creating a new robotics lab are prohibitively
high: new investigators must invest not only hundreds of thousands of dollars for new robots and
lab space, but also years of cumulative research hours setting up a new robot, calibrating it, and
reimplementing and re-tuning numerous existing baselines just to begin contributing to the research
frontier. Similarly, there is little guarantee that an algorithm achieving impressive results in one
lab’s setting will work well in others’, due to myriad differences in robotic hardware, sensors, visual
and physical properties of the testing environment, and other implementation details. As a result,
even potential breakthroughs struggle to gain broader traction. Individual labs maintain their own
understanding about which approaches work and build mostly on their own lab’s previous work,
limiting the benefits that reach the entire robotics community.

2 Related Efforts

Many roboticists have documented these challenges and have over the years tried to address them in
different ways. Below is an overview of several such initiatives.

Standardizing hardware Robot platforms such as Willow Garage’s PR2 and Rethink Robotics’
Baxter attempt to standardize the hardware used across labs. Recent hardware efforts [3, 4, 5, 6, 7]
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tend to involve exotic hardware targeting more niche communities. The YCB Object and Model
set [8] standardizes the objects used in robotic environments. Standardized hardware is a useful
step, but each robot is still only affordable to the biggest and best-funded labs, and environmental
variations like lighting and sensing leave performance comparisons across labs difficult.

Standardizing software ROS [9] and follow-up efforts such as PyRobot [10] provide a common
software stack allowing abstraction of parts of the robot hierarchy from perception to control. How-
ever, they do not address the benchmarking or access challenges described above.

Collecting and combining robotics data at scale Self-supervised experimentation (robots au-
tonomously running experiments and evaluating their own success) allows individual labs to au-
tomatically collect large robotics datasets [11]. Google’s “arm farm” further scaled data collec-
tion by using 14 robot arms working in parallel, substantially improving robotic grasping [12].
RoboNet [13], an open-source robotics dataset, facilitates data sharing across labs and has increased
the scale of available robotics data. However, a dataset alone does not provide a way to easily
evaluate models trained on the data or a way to compare algorithms across labs.

Simulation benchmarking Many simulators provide benchmarks that standardize results in both
robotics settings [14, 15, 16, 17] and embodied AI settings with navigation components [18, 19, 20].
These have the benefit of eliminating variance due to physical environment conditions across lab
setups. However, real-world performance is what we care about, where sample efficiency is more
important and complex methods may be impossible to tune.

Simulation to reality Learning in simulation and transferring to reality is another promising ap-
proach [21, 22]. Performing most computation in simulation is an attractive way to scale robot
learning, as simulation is safer and more efficient than the real world. OpenAI has shown success
with sim2real, including dexterous manipulation of a Rubik’s Cube [23]. However, it is next to
impossible for a simulator to match the complexity and richness of the real world, making transfer
inefficient. Many aspects of the real world, such as tactile sensing and dynamic interactions, are
difficult to model, and learning in simulation is unlikely to yield real-world results in these domains.

In-person robotics competitions Some efforts take a different approach: running in-person
robotics competitions. Entrants to these challenges run their own experiments and iterate indepen-
dently before all teams congregate and finally test their methods on the real environment. Notable
competitions include the DARPA challenges [24, 25, 26] and the Amazon Picking Challenge [27].

Remotely operable robotics testbeds The US Robotics Roadmap includes a section highlighting
the need for shared and remote-access robotics testbeds [28]. Using remotely operable robots, an
experimenter can deploy code from anywhere in the world and observe the results using the en-
vironment’s sensors. Duckietown [29] hosts the AI Driving Olympics, a competition on a series
of tasks in a simplified autonomous driving world on low-cost standardized RC cars. Participants
submit software solutions remotely which are run on physical robots in the environment. As an
alternative model, the Georgia Tech Robotarium [30] allows anyone to remotely access a physical
robotic swarm testbed, free for academic purposes. Their swarm consists of 20 low-cost RC cars in
a shared space. The Robotarium also includes a simulator for code and safety checks before physical
deployment. Finally, and most similarly to our proposal, the Real Robot Challenge [31] is an annual
robotic manipulation competition allowing participants to test and compare their methods remotely
on real hardware (seven TriFinger robots [5]) and a corresponding simulator.

