
Molecule Language Model with Augmented Pairs and Expertise Transfer

Namkyeong Lee1,2†, Siddhartha Laghuvarapu2, Chanyoung Park1∗, Jimeng Sun2∗

1 Korea Advanced Institute of Science and Technology
2 University of Illinois Urbana-Champaign
{namkyeong96, cy.park}@kaist.ac.kr

{sl160, jimeng}@illinois.edu

Abstract
Understanding the molecules and their tex-
tual descriptions via molecule language models
(MoLM) recently got a surge of interest among
researchers. However, unique challenges exist
in the field of MoLM due to 1) a limited amount
of molecule-text paired data and 2) missing ex-
pertise that occurred due to the specialized ar-
eas of focus among the experts. To this end, we
propose AMOLE, which 1) augments molecule-
text pairs with structural similarity preserving
loss, and 2) transfers the expertise between
the molecules. Extensive experiments on vari-
ous downstream tasks demonstrate the superi-
ority of AMOLE in comprehending molecules
and their descriptions, highlighting its poten-
tial for application in real-world drug discovery.
The source code for AMOLE is available at
https://github.com/Namkyeong/AMOLE.

1 Introduction

Recently, Language Models (LMs) have gained
traction in molecular science, fueled by the abun-
dance of literature in this domain. Notably, the
conventional method of representing molecules as
strings, such as SMILES strings (Weininger, 1988),
facilitates the integration of two different modal-
ities, i.e., text and molecules, into a single LM.
Then, following the masked language modeling
(Devlin et al., 2018), Zeng et al. (2022) train the
model on masked SMILES and text from the sci-
entific literature. Moreover, inspired by T5 models
(Raffel et al., 2020), training the Molecule Lan-
guage Model (MoLM) with multiple tasks and fine-
tuning the downstream task has been proposed (Ed-
wards et al., 2022; Pei et al., 2023; Christofidellis
et al., 2023). However, all these models require
molecules to be represented in a string format, like
SMILES, to be understood by language models.

As an alternative approach, one can treat
molecules and language as multiple modalities, fol-
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Figure 1: (a) Rivastigmine’s textual descriptions from
various experts. (b) The majority of molecules in the
PubChem database have only one description provided
by an expert.

lowing the recent success of the vision language
model (VLM). For instance, several recent works
(Edwards et al., 2021; Liu et al., 2023a; Seidl et al.,
2023) have proposed using separate encoders for
each modality and training the paired modalities
to be similar in the representation space using con-
trastive learning, inspired by the CLIP model (Rad-
ford et al., 2021). These models are effective in
capturing complementary information between dif-
ferent modalities by learning a joint representation
space that can be utilized for various downstream
tasks such as cross-modal retrieval and molecular
property prediction.

Despite promising early strides, the progress
of MoLM lags far behind its VLM counterparts
due to the scarcity of molecule-text paired data,
both in quantity and expertise. First, in terms of
quantity, the VLM community largely follows the
viewpoint that scale is everything, as image-text
pairs are widely available on the web (Wang et al.,
2023). Pre-training VLM on the massive amounts
of crawled image-text pairs, ranging from tens of
thousands to billions, consistently leads to signif-
icant performance gains in various downstream
tasks (Jia et al., 2021; Yu et al., 2022). In contrast,
MoLM faces a bottleneck due to the limited amount
of molecule-text paired data available, which de-
mands costly domain knowledge and significant
time investment for wet lab experiments.

https://github.com/Namkyeong/AMOLE


Moreover, each molecule has various descrip-
tions provided by different experts, each focusing
on its unique areas of expertise. For example, in
the case of a molecule named Rivastigmine (Figure
1 (a)), FDA explains its function as a cholinesterase
inhibitor, whereas LiverTox (Hoofnagle, 2013) fo-
cuses on its effectiveness on Alzheimer’s disease.
However, due to the specialized areas of the ex-
perts, they typically restrict their knowledge to a
selective group of molecules, resulting in numerous
molecules having missing expertise across various
experts. Specifically, our examination of the largest
molecule database, PubChem (Kim et al., 2021),
as illustrated in Figure 1 (b), reveals that only 27K
out of 299K molecules have descriptions from mul-
tiple experts. Consequently, the remaining 272K
molecules are each documented with a single ex-
pert description, which may lack comprehensive
expertise about the molecule.

