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Abstract

Large language models (LLMs) have gained
considerable attention due to their remarkable
generalization capabilities, as exemplified by
ChatGPT and GPT-4(OpenAl, 2023). How-
ever, these models exhibit limitations in spe-
cific domains, such as local life service scenar-
ios, stemming from insufficient relevant knowl-
edge and considerable disparities between lo-
cal life industry data and general data. To ad-
dress this issue, we first introduce a 170GB
domain-specific corpus, LocalEvolve, for un-
supervised continued pretraining. Second, we
employ a low-rank adaptation approach to train
a customized LLM, LocalAdapt, for local life
service scenarios. Notably, we design a Multi-
Task mapping system that transforms structured
industry data into various Fundamental Rea-
soning Units (FRUs). Our LocalAdapt model
demonstrates superior performance across dif-
ferent local life tasks compared to baseline
models. Extensive empirical analysis further
confirm the effectiveness of FRUs.

1 Introduction

Large Language Models (LLMs) signify a mile-
stone in the field of natural language processing
(NLP)(Shanahan, 2023)(Wei et al., 2023). Char-
acterized by their billion-scale parameters and ex-
tensive pretraining on massive text data, LLMs ex-
hibiting remarkable capabilities(Wei et al., 2022b),
including in-context learning, instruction following,
step-by-step reasoning and so on. Such abilities
enable them to address complex challenges once
considered insurmountable for NLP systems, cat-
alyzing transformative changes across numerous
industries(Rae et al., 2022).

Although large models exhibit remarkable gen-
eralization capabilities, their lack of specialization
for the local life industry may lead to sub-optimal
performance in related tasks(Xiong et al., 2023).
This is due to the unique structure and word dis-
tribution of local life data compared to general

Figure 1: The complete schema of the FRUs.

data(Li et al., 2023). Local life data is derived
from lifestyle services and live streaming platforms,
predominantly consisting of structured attribute-
value pairs and relational tuples, which challenges
general LLMs’ comprehension. Additionally, lo-
cal life data contains prevalent industry-specific
concepts with diverse representations across mer-
chants, further complicating the task for general
models. Therefore, there is a crucial need for a
large model tailored to the local life industry, en-
compassing extensive industry knowledge and a
thorough understanding of local life data.

In the LLM era, various efforts aim to im-
prove model generalization in specific indus-
tries. One retrieval-based approach calls query-
related instances for in-context learning(Asai et al.,
2023)(Qian et al., 2023). However, this method
fails to fundamentally address the lack of relevant
industry knowledge in LLMs(Li et al., 2022), and
accurately recalling related instances remains chal-
lenging(Cui et al., 2023a). Another approach at-
tempt involves constructing multi-task instruction
sets and employing instruct learning(Ouyang et al.,
2022). Although effective, this method demands
high complexity, diversity, and scale of instructions,
thus increasing the burden of data annotation and
collection for human(Sanh et al., 2022)(Wei et al.,
2022a).

To imbue models with domain-specific knowl-
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Figure 2: Overiew of Local Adapt pipeline.

edge, we create LocalEvolve, a 170GB local life-
related dataset comprising external and industry
knowledge. External knowledge primarily comes
from the WuDao corpora(Yuan et al., 2021), while
industry knowledge mainly comes from platform
data (e.g. product information, user reviews, video
titles). Notably, we design a Multi-Task Mapping
system(MTM) to assemble structured industry data
into Fundamental Reasoning Units (FRUs), which
can not only enhance the model’s understanding
of local life concepts, but also enable it to tackle
complex reasoning tasks across various local life
scenarios.

By continue-pretraining Chinese-LLaMA-13B
on the LocalEvolve, we obtain a customized local
life model, LocalAdapt. We adopt a parameter-
efficient low-rank adaptation method(Hu et al.,
2021), which not only improves training efficiency
but also enhances the model’s performance on
downstream tasks, particularly in low-resource sce-
narios. LocalAdapt significantly outperforms the
baseline in product matching, product tagging, and
user query matching. Further ablation studies vali-
date the effectiveness of incorporating FRUs, show-
ing that multi-task reasoning learning during pre-
training improves the model’s reasoning abilities.

