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ABSTRACT

Self-supervised models exhibit a surprising stability in their internal representations.
Whereas most prior work treats this stability as a single property, we formalize
it as two distinct concepts: statistical identifiability (consistency of representa-
tions across runs) and structural identifiability (alignment of representations with
some unobserved ground truth). Recognizing that perfect pointwise identifiability
is generally unrealistic for modern representation learning models, we propose
new model-agnostic definitions of statistical and structural near-identifiability of
representations up to some error tolerance e. Leveraging these definitions, we
prove a statistical e-near-identifiability result for the representations of mod-
els with nonlinear decoders, generalizing existing identifiability theory beyond
last-layer representations in e.g. generative pre-trained transformers (GPTs) to
near-identifiability of the intermediate representations of a broad class of mod-
els including (masked) autoencoders (MAEs) and supervised learners. Although
these weaker assumptions confer weaker identifiability, we show that independent
components analysis (ICA) can resolve much of the remaining linear ambiguity
for this class of models, and validate and measure our near-identifiability claims
empirically. With additional assumptions on the data-generating process, statistical
identifiability extends to structural identifiability, yielding a simple and practical
recipe for disentanglement: ICA post-processing of latent representations. On syn-
thetic benchmarks, this approach achieves state-of-the-art disentanglement using a
vanilla autoencoder. With a foundation model-scale MAE for cell microscopy, it
disentangles biological variation from technical batch effects, substantially improv-
ing downstream generalization.

1 INTRODUCTION

Despite the massive variety of data modalities, pretext tasks, training procedures, and datasets,
disparate self-supervised learning models as a whole seem to be converging on a shared set of
representations of the natural world (Huh et al., [2024) which are useful for a surprising variety of
downstream tasks (Kraus et al.} 2024} [Hayes et al., 2025} [Baevski et al}, [2020; [Brohan et al., [2023).
A classical lens for studying this phenomenon is the notion of identifiability (Reizinger et al., [2025a).
In likelihood-based statistical inference, identifiability is the condition that data are sufficient to
completely characterize the parameters of the model (Casella & Berger, [2001). The situation is
considerably trickier for neural network models: the parameter space is large and invariant to e.g.
permutations of the neurons, and the training procedures might lack a likelihood-based interpretation.
Instead, recent work in identifiability focuses on finding conditions such that infinite data is sufficient
to characterize the trained model’s representations of that data (Reizinger et al., 2025a) up to some
equivalence class such as a linear transformation (Roeder et al., 2021).

We begin by sharpening existing definitions of representation identifiability, recognizing that existing
results fall into two categories. The first is what we refer to as statistical identifiability, or the
condition that optimizing a given representation learning model will yield the same representations
up to some simple transformation. The second is what we refer to as structural identifiability, or the
condition that optimizing a given representation learning model will yield a particular representation
every time, corresponding to some latent component of the data-generating process. We provide
definitions of statistical and structural identifiability that relax the requirement that the representations
are exactly identifiable, making them the first general-purpose formulations which are applicable to
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the case where the representations are “nearly” identifiable up to some error tolerance € and extending
prior model-specific cases (Nielsen et al} 2023} [Buchholz & Schélkopf] 2024).

Leveraging these definitions, we prove several new identifiability results. Our first result shows that
for models which have statistically identifiable outputs, such as generative pre-trained transformers,
supervised classifiers, and encoder-decoder models (Roeder et al} 2021)), the intermediate-layer
representations are also statistically e-nearly identifiable up to a rigid transformation. Unlike several
recent results, these representations can be mapped non-linearly to the loss, and € is governed
by a mild function class condition on the mapping from the intermediate layer to the identifiable
outputs. Our second result shows that linear independent components analysis (ICA) can resolve this
rigid indeterminacy, yielding near-identifiability up to signed permutations. Notably, our sharper
definitions of statistical and structural identifiability reveal that these results are available without
strong assumptions on the data-generating process, instead requiring only this mild function class
assumption on the model. Our final result shows that if one is willing to make a similar assumption on
the data-generating process, encoder-decoder models which are statistically identifiable and achieve
perfect reconstruction are also structurally identifiable. Notably, perfect reconstruction is another
assumption which can be relaxed if statistical identifiability is all that is required.

In addition to our theoretical contributions, we perform a series of experiments to validate our claims.
In synthetic experiments on autoencoders, we show that hyperparameter selection and regularization
impacts the statistical identifiability nearness € in ways that are predicted by our theory. Subsequent
experiments show that near-identifiability also holds in off-the-shelf pre-trained models, and that the
linear indeterminacies predicted by our theory can in practice be resolved by ICA. Next, we investigate
whether our structural identifiability result can be applied to the special case of disentanglement
(Cocatello et al[2020), finding that the simple combination of vanilla autoencoders and linear ICA
applied to the latent space yields disentanglement on several benchmark datasets, competitive with
some of the best existing models. Finally, we show that linear ICA applied to the latent space of a
masked autoencoder for cell imaging successfully disentangles batch effects from biological variation,
a key problem in the application of machine learning to biology.

2 RELATED WORK

Statistical identifiability of representations Prior representation identifiability results make strong
assumptions on the data-generating process (Zimmermann et al 2021}, Reizinger et all [2025b;
[Khemakhem et al [2020b; [Chen et all, 2024} [Lachapelle et al., 2023)) or assume a linear relationship
between the representations and the loss (Roeder et al., 2021; [Marconato et al,[2025} [Nielsen et al.,
[2025), and generally do not distinguish between statistical and structural identifiability as we do
here. Our work directly addresses this gap by proposing a concrete definition of statistical e-near-
identifiability which is provably met by the general-purpose models in widespread use today, with only
mild assumptions on the model class and few assumptions on the data-generating process. We directly
measure the consequences of our statistical identifiability results by assessing the ¢5 convergence
of representations in real-world models, extending prior work on representation similarity (Roeder]
et al, 2021}, [Huh et al.| 2024} [Klabunde et al.| 2025} [Nielsen et al., [Marconato et al., [2025)).
Nielsen et al| (2025)) relaxes the identifiability theory of [Roeder et al.|(2021)) for generative pre-trained
transformers, showing that the Kullback-Leibler divergence on the next-token distribution fails to
serve as a witness for differences in the penultimate-layer representations, and proves a sufficient
condition for divergences that do, which could be viewed as a particular form of near-identifiability
for a particular model class. [Reizinger et al|(2024) formalizes e-non-identifiability with respect to
the KL divergence, showing that this failure generalizes beyond representational identifiability to
other properties of interest for large language models. For a history of the term identifiability, see

Appendix [A]]

Structural identifiability of representations Ours is also the first work to make clear the dis-
tinction between such model-specific identifiability results and structural identifiability results such
as disentanglement. We formalize an assumption on the data-generating process that allows us to
extend our key statistical identifiability result to structural identifiability of encoder-decoder models,
and define and characterize a rich class of data-generating processes which meet this assumption.
This result is similar to other works that aim to “invert the data-generating process” (Zimmermann|
let al] 2021}, [Reizinger et al.} [2025b} [Von Kiigelgen et al., [2021)), including work on the isometry
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assumption (Horan et al.| 2021)), some of which uses a different, average-case notion of near-isometry
to claim near-recovery of the true latents in a nonlinear ICA model (Buchholz & Scholkopf] [2024)).
These prior works are far from real-world practice, with only Reizinger et al.| (2025b)) presenting any
results on a real model with real data, showing that linear concept decoding is possible via parametric
instance discrimination in ImageNet-X, but lacking a clear disentanglement result. In stark contrast,
we illustrate a practical application of our theory by showing that we can improve out-of-distribution
generalization in a real-world biological foundation model for cell microscopy via disentanglement.
Our work also differs from prior work on causal representation learning (see|Yao et al. (2025)) in that
our structural identifiability result is completely unsupervised, relying on inductive biases rather than
supervision in the form of interventions.

3  STABILITY THEORY

We begin by providing a novel theory of the stability of neural representations, with an eye toward
self-supervised models. All theorems are presented informally with important constants in the main
text, with full theorem statements, lemmata, proofs, and model-specific treatments in Appendix

3.1 STATISTICAL NEAR-IDENTIFIABILITY

We consider a data distribution supported on an arbitrary space X. A representation learning model
can be fully characterized by its parameter space O, its loss function, and the deterministic mapping
from parameters to representation functions. Concretely, for each 8 € ©, let Ly : X — R denote
the corresponding loss function, and define the model as M = {L : § € ©}. If some component
of § parameterizes a representation function fp : X — R, then identifiability theory in machine
learning aims to characterize the properties of fy after training by minimizing E[Lg(x)] yields a set
of parameters 6.

Definition 1. Let P(x) denote some data distribution supported on X. Consider a machine learning
model M = {Ly : 0 € O}, and let F : 0 — fy be some deterministic transform of the model
parameters yielding a representation function fo : X — RP. Let S C © be the set of minimizers
of Exp(z)[Lo(x)]. For some group H of functions from RP to itself, we say that (P, M, F) is
statistically e-nearly identifiable in expectation up to H if for every 0,0 € S, we have ||fg — h o
forll < efor some h € H.

Remark. For the remainder of this paper, we will use the the L> norm (essential supre-
mum with respect to P) for functions taking values in the Euclidean space RP endowed
with the /5 norm. When ¢ = 0, we drop the e-nearly and refer to the triple simply as
statistically identifiable in expectation up to 7. When the identifiability is pointwise, we refer to
the triple as statistically identifiable in expectation.

Intuition. This generalizes prior definitions of representation identifiability by the introduction of the
“slack” term e. Definition [I|says that a model’s representations as given by independent retrainings
fo and fp, are near-identifiable if they are the same up to a simple transformation group # (e.g.
rotations) and a small amount of distortion e. In this way, we also generalize the classical definition if
identifiability from mathematical statistics (Casella & Berger} [2001)), see Appendix[A.T]for a history.

In this paper, we will mainly deal with near-identifiability of latent representations up to the function
classes Hiinear» Hrigia and Ho. Hiinear is the group of invertible linear transformations on RP, while
H.igia 1S the class of rigid linear transformations on RP, which consists of compositions of rotations,
reflections and translations (Hrigia C Hiinear)- In practice, translations can be ignored by assuming e.g.
zero mean of the representation distribution. Similarly, reflections only flip signs, and can usually
also be ignored. It is therefore useful to imagine the main indeterminacy of H.igq as being a special
orthogonal matrix in SO(D), i.e. a rotation. H, is the class of signed permutations of R”, which
are generally not resolvable because there is no reasonable way to specify an ordering to the latent
variables or signs to individual latent variables (should the x coordinate of an object in a scene be
represented left-to-right, or right-to-left?).

Connection with prior results Existing representation identifiability results can easily be recast in
our framework. For example, contrastive learning models using the InfoNCE loss with augmentation
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distributions satisfying a particular isotropy condition in latent space are identifiable up to Higia
(Zimmermann et al., 2021)). This isotropy condition is impossible to validate in practice without
access to the ground-truth data-generating factors, reflecting the fact that it is a strong assumption on
the true data-generating process.

Another result is due to|Roeder et al.|(2021), which applies to models whose losses take the following
form and can be interpreted as exponential family negative log-likelihoods:

Lo(z,y) = —ne(x) te(y) + Aa(x) = —logqe(y | =) (1)

where gy is the approximating distribution, ty is a sufficient statistics function, 7y is the natural
parameter function, and Ay is the log partition function. As an example, ty might map categorical
labels to their corresponding vectors in a final linear weights matrix (covering the case of supervised
multi-class classification, including next-token prediction). 19 maps inputs to their representations,
which are shown to be identifiable up to Hjineor When pointwise equality of the losses is attained.
In a short proof in Appendix [A-3.1] we show that a simple sufficient richness condition on the
approximating class extends this result to our definition of identifiable in expectation. Put together,
this result means that “perfect optimization” on infinite data will yield a supervised or GPT-class
model with the same penultimate-layer representations every time, up to some unknown linear
transformation. An extension of this result provides for the same kind of identifiability on a linear
subspace of the representation space, allowing for the case of models with representations of different
ambient dimension (Marconato et al.|[2025). [Nielsen et al.|(2025)) provides for a further generalization,
deriving a notion of distance on the space of modeled likelihoods Q = {qg(y | z) : @ € O} such that
closeness in distribution implies closeness in the penultimate-layer representations given by 7y, a
form of near-identifiability (see also Appendix [A-3.T).

