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Abstract
Large language models (LLMs) have gained001
considerable attention due to their remarkable002
generalization capabilities, as exemplified by003
ChatGPT and GPT-4(OpenAI, 2023). How-004
ever, these models exhibit limitations in spe-005
cific domains, such as local life service scenar-006
ios, stemming from insufficient relevant knowl-007
edge and considerable disparities between lo-008
cal life industry data and general data. To ad-009
dress this issue, we first introduce a 170GB010
domain-specific corpus, LocalEvolve, for un-011
supervised continued pretraining. Second, we012
employ a low-rank adaptation approach to train013
a customized LLM, LocalAdapt, for local life014
service scenarios. Notably, we design a Multi-015
Task mapping system that transforms structured016
industry data into various Fundamental Rea-017
soning Units (FRUs). Our LocalAdapt model018
demonstrates superior performance across dif-019
ferent local life tasks compared to baseline020
models. Extensive empirical analysis further021
confirm the effectiveness of FRUs.022

1 Introduction023

Large Language Models (LLMs) signify a mile-024

stone in the field of natural language processing025

(NLP)(Shanahan, 2023)(Wei et al., 2023). Char-026

acterized by their billion-scale parameters and ex-027

tensive pretraining on massive text data, LLMs ex-028

hibiting remarkable capabilities(Wei et al., 2022b),029

including in-context learning, instruction following,030

step-by-step reasoning and so on. Such abilities031

enable them to address complex challenges once032

considered insurmountable for NLP systems, cat-033

alyzing transformative changes across numerous034

industries(Rae et al., 2022).035

Although large models exhibit remarkable gen-036

eralization capabilities, their lack of specialization037

for the local life industry may lead to sub-optimal038

performance in related tasks(Xiong et al., 2023).039

This is due to the unique structure and word dis-040

tribution of local life data compared to general041

Figure 1: The complete schema of the FRUs.

data(Li et al., 2023). Local life data is derived 042

from lifestyle services and live streaming platforms, 043

predominantly consisting of structured attribute- 044

value pairs and relational tuples, which challenges 045

general LLMs’ comprehension. Additionally, lo- 046

cal life data contains prevalent industry-specific 047

concepts with diverse representations across mer- 048

chants, further complicating the task for general 049

models. Therefore, there is a crucial need for a 050

large model tailored to the local life industry, en- 051

compassing extensive industry knowledge and a 052

thorough understanding of local life data. 053

In the LLM era, various efforts aim to im- 054

prove model generalization in specific indus- 055

tries. One retrieval-based approach calls query- 056

related instances for in-context learning(Asai et al., 057

2023)(Qian et al., 2023). However, this method 058

fails to fundamentally address the lack of relevant 059

industry knowledge in LLMs(Li et al., 2022), and 060

accurately recalling related instances remains chal- 061

lenging(Cui et al., 2023a). Another approach at- 062

tempt involves constructing multi-task instruction 063

sets and employing instruct learning(Ouyang et al., 064

2022). Although effective, this method demands 065

high complexity, diversity, and scale of instructions, 066

thus increasing the burden of data annotation and 067

collection for human(Sanh et al., 2022)(Wei et al., 068

2022a). 069

To imbue models with domain-specific knowl- 070
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Figure 2: Overiew of LocalAdapt pipeline.