In this paper, we propose AMOLE which ad-
dresses the unique challenges faced in MoLM
by Augmenting MOLecule-text pair and transfer-
ring Expertise between the molecules. To over-
come the lack of molecule-text paired data, we
utilize the idea that molecules with similar struc-
tures have similar properties, which is grounded
in the well-established biochemical principle (Mar-
tin et al., 2002). Specifically, we propose to aug-
ment molecule-text pairs by sharing descriptions
among structurally similar molecules. However,
this approach can lead to false positives, as the de-
scriptions may not be specifically written for struc-
turally similar molecules. To address this issue,
we introduce a novel loss function that preserves
structural similarity, guiding the model to align the
augmented molecule-text pairs more closely based
on the structural similarity of the molecules.

Furthermore, to address the missing expertise
issue, we utilize the fact that different areas of ex-
pertise are interrelated, allowing us to infer addi-
tional expertise based on one known area. As an
example, in Figure 1 (a), since the Cholinesterase
inhibitor is widely known to improve communi-
cation between nerve cells by increasing levels of
Acetylcholine in the nervous system (Grossberg,
2003), one could infer Livertox’s expertise about
Alzheimer’s disease from FDA descriptions. To
this end, we propose to transfer the expertise ac-
quired from molecules with extensive descriptions
to those with less description. Specifically, given
a molecule that possesses descriptions from multi-

ple experts, we train the model to reconstruct one
description from another, thereby enhancing the
ability to deduce expertise from one expert using
information from another. With our proposed train-
ing strategy, the model behaves as if it has access
to abundant expertise, even if the model faces the
molecule with missing expertise.

We make the following contributions:

• To increase the limited amount of molecule-text
paired data, we propose to selectively share de-
scriptions among molecules with a novel loss
function based on their structural similarity.

• To address the issue of missing expertise, we pro-
pose to transfer the expertise between molecules
by enhancing the model’s ability to reconstruct
one description from another.

• Extensive experiments including two novel and
practical tasks; zero-shot question and answer-
ing, and zero-shot virtual screening, demon-
strate the superiority and potential applicability
of AMOLE in real-world drug discovery process.

2 Related Works

MoLM with a Single Language Model. Thanks
to the wealth of literature and the traditional
string-based representation of molecules, such as
SMILES, LMs have been applied to the domain of
molecular science. Drawing inspiration from the
masked language model approach used in BERT
training (Devlin et al., 2018), KV-PLM (Zeng
et al., 2022) proposes to train LMs by reconstruct-
ing masked SMILES and textual data. Moreover,
MolT5 (Edwards et al., 2022) proposes to pre-train
the LMs with the “replace corrupted spans” objec-
tive (Raffel et al., 2020) on both SMILES string
and textual data, followed by fine-tuning for tasks
such as molecule captioning and generation. Pei
et al. (2023) and Christofidellis et al. (2023) extend
MolT5 with various pre-training tasks, such as pro-
tein FASTA reconstruction and chemical reaction
prediction. However, these models rely on string-
based representations of molecules, e.g., SMILES,
which are broadly recognized for their lack of topol-
ogy awareness (Rong et al., 2020). Furthermore,
merging two modalities into a single model pre-
vents the adoption of existing pre-trained models
tailored for each modality (Liu et al., 2023a).