Even these GPT results are limited because they only treat these penultimate-layer representations
given by m, which are mapped linearly to the loss. For many models, we’re interested in repre-
sentations from earlier layers which are mapped to the loss nonlinearly, such as with a nonlinear
decoder or head. Our key result, captured in the following theorem, provides near-identifiability up
to rigid transformations in such cases. The level of nearness ¢ is governed by the degree of local
bi-Lipschitzness of this nonlinear mapping. This result allows us to treat earlier-layer representations
in GPT or supervised classification models, for example, or the latent representations of (masked)
autoencoders.

Theorem 1. (Informal) Let P(x) be a data distribution, and let M be a model with a parameter
space ©. Let F' : 0 — fo, G : 0 — gg and H : 0 — gg o fo. Then, if (P, M, H) is statistically
identifiable in expectation, then (P, M, F) is statistically e-nearly identifiable in expectation up to
Hyigia for € = cpV2L + L2A where 1 + L is a local bi-Lipschitz constant bound for gg, and cp and
A are constants independent of the model (and L).

Intuition. Here, we give the first general-purpose identifiability result for the internal representations
(i.e. arbitrary-layer) of a broad class of models, including (masked) autoencoders, next-token
predictors, and supervised learners. H parameterizes the end-to-end neural network gy o fy, which
is assumed to have identifiable outputs: for example, when the loss is the mean squared error, the
neural network learns the optimal function, namely the conditional mean. The identifiability of the
internal representations given by fy (the “encoder”) is then governed by the local bi-Lipschitzness of
the function gy (the “decoder”) mapping them to these identified outputs. The bi-Lipschitz constraint
controls the degree to which gy deforms distances. Intuitively, a bound on the local bi-Lipschitz
constant is small when small changes in the latent variables result in small changes in the outputs of
the network. The proof is given in Appendix [A.3.2] and we provide concrete examples for a number
of architectures, including masked autoencoders, supervised learners, and GPTs in Appendices[A3.3]

and[A34

This result is the most general we are aware of for quantifying representation identifiability. The local
bi-Lipschitz condition is difficult to test empirically, but prior work has shown that many popular
regularization techniques push neural networks toward a state of “dynamical isometry”, which can be
viewed as a bi-Lipschitz condition (Xiao et al.} 2018}, [Bachlechner et al,2020; Miyato et al., 2018},
[Karras et al.}[2020; [Zhang et al., 2019) due to the singular values of the Jacobian concentrating near
one. We derive the precise relationship in Appendix [A.4]
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3.2 RESOLVING LINEAR INDETERMINACIES WITH ICA

Later, we will illustrate applications of the near-identifiability result Theorem [I] to both vanilla
autoencoders and masked autoencoders. To do this, we will find it useful to resolve the remaining
linear indeterminacy in the latent space posed by Hiinear Or Hyigia. We propose to do this by applying
independent components analysis to the latent representations. We do not provide any novel ICA
identifiability results in this work. Rather, we show that our conception of e-nearness in identifiability
poses no further complications for the downstream application of ICA.

Theorem 2. (Informal) Suppose (P, M, F) is statistically e-nearly identifiable up to Hiinear for
F : 0 — fg. Then, for a new model M’ which applies whitening and contrast function-based
independent components analysis to the latent representations given by fo and F' : 0 — f} which
yields the transformed representations, (P, M', F') is statistically € -near-identifiable up to H,
for € = Ke + K'e?, where K and K' are constants free of € that depend on the spectrum of the
covariance matrix of the representations and the properties of the ICA contrast function.

Intuition. Consider some representations in a model which are linearly identifiable, such as the
penultimate layer of a GPT-class model or the latent tokens of a masked autoencoder covered by
Theorem[I] Whitening reduces the linear indeterminacy to a rigid one, while ICA (if sufficiently well-
converged) resolves the final rigid indeterminacy to a signed permutation, with nearness preserved
(up to new constants) along each step.

3.3 FROM STATISTICAL TO STRUCTURAL IDENTIFIABILITY

While statistical identifiability on its own may be a useful property for reliability and analysis, there
has been recent interest in structural identifiability of representations, or the ability of the model to
recover some latent component of the data-generating process which is useful for some downstream
tasks. Below, we formalize the distinction between the two.

Definition 2. Let P(u) denote a distribution over some unobservable parameters with support
U CRP. Let P(z | u) denote some conditional distribution such that u(z) = argsup, <y P(x | u)
is well-defined almost everywhere with respect to P(x), where P(z) = [P (z | u)P(u) du is the
marginal distribution of the data with support X. Consider a machine learning model M = {Lgy : 0 €
O}, with solutions S C © to the minimization of B, p(5)[Lo(x)]. Let ' : 0 — fq be a deterministic
transform of the parameters yielding a representation function fg : X — RP. For some group of
functions H from RP to itself, we say that (P, M, F) e-nearly identifies the structure u up to H if
forall 8 € S, we have that fy satisfies |h o fo — u|| < € for some h € H.

Intuition. Statistical identifiability is in some sense weaker than structural identifiability. Statistical
identifiability is the condition that the representations are consistent, while structural identifiability
is the condition that the representations are consistently “correct”. In order to define utility, or
correctness, we need to assume the existence of some latent component of the data-generating process
that we’re aiming to recover, u. The well-studied setting of disentanglement (Locatello et al.,2019)
represents a special case where P (u) is assumed to have independent components. As an example,
in Section we consider the situation where P (u) is a distribution over natural latent biological
factors along with independent technical variates, and z is generated via a smooth function of u
with smooth inverse, leaving u(z) well-defined. In Appendix we provide a simple proof that
structural identifiability implies structural identifiability, including in the e-near case provided that H
is bounded in the sense of an operator norm.

Finally, we make precise the assumptions on the data-generating process necessary to extend our
statistical identifiability result in Theorem 2]to structural identifiability. We show that bi-Lipschitz
data-generating processes are structurally identified by reconstructing encoder-decoder models which
are nearly identifiable up to H,gq in the sense of Theorem and up to H, when combined with ICA
as in Theorem 2] This is partly a generalization of an earlier result by [Horan et al.| (2021), which
covers the perfectly identifiable case.

Theorem 3. (Informal) Let P(u) be some multivariate non-Gaussian distribution with independent
components and consider data P (x) generated by pushforward through a smooth diffeomorphism
g such that g is (1 + §)-bi-Lipschitz. Let M be a model with a sufficiently rich parameter space
O. Let FF: 0+ fo, G: 0 ggand H : 0 — gy o fg. Then, if (P, M, H) structurally identifies
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the identity function in expectation (i.e. attains perfect reconstruction), we have that (P, M, F)
e-nearly identifies the structure g up t0 H,igia, and furthermore that a new model M’ which applies
whitening and independent components analysis to the latent representations given by fg € -nearly
identifies the structure g~ up to H, where € and €' depend on § and Lipschitz bounds on gy, and
€' depends additionally on the spectrum of the covariance matrix of the representations and the
properties of the ICA contrast function employed.

Intuition. Structural identifiability is stronger than identifiability, so we require additional as-
sumptions on the data-generating process to achieve it. In particular, here we assume that the
data-generating function mapping “true” latents to observables is locally bi-Lipschitz, which com-
bined with independence and non-Gaussianity is sufficient to nearly recover the true latents via ICA
for any nearly identifiable reconstructing model with a locally bi-Lipschitz decoder. The proof is

given in Appendix

3.3.1 BI-LIPSCHITZ DATA-GENERATING PROCESSES

Naturally, it’s useful to characterize what kinds of data-generating processes might be covered by
Theorem [3] Several interesting image data-generating processes are known to approximately satisfy
a Euclidean isometry condition (which is equivalent to a local 1-bi-Lipschitz constraint for smooth
mappings) such as smooth articulations of cartoon faces (Tenenbaum et al., [2000; [Horan et al.|
2021). Furthermore, the success of regularization techniques similar to isometry constraints in diverse
classes of neural network models in real-world settings suggests it is a useful inductive bias in
practice as well (Karras et al., 2020; Lee et al.,[2022). In the rest of this section, we aim to better
characterize what these assumptions mean. Specifically, we give some examples of nearly isometric
data-generating processes inspired by the popular dSprites dataset (Matthey et al.l|2017) and show
that disentanglement in this setting implies the structural identification of the true data-generating
factors, using a technique developed by |Grimes| (2003)).

Example Consider a continuous relaxation of images, where a square black-
and-white image is represented by an L? function ¢ : [-1,1] x [-1,1] —
{0,1}, with ¢(z,y) giving the value of the (z,y)th “pixel”. As an example,
the image of a white square with radius 0 < < 1 in the centre of the “frame”
is given by «(z,y) = I[|z|] < 7, |y| < r] where I is the indicator function.
One can first imagine a manifold of such images where the centre p € [a, b]
of the square is moved from left to right. We write this as a continuum of
images produced by the smooth function f : [a,b] — L? where a + 1 > r and
1 — b > r to ensure that the square does not leave the frame. In this case, each
“image” on the continuum f(p) is the function (x, y) — I[|x—p| < r, ly| < 7],
where p is the square’s x coordinate.

Figure 1: A sim-
ple isometric data-
generating process.

We’ll show that f is a local isometry, meaning that it preserves a notion of distance perfectly. This is
equivalent to a 1-bi-Lipschitz constraint. To see this, consider the Gateaux derivative of f, which is
just the limiting behaviour of articulating the square € units to the right:

e—0 €

1
=lim— |Ifp+r<z<pt+r+elyl<r|-lp-r—e<z<p-—rlyl <r

e—0 €

“gained” white pixels “lost” white pixels

where the indicators in the limit represent the pixels that change when articulating the square € units
to the right. Intuitively, shifting the square € units to the right only changes er pixels to the right (flips
them from black to white) and er pixels to the left (flips them from white to black) of the original
square. The situation is drawn in Figure[I] where the white square has a gray border for clarity and
the red shaded areas show the white pixels which are gained and lost by shifting the square € units to
the right. The isometry condition considers the situation as e — 0 (intuitively, as the width of the red
rectangles shrinks to zero).
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By an argument made formal in Appendix we can rely on something like preservation of the L2
norm under limits to have || f/(p)||?> = 2r, which is constant when 7 is fixed. In the univariate case,
this is sufficient for f to locally preserve a notion of distance. In particular, for any two values of the
latent pg and p; we have

P1
2
=l [ 170 dp = 2rlps ol

Po
where the integral is the usual geodesic distance along the manifold of “images”. Due to the constant
2r, some literature refers to these as scaled isometries (Lee et al,[2022)). In practice, we can typically
ignore the scaling constant.

While sprites datasets are known to be overly simplistic, this analysis provides some intuition that
interesting real-world image manifolds might usefully be approximated by isometries, or functions
that are nearly isometries. For example, a similar analysis we defer to Appendix [A.6)is illuminating
for the multivariate case where both the radius r of the square and its z-coordinate p are varied. In this
setting, we have that the Gateaux derivative is non-constant in r (specifically, the map is conformal).
However, if we assume a compact support for the latents, i.e. that p € [a,b] and r € (0, R], the
data-generating process is additionally B-bi-Lipschitz with the constant B dependent on a and b, and
Theorem 3] applies.

4 EXPERIMENTS

We perform four sets of experiments: direct validation of Theorem [I] on MNIST using vanilla
autoencoders (Section [.I)), direct validation of Theorems [T]and [2]in off-the-shelf pretrained self-
supervised learning models (Section [4.2)), an application of Theorem3|to a classic disentanglement
problem in several synthetic datasets (Section[4.3)), and a real-world application to deconfounding for
out-of-distribution generalization in a real-world foundation model for cell microscopy in biology

(Section [4-4).