edge, we create LocalEvolve, a 170GB local life-071

related dataset comprising external and industry072

knowledge. External knowledge primarily comes073

from the WuDao corpora(Yuan et al., 2021), while074

industry knowledge mainly comes from platform075

data (e.g. product information, user reviews, video076

titles). Notably, we design a Multi-Task Mapping077

system(MTM) to assemble structured industry data078

into Fundamental Reasoning Units (FRUs), which079

can not only enhance the model’s understanding080

of local life concepts, but also enable it to tackle081

complex reasoning tasks across various local life082

scenarios.083

By continue-pretraining Chinese-LLaMA-13B084

on the LocalEvolve, we obtain a customized local085

life model, LocalAdapt. We adopt a parameter-086

efficient low-rank adaptation method(Hu et al.,087

2021), which not only improves training efficiency088

but also enhances the model’s performance on089

downstream tasks, particularly in low-resource sce-090

narios. LocalAdapt significantly outperforms the091

baseline in product matching, product tagging, and092

user query matching. Further ablation studies vali-093

date the effectiveness of incorporating FRUs, show-094

ing that multi-task reasoning learning during pre-095

training improves the model’s reasoning abilities.096

The main contributions of this paper are summa-097

rized below:(1)We use multi-task reasoning for or-098

ganizing pretraining data, introducing a 170GB lo-099

cal life dataset, LocalEvolve. Our proposed MTM100

system effectively converts structured industry data101

into FRUs, significantly enhancing the diversity102

and inferential nature of pretraining corpora. (2)Us-103

ing a low-rank adaptation approach on pretrained 104

Chinese-LLaMA-13b, we create LocalAdapt, a cus- 105

tomized local life model with exceptional perfor- 106

mance across various local life tasks.(3)Extensive 107

experiments demonstrate the effectiveness of Lo- 108

calAdapt compared to other baseline models. 109

2 Approach 110

2.1 Overview of the LocalEvolve 111

In this section, we introduce LocalEvolve, a large- 112

scale, high-quality dataset consisting of 170GB, 113

primarily derived from two sources. Firstly, we col- 114

lected life service-related data from public sources. 115

These datasets are typically of high quality as they 116

have been carefully curated by experts in the field. 117

Secondly, We collect data from life service sec- 118

tors, which can be categorized into basic types: 119

product information, user reviews, live video ASR, 120

and video titles. For the 80% structured data, We 121

design an MTM system, constructing a series of 122

FRUs based on atomic reasoning tasks such as 123

causal inference, primary and secondary reasoning, 124

and inductive reasoning. A detailed description of 125

the construction methods will be provided in the 126

subsequent sections. 127

2.2 Acquiring External Data from WuDao 128

Corpora 129

For public datasets, we primarily chose WuDao 130

Corpora, a large-scale, high-quality dataset re- 131

leased by the Beijing Academy of Artificial Intelli- 132

gence(BAAI). With 200GB of open-source data, it 133

covers 50+ industries, including military and tech- 134
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Models
Product Tagging Product Matching Query matching

P R F1 P R F1 P R F1
ChatGPT 76.84 67.16 71.67 87.03 47.11 61.02 79.02 42.11 54.88
Bert 89.01 77.69 81.62 75.62 69.41 72.38 43.10 26.86 39.77
Chinese-LLaMA-7b 96.85 74.61 80.70 73.92 79.06 76.41 75.74 73.54 74.63
Chinese-LLaMA-13b 83.22 86.01 83.69 75.17 83.02 78.90 76.01 84.04 79.82
Chinese-LLaMA-13b(LoRA) 96.36 80.91 85.83 73.89 86.42 79.66 76.73 87.22 81.64
LocalAdapt(ours) 92.36 90.39 92.07 77.80 86.65 81.99 82.56 93.24 87.58

w/o FRUs 89.01 77.69 81.62 74.98 86.18 80.19 76.74 87.07 81.58

Table 1: Precision (P), Recall (R), and F1 scores for ChatGPT, open-source general models, and LocalAdapt(ours)
on product tagging, product matching, and query matching tasks.

nology, We primarily focus on lifestyle-related in-135

dustries(entertainment, tourism, gaming, education136

and so on)to include in our LocalEvolve, amount-137

ing to 156GB in total.138

2.3 Mapping Structured Data to FRUs139

life service-related data primarily consists of four140

types of data: platform product data, user review141

data, live video ASR, and video titles, with struc-142

tured data accounting for 80%. Due to the sig-143

nificant differences in form between structured144

data and common fluent text data, organizing pre-145

training corpora through simple linearization(Jiang146

et al., 2023) result in suboptimal performance for147

the model during the supervised fine-tuning phase.148

Specifically, the customized model experiences149

hard-to-suppress hallucinations during inference150

on downstream tasks(Manakul et al., 2023), gen-151

erating numerous undesired product descriptions.152

This severely degrades the model’s performance on153

downstream tasks and significantly increases the in-154

ference time because of the generation of excessive155

unrelated tokens.156

To mitigate these hallucinations, we propose a157

Multi-Task Mapping (MTM) system that maps158

structured data to Foundation Reasoning Units159

(FRUs) to reduce data form differences and in-160

troduce more reasoning logic. Specifically, we161

randomly extract 100 data samples from each ba-162

sic data type, and have GPT4 generate candidate163

reasoning tasks, detailed instruction design is pre-164

sented in the appendixA.4. Then, human experts165

select atomic reasoning tasks from the candidates,166

and GPT4 designs mapping templates based on167

the structured data and atomic reasoning tasks. By168

fitting the structured data into these mapping tem-169

plates, we obtain a series of natural language texts,170

namely FRUs, which encompass abundant domain171

knowledge and reasoning logic.172

Tasks Size In.len Out.len
product tag 2,000 75.12 8.67
product match 2,000 100.81 15.60
query match 1000 89.91 132.47

Table 2: Details of Data for SFT Tasks. "In.len" de-
notes the average length of inputs, "Out.len" denotes the
average length of labels.