3 Proposed Robotics Research Cloud

These recent efforts illuminate a path forward for robotics: remotely accessible robots on which
everyone can run experiments, collect data, and benchmark their algorithms’ performance. On top
of this, collecting and anonymously releasing the recorded trajectories would create an ever-growing
corpus of open-access robot operation data, unlocking large-scale machine learning applications in
the robotics realm. All that’s left is to put these ingredients together: a facility full of copies of the
same robot set in standardized environments, connected to the internet for all researchers to access,
fundamentally accelerating robotics as a field. Below, we sketch out a proposed structure.
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Figure 1: Proposed workflow. A researcher can quickly test an idea on a physical robot, obtain
results, and contribute to the community through benchmarks and open-sourced data.

3.1 Example Workflow

A prototypical use-case is visualized in Figure 1. A researcher might start with an existing codebase,
make their own tweaks, define how long they’d like this code to run for and which benchmark task
it’s trying to satisfy (if any), and add it to a queue. The center prioritizes and runs these experiments
on real robots (after they’ve passed simulation checks), scores them, and uploads the sensor and
operation data to the cloud where the user can access it. Depending on the amount of training time
needed, the experiment turnaround time might be 24 hours. On a slower timescale, anonymized
trajectories would be added to an open-source dataset for community benefit.

3.2 Organizational Structure

3.2.1 Steering Committee

The steering committee will be composed of robotics researchers and other stakeholders, responsible
for decisions regarding the center’s research agenda, high-level policies, and long-term development.
These responsibilities would include:

• Choosing which robots and sensors to procure.

• Signing off on proposed new experiment environments and modification to existing envi-
ronments based on researcher feedback.

• Determining access policies for the robots, including which institutions and researchers can
run experiments and how their time is prioritized in the research queue.

• Determining the future trajectory of the Robotics Research Cloud, including whether and
how to build additional centers.

3.2.2 Local Team

The local team will be responsible for building and maintaining the center itself. In addition to the
handful of staff necessary to procure and maintain the robots, the local team may include dedicated
staff necessary to reset the robots, in the experiments where environmental resets need human inter-
vention. The local team should include a team of full-time software engineers focused on building
tooling to improve the experience of the remote research community. These tools should:

• Create a unified software stack for robotic control, including a streamlined experience for
remote researchers to schedule experiments, deploy code, and collect results. The codebase
should allow researchers to easily take components from other research projects.

• Enable remote researchers to set up new benchmark tasks and create online leaderboards.

• Vet all code submitted to the facility against malicious content, including by maintaining a
robot simulator of the robotic environment where checks must pass to ensure safety.

• Continuously publish an anonymized dataset of robot trajectories collected in the lab.

• Support a remote community through virtual discussion spaces, workshops, and tutorials.
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3.3 Center Setup

The specifications of the first Robotics Research Cloud center should be determined through dis-
cussion and consensus among robotics researchers in the field. One possible instantiation would
be a manipulation focus, as manipulation tasks are more challenging than grasping alone but more
feasible than navigation or locomotion tasks, which might require more space, safety checks, and
manual environment resets. Additional focus areas could be added in subsequent centers. A manip-
ulation center could include 100 Franka robot arms, each equipped with cameras, depth and tactile
sensors. These robots could have environments that enable a few benchmark tasks, such as scoop-
ing, pouring, and writing. Initial methods attempting these benchmarks could be open-sourced as
out-of-the-box baselines.

4 Discussion

4.1 Where to Start

We must de-risk such an ambitious idea before building it at scale. With support from Schmidt
Futures, we are prototyping a remote research setup. We aim to develop an easy-to-use interface
and identify crucial features for remote experimentation. We will also gain a better understanding
of staffing needs by piloting automatic safety checks and environment resets.

4.2 Open Questions

Many questions remain, the answers to which will impact the success of a Robotics Research Cloud.

The cloud will be most impactful if it achieves widespread adoption. Adoption depends on two key
questions: Can researchers successfully run experiments remotely? Will researchers have the acti-
vation energy to adopt this new framework when many already have their own? We hope to answer
the first question with our prototyping described in Section 4.1. With high-quality infrastructure and
a straightforward researcher interface (which our prototype will also initiate), adoption is possible.