4.1 WARMUP: CONTROLLING IDENTIFIABILITY

We begin with experiments in a regime where the local bi- — 10
Lipschitz constant can be controlled as directly as possible, 0.20 1 @ [Los
and examine whether our theory correctly predicts the level 0151 O:.:,k

e of near-identifiability. We consider fully-connected autoen- & /" R
coders with 3-layer encoders and decoders, and orthogonal a0 e 4 043
linear layers with LeakyReL U activations (with leak parameter 0.05 1 /// o
a € [0, 1]). The local bi-Lipschitz constant of the decoders is 0007

therefore bounded by 1/a* where K = 3 is the number of 00 o1 02 o3 00
layers in the decoder. For av = 1, the network is linear, while for mean(L} (bi-Lipschitz constant)

a = 0, it’s a ReLU network. We fit pairs of autoencoders with . .

different initializations and seeds to MNIST Figure 2: Controlling the bi-
, and assess the relationship between reconstruction error, L1psch1t'z cor.lstan't.L leads to im-
empirical near-identifiability, and empirical measurements of proved identifiability (reduced £
the local bi-Lipschitz constant, which is manipulated by vary- ©rToD)-

ing a between 0 and 1. According to the proportionality in Theorem [T] we estimate how well
the empirically estimated bi-Lipschitz term /L + L? predicts identifiability, as measured by the
average (o error from the optimal rigid transformation between the pair of latent spaces. Results are
summarized in Figure[2] Full experimental details are available in Appendix[A.7.1]

4.2 MEASURING IDENTIFIABILITY OF PRE-TRAINED MODELS

Our next aim is to validate the statistical near-identifiability up to linear (for GPT-class models,
Theorem 1 of [Roeder et al.| (2021))) and rigid (for autoencoder-class and supervised models, Theorem
[[) transformations predicted by theory, and the ability of ICA to resolve the remaining linear
indeterminacy (Theorem [2).

Matching our theory, we examine pairs of models that have the same architecture, loss, and are
trained on the same dataset independently. Rigid similarities (rigid transforms with a scaling constant



Under review as a conference paper at ICLR 2026

to allow for varying regularization across model pairs), linear transformations and ICA transforms are
estimated between representation spaces. We measure near-identifiability with the average ¢ error in
the self-supervised model’s representation space, along with the efficiency of the ICA transform as
the percentage reduction of /5 error relative to the rigid transform (since the degrees of freedom are
roughly the same). Results are shown in Table [T}

GPT-class models exhibit ex- Supervised

. . Model Pair Permutation ICA (% eff.)

cellgintt léniar taﬁlglzll;nent, ai Rigid Linear
predicted by the theory o - -

Pythia-160M-0 — Pythia-160M-1 0.219 0.150 0.131  0.202 (25%
Roeder et al, (2021). As pre- 1\/?A1i:a MA])E/ “'1 inal 0.197 0.109 0.036 0.145 559070 ;

. -timm — -original E E . . o

dicted by our theory, MAEs o~ 0l CheXperthase 0218 0104 0048 0,175 (38%)
exhibit rigid alignment up to a

ResNet-18-fc-1 — ResNet-18-fc-2 0.382 0206 0.175 0.312 (40%)

similar level of error, notably
including one example across
model sizes. In all cases, ICA
mitigates a substantial portion
of the indeterminacy due to
the linear variation, notably
without any supervision. In
particular, for MAE models,
ICA is nearly 60% as efficient as computing the optimal rigid transform between the two models in a
fully-supervised fashion. Full experimental details are available in Appendix [A.7.2]

Table 1: Supervised and unsupervised alignment scores between
pairs of models which measure empirical identifiability. The optimal
transforms (permutation, rigid, linear, or ICA) are estimated between
the two models, and average ¢ errors normalized by latent diameter
are reported. For ICA, we also report its efficiency as the reduction
of ¢4 error from the permutation to the rigid transform.

4.3 DISENTANGLEMENT USING VANILLA AUTOENCODERS

Next, we assess whether our theory correctly predicts structural identifiability of the ground-truth
data-generating factors in synthetic datasets matching the assumptions of Theorem[3] We examine
vanilla autoencoders, an appealing architecture due to their simplicity. In such simple models, weight
decay is known to be sufficient to regularize the Lipschitz constant of the decoder, thus making it a
good testbed for our theory (Zhang et al.,|2019).

We use a well-established experimental testbed for assessing unsupervised disentanglement, specifi-
cally following the exact experimental protocol from |Hsu et al.[(2023). As baselines, we include a
B-VAE (Higgins et al.,2017), S-total correlation VAE (Chen et al.| 2018]), and BioAE (Whittington
et al.,|2023)), all of which leverage specialized regularization to achieve disentanglement. For compar-
ison, we follow the supervised model selection strategy of [Hsu et al.| (2023)), which shows best-case
performance (Locatello et al., [2020).

For each dataset, we train a vanilla autoencoder with the only hyperparameter we vary being weight
decay. Then, ICA is applied to its latent space. Models are evaluated on four datasets. Shapes3D is
a toyish sprites dataset (Hsu et al., 2023} |Burgess & Kim| 2018)). Falcor3D and Isaac3D consist of
rendered images of a living room and kitchen, respectively (Nie et al., [ 2020). MPI3D consists of real
images of a real-world robotics setup (Gondal et al.,|2019). Disentanglement of the learned latents is
evaluated according to InfoMEC (Hsu et al.| 2023)) which consists of three complementary metrics:
modularity (the degree to which each learned latent encodes only one true source), explicitness (the
degree to which the latents capture all information about a source), and less important, compactness
(the degree to which each source is encoded in only one latent). InfoMEC aims to resolve many of

Table 2: Disentanglement metrics (InfoM, InfoE, InfoC), of which InfoM and InfoE are the most
important. AE + ICA performs comparably to some of the best disentanglement-specific neural
networks, with almost no tuning. Results marked with (*) are quoted without reproduction from Hsu
et al| (2023). Bolded metrics have the highest point estimates. Full details in Appendix[A.7.3]

model aggregated Shapes3D MPI3D Falcor3D Isaac3D
(InfoM  InfoE  InfoC) 1

AE (0.390.76 0.25)  (0.340.990.16) (0.420.400.31) (0.370.830.20) (0.410.80 0.34)

B-VAE* (0.590.810.55) (0.590.990.49) (0.450.710.51) (0.710.730.70)  (0.60 0.80 0.51)

B-TCVAE* (0.580.72 0.59) (0.610.820.62) (0.510.60 0.57) (0.660.74 0.71)  (0.54 0.70 0.46)

BioAE* (0.540.750.36) (0.560.980.44) (0.450.66 0.36) (0.540.730.31) (0.63 0.65 0.33)

AE + ICA (ours)  (0.650.83 0.40) (0.79 0.99 0.52) (0.440.66 0.31) (0.710.83 0.33)  (0.64 0.82 0.43)
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the issues with the DCI framework of disentanglement evaluations, including removing the need to
select hyperparameters which can affect results (Hsu et al., [2023).

Vanilla autoencoders with ICA in latent space outperform specialized disentanglement models most
of the time (Table[2), and on average perform better than all. Experimental runtime is roughly 6 hours
per autoencoder hyperparameter setting on a single GPU (roughly 720 GPU hours total).

4.4 DECONFOUNDING AT FOUNDATION MODEL-SCALE

High-throughput screens have become a critical tool in modern biology, particularly for drug discovery
(Chandrasekaran et al., 2023)). One example of such screenings is cell painting (Chandrasekaran
et al., 2023} |Sypetkowski et al.,|2023)), where a perturbation is applied (or not) to a collection of cells,
which are then stained and imaged. A key challenge in the application of machine learning to these
data is the presence of complex technical variation (“batch effects”) that is not biologically significant
(Arevalo et al., [2024; |[Chandrasekaran et al., 2023} |[Lin & Lu, 2022; Sypetkowski et al.||2023;|Ando
et al.l 2017). For example, data collected from different microscopes, labs, or even just in different
experiments can exhibit variation that is not of interest to the practitioner, potentially confounding
results. A fundamental task in this setting is to quantify the degree to which a perturbation has a
significant effect, which is challenging given that we have access only to high-dimensional, noisy
observations in the form of images confounded by batch effects (Bereket & Karaletsos| 2023)). In
particular, we almost never have the ability to measure all sources of batch variation, and so it is of
specific interest to be able to disentangle technical from biological variation without supervision.

We explore an application of Theorem [3|by applying independent component analysis to the latent
space of OpenPhenom (Kraus et al.||2024)), a large, open masked autoencoder trained on Rxrx3-core, a
large library of cell painting images (Kraus et al.||2025). Downstream, we consider the task where the
inferred embeddings are used to predict whether a given perturbation has been applied (i.e. classify
“control” vs. “perturbed”). Because we are primarily interested in whether the procedure enhances
out-of-distribution generalization, we consider downstream classifiers trained on a subset of batches
and evaluated on a held-out subset of batches.

Inference & evaluation We perform inference on all images from Rxrx3-core and estimate the
whitening and independent components analysis models at the patch level by randomly subsampling
a patch from each image. We consider four conditions: the original embedding (Base), the embedding
whitened with principal components analysis (PCA), the whitened embedding rotated using ICA
(PCA + ICA), and as a baseline, the whitened embedding rotated randomly (PCA + Rand). Plates are
used as the batch indicator, while a single patch-level embedding is used for each image. For each
embedding condition (raw, whitened, whitened + ICA, whitened + random rotation), we hold out 20%
of plates and train a gradient boosting classifier (Ke et al.,|2017) on the remaining 80% of plates in a
k-fold cross-validation scheme. Because some plates do not contain any perturbed samples (i.e. are
entirely controls), we ensure that this split is roughly stratified on the label (“perturbed” vs. “control”).
Perturbation classification is evaluated by the area under the receiver operator characteristic curve
(AUROC). Embedding inference took approximately 1 hour on a single GPU, while ICA estimation
took about 1 hour on 128 CPU cores with 128 GB RAM.

Table 3: Results from a downstream perturbation classification task. Each row represents a gene
consisting of (#) separate experiments with different CRISPR guides. All experiments use the same
set of 22,062 controls. Base = untransformed embeddings, PCA = whitened embeddings, PCA +
ICA = whitened embeddings with ICA rotation applied, PCA + Rand = whitened embeddings with a
random rotation applied.

Mean AUROC (1) Sparsity (T more sparse)
Gene Base PCA PCA+ICA PCA+Rand Base PCA PCA+ICA PCA +Rand
CYPI11B1 (1) 0.663 0.692 0.709 0.678 0.184 0.204 0.237 0.188
EIF3H (1) 0.682 0.724 0.749 0.725 0.192 0.224 0.268 0.214
HCK (1) 0.670 0.693 0.711 0.668 0.156  0.208 0.241 0.166
MTOR (6) 0.663 0.690 0.705 0.679 0.166 0.201 0.233 0.186
PLK1 (6) 0.803 0.811 0.815 0.792 0.251 0.307 0.305 0.262
SRC (1) 0.660 0.694 0.706 0.676 0.170 0.214 0.240 0.184
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Results Whitening alone often enhances the performance of downstream classification from the
embeddings. The application of ICA consistently improves the performance even further (Table 3).
To understand the source of the improvement, we measure sparsity with a measure called Hoyer
sparsity which characterizes how biased trees are toward selecting a particular subset of features

VD——1_
(Hoyer, [2004) defined as Sparsity|[c] = % for a D-dimensional vector of split fractions c

such that ||c||; = 1 and where ¢4 measures the fraction of times the dth variable was used in a split
(higher — more important). The sparsity score is zero when all features are used equally often.
Sparsity increases markedly with both whitening and ICA.

However, this measure does not specifically show that the informa- ~p ;-1

. L . . . Concentration (1)
tion being ignored as a result of the increased sparsity specifically

has to do with the distinction between technical and biological Eés/i 8;23
variation. To assess this, we measure how well the information PCA +ICA 0'386
useful for predicting the biological effect is concentrated in the  pca 4+ Rand 0.287

top k% of predictors. Denote by z¢ the top k% most important
features for the prediction of the biological effect y of interest, and Table 4: Concentration of biolog-
by z}, the remaining features. Then, the concentration is given ical variation in the top 25% of

: AUROC[y;z,.s . . ‘
by Concentration[y] = WM — 1, i.e. the improvement jn Icatures.
k%

predicting perturbation y from the top features versus the bottom.