The main contributions of this paper are summa-
rized below:(1)We use multi-task reasoning for or-
ganizing pretraining data, introducing a 170GB lo-
cal life dataset, LocalEvolve. Our proposed MTM
system effectively converts structured industry data
into FRUs, significantly enhancing the diversity
and inferential nature of pretraining corpora. (2)Us-

ing a low-rank adaptation approach on pretrained
Chinese-LLaMA-13b, we create LocalAdapt, a cus-
tomized local life model with exceptional perfor-
mance across various local life tasks.(3)Extensive
experiments demonstrate the effectiveness of Lo-
calAdapt compared to other baseline models.

2 Approach

2.1 Overview of the LocalEvolve

In this section, we introduce LocalEvolve, a large-
scale, high-quality dataset consisting of 170GB,
primarily derived from two sources. Firstly, we col-
lected life service-related data from public sources.
These datasets are typically of high quality as they
have been carefully curated by experts in the field.

Secondly, We collect data from life service sec-
tors, which can be categorized into basic types:
product information, user reviews, live video ASR,
and video titles. For the 80% structured data, We
design an MTM system, constructing a series of
FRUs based on atomic reasoning tasks such as
causal inference, primary and secondary reasoning,
and inductive reasoning. A detailed description of
the construction methods will be provided in the
subsequent sections.

2.2 Acquiring External Data from WuDao
Corpora

For public datasets, we primarily chose WuDao
Corpora, a large-scale, high-quality dataset re-
leased by the Beijing Academy of Artificial Intelli-
gence(BAAI). With 200GB of open-source data, it
covers 50+ industries, including military and tech-



Models Product Tagging Product Matching Query matching

P R Fl1 P R Fl1 P R Fl
ChatGPT 76.84 67.16 71.67 | 87.03 47.11 61.02 | 79.02 42.11 54.88
Bert 89.01 77.69 81.62 | 7562 69.41 7238 |43.10 26.86 39.77
Chinese-LLLaMA-7b 96.85 74.61 80.70 | 73.92 79.06 76.41 | 75.74 73.54 74.63
Chinese-LLaMA-13b 83.22 86.01 83.69 | 75.17 83.02 78.90 | 76.01 84.04 79.82
Chinese-LLaMA-13b(LoRA) | 96.36 80.91 85.83 | 73.89 86.42 79.66 | 76.73 87.22 81.64
LocalAdapt(ours) 9236 90.39 92.07 | 77.80 86.65 81.99 | 82.56 93.24 87.58
w/o FRUSs 89.01 77.69 81.62 | 7498 86.18 80.19 | 76.74 87.07 81.58

Table 1: Precision (P), Recall (R), and F1 scores for ChatGPT, open-source general models, and LocalAdapt(ours)

on product tagging, product matching, and query matching tasks.

nology, We primarily focus on lifestyle-related in-
dustries(entertainment, tourism, gaming, education
and so on)to include in our LocalEvolve, amount-
ing to 156GB in total.

23

life service-related data primarily consists of four
types of data: platform product data, user review
data, live video ASR, and video titles, with struc-
tured data accounting for 80%. Due to the sig-
nificant differences in form between structured
data and common fluent text data, organizing pre-
training corpora through simple linearization(Jiang
et al., 2023) result in suboptimal performance for
the model during the supervised fine-tuning phase.
Specifically, the customized model experiences
hard-to-suppress hallucinations during inference
on downstream tasks(Manakul et al., 2023), gen-
erating numerous undesired product descriptions.
This severely degrades the model’s performance on
downstream tasks and significantly increases the in-
ference time because of the generation of excessive
unrelated tokens.

To mitigate these hallucinations, we propose a
Multi-Task Mapping (MTM) system that maps
structured data to Foundation Reasoning Units
(FRUs) to reduce data form differences and in-
troduce more reasoning logic. Specifically, we
randomly extract 100 data samples from each ba-
sic data type, and have GPT4 generate candidate
reasoning tasks, detailed instruction design is pre-
sented in the appendixA.4. Then, human experts
select atomic reasoning tasks from the candidates,
and GPT4 designs mapping templates based on
the structured data and atomic reasoning tasks. By
fitting the structured data into these mapping tem-
plates, we obtain a series of natural language texts,
namely FRUs, which encompass abundant domain
knowledge and reasoning logic.

Mapping Structured Data to FRUs

Tasks Size In.den | Out.len
product tag 2,000 | 75.12 8.67
product match | 2,000 | 100.81 15.60
query match 1000 | 89.91 132.47

Table 2: Details of Data for SFT Tasks. "In.len" de-
notes the average length of inputs, "Out.len" denotes the
average length of labels.