Choice of hardware and tasks will greatly affect research outcomes. Which sensors are necessary?
How will sensor calibration and degradation be handled? Which tasks are feasible without relying
heavily on humans for environment resets or benchmark evaluation?

With physical robots, safety is of paramount importance. While we can use simulation to run safety
checks, how can we use an imperfect simulator to ensure safety in the real world?

Allocation of resources can be a contentious issue. How will queuing of experiments be prioritized?
Should researchers be able to pay a fee to gain priority in the queue?

These questions should be discussed in detail by the robotics community to ensure success.

4.3 Limitations

A remote center does impose certain constraints, some of which we list here. Using fixed robots
and environments rules out the possibility of jointly optimizing hardware and software. Centralizing
robots also means less environment diversity as opposed to having robots individually acting in the
wild. Remote teleoperation is high-latency, making collecting demonstrations or testing environ-
ment interaction difficult. Finally, latency in experimental results could increase iteration time.

4.4 Conclusion

By creating a facility for roboticists everywhere to run experiments and directly compare their re-
sults, we can give robotics its ImageNet breakthrough. A Robotics Research Cloud is likely to
substantially accelerate the development of robotic software relative to its current trajectory. By
massively increasing access to researchers across the field, it will reduce the network effects that
concentrate talented robotics researchers in a small handful of schools and regions.

Next steps include securing funding and convening robotics researchers to identify the initial exper-
imental setup and benchmarks. In the supplementary material, we present a potential timeline and
budget to make the Robotics Research Cloud a reality and usher in a new age of robotics research.
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Potential Timeline and Milestones

Below we outline sub-goals to scale up this effort over the next 5 years.

• March 2022
– Call for proposals for center locations

• May 2022
– Select center location, appoint steering committee

• July 2022
– Steering committee: produce call for proposals from robot suppliers for robot hard-

ware and maintenance; solicit feedback from robotics community on desired environ-
ment configurations and compute

• September 2022
– Local team: assemble core team, finalize real estate
– Steering committee: decide details of first robot/environment/compute acquisitions

• December 2022
– Local team: robots and environment are assembled, and locally accessible
– Steering committee: finalize access policies and processes to include many more labs

• March 2023
– Local team: robots are remotely accessible to a select group of remote labs, which can

fly researchers to the Center for any necessary debugging. The resulting experimental
data is published online.

• June 2023
– Local team: open experiment queue to all labs meeting Steering Committee protocols
– Steering committee: facilitate broad community adoption through workshops, chal-

lenge competitions, and tutorials
• By June 2024

– At least 50 papers published from at least 10 universities based on center experiments
– At least 1 proposed benchmark saturated, Steering Committee solicits calls for new

environment modifications
• By June 2025

– At least 200 papers published from at least 30 universities based on center experiments
– Steering committee scopes out new center sited at an emerging tech hub (not an exist-

ing robotics superstar city)

Potential Budget

Here we estimate a cost breakdown of the center for the next 10 years. Provided the first 10 years
are successful, we expect interest from additional funding sources such as industry partners.

Category Item Unit Cost Volume Subtotal
Capital Robot hardware (e.g. Franka Panda) $25000 100 $2,500,000

Experiment environment (incl. sensors) $10000 100 $1,000,000
Compute + networking $5000 100 $500,000

Staff Operations staff $75000/yr 10 $750,000/yr
Engineering staff $150000/yr 5 $750,000/yr

Operations Lab space (e.g. in Pittsburgh 2020) $25/sqft-yr 20000 sqft $500,000/yr
Office space $25/sqft-yr 5000 sqft $125,000/yr
Operating expenses (electricity, furnish-
ings, networking costs, hosting visitors)

$300k/yr N/A $300,000/yr

Total $3M+$2.4M
per year

10 years $28.25M

There are potential opportunities for savings not factored into the above estimates:
• Bulk negotiation of robots/compute could reduce costs by up to $2M (half of initial $4M).
• University-subsidized lab space could reduce costs by up to $600K a year, or $6M overall.
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