The concentration increases uniformly with whitening and with ICA (Table @), even in the case of
PLK1 guides where it does not confer a substantial gain in out-of-distribution AUROC. The results
are not sensitive to reasonable values of k (Appendix [A.7.4). Interestingly, the results suggest that
whitening alone biases the representation toward becoming axis-aligned even without ICA.

5 DISCUSSION

We have developed a theory of statistical near-identifiability of neural representations which is
applicable to the internal representations of real-world self-supervised models. Notably, in contrast
to prior work, our result requires few assumptions on the data-generating process, instead trading
these off for assumptions on the model alone, and applies to a broad class of models including
supervised learners, next-token predictors, and self-supervised learners. Additionally, we have shown
that additional assumptions on the data-generating process can confer an even stronger result: namely,
provable structural identifiability of the latent variables which generated the observables. We directly
test our theory in real-world, off-the-shelf, pretrained self-supervised models. Furthermore, we
leverage our theory to motivate the application of ICA to the latent spaces of self-supervised models
and show that it can achieve state-of-the-art disentanglement results, including some of the first
disentanglement results for out-of-distribution generalization in real-world data.

Limitations & future work The primary limitation of our work is the difficulty in empirically
testing the bi-Lipschitz assumptions necessary for our theory. Instead, we test the downstream
effects of our theory in four sets of experiments, and offer arguments from prior work which show
that common regularization techniques which enable training of practical-scale neural networks
(often referred to as “dynamical isometry”, see also Appendix [A-4) may lead to this condition.
Interestingly, because the local bi-Lipschitz assumption is largely agnostic to data modality and
model implementation details, it potentially applies to a broad class of both data-generating processes
and models. As such, it may be an interesting lens for studying the phenomenon of cross-model
representation convergence (Maiorca et al.l[2023} [Fumero et al.| [2024)), which is largely unaddressed
by existing theory because existing identifiability results each require different assumptions on the
data-generating process for different models (Huh et al.| [2024} [Reizinger et al.| 2025a). Although we
echo the calls of |Reizinger et al.| (2025a)) for extensions to the practical regime (e.g. finite samples,
imperfect optimization), we do not treat this case here, although it could be an extension of our
framework. Additionally, because ours are the first identifiability results that apply to the intermediate
layers of transformer-based next-token predictors, they may be useful for the interpretation of these
models (Basile et al., |2025)). In particular, [Liu et al.|(2025) show that discrete concept models learned
atop last-layer GPT representations render the entire model end-to-end linearly identifiable, and the
results of our paper suggest that this technique may work for intermediate-layer representations as
well.
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A APPENDIX

A.1 A HISTORY OF THE TERM “IDENTIFIABILITY”

Statistical identifiability Identifiability has a long history in statistics. For example, consider the
following definition from |Casella & Berger|(2001) [p. 548], a canonical textbook in mathematical
statistics:

Definition. A parameter 6 for a family of distributions {f(x | 8) : 8 € O} is
identifiable if distinct values of correspond to distinct pdfs or pmfs. That is, if
0 # 0', then f(z | 0) is not the same function as f(x | 6").

Our Definition [I}in the main text makes a straightforward generalization from likelihoods f to losses
L. Further, because of the dominance of empirical risk minimization and the fact that, unlike most
likelihoods in statistical inference, losses are non-convex, we define identifiability at the minimizers
of the expected loss. In other words, our definition of identifiability agrees with the statistical one,
modulo some small changes to make it useful for talking about non-convex optimization, specifically
the empirical minimization of non-convex risk functions. Indeed, this means that not only does
Definition [T agree with the statistical definition, but also other recent attempts at defining and proving
representation identifiability results for practical machine learning models (Roeder et al., [2021;
Reizinger et al., 2024).

Structural identifiability On the other hand, there is a similarly long history of “structural identifi-
ability” from econometrics. For example, consider Koopmans & Reiersgl (1950), which partly led to
the Nobel prize:
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Identifiability of structural characteristics by a model. It is therefore a question
of great practical importance whether a statement converse to the one just made is
valid: can the distribution H of apparent variables, generated by a given structure
S contained in a model S, be generated by only one structure in that model?

Clearly, this is a different definition. Indeed, Koopmans & Reiersgl acknowledge that it is different
from the statistical definition above. It implicitly assumes the existence of a “true model” S living
within the estimable model class S (and that this model generated the data), which flies in the face of
mathematical statistics’ common quip “all models are wrong.”

Pearl| (1993)) inherits this definition, perhaps contributing to its later infusion into the ICA literature:

DEFINITION 4 (Identifiability). The causal effect of X on Y is said to be
identifiable if the quantity P(Y'|X) can be computed uniquely from any positive
distribution of the observed variables that is compatible with a graph G.

Put simply, both these definitions of structural identifiability assume that the true data-generating
process matches the model, and under this assumption, consider whether some structural parameter of
interest can be identified. As a consequence, we refer to our Definition[2]as “structural identifiability”.
The only generalization we make is that we do not specifically enumerate S, or indeed require the
true structure S € S. We do not enumerate S because instead we enumerate ©, the space of possible
parameters of the neural network model, and specify the mapping F' which generates the learned
structure from a setting of the parameters F' : 6 — fy. We refer to the “true structure” as u. The
relaxation of the requirement that the model class contains the “true structure” allows for other
interesting cases, as illustrated in Example 2 below.

Identifiability in linear ICA Occasionally, these definitions of identifiability are used somewhat
interchangeably. This is particular true in the case of recent developments in independent components
analysis, such as extensions to the nonlinear mixing regime. Interestingly, the main result of the
original seminal linear ICA paper (Comon, |[1994) is a statistical identifiability result, not structural
(we edit the quoted Corollary slightly so that it is self-contained):

Corollary 13. Let no noise be present in the linear ICA model with observations
y, and define y = Mx and y = F'z for a random variable x with independent
components such that at most one is Gaussian. Then if ¥ (a contrast function taking
densities as inputs) is discriminant, ¥(px) = U(p,) if and only if F = MAP
where A is an invertible diagonal matrix and P a permutation.

Of note, linear ICA is a case where most existing identifiability results depend on well-specification of
the model. In particular, if the data is not generated by linear mixing from independent components,
there is no guarantee that a linear decomposition into independent components exists (Castella
et al.l 2013) and therefore the statistical identifiability claim above is vacuous. In other words,
there are few or no results available for statistical identifiability of linear ICA that don’t also imply
structural identifiability. This perhaps helps explain why the two concepts have been used somewhat
interchangeably in this area of the literature. However, as we will see in the examples below, this is
not necessarily the case for all models of interest.

Notably, LINGAM, a classical approach which extends linear ICA to causal discovery ?, provides
an early example of this distinction between statistical and structural identifiability extending to
graphical structures. In particular, they show that the independent components estimate can uniquely
recover a causal graph under the assumption of linear functional relationships and additive noise
(statistical identifiability). Structural identifiability follows under the assumption that a LINGAM
generated the data.

Identifiability in non-linear ICA  Noting that in general, non-linear extensions of ICA are impossi-
ble (Locatello et al.l 2019), recent works have attempted to find sets of assumptions that render the
task tractable. One line of work utilizes side information, showing that independence conditional on
this side information leads to identifiability (Khemakhem et al.l|2020a). Notably, Khemakhem et al.
(2020a) explicitly define their identifiability as statistical identifiability (up to an equivalence class),
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but point out that if the true data-generating process takes the same form, structural identifiability of
the true latents is achieved.

Below, we show how two other examples fit into these definitions.

Example 1: mis-specified linear regression The first example comes from traditional statistics.
Consider the identifiability of the usual linear model y = z73 + 1’ when the model is mis-specified
in the sense that the true data-generating process is y = f(x) 4+ 1’ for some non-linear f. If f meets
certain conditions, the following facts are true:

1. (s statistically identifiable under the usual OLS assumptions (i.e. identifiable according to
our Definition [T,

2. f is not structurally identifiable (i.e., e-nearly structurally identifiable with € = 0) according
to Definition

3. the model is not absolutely identifiable according to |[Reizinger et al.[(2025a), because the
data-generating process does not match the model,

4. afunction h is structurally identifiable (i.e., e-nearly with e = 0) according to our Definition
where h is in some sense the “nearest” linear function to f.

We emphasize that in this first example, we do not exploit the e-nearness relaxation in our definitions,
only the distinction between statistical and structural identifiability.

Example 2: masked autoencoders under imperfect reconstruction Now, consider observations
generated by some arbitrary non-linear mixing of latent factors X = ¢g(Z). For a masked autoencoder,
the following facts could be true all at once, such as in the case of imperfect reconstruction:

1. the internal representations given by the encoder f are statistically identifiable according to
our Definition[T]

2. the true data-generating process g is not structurally identifiable according to Definition 2]
because of imperfect reconstruction, but

3. some approximation to the data-generating process h is structurally identifiable, but h # g
because masked training prevents perfect reconstruction, so

4. the model is not necessarily absolutely identifiable according to [Reizinger et al.| (2025a),
depending on the assumptions on h and ¢ (i.e. they might not reside in the same set of
possible models).

In this case, we might not have the simple analytical form for A that we do in Example 1, but it’s clear
that something about the data-generating process is structurally identifiable. We emphasize that our
theory does not cover this case, because it requires a notion of “closeness” between h and g which is
not necessarily obvious (nor is it necessarily covered by our conception of e-nearness, because the
similarity is in observation space, not representation space).

In particular, Theorem [T| does not require perfect reconstruction to yield statistical identifiability
(and there perhaps is structural identifiability of some process h which is the nearest near-isometric
approximation to the manifold of masked inputs, although we don’t make this argument explicit),
but Theorem [3]does require perfect reconstruction to yield structural identifiability of g. A similar
observation can be made about statistical versus structural identifiability in exponential family models
like GPTs, as discussed in Appendix[A.3.1]

A.2 THEORY ROADMAP
We provide a brief table of contents to this set of appendices, which cover our theoretical contributions.

* In Appendix[A.3.1] we show the utility of our Definition[I|by showing that the statistical identi-
fiability result from Roeder et al.|(2021) meets our definition of statistical identiifaiblity for the
penultimate layer of exponential family models such as GPTs.

* In Appendix [A.3.2] we prove Theorem|[I] our key statistical near-identifiability result up to Hgia
for the internal representations of general self-supervised models.
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* In Appendices[A.3.3]and[A.3.4| we provide model-specific treatments for masked autoencoders and
GPTs, showing that Theorem|[I]holds for these models.

* In Appendix [A.3.5] we prove Theorem 2] showing that linear ICA can resolve the rigid indeter-
minacy left by Theorem [1| (or indeed any other linear identifiability result), yielding statistical
near-identifiability up to ‘H, (the space of signed permutations).

* In Appendix we prove Theorem [3] showing that for bi-Lipschitz data-generating processes,
statistical near-identifiability extends to structural near-identifiability.

* In Appendix we show that the dynamical isometry condition used for characterizing practical
neural network training regimes implies the bi-Lipschitz assumption necessary for Theorem I}

* In Appendix we prove that structural identifiability (Definition |2)) is strictly stronger than
statistical identifiability (Definition I, including in the e-near case provided the transformation
class H is bounded.

A.3 PROOFS

A.3.1 STATISTICAL NEAR-IDENTIFIABILITY OF EXPONENTIAL FAMILY MODELS

The goal of this section is to contextualize two important statistical identifiability results (Roeder
et al., [2021) which apply to the penultimate layer of exponential family models, discussed in Section
@] (“Connection with prior results”). Specifically, we show that the result of Roeder et al.|(2021))
meets the requirements of our Definition |1} and explain how the result of Nielsen et al.[(2025)) relates
to our definitions. In particular, we are interested in models which have losses taking the form in
Equation T|from Section 3.1}

Lo(z,y) = —ne(2)Tte(y) + Ag(z) = —logge(y | ©)

where 6 are the parameters of the model and 19 give the representations of interest. They key result
of Roeder et al.| (2021) hinges on on the assumption of sufficient diversity, which in the case of
next-token predictors is the condition that the final linear classification head is in some sense “full
rank”.

First, we prove a simple lemma showing that sufficient diversity can be recast as a mild property of
the data distribution, combined with an assumption on the model.