2.4 Training of LocalAdapt 173

We train LocalAdapt using Chinese-LLaMA- 174

13b(Cui et al., 2023b), a customized model for 175

Chinese, which supports efficient fine-tuning meth- 176

ods(Liu et al., 2022) like LoRA and acceleration 177

techniques like DeepSpeed. 178

We adopt the LoRA approach to continue pre- 179

training Chinese-LLaMA-13b on LocalEvolve and 180

utilize DeepSpeed for acceleration. The continue- 181

pretraining process was conducted using 24 A100 182

GPUs for a duration of 96 hours with a learning 183

rate set to 2e-4 and weight decay set to 0.01. The 184

batch size per device set to 4 and the gradient ac- 185

cumulation step set to 1. The low-rank adaption is 186

applied to q,v,k,o and rank is set to 64 with alpha 187

set to 32. 188

3 Experiments 189

3.1 Main Results 190

We selected three tasks, namely product tagging, 191

product matching, and user query matching, to 192

compare the performance between LocalAdapt 193

and Chinese-LLaMA-13b. The data for the three 194

tasks are derived from real-world business scenar- 195

ios, with detailed descriptions provided in the ap- 196

pendixA.1. The dataset scale are detailed in Table 197

2. We allocate 20% of the dataset for validation and 198

use precision, recall, and F1 scores as automatic 199

metrics to measure the model’s inference conclu- 200
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Models
Read Fact

flu. gram. corr. compl.
ChatGPT 4.32 4.25 3.14 3.36
LLaMA-7b 4.09 3.60 3.57 3.22
LLaMA-13b 4.20 3.68 3.61 3.39
LLaMA-13b# 4.23 3.66 3.72 3.51
LocalAdapt 4.30 4.26 3.98 3.82

w/o FRUs 4.17 3.59 3.73 3.59

Table 3: Results of manual evaluation on product and
query matching tasks, where ’LLaMA-13b#’ refers to
Chinese-LLaMA-13b trained using LoRA.

sions, and we assess the correctness and logicality201

of the model’s inference process through manual202

evaluation. Tables 1 and 3 present the results of203

the automatic metric evaluation and manual evalua-204

tion, respectively. Table 1 shows that the F1 scores205

of LocalAdapt on all three tasks significantly out-206

perform the baseline models, demonstrating that207

LocalAdapt has better reasoning performance in208

life service scenarios. Table 3 indicates that the209

readability and correctness of the LocalAdapt infer-210

ence process surpass those of the baseline models,211

proving that LocalAdapt can generate more accu-212

rate and logical reasoning processes. The human213

evaluation guidelines and specific cases are pre-214

sented in the appendixA.2 and A.5.215

3.2 Ablation Experiments on FRUs216

In order to validate the effectiveness of FRUs, we217

extract 15 million structured data and set up the218

following three experimental groups: Group 1:219

The structured data is simply concatenated with-220

out FRUs; Group 2: Halve atomic reasoning tasks221

and construct FRUs to form pre-training corpora;222

Group 3: All FRU reasoning tasks are retained.223

We continue pre-training the backone model un-224

der these three experimental settings, obtaining225

LocalAdapt–, LocalAdapt-, and LocalAdapt*. Sub-226

sequently, we fine-tune the three models on the227

product matching task. As shown in Table 4, Lo-228

calAdapt* achieves the highest F1 score, while the229

F1 metric of LocalAdapt- is higher than that of230

LocalAdapt–. This indicates that: (1) FRUs can231

enhance the model’s reasoning capabilities; (2) A232

greater variety of atomic tasks leads to better infer-233

ence performance in the model.234

3.3 Effect of the LoRA Rank235

We further investigate the impact of LoRA rank on236

the pre-training performance. Fig 3 presents the237

Model P R F1
LocalAdapt– 74.17 83.02 78.34
LocalAdapt- 76.67 84.12 80.23
LocalAdapt* 77.04 86.20 81.36

Table 4: Metrics for LocalAdapt–, LocalAdapt-, and
LocalAdapt* after fine-tuning on the product matching
task.

Figure 3: Metrics for LocalAdapt on product tagging,
Product matching, and query matching tasks with dif-
ferent LoRA ranks in pre-training.

F1 score changes of LocalAdapt after fine-tuning 238

on product tagging, product matching and query 239

matching tasks when LoRA rank is set to 16, 32, 240

64, 128 and 256. The optimal LoRA rank is 64, 241

as smaller ranks may not capture diverse tasks, 242

while larger ranks may affect low-rank regulariza- 243

tion and cause overfitting. Thus, for the LocalE- 244

volve dataset, the best downstream performance is 245

achieved with LoRA rank set to 64. 246

4 Conclusion 247

In this study, we improve the performance of LLM 248

in local service scenarios by introducing a domain- 249

specific corpus, LocalEvolve, and developing a 250

customized LLM, LocalAdapt. Our Multi-Task 251

Mapping (MTM) system effectively transforms 252

structured data into Fundamental Reasoning Units 253

(FRUs), enhancing the model’s local life domain 254

performance. Results show LocalAdapt outper- 255

forms baselines in various tasks, highlighting our 256

approach’s potential in enhancing LLMs’ domain- 257

specific applicability. 258

The empirical analysis confirms FRUs’ efficacy 259

in bridging local life industry and general data. Our 260

work advances LLM refinement for specialized ap- 261

plications and domain-specific model adaptation 262

research. 263
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5 Limitations and Future Work264