2.4 Training of LocalAdapt

We train LocalAdapt using Chinese-LLaMA-
13b(Cui et al., 2023b), a customized model for
Chinese, which supports efficient fine-tuning meth-
ods(Liu et al., 2022) like LoRA and acceleration
techniques like DeepSpeed.

We adopt the LoRA approach to continue pre-
training Chinese-LLaMA-13b on LocalEvolve and
utilize DeepSpeed for acceleration. The continue-
pretraining process was conducted using 24 A100
GPUs for a duration of 96 hours with a learning
rate set to 2e-4 and weight decay set to 0.01. The
batch size per device set to 4 and the gradient ac-
cumulation step set to 1. The low-rank adaption is
applied to q,v,k,0 and rank is set to 64 with alpha
set to 32.

3 Experiments

3.1 Main Results

We selected three tasks, namely product tagging,
product matching, and user query matching, to
compare the performance between LocalAdapt
and Chinese-LLaMA-13b. The data for the three
tasks are derived from real-world business scenar-
ios, with detailed descriptions provided in the ap-
pendixA.1. The dataset scale are detailed in Table
2. We allocate 20% of the dataset for validation and
use precision, recall, and F1 scores as automatic
metrics to measure the model’s inference conclu-



Models Read Fact Model P R F1
flu. gram. | corr. compl. LocalAdapt- | 74.17 83.02 78.34
ChatGPT 432 425 | 314 3.36 LocalAdapt- | 76.67 84.12 80.23
LLaMA-7b 4.09 3.60 | 357 3.22 LocalAdapt* | 77.04 86.20 81.36
LLaMA-13b | 420 3.68 | 3.61 3.39
LLaMA-13b# | 423  3.66 | 3.72 351 Table 4: Metrics for LocalAdapt—, LocalAdapt-, and
* o .

LocalAdapt 430 426 | 3.98 3.82 {;(;lc(jalAdapt after fine-tuning on the product matching

w/oFRUs | 4.17 359 | 373 3.59

Table 3: Results of manual evaluation on product and
query matching tasks, where 'LLaMA-13b#’ refers to
Chinese-LLaMA-13b trained using LoRA.

sions, and we assess the correctness and logicality
of the model’s inference process through manual
evaluation. Tables 1 and 3 present the results of
the automatic metric evaluation and manual evalua-
tion, respectively. Table 1 shows that the F1 scores
of LocalAdapt on all three tasks significantly out-
perform the baseline models, demonstrating that
LocalAdapt has better reasoning performance in
life service scenarios. Table 3 indicates that the
readability and correctness of the Local Adapt infer-
ence process surpass those of the baseline models,
proving that LocalAdapt can generate more accu-
rate and logical reasoning processes. The human
evaluation guidelines and specific cases are pre-
sented in the appendixA.2 and A.S.

3.2 Ablation Experiments on FRUs

In order to validate the effectiveness of FRUs, we
extract 15 million structured data and set up the
following three experimental groups: Group 1:
The structured data is simply concatenated with-
out FRUs; Group 2: Halve atomic reasoning tasks
and construct FRUs to form pre-training corpora;
Group 3: All FRU reasoning tasks are retained.
We continue pre-training the backone model un-
der these three experimental settings, obtaining
LocalAdapt—, LocalAdapt-, and LocalAdapt*. Sub-
sequently, we fine-tune the three models on the
product matching task. As shown in Table 4, Lo-
calAdapt* achieves the highest F1 score, while the
F1 metric of LocalAdapt- is higher than that of
LocalAdapt—. This indicates that: (1) FRUs can
enhance the model’s reasoning capabilities; (2) A
greater variety of atomic tasks leads to better infer-
ence performance in the model.

3.3 Effect of the LoORA Rank

We further investigate the impact of LoRA rank on
the pre-training performance. Fig 3 presents the

16 32

64 128 256
LoRA rank

Figure 3: Metrics for LocalAdapt on product tagging,
Product matching, and query matching tasks with dif-
ferent LoRA ranks in pre-training.