Definition A.3. The mapping t : Y — RP satisfies sufficient diversity with respect to P(z,y) if
repeated sampling from the marginal distribution y, ~ P (y) yields D linearly independent vectors

{t(ya) — t(yo) Yy for some yo € V.

Lemma A.1. t : ) — RP satisfies the sufficient diversity assumption with respect to P(y) if and
only if Cov[t(y)] = n for some n > 0.

Proof. Assume t satisfies the sufficient diversity assumption. Let v € R” be any nonzero vector. By
linear independence, we have vT (t(yq) — t(yo)) # 0 almost surely for any fixed o, and therefore
vTt(y) # c almost surely for any constant ¢ € R. Thus, v Cov[t(y)]v = Var[vTt(y)] > 0 as
required.

To see the other direction, note that any D draws from the distribution P(¢(y)) are linearly indepen-
dent almost surely by the positive definiteness of the covariance matrix.

To see why this condition on the data distribution is extremely mild, note that even if P(y) is a finite
categorical distribution over labels, so long as there are at least D of them, it is possible that t satisfies
sufficient diversity. Therefore, it is best regarded as a condition on the model. Now, we can state the
key result of Roeder et al.|(2021) as a lemma.

Lemma A.2. (Theorem 1 of Roeder et al.|(2021)) Let P(x,y) be a data distribution, and let
M = {Ly(z,y) = —no(z)Ttye(y) + A(z) : 0 € O} be a model with an exponential family loss.
Then, if Lo = Lo almost everywhere with respect to P, we have that ng(z) = Lng (x) almost
everywhere with respect to P for some L € Hineqar whenever tg and ty: satisfy Definition

The only additional requirement to meet our definition of e-near-identifiability (Definition|[I)) is that
O is sufficiently rich to approximate a unique minimum of the loss. We make this concrete in the
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following definition. Importantly, this assumption is not equivalent to requiring that the true data
distribution is in the model. Instead, it amounts to an assumption that the pointwise projection of
the true conditional P(y | x) onto the space of exponential family distributions is unique and in the
model. It turns out that this projection exists and is unique under the sufficient diversity assumption,
together with very mild assumptions on the data distribution. Therefore, this parallels the situation of
statistical identifiability of masked autoencoders (see Appendix [A.3.3and Appendix [AT] Example
2), where perfect reconstruction is not required for statistical identifiability (but might be required for
a notion of structural identifiability).

Definition A.4. For an exponential family loss Lo(x,y) = —ne(z)Tte(y) + Ag(x), a data distribu-
tion P(x,y), and a sufficient statistics function t satisfying sufficient diversity, consider the following
minimization problems:

K (¢) = argmin KL(P(y | ) || Q)

where Q. (y) = kTt(y) + A(k) is the approximating distribution. Then, a parameter space © of an
exponential family model of the form in Equationm is sufficiently rich to exactly model the minimizer
if this minimizer exists for every x, is unique for almost every x with respect to P(x), and there exists
0 € © such that ng(x) = k*(z).

Remark. For categorical likelihoods, the only requirement on the true data distribution P(y | z) is
that all categories must have positive probability for the above to hold (for almost every x). This
means that the assumption is trivially satisfied for e.g. GPT-class models assuming that any token
might be next for any given state. This condition is called minimality (Wainwright & Jordan, 2008).

Now we give the full statement of the proposition showing that the Lemma [A-2] combines with the
above assumption to yield e-near-identifiability in expectation according to our definition (with € =
0).

Proposition A.1. Ler P(x,y) be a data distribution, and let M = {Lqy(x,y) = —nmg(x)Tto(y) +
Ap(z) : 0 € O} be a model with an exponential family loss. Then, for F : 0 — ng, (P, M, F) is
indentifiable in expectation up t0 Hjineqr when the label distribution P (y) is sufficiently diverse and
the approximating class © is sufficiently rich according to Definition[A.4]

Proof. Minimizing the expected loss of the model via empirical risk minimization is equivalent to
minimizing the following cross-entropy:

arg Min By ~p[Co(2,y)] = argmin Eq yp[—loggs(y | )]

= argmin B, .p[CE(gs(y | 2) [| P(y | 2))]

where —log ga(y | ) x —mg(x)Tte(y) + A () parameterizes an exponential family approximating
class. By sufficient richness, call gg- the unique distribution induced by any minimizer 6*. So, for
any two minimizers 6, 0’ we have Ly = Ly almost everywhere and Lemma yields identifiability
in expectation (Definition[T} see Remark) as required. O

Nielsen et al.[(2025) extends this result to the case where it is not guaranteed that gy = go/ for any
two optimizers 6, #’. For example, this might arise due to the sufficient richness condition not being
met, or due to imperfect optimization. Instead, a closeness condition can be placed on gy and gy,
yielding a notion that is similar to our notion of statistical e-near-identifiability. However, we note
that Nielsen et al.| (2025) does not aim to characterize the optima of a particular loss, instead relaxing
this requirement to cover any procedure yielding likelihoods. This makes it an interesting extension
of Roeder et al.|(2021)) in a different direction than ours.

A.3.2 RIGID NEAR-IDENTIFIABILITY OF MODELS WITH BI-LIPSCHITZ MAPPINGS

We begin by briefly outlining the approach for proving Theorem[I] The key idea is to leverage modern
results in isometric approximation (Vaisalal 20025 |Alestalo et al., [2001). In particular, consider the
latent spaces of two models which produce the same outputs. Call the mappings from latents to
outputs in these two models g and ¢’. If the mapping from latent to output is invertible, we can “stitch
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1 1

together” the latent spaces of the two models by a single function g=* o ¢’. So, g~ ! o ¢’ maps the
representations of an input under one model to its representations in the other model.

We assume that both g and ¢’ are locally bi-Lipschitz, meaning that distances between nearby
points are not too badly deformed, and that ¢ and ¢’ are smooth C'!' diffeomorphisms. When this
is the case, g~ ! o ¢’ is also locally bi-Lipschitz and smooth, and therefore nearly an isometry, with
“nearly” determined by the bi-Lipschitz constants. The convexity of the latent spaces yields global
bi-Lipschitzness with the same bounds.

The isometric approximation theory outlined in (Vaisalal 2002} [Alestalo et al] [2001) then tells us how
far ¢’ o g~ ! is from an actual isometry, and allows us to construct bounds accordingly. Isometries on
RP are rigid transformations, and together, these facts yield near-identifiability up to Higid-

We rely on the following definition of locally bi-Lipschitz, which allows us to treat latent-to-observable
mappings which might induce manifold structure in the ambient space, allowing the taking of a
tighter constant L. In what follows, ||-|| denotes the usual {5 norm unless otherwise stated.

Definition A.5. A function f : Z — RY is locally (1 + L)-bi-Lipschitz if for every z € Z C RP,
there exists an open neighbourhood U, > z such that for all z' € Uy, we have

T llz -2l < 1f(2) = fE)I < (A + L)l|z — 2|
When L = 0, distances are preserved exactly, a notion referred to as isometry. When the bi-Lipschitz
constraint is global (i.e., holds for any U C Z) and Z is bounded, there is a nice relationship between
the bi-Lipschitz property and the notion of a near-isometry, which allows for additive distortion of
distances.

Definition A.6. A function f : Z — RY for Z C RP is an e-near-isometry if for every z,z' € Z
we have ||z — 2| —e < [|f(2) = f(2)| < [lz — 2] +«.

In particular, if f is globally (1 + L)-bi-Lipschitz, we have that f is also an e-near-isometry where
€ = AL where A = sup, ,/z||z — Z'|| is the diameter of Z.

We require two lemmas to prove our main statistical identifiability result Theorem|[I} The first is a
fundamental result which shows that distance-preserving transformations on e.g. Euclidean spaces
(or convex subsets thereof) are always rigid motions.

Lemma A.3. (Mazur-Ulam Theorem, ) Let Z and Z' be closed, convex subsets of RP
with non-empty interior. Then, if f : Z — Z' is a bijective isometry, then f is affine.

We also leverage the following more recent result (see (2002) for a history of isometric
approximation) which shows that near-isometric mappings (such as (1 + L)-bi-Lipschitz functions
on bounded domains) have bounded deviation from a truly isometric mapping.

Lemma A.4. (Near-Isometries are Near Isometries, Theorem 2.2 of /Alestalo et al.|(2001)) Suppose
Z, 2" C RP with Z compactand f : Z — Z' is a AL-near-isometry, where A = sup,, ,/c z||z—2'||.
Then, there exists an isometry U : RP — RP such that sup,. 7 ||U(z) — f(z)| < epVLA.

With these two tools in hand, we can provide an intuitive overview of the assumptions required and a
concrete statement of Theorem [T} proving statistical near-identifiability of the representations.

Assumption Summary. We assume that the representations have convex support (i.e., the pushfor-
ward of P(z) by any encoder fy has convex support). We assume that any “decoder” gy is injective,
smooth (in particular, at least C''), and is locally bi-Lipschitz with constant 1+ L. Note that injectivity,
smoothness, and local bi-Lipschitzness of gy (with any constant) implies that gy is diffeomorphic
onto its image.

Theorem. Let P(x) be a data distribution, and let M be a model with a parameter space ©. Let
F:0— fo, G:0— gyand H : 0 — gy o fy, where gy is a smooth diffeomorphism and the
pushforward of P through fy has convex support. Then, if (P, M, H) is statistically identifiable
in expectation, then (P, M, F) is statistically e-near identifiable in expectation up to H,igia for
€ = cpV2L + L2A where 1 + L is a local bi-Lipschitz constant bound for g, and cp and A are
constants independent of the model (and L).
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Proof. Let 6 and 0’ be optima of the infinite-data limit of the empirical risk minimization problem
for M with respect to P.

Without loss of generality, assume that fy(x) = 0 = fy/(x) for some x € supp P, noting that
translating the latent spaces of both models do not alter any of our hypotheses Then, by the
identifiability of (P, M, H), we have that T' = g,," o gy satisfies T'(0) = 0, is clearly smooth and
diffeomorphic onto its image, and is therefore globally (1 + L)2-bi-Lipschitz by the convexity and
compactness of the latent spaces and is a A(L? +2L)-near-isometry where A = sup, ¢ || fo(x) —
fo(x')|| is the diameter of the latent manifold. Furthermore, we have that T o fy = fp/. By the above
fact about bi-Lipschitz functions and Lemma[A.4] we have that there exists an isometry U such that

esssup || for (x) — U(fo(x))[|2 = esssup [|T'(fo(x)) — U(fo(x))|]2

p(z) p(w)

<cpV2L+ L2A

where cp is a constant depending on D. By convexity of the latent spaces and the Mazur-Ulam
theorem for convex bodies (Lemma[A.3), U € Hiigia as required. O

Remark. The constant cp depends only on the latent dimension D and can be computed by the
following recursive formulae given in Alestalo et al.|(2001):

01 = 3.3
T = 6.2

1(t)? = 0.1+ (t+ V12 +6.2)2
0ni1(\) = 3.02 + 7, (A erZQk (24 or(V)/A%)

Tnt1(A) = Tn(A) + 201 (A)(2 + 2nt1 (A )//\ )
7n+1(t) = min{max{77l(A)v6n+1(/\7t>} PA> 0}
n+1

Bt (N2 =01+ (t+ /2 + 70 a1 (V) + A2 or(M)?
k=2

with cp = vp(0) for any D. As an example, c3 ~ 18.8.

A.3.3 MODEL-SPECIFIC RESULTS: MASKED AUTOENCODERS

The following assumptions are sufficient for a masked autoencoder to meet the criteria of Theorem

Model. A masked autoencoder consists of a distribution P (m) defined over a space of masking
functions N' = {m : X — )E}, an encoder fy : X U X — RP, and a decoder go : RP — RV,
where we assume X C RY is compact. For convenience, we write h = gg o f5. The loss function
with respect to a data point x and mask m is Lyag(h;m, ) = ||h(m(x)) — z|>. We assume that
X is sequentially dense in X’ U X, and that marginalizing the joint distribution over the masks and
data P(m, z, m(z)) yields a distribution P (m(z)) with full support on X. Further, we assume that
at the optimum, gy is diffeomorphic and locally (1 + L)-bi-Lipschitz for some constant L > 0.
Finally, we assume that the image of X pushed forward through the encoder is convex, and that the
parameterization of A is continuous on X U X and M is sufficiently rich to contain the function
which attains the optimal value of the loss, as derived below.