Our work is still in its early stages, and we outline265

the current limitations and future research direc-266

tions as follows:267

1. Exploring more suitable data ratios. At268

present, we have only evaluated the performance269

of LocalAdapt fine-tuning on three tasks. Finding270

an appropriate data ratio to ensure that all local271

living services can achieve performance improve-272

ments after fine-tuning with LocalAdapt remains a273

challenging task.274

2. Automating the summarization of reasoning275

templates. The reasoning templates in our current276

work are manually selected from those constructed277

by GPT-4. In future work, we can consider devel-278

oping a method for automatically evaluating the fit279

of templates, reducing the labor costs involved.280

3. Mitigating the hallucination issue during the281

inference process. The current model’s inference282

process still contains some errors. In subsequent283

work, we can consider analyzing the impact of pre-284

training tasks on the hallucination phenomenon285

during the inference process after fine-tuning.286
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A Appendix405

A.1 Supervised Evaluation Dataset406

We evaluate pre-trained models on product tagging,407

product matching, and query matching tasks.408

The product tagging task aims to generate corre-409

sponding labels for products based on their names410

and descriptions, with labels derived from product411

category tags on the platform website.412

The product matching task aims to compare413

whether two products under the same point of inter-414

est (POI) are identical based on their descriptions,415

with inference results in the labels coming from416

merchant notes, reasoning generated by GPT4, and417

verified by human experts.418

The query matching task aims to compare419

whether two sentences from user inquiries in a cus-420

tomer service context express the same meaning,421

with inference results in the labels coming from422

customer service ticket notes, reasoning generated423

by GPT4, and verified by human experts.424

Since product data and user queries are propri- 425

etary to the platform, we will not disclose the com- 426

plete evaluation dataset to the public, thus prevent- 427

ing the leakage of private information and reducing 428

security risks. 429

A.2 Human Annotation Guidelines 430

A.2.1 Readability Annotation Guidelines 431

For readability, we ask annotators to focus on the 432

fluency and grammaticality of the reasoning and 433

provide the following guidance: 434

Annotators determine whether the sentence is 435

complete. If the sentence is incomplete, annotators 436

rate both fluency and grammaticality as 1. 437

Annotators can understand the meaning of a 438

complete sentence, but there are many grammatical 439

issues in the sentence. Annotators rate fluency and 440

grammaticality as 2 or 3. 441

Annotators can easily understand the meaning of 442

the sentence, with only minor grammatical issues. 443

Annotators rate fluency and grammaticality as 4 or 444

5. 445

A.2.2 Factuality Annotation Guidelines 446

For factuality, we ask annotators to focus on the cor- 447

rectness and completeness of the reasoning logic. 448

The guidelines are as follows: 449

We ask annotators to check whether the given 450

reasoning process correctly explains the concepts 451

and whether the reasoning process leading to the 452

conclusion contains complete reasoning logic. 453

If the match rate is less than 30%, annotators 454

rate the score as 1 or 2; 455

if the match rate is greater than 30% and less 456

than 60%, annotators rate the score as 3; 457

if the match rate is greater than 60% and less 458

than 100%, annotators rate the score as 4 or 5. 459

A.3 Why Choose LoRA 460

We compare various methods for continuing pre- 461

training the backbone model. Fig 1 demonstrates 462

that LoRA (rank 64) significantly outperforms 463

full parameter updates and P-Tuning V2 on query 464

matching task. LoRA’s superior performance is 465

attributed to its regularization effect and preser- 466

vation of pre-trained knowledge, preventing over- 467

fitting and improving generalization. In contrast, 468

full-parameter fine-tuning may disrupt pre-trained 469

knowledge, leading to suboptimal performance. 470
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Figure 1: Metrics for LocalAdapt on query matching
task with different pre-training strategies.

A.4 Example Prompts for Reasoning Task471

Design472

We demonstrate the instructions driving the design473

of logical reasoning tasks for GPT-4 in Fig 2.474

A.5 Case Study475

In Figs 3, 4 and 5, we demonstrate the performance476

of various models on product tagging, product477

matching, and query matching tasks. Our Local-478

Adapt achieves state-of-the-art (SOTA) results in479

all three tasks.480
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Figure 2: Example Prompts for Reasoning Task Design.
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Figure 3: Example output for product tagging task, where LocalAdapt achieves SOTA.

Figure 4: Example output for product matching task, where LocalAdapt achieves SOTA.
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Figure 5: Example output for query matching task, where LocalAdapt achieves SOTA.
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