F1 score changes of Local Adapt after fine-tuning
on product tagging, product matching and query
matching tasks when LoRA rank is set to 16, 32,
64, 128 and 256. The optimal LoRA rank is 64,
as smaller ranks may not capture diverse tasks,
while larger ranks may affect low-rank regulariza-
tion and cause overfitting. Thus, for the LocalE-
volve dataset, the best downstream performance is
achieved with LoRA rank set to 64.

4 Conclusion

In this study, we improve the performance of LLM
in local service scenarios by introducing a domain-
specific corpus, LocalEvolve, and developing a
customized LLM, LocalAdapt. Our Multi-Task
Mapping (MTM) system effectively transforms
structured data into Fundamental Reasoning Units
(FRUs), enhancing the model’s local life domain
performance. Results show LocalAdapt outper-
forms baselines in various tasks, highlighting our
approach’s potential in enhancing LLMs’ domain-
specific applicability.

The empirical analysis confirms FRUs’ efficacy
in bridging local life industry and general data. Our
work advances LLM refinement for specialized ap-
plications and domain-specific model adaptation
research.



5 Limitations and Future Work

Our work is still in its early stages, and we outline
the current limitations and future research direc-
tions as follows:

1. Exploring more suitable data ratios. At
present, we have only evaluated the performance
of LocalAdapt fine-tuning on three tasks. Finding
an appropriate data ratio to ensure that all local
living services can achieve performance improve-
ments after fine-tuning with LocalAdapt remains a
challenging task.

2. Automating the summarization of reasoning
templates. The reasoning templates in our current
work are manually selected from those constructed
by GPT-4. In future work, we can consider devel-
oping a method for automatically evaluating the fit
of templates, reducing the labor costs involved.

3. Mitigating the hallucination issue during the
inference process. The current model’s inference
process still contains some errors. In subsequent
work, we can consider analyzing the impact of pre-
training tasks on the hallucination phenomenon
during the inference process after fine-tuning.
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A Appendix

A.1 Supervised Evaluation Dataset

We evaluate pre-trained models on product tagging,
product matching, and query matching tasks.

The product tagging task aims to generate corre-
sponding labels for products based on their names
and descriptions, with labels derived from product
category tags on the platform website.

The product matching task aims to compare
whether two products under the same point of inter-
est (POI) are identical based on their descriptions,
with inference results in the labels coming from
merchant notes, reasoning generated by GPT4, and
verified by human experts.

The query matching task aims to compare
whether two sentences from user inquiries in a cus-
tomer service context express the same meaning,
with inference results in the labels coming from
customer service ticket notes, reasoning generated
by GPT4, and verified by human experts.

Since product data and user queries are propri-
etary to the platform, we will not disclose the com-
plete evaluation dataset to the public, thus prevent-
ing the leakage of private information and reducing
security risks.

A.2 Human Annotation Guidelines

A.2.1 Readability Annotation Guidelines

For readability, we ask annotators to focus on the
fluency and grammaticality of the reasoning and
provide the following guidance:

Annotators determine whether the sentence is
complete. If the sentence is incomplete, annotators
rate both fluency and grammaticality as 1.

Annotators can understand the meaning of a
complete sentence, but there are many grammatical
issues in the sentence. Annotators rate fluency and
grammaticality as 2 or 3.

Annotators can easily understand the meaning of
the sentence, with only minor grammatical issues.

Annotators rate fluency and grammaticality as 4 or
5.

A.2.2 Factuality Annotation Guidelines

For factuality, we ask annotators to focus on the cor-
rectness and completeness of the reasoning logic.
The guidelines are as follows:

We ask annotators to check whether the given
reasoning process correctly explains the concepts
and whether the reasoning process leading to the
conclusion contains complete reasoning logic.

If the match rate is less than 30%, annotators
rate the score as 1 or 2;

if the match rate is greater than 30% and less
than 60%, annotators rate the score as 3;

if the match rate is greater than 60% and less
than 100%, annotators rate the score as 4 or 5.

A.3 Why Choose LoRA

We compare various methods for continuing pre-
training the backbone model. Fig 1 demonstrates
that LoRA (rank 64) significantly outperforms
full parameter updates and P-Tuning V2 on query
matching task. LoRA’s superior performance is
attributed to its regularization effect and preser-
vation of pre-trained knowledge, preventing over-
fitting and improving generalization. In contrast,
full-parameter fine-tuning may disrupt pre-trained
knowledge, leading to suboptimal performance.
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Figure 1: Metrics for LocalAdapt on query matching
task with different pre-training strategies.