Proof. We begin by showing the existence and uniqueness of the conditional expectation operator
E[z | Z]. By the fact that the masking function distribution P( ) is independent of the data we

have that there is a well-defined conditional density P(z | ) arising from P(Z | z) = [ P(m

m(x)) dm, where § is the Dirac delta. By compactness of X, z is integrable and therefore the
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conditional expectation exists and is unique almost everywhere in X. In particular, we have the
following expression:

Sy 2P ()P [m(x) = 5?] dx )

e PP Tl = 2

Then under the masked autoencoding model, f() = E[z | Z] is the unique minimizer of Lyag by
the standard fact that the conditional mean estimate minimizes the mean squared error loss. By the
continuity of f on X U X and | sequential density of X in X U X, consider an arbitrary sequence in
X, %, >z €X, noting that f (z) =limz, o f (Zy,) is well-defined, unique, and agrees regardless
of the choice of sequence. Note that this continuity is by hypothesis. We remark that it would be
of interest to study properties of P (m) which lead to conditional expectation operators with certain
properties including continuity. O

Remark. We emphasize that any such minimizer is also a minimizer when an arbitrary subsetting
operation applied to both the prediction and the target, such as the usual subsetting to masked tokens
in the loss for computational efficiency.

A.3.4 MODEL-SPECIFIC RESULTS: GPTS & SUPERVISED LEARNERS

The results for earlier-layer representations of GPTs and supervised learners take advantage of the
penultimate-layer identifiability result in Proposition[A.I] We formalize this with the assumptions
below.

Model. Let P and M be a model satisfying Proposition with ' : 6 — fy yielding the
representation function of interest, G : § — gy yielding the map between the outputs of fy and the
penultimate layer. Let 1 + L be a bound on the bi-Lipschitz constant of the smooth diffeomorphism
9o, and suppose the pushforward of P through fy has convex support.

Proof. By Proposition we have statistical identifiability in expectation up to Hjinear of (P, M, H)
for H : 0 — gy o fy. Thus, Theoremﬂ]applies. O

A.3.5 INDEPENDENT COMPONENTS ANALYSIS IN LATENT SPACE

We consider the class of independent components analysis algorithms which optimize a contrast
function, such as fastICA (Hyvarinen & Ojal 2000). In general, fastICA enjoys good convergence
properties despite a lack of guarantees, and even in the face of mis-specification (Castella et al.,
2013). Of particular concern in our setting is mis-specification of the kind such that there exists
no orthogonal transformation in which the components are truly independent. This assumption is
non-trivial to assess, and furthermore sufficient but not necessary for convergence (Castella et al.|,
2013)), so we opt for something more relaxed, aimed at practical optimization. Specifically, we show
that near-isometries are simple enough functions that they do not substantially alter the recovered
components when ICA converges well, in the sense that they preserve well-differentiated optima.

Model. For an encoder f with whitened outputs f (z), independent components analysis con-
sists of maximizing the contrast J = Zle J(qF f(x)) where J is a contrast function, over
(ai,--.,q9p)T = Q € SO(D), the space of special orthogonal matrices. As a technical condition,
we require sup ;|Cov[f(x)]|| > A for some A > 0, where the supremum is over any possible encoder
(latents must have bounded correlation). The contrast function .J must be C2 with |J'(y)| < L; and
|J”(y)| < Lo for rigid transformations of elements of a convex body y = U f(z). The optima of the
ICA objective 7 must also be locally convex for f(z), in the sense that for sufficiently large samples
the Riemannian Hessian Hessq J = p for some p > 0 at the optimum, under any perturbation of
the data not larger than €. Finally, the only indeterminacy to the optima of an individual ICA problem
must be the usual invariances: signed permutations in H,.

Under these conditions, we can show that e-nearness does not introduce any further complications to
the identifiability of the ICA model. We begin with a brief lemma about the stability of the whitening
operation which typically precedes contrast-based ICA.
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Lemma A.5. Let X and X' be zero-mean random vectors in RP such that | X — X'| < e almost
surely and || X ||, || X’|| < a almost surely. Furthermore, suppose the smallest eigenvalues of the
covariance of X and X' are bounded below by \ > 0. Let W = X~Y/2 and W' = %'~1/2 be the
usual whitening matrices for X and X' respectively. Then |W'X’' — W X|| < Ce almost surely
where C' = A\71/2(1 + A" 1a?).

Proof. First, note that we have the following bound almost surely:

IXXT — XX < XX - X+ (X - X)X
<[ X|le+ |1 X' |le < 2ae

Taking expectations yields ||¥ — X'|| < 2ae. Now, using the resolvent equation B! — A~ =
B71(B — A)A~!, we have the following bound on the difference in operator norms of W and W':

W’ = Wil = 572 - =2

< W[I=Y2 - =2 ||
-3

- 2)\3/2

< ag

— \3/2

where the second-to-last inequality follows from the fact that the matrix square root is (1/(2v/)))-
Lipschitz when A > 0. Operating on the desired norm directly:

WX —WX|| < [W'X = WX +W'X - WX]|
< WX = X[ + (W =W)X

€ a’e

< — 4=

= VN A2

almost surely so the proposition holds. O

The next lemma simplifies the exposition of our main theorem. We show that PCA resolves the
first-order dependence structure (i.e. the non-rigid component of linear transformations), leaving only
a rigid transformation to be resolved by ICA.

Lemma A.6. Suppose there exists functions f, f' : X — Z such that for p(x) supported on X, we
have Ep ) [f(2)] = Epa)[f'(x)] = 0, full-rank covariance of f(x) and f'(x), and furthermore
sup,cx || f(x) — Af'(x)|| < e for some invertible matrix A with positive determinant and € > 0.

Then, there exists U € H,igiq such that sup,,c | f(z) —Uf'(z)|] < Ce where f, f' are the whitened
2
outputs of f and f' respectively, U € H,igig, and C = )\21/2)\71/2 (1 + %(f) where Ay and Xy

are the largest and smallest singular values of A respectively, X is a lower bound on the smallest
eigenvalues of the covariance of f(x) and f'(x), and || f(z)|], || f/(2)|| < a almost surely with respect
to P(x).

Proof. Denote and W = £~%/2 and W’ = X/~'/2 the usual whitening matrices for f and f’
respectively. Let W, be any whitening matrix for Af’. Let U = W4 AW'~L. Then U is orthogonal
(and can be made to have determinant 1 with a sign flip by the freedom to choose W) because
UUT = WaAW' " 1W'=TATW y = WX, WT = I, and we have:
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1f(z) = Uf @)l = W f(z) = WaAW'™" ' ()]
= [[Wf(z) - WaAf' ()]

A2
<)\ 1/2 -1/2 (1 A 2
+ )\A)\a €

almost surely with respect to P (x) where the final line follows by application of the previous lemma
to the usual whitening matrices. The determinant of U is positive by the fact that the usual whitening
matrices can be made unique by selecting their positive definite forms and A has positive determinant,
soU e Hrigid~ O]

Lemma A.7. (Implicit Function Theorem,|de Oliveira (2014) Theorem 2) Let F € C*(£2; R™) where
Q C RN x R™ is open. Suppose there exists a point (a,b) € Q2 such that F(a,b) = 0 and %—Z(a, b)

is invertible, where vy represents the part of the argument f in R™. Then, there exists an open set
X C R™ such that a € X and an open set Y C R™ such thatb € Y and:

* Foreach x € X, there is a unique y = f(x) € Y such that F(x, f(z)) =0
 fla)=band [ is C* with D (z) = — (4 (s, f(x)))_l (2£ (, f(x))) forall = € X

Finally, this lemma shows the crux of our argument: if ICA converges well in any pair of latent
spaces, the solutions can’t differ too much.

Lemma A.8. (Finite-Sample ICA Under Perturbations) Consider whitened observations {x, }N_;
and corruptions {e,}N_, (such that the corrupted observations'y,, = X, + €, are also whitened)
both in R such that ||x,|| < a and ||e,|| < bforalln = 1,...,N. Let Q, denote a stationary
point of the optimization problem

Then, there exists a stationary point Qy (g1, . . . ,&y) of the perturbed optimization problem

1 N D
TSN D) W)
n=1d=1

such that ||Qyxn — Qx(€1,-..,en)(Xn + &n)|| < C +bjforall N where C = Mab.

Furthermore, PQy (g1, . ..,eN) is a stationary point of the perturbed optimization problem attaining
the same value for any signed permutation matrix P € ‘H, such that det P = 1.

Proof. We treat SO(D) as a Riemannian manifold and consider the properties of the perturbed
optimization problem. For notational convenience, write ¢ = (eq,--- ,ex)7 noting that then

lell < V/Nb.

We consider first the Euclidean gradient with respect to (), where we write the perturbed sample as
Yn = X, + €,. Denote g,,(Q) = (J’(q?yn), ceey J’(qlT)yn))T for any n. Then:

N
ij Q’ = Z yn

The tangent space at a point Q € SO(D) can be parameterized by the vector space of skew-symmetric
matrices. Denoting skew (A4) = % (A AT) the Riemannian gradient is given by the projection of
VJ onto the tangent space
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gradQ j(Qv 6) = Q SkeW(QTVQJ(Q7 E))

With this machinery, we can apply the Euclidean implicit function theorem (IFT). Let @, € SO(D)
be an unperturbed optimum. Adopt the matrix exponential parameterization in a neighbourhood
about Qy, i.e., let v : N — SO(D) be given by v(2) = Q, exp(2) for some sufficiently small
N < RP(P=1)/2 for the map to be injective. Let

F(e,Q) = gradg J (7(),€) = 7(Q) skew(7(2)" VoI (1(2), ¢))
and apply the IFT to F', noting that the hypotheses hold at 2 = 0 and € = 0. We thus have some

neighbourhoods £ € RV*P and O ¢ RP(P~1)/2 guch that for any £ € E there exists , () € O
such that

1Dz, (el = [Hossg! T(1(% (). )] H”(eMe))H

2o o)
Oen,
oVoJd
_uH On H
< Ly(a+b) +LivVD
< N

Here, the bound on the Hessian comes by hypothesis, while the second term follows from the fact
that the skew operator and multiplication by an orthogonal matrix is norm-preserving, combined with
the following expression for the Euclidean directional cross-derivative:

1
where R,,(Q) = diag{J"(afym),...,J"(d5ym)} and we have ||0., VoJ[h]| <
%m as required. Aggregating across all n, we have ||D.Q,(e)||r < w?i\/%h@-

By hypothesis, the additive symmetry between x,, and ¢,, is sufficient for this bound to hold for any
sufficiently small perturbation.

As a result, we have

[Q(e)(xn + &n) = Qu(0)xn ]l < |Qu(e) — Qu(O)llIxnl| + [Q(e)enll
< 194(2) = Q0 [[lInll +
o La(a+b) + LivD)ab

< +b
1

as required. [

Below, we provide a complete overview of the assumptions we make for Theorem 2]

Assumption Summary. We assume that the representation distribution (i.e. the pushforward of P (x)
by any encoder fy) has full-rank covariance, and that the support of the distribution has diameter
bounded by A. The eigenvalues of the covariance matrices are assumed to be bounded below by
A. Furthermore, we assume that the identifiability up to Hiinear of (P, M, F') (Where F' : 0 — fp)
is satisfied for linear maps with singular values bounded between A 4 and A 4. Finally, we assume
that the contrast function used for ICA is Lipschitz (with constant L;) and has Lipschitz derivative
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(with constant Ls), and that ICA converges such that the Riemannian Hessian at the optimum has
eigenvalues bounded below by p > 0.

With these lemmata, Theorelelin the main text follows easily.

Theorem. Suppose (P, M, F) is e-nearly identifiable up to Hjinear for F : 0 — fo. Then, a new
model M which applies whitening and contrast function-based independent components analysis to
the latent representations given by fy is € -near-identifiable up to H, for € = Ke + K'e2, where
K and K' are constants free of € that depends on the maximum diameter of the latent space A,
the spectra of the covariance matrix of the representations, and the properties of the ICA contrast
function.

Proof. Let fy and fp be two optimal encoders. By e-near identfiability up to Hjiear, there exists
A such that esssupp ) [| fo(z) — Afo(z)|| < e. If A has positive determinant, Lemma |A.6| with
the usual whitening applied to both encoders yields Ce-near-identifiability up to Higiq for C' =

)\21/2)\’1/2 (1 + %(ﬁ). If not, the sign of a single latent can be flipped, which flips the sign of a

single column of A, allowing the application of Lemma Denote the whitened encoders by ﬁ) (z)
and fo (). Lemmathen applies with ¢ = A and b = Ce¢, where A is the maximum diameter

of any latent space, yielding a bound C’ = MAC& Taking the limit as N — oo and

denoting f}* () and £} (z) the outputs of the encoders with whitening and ICA applied, we have

€SS SUP,, () ||féCA($) - PflgA(x)” < Ke+ K'é¢for K = —L2A2C+;/ﬁL1AC and K’/ = LTA, and
the indeterminacy P € H, arises by the fact that any signed permutation of the latents is a maximum
of the ICA objective, as required. O

A.3.6 STRUCTURAL NEAR-IDENTIFIABILITY VIA ICA

Here, we are able to give a short proof of Theorem [3| by leveraging identical arguments to the proof
of Theorem 21

Assumption Summary. We assume that the representation distribution (i.e. the pushforward of P (x)
by any encoder fy) has full-rank covariance, and that the support of the distribution has diameter
bounded by A. The eigenvalues of the covariance matrices are assumed to be bounded below by
A. Furthermore, we assume that the identifiability up to Hjipear of (P, M, F') (Where F : 0 — fp)
is satisfied for linear maps with singular values bounded between A4 and A 4. Finally, we assume
that the contrast function used for ICA is C? with Lipschitz first (with constant ;) and second (with
constant Lo) derivatives, and that ICA converges such that the Riemannian Hessian at the optimum
has eigenvalues bounded below by 1 > 0. Finally, the end-to-end model gg o fy must reconstruct its
inputs perfectly at the optimum and the true data-generating process g must be (1 + 0)-bi-Lipschitz,
smooth, and injective (and therefore diffeomorphic onto its image), with the data-generating factors
being white (i.e. zero mean, unit variance), being non-Gaussian and having independent components.
Finally, we assume that © is sufficiently rich so that v € M, i.e., the model can approximate the
ground-truth data-generating structure.

Theorem. Let P(u) be some multivariate distribution with independent non-Gaussian components
with zero mean and unit variance, and consider data P(x) generated by pushforward through a
smooth diffeomorphism g such that g is (1 + §)-bi-Lipschitz. Let M be a model with a sufficiently
rich parameter space ©. Let F' : 0 — foy, G : 0 — gg and H : 0 — gy o fp. Then, if (P, M, H)
structurally identifies the identity function in expectation (i.e. attains perfect reconstruction), we have
that (P, M, F') e-nearly identifies the structure g=' up to H,igia, and furthermore that a new model
M’ which applies whitening and independent components analysis to the latent representations given
by fo €' -nearly identifies the structure g~* up to H, where € and € depend on & and Lipschitz bounds
on gg, and € depends additionally on the spectrum of the covariance matrix of the representations
and the properties of the ICA contrast function employed.

Proof. Take § = max{d, L} as the maximum of the two bi-Lipschitz constants of the data-generating
process and the bound on the bi-Lipschitz constant of the decoders in the model class. Theorem

yields ¢’-near-identifiability in expectation up to H.igiq for 6’ = cpv/20 + 62A. With the inverse of
the true data-generating map taking the place of one of the encoders, the same argument from the
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1

proof of Theorem yields the first claim, namely ¢’-near structural identifiability of g~ up to Higia.

The rest of the proof follows similarly to the proof of Theorem [2]in Appendix [A.3.3] with the inverse
of the true data-generating map taking the place of one of the encoders. In particular, let 6 be an
optimum and consider fs and gg. Without loss of generality, assume that fo(x) = 0 = g~ 1(x),
noting that the encoder fy and decoder gy can be translated arbitrarily without altering any of our
hypotheses. The same argument then applies, yielding the result. The precise constant is the same,
with e = K¢’ + K'8"? for K and K’ as defined in the statement of Theorem [2] O

A.4 DYNAMICAL ISOMETRY AND BI-LIPSCHITZNESS

Proposition. Suppose f : RP — RY is once differentiable and satisfies dynamical isometry, in the
sense that the singular values \; of the Jacobian J satisfy |/\ — 1| <efori=1,...,min{D, N}
for some 1 > € > 0. Then, f is locally L-bi-Lipschitz for L =

—e’

Proof. Let z,y € RP. Then the mean value theorem yields the bound || f(x) — f(y)|| < ||J;]/|lz —
yll < (1 +¢)||x — y||. By the same argument, (1 — €) ||z — y|| <||f(z) — f(y)]|, and taking L = %z
(a bound on the condition number of .J) yields a suitable bi-Lipschitz constant. O

Remark. Many popular regularization techniques spanning architectures and tasks optimize im-
plicitly or explicitly for dynamical isometry, with the level of evidence ranging from theoretical to
empirical. For example, weight decay has been shown theoretically and empirically to do so (Zhang
2019), normalization techniques in generative adversarial networks optimize for it directly

(Karras et al| 2020, Miyato et al [2018)), residual layers yield this property (Bachlechner et al)
2020), and specialized techniques have been developed to yield it at initialization (Xiao et al.} |2018).

A.5 STRUCTURAL IDENTIFIABILITY IMPLIES STATISTICAL IDENTIFIABILITY

Below, we prove that statistical (near-)identifiability is implied by structural (near-)identifiability.

Theorem. Suppose (P, M, F) §-nearly identifies the structure v up to H for F : 0 — fg. Then,
(P, M, F) is e-nearly identifiable up to H for some € € R provided that H is bounded by C € R
as in the sense of an operator norm.

Proof. Let 6,6" € S be solutions to the minimization problem mingeg E[Lg] where M = {L :
6 € ©}. By structural identifiability, we have that there exist i and ' relating 6 and 0’ respectively
to u. More concretely, we have:

|hofo—ulrr <9
|h" o for —ullr <0

Take h* = h~! o I/, where the inverse and composition are well-defined because H is a group of
functions mapping R” to itself. »* can be understood as mapping fy as close to fy as possible under
the available assumptions. Then, we have

Ifo —h*o forllLe = |h " oho fo—h™ oo foLr
[ oho fy—h out h ou—ht ok o fyllLs
< B op (170 fo — ullr + ||h" © for — ullL»)
<20C¢

where the third line follows by the triangle inequality, and the final line by structural identifiability of
u and boundedness of 7, yielding the result.

The constant C' arises because solutions might exist on a different scale from the data-generating
process u (and therefore from each other). Partly as a result of this fact, this theorem likely is
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not useful for certain identifiability classes such as Hjinear, Which even if bounded by assumption
can likely yield more fruitful identifiability results via a direct approach. On the other hand, for
identifiability classes like Higid, the bound is in some sense tight.

Finally, we emphasize that the result is largely agnostic to the choice of reasonable norms, although
we have in mind the usual operator norm and an L” norm for 1 < p < oo, taken with respect to the
data distribution P(z). O

Remark. Taking & = 0 shows that structural identifiability implies statistical identifiability in
expectation.

A.6 CONFORMAL MAPS AS NEAR-ISOMETRIES

In this section we make rigorous the arguments outlined in Section [3.3.1] First, we outline the
mollification argument which allows us to take derivatives in L? without hassle.

Mollification Let ¢,2 be the isotropic zero-mean Gaussian density with variance o2. For any
image represented by a function F', note that F, = F' x ¢,2 is a “smooth” version of that image
without hard edges. Accordingly, mollifying all images by the same Gaussian means that taking
the Gateaux derivative of image-valued functions becomes possible in L2, and only introduces a
multiplicative constant dependent on the variance o2 which we would like to ignore. To see that this
is possible, consider the data-generating process for a square articulating along the z-axis according
to a coordinate p outlined in Section [3.3.1}

F®) = [(=,9) = Lo p<riyi<r] € L2 ([-1,1])

Denote f,(p) = f(p) * ¢o2. Then, convolving with the distributional derivative gives

fo®) =1y <oy (P —p—7) — Pz —p+7))

1520 = <= + Olexp( o)

Pick any two distinct latents pg and p;. For any smoothed manifold, we have that their geodesic
Ve
then be “renormalized” against this distance by dividing through it, ensuring that as ¢ — 0 what is
left is a constant. This then implies that what we are actually computing in the subsequent sections is
not a metric inherited from the 2 norm at all, but rather defines a whole new geodesic distance on
the limiting manifold of unsmoothed images. For notational clarity, we ignore mollification in the
rest of this section and return to a heuristic argument for the next sections. We direct the interested
reader to|Grimes|(2003)), Section 2.6 for a fully rigorous treatment.

distance is given by + O(exp(—ch))) |[p1 — po|. The distance between any two points can

Two-dimensional manifold Now, we fully characterize the 2-dimensional manifold described in
the main text. Let Z = {(p,r) | a < p < b, Ry < r < R} denote the manifold of latent variables of
the position of the square and its half-side length. Each point z € Z can be identified with an image:

f(pa’r) = [(x,y) = 1\$—p\§r,\y|§r} € Lz([_]'? 1])

Directional derivatives The derivative with respect to p remains the same as in the main text, and
the derivative with respect to r follows similarly:

18, f (p, 7)II* = 2r
10rf (p, 1) II* = 87
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However, checking that f is a conformal map also demands that 8, f and 9, f are orthogonal in L?.
To see this, note that finite difference approximation to 8, f are the (negative) left and (positive)
right edges of the square, while the finite difference approximation to Or f are all (positive) edges
of the square. Therefore, the top edges contribute nothing to the inner product (9, f, 9, f) while the
contributions of the left and right edges cancel. Thus, the Riemannian metric can be written

1 0
G(p,r)=2r (0 4)
G,y =1

where the reparameterization p’ = p/4 and v’ = 2r allows us to recover the isotropy.

Near-isometry It remains to show how f can be viewed as locally bi-Lipschitz. To see this, note
that the we have the following global bound on the differential:

2Ro[[u]] < [Df ()| < 2R||u]|

for u in the tangent space at any point along Z. Accordingly, we have the following bound on the
geodesic distance:

V2Rol|z1 — 2o|| < dgeo (f(21), f(20)) < V2R||z1 — 2o

where dg, is the geodesic distance along the image manifold. As a result (assuming w.l.o.g. that
Rg < 1), fis locally \/R/Ro-bi-Lipschitz. Furthermore, for any f,! from the image manifold to
a convex subset of R? which is also \/R/Ro-bi-Lipschitz, f o f7! is globally R/Ry-bi-Lipschitz
(with respect to the £2 norm on both spaces, where the constant follows by convexity) and is therefore
a near-isometry with constant (R/Ro — 1)A where A = /4(R — Rg)2 + (a — b)? is simply the
diameter of Z.

A.7 EXPERIMENTAL DETAILS
A.7.1 WARMUP EXPERIMENT: MNIST

We conducted experiments on the MNIST dataset (LeCun & Cortesl 2010) to validate our theoretical
predictions regarding the identifiability of latent representations as a function of the bi-Lipschitz
constant of the decoder.

Training We trained pairs of orthogonal LeakyReLU autoencoders with the following architecture:

* Encoder: R7%* — R4 5 R78¢ — R78¢ — R?
 Decoder: R?2 — R78 — R784 _, R784 _, R784

All linear layers used orthogonal weight parametrization (no
bias terms). LeakyReLU activations with leak constant o €
{0.0,0.25,0.5,0.75,0.9,1.0} were applied at all intermediate
layers. The latent dimension was D = 2. All models were fit

using the Adam optimizer (Kingma & Bal [2015)) with learning
rate 7 = 5 x 10~% for up to 2000 epochs, minimizing the mean \/ﬁ
squared reconstruction error. Early stopping was applied with "o —
patience of 50 epochs and minimum improvement threshold

of 1075, Gradients were clipped to unit norm for stability. We Figure A.3: The distribution of
repeated each configuration with 10 random seeds for robust- sample-level bi-Lipschitz constant
ness, yielding 6 x 10 = 60 experimental runs. We filtered estimates B(z) tightens around 1 as
experimental runs to exclude poorly converged autoencoders. o — 0.