A.4 Example Prompts for Reasoning Task
Design

We demonstrate the instructions driving the design
of logical reasoning tasks for GPT-4 in Fig 2.

A.5 Case Study

In Figs 3, 4 and 5, we demonstrate the performance
of various models on product tagging, product
matching, and query matching tasks. Our Local-
Adapt achieves state-of-the-art (SOTA) results in
all three tasks.
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Figure 2: Example Prompts for Reasoning Task Design.




Prompt

Instruction:

Assign tags to the
following product
based on its title and
content

description

Input:

[Product Name] Facial

Moisturizing SPA
[Product Details]
Makeup removal and
cleansing | | Deep
hydration and
peptide firming | |
Aier's refined series
of lotion | | Age-
defying and
rejuvenating | |
Hydro-oxygen
warmth | | Micro-
conducting essence

Model

ChatGPT

Chinese-llama-7b

Chinese-llama-13b

Chinese-llama-
13b(LoRA)

LocalAdapt

LocalAdapt w/o FRUs

Label

Response

Makeup removal and cleansing - Essence
moisturizing - Hydration and firming

Cleansing - Beauty

Facial cleansing - Skin management - Beauty

Facial cleansing - Facial hydration - Beauty

Facial cleansing - Facial hydration - Skin
management - Beauty

Facial hydration - Beauty

Facial cleansing - Facial hydration - Skin
management - Beauty

Figure 3: Example output for product tagging task, where LocalAdapt achieves SOTA.

Prompt

Instruction:
Determine whether
the following two
products are the
same based on
descriptions, and
provide the reason.

Input:

Product 1: Bayannur
Sesame Open Door
Water World, live-
streaming benefits,
one adult and one
child play pass vs
Product 2: Sesame
Open Door Water
World - [VIP Parent-
Child Ticket] one
adult and one child
pass

Model

ChatGPT

Chinese-llama-7b

Chinese-llama-13b

Chinese-llama-
13b(LoRA)

LocalAdapt

LocalAdapt w/o FRUs

Label

Response

Different products. Product 1 is from a live-
streaming platform, while Product 2 does not
specify the source and is targeted at VIPs.

Different products. The services offered differ,
but the target audience is consistent.

Different products. The services offered are
inconsistent, but both target one adult and one
child.

Different products. The services offered are
inconsistent, but the target audience is
consistent (one adult and one child).

Same product. The services offered are
consistent, and the target audience is
consistent (one adult and one child).

Different products. The services offered are
inconsistent, but the target audience is
consistent.

Same product. The services offered are
consistent, and the target audience is
consistent (one adult and one child).

Figure 4: Example output for product matching task, where LocalAdapt achieves SOTA.



Prompt Model

Instruction:

Determine whether ChatGPT
the meanings of the

following two

sentences are the

same, and provide
the reason. Chinese-llama-7b

Chinese-llama-13b

Chinese-llama-
Input: 13b(LoRA)

Sentence 1: "Does
this store offer
cupping therapy?" vs.
Sentence 2: "Can they
help with dampness
removal here, like
with moxibustion?"

LocalAdapt

LocalAdapt w/o FRUs

Label

Response

Not the same. In Sentence 1, the user is asking
about cupping therapy, while in Sentence 2, the
user is asking about dampness removal and
mentions moxibustion. The focus of the
inquiries is different.

Not the same. Sentence 1 asks about cupping
therapy, while Sentence 2 asks about
moxibustion, making them different.

Not the same. Sentence 1 inquires if the store
offers cupping therapy, while Sentence 2 asks
about dampness removal, making them
different.

Not the same. Sentence 1 asks about cupping
therapy, while Sentence 2 asks about dampness
removal. Cupping therapy is not a dampness
removal method, making them different.

The same. Sentence 1 asks about cupping
therapy, while Sentence 2 asks about dampness
removal. Cupping therapy is also a dampness
removal method, making them the same.

Not the same. Sentence 1 asks about cupping
therapy, while Sentence 2 asks about
moxibustion. Cupping therapy and moxibustion
are different.

The same. Sentence 1 asks about cupping
therapy, while Sentence 2 asks about dampness
removal. Cupping therapy is one of a method of

dampness removal, making them the same.

Figure 5: Example output for query matching task, where LocalAdapt achieves SOTA.
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