Specifically, we removed runs where the reconstruction error
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L2 Error vs Mean L - Digit 0 L2 Error vs Mean L - Digit 1 L2 Error vs Mean L - Digit 2

L2 Error vs Mean L - Digit 3 L2 Error vs Mean L - Digit 4

Figure A.6: In digit-specific models, controlling the bi-Lipschitz constant L leads to improved
identifiability (reduced ¢, error) with pattern similar to the full-dataset models.

of either autoencoder exceeded the 95th percentile observed at the reference leak value oo = 0.9. This

removed 11/60 runs.

Results For a given autoencoder, we compute the represen-
tations z of a random subset of 1000 samples. For the decoder
g, the bi-Lipschitz constant at a given latent point z is given as

B(z) = max{[|Jy(2)vll2, 1/][Jy(2)[l2}

where the maximum is taken over 10 randomly sampled unit
vectors. We plot the distribution of B(z) as a function of the
leak constant «v in Figure [A3] As o — 1, the distribution
is typically well-concentrated around a mean not much larger
than one, with a relatively small number of outliers. Figure
2] (in the main text) plots the samplewise estimate of L =
Ep(.)[B(z) — 1] versus identifiability. Although more robust
to outliers, this is not a formal bound because Theorem [T]relies
on a global L, i.e. L = maxp.)[B(z) — 1]. For completeness,
we plot using the maximum in Figure[A.4] with the maximum
taken over all 1000 samples. Both plots include fitted curves
of the form {5 error = av/ L + L? + b to the identifiability
measurements, consistent with the theorem.

As a — 1, the estimated bi-Lipschitz constants L do indeed
shrink toward 1 as expected. This suggests validity of the exper-
imental testbed, but not Theorem [T]itself. However, as L — 1,
we see that identifiability does indeed improve significantly ({5
error — () as predicted by the Theorem. Notably, this is despite
the fact that perfect reconstruction does not hold (Figure [A:3).

We also completed the same experiment with a model per
digit. This allows us to assess whether class-level indeter-
minacies play a role in identifiability in this problem setting
like in (Nielsen et al., 2025). All hyperparameters and setup
remains the same, except we fit three seeds per digit for a total
of 10 digits x 6 leak values x 3 seeds = 180 runs. Filtering
using the same rule for reconstruction removed 5/180 runs. Re-
sults are consistent for these per-digit autoencoders as well,
suggesting that for this setting of hyperparameters, class-level

020

error (AEL vs AE2)

L
o

2 3 3 s 13
max(L) (bi-Lipschitz constant)

Figure A.4: Controlling the bi-
Lipschitz constant L leads to im-
proved identifiability (reduced ¢
error). The proportionality does not
appear to differ whether the max or
mean bi-Lipschitz constant is esti-
mated.

0615

5 oeos

&
e %

0595 0 Mot

010 ois o020 o0z
mean(L) (bi-Lipschitz constant)

Figure A.5: Reconstruction error
improves as the bi-Lipschitz con-
stant grows (leak o — 1). Notably,
poor reconstruction does not inhibit
identifiability.

indeterminacies do not play a substantial role in the level of empirical identifiability (Figure [A.6).
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A.7.2 MEASURING NEAR-IDENTIFIABILITY

We describe here the setup for the alignment experiments reported in Table[T} All reported statistics
are in-sample, with representations taken from the same data on which the models were trained. For
each model, we extract the following hidden states:

* GPT-class models (Pythia-160M): penultimate-layer hidden states.
* MAE models: latent representations obtained by averaging patch embeddings.
* Supervised models (ResNet-18): penultimate-layer representations.

We apply the following representation alignment techniques:

* Permutation: representation dimensions were matched using the Hungarian algorithm to resolve
signed permutation indeterminacies.

* Rigid: estimated via the Procrustes algorithm with a global scaling constant (rigid similarity
transform).

* Linear: estimated via least-squares regression with no additional regularization or constraints.

* ICA: estimated using FastICA (scikit-learn implementation), applied to the full representation
dimension with all components retained. The Hungarian algorithm resolves the remaining signed
permutation in latent space.

Alignment quality is reported as the mean per-example ¢, error, normalized by the latent diameter,
defined as the maximum pairwise /- distance among representations. For ICA, efficiency is reported
as the proportion of error reduction relative to the supervised rigid transform:

Permutation — ICA
Permutation — Rigid"

ICA efficiency =

A.7.3 DISENTANGLEMENT EXPERIMENTS

We reproduce only the autoencoder (AE) results, enough to validate that we obtain similar perfor-
mance, and apply ICA to these models. Specifically, each hyperparameter setting is re-fit 3 times,
and training step where the average performance is the best is selected (according to modularity, after
filtering for reconstruction as in |Hsu et al.| (2023)).

As in the original experiments in|Hsu et al.|(2023)), the latent spaces are overparameterized with the
number of latents equal to twice the number of ground-truth sources n, = 2n,. As a result, the latent
space is rank deficient. To avoid the introduction of additional hyperparameters for pruning inactive
latents which could bias the performance of our approach (via e.g. whitening with dimensionality
reduction), we fit the FastICA model without whitening. Inspection of the decoder Jacobian reveals
that inactive latents are obvious (corresponding singular values are very near zero) and the remaining
components of the Jacobian have similar scale (likely due to high weight decay), suggesting that
full-rank whitening would have minimal impact here except to drive up the noise from inactive latents.
As a result, we perform no whitening and preserve all latent dimensions.

Table[5]is an augmented version of Table 2] with standard errors computed across the 3 models with
the best hyperparameter setting for each model. Results for all models other than AE (reproduction)
and AE + ICA are quoted from |Hsu et al.| (2023), which averaged over 5 seeds instead of 3.

A.7.4 OPENPHENOM EXPERIMENTS

The whitening and FastICA Hyvirinen & Ojal (2000) algorithms are from the scikit-learn
package |Pedregosa et al.|(2011)). These models are trained at the patch level on the patches from the
first channel of images in Rxrx3-core Kraus et al. (2025), where patches are specifically subsampled
from the top left-hand corner. To ensure computational feasibility, a single patch is sampled from
each image, yielding approximately 222K patches. Both models use the default hyperparameters (all
principal components are kept and the contrast function is log cosh).

Gradient boosting models are trained using LightGBM [Ke et al.|(2017) (hyperparameters in Table
[6). Models are trained to predict whether the image patch embedding is from an image which is
perturbed or not. Models are evaluated using area under the receiver operator characteristic curve.
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A separate model is trained on each plate, which is then evaluated on all remaining plates. Below, we
report an augmented version of Table 3] with the standard error of the mean computed across folds.
When more than one independent experiment (corresponding to a guide) is available for a given gene,
the standard error is computed across all folds from all guides.

Mean AUROC =+ s.e. (1) Sparsity + s.e. (1 more sparse)
Gene Base PCA PCA +ICA PCA + Rand Base PCA PCA +ICA PCA + Rand

CYPIIBI (1) 0.663 £0.008 0.692+0.008 0.709+0.005 0.6784+0.010 0.184£0.006 0.20440.007 0.237 4+0.006 0.188 & 0.007
EIF3H (1) 0.682+£0.008 0.724+£0.004 0.7494+0.007 0.725+0.003 0.192+£0.004 0.224+0.010 0.268 +0.008 0.214 £ 0.006

HCK (1) 0.670 £0.012  0.693 +0.007 0.71140.005 0.668 £ 0.007 0.156 £0.004 0.208 4 0.004 0.241 4 0.006 0.166 £ 0.005
MTOR (6) 0.663 £0.003  0.690 +0.003 0.705 4+ 0.003 0.679 £+ 0.003 0.166 £0.002  0.201 +0.003  0.233 +0.003  0.186 £ 0.002
PLK1 (6) 0.803 £0.002 0.8114+0.002 0.81540.002 0.792+0.002 0.251 £0.003 0.307 £0.004 0.305£0.003 0.262 £ 0.003
SRC (1) 0.660 £0.004 0.694 +£0.007 0.706 &+ 0.004 0.676 £ 0.007 0.170 £0.006  0.214 4+ 0.003  0.240 &+ 0.008  0.184 £ 0.005

In Table[7] we report an augmented version of Table {.4] with the concentration scores, assessing
sensitivity to the parameter k.
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Table 5: Full results across datasets.

Shapes3D

model InfoM 1 InfoE 1 InfoC 1
AE 0.414+0.03 0.98+£0.01 0.28+0.01
B-VAE 0.594+0.02 0.99+0.02 0.49+0.03
B-TCVAE 0.61 +0.03 0.82+0.02 0.62+0.02
BioAE 0.56 =0.02 0.98£0.01 0.44 +0.02
AE (reproduction) 0.36 =0.05 1.00£0.00 0.18+£0.06
AE + ICA 0.78+0.02 1.00£0.00 0.42+0.09
Discrete latent models

VQ-VAE 0.724+0.03 0.97+0.02 0.47+0.03
VQ-VAE w/ weight decay 0.80+0.01 0.99+0.01 0.46 +0.02
QLAE 0.954+0.02 0.99+£0.01 0.55+0.02

MPI3D

model InfoM 1 InfoE t InfoC 1
AE 0.374+0.04 0.72+0.03 0.36+0.03
B-VAE 0.454+0.03 0.71£0.03 0.51+0.03
B-TCVAE 0.51 +0.04 0.60£0.04 0.57£0.04
BioAE 0.454+0.03 0.66+0.04 0.36+0.03
AE (reproduction) 0.424+0.05 0.66=+0.28 0.31+0.12
AE + ICA 0.444+0.12 0.66£+0.28 0.31+£0.14
Discrete latent models

VQ-VAE 0.434+0.06 0.57+0.04 0.22+£0.04
VQ-VAE w/ weight decay 0.50 +0.04 0.81+£0.04 0.414+0.04
QLAE 0.61 +0.04 0.63+£0.05 0.51+0.03

Falcor3D

model InfoM 1 InfoE 1 InfoC 1
AE 0.394+0.03 0.74£0.03 0.20+0.03
B-VAE 0.714+0.05 0.734+04 0.70+0.03
B-TCVAE 0.66 =0.02 0.74+0.04 0.71+£0.04
BioAE 0.54 +0.05 0.73£0.04 0.31+0.01
AE (reproduction) 0.37+£0.14 0.75+£0.01 0.21£0.06
AE + ICA 0.684+0.09 0.75£0.01 0.37+0.32
Discrete latent models

VQ-VAE 0.61 +0.04 0.83+£0.05 0.42+0.02
VQ-VAE w/ weight decay 0.74 £0.02 0.86£0.04 0.40 4+ 0.03
QLAE 0.71£0.03 0.774+0.02 0.444+0.02

Isaac3D

model InfoM 1 InfoE 1 InfoC 1
AE 0.424+0.04 0.80£0.02 0.21+0.05
B-VAE 0.60 £20.03 0.80£0.02 0.51+0.03
B-TCVAE 0.544+0.02 0.70£0.02 0.46+0.03
BioAE 0.634+0.03 0.65+0.03 0.33+£0.04
AE (reproduction) 0.414+0.11 0.80£0.05 0.20+£0.07
AE + ICA 0.64+0.17 0.80+£0.05 0.34+0.05
Discrete latent models

VQ-VAE 0.574+0.04 0.87+£0.05 0.45+0.04
VQ-VAE w/ weight decay 0.73+£0.03 0.81+0.03 0.444+0.04
QLAE 0.78 +20.03 0.97£0.03 0.49+0.03
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Hyperparameter Value

is_unbalance True
learning_rate 0.05
num_leaves 31
feature _fraction 0.6
reg_alpha 5.0
reg_lambda 1.0

min_gain_to_split 0.8
min_data_in_leaf 30

Table 6: LightGBM hyperparameters used in all experiments.

Table 7: Sensitivity of concentration to k.

Concentration (1)

Model k=25% k=33% k=>50%
Base (none) 0.163 0.134 0.133
PCA 0.332 0.307 0.314
PCA + ICA 0.386 0.372 0.334

PCA + RandRot 0.287 0.280 0.235
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