MoLM with Multi-Modal Contrastive Learning.
Inspired by the recent success of VLM, researchers
have started to conceptualize molecules and text



as separate modalities, particularly by adopting
separate encoders for each modality. As a pio-
neering work, Text2Mol (Edwards et al., 2021)
proposes training separate encoders for molecular
graph and textual description with cross-modal con-
trastive learning. Following this, CLAMP (Seidl
et al., 2023) suggests employing contrastive learn-
ing for predicting activities based on the textual de-
scription of the task. Furthermore, MoleculeSTM
(Liu et al., 2023a) develops the largest multi-modal
dataset sourced from the PubChem database for
cross-modal contrastive learning applications. It is
essential to recognize that the distinction between
these models is based on their architectural design
and the data used for training rather than the train-
ing loss itself. On the other hand, MoMu (Su et al.,
2022) introduces an intermolecular contrastive loss
along with random molecular augmentations like
node dropping, which may lead to chemically in-
valid structures (Lee et al., 2022a). Unlike previous
works, AMOLE concentrates on overcoming the
specific hurdles encountered in MoLM: the lack
of abundance and expertise in molecule-text pairs,
through innovative training loss strategies.

MoLM with Other Multi-Modal Learning. On
the other hand, there have been other approaches
for integrating molecule text through a novel model
architecture. GIMLET (Zhao et al., 2023) suggests
encoding graph structure and instructional text di-
rectly, without separate graph encoding modules,
by utilizing generalized position embeddings. Fur-
thermore, inspired by BLIP-2 (Li et al., 2023) in
VLM, MolCA (Liu et al., 2023b) introduces the
alignment of two modalities through the Q-Former,
allowing the language model to understand 2D
molecular graphs. Note that these works are not
directly related to our research, as we focus on in-
troducing novel training loss designed for molecule-
text pair augmentation and expertise transfer.

3 Preliminaries

3.1 Problem Statement
Notations. Let G = (V, E) represent a molecular
graph with atoms V as nodes and the edges E given
by covalent bonds. Moreover, we have a set of
textual descriptions T = {t1, . . . , tN} regarding
the molecule G from N different experts, such as
FDA and LiverTox, in Figure 1, each of which
details various attributes of the molecule. Note
that the number of descriptions for each molecule
varies, i.e., Ni depends on molecule Gi.

Task Description. Given a molecule graph G with
its textual description t ∈ T , we aim to train en-
coders fmol and ftext that produce a molecule rep-
resentation zG ∈ RD and a textual representation
zt ∈ RD, respectively. We aim to obtain the en-
coders that produce a generalized representation of
molecules and text, that can be utilized for a wide
range of downstream tasks.

3.2 Tanimoto Similarity
One traditional way of representing a molecule
is through fingerprints, a series of binary bits in-
dicating the presence or absence of specific sub-
structures (Rogers and Hahn, 2010). The Tanimoto
similarity is a widely accepted criterion for calculat-
ing the similarity between two molecules (Bajusz
et al., 2015) based on the fingerprints. Specifically,
for the molecules Gi and Gj that are represented
with the fingerprints fpi and fpj , respectively, the
Tanimoto similarity is calculated as follows:

sij =
|fpi ∩ fpj |

|fpi|+ |fpj | − |fpi ∩ fpj |
. (1)

Intuitively, the Tanimoto similarity takes both
common and distinct substructures between two
molecules into account, thereby offering an assess-
ment of their structural similarity.

3.3 Molecule-Text Contrastive Learning
Previous works (Liu et al., 2023a; Su et al., 2022)
have introduced multi-modal contrastive learning
to obtain encoders that establish qualified joint
space between a molecule G and its corresponding
text t. This approach ensures that paired molecules
and texts are closely aligned in the representation
space, while unpaired ones remain distant. Specifi-
cally, given a molecule G and its corresponding text
t, we first obtain the molecule and text representa-
tions as follows: zG = fmol(G) and zt = ftext(t).
Then, the model is trained with the following Noise-
Contrastive Estimation (InfoNCE) (Oord et al.,
2018) loss:

LInfoNCE = −1

2

{
log

exp(sim(zG , zt)/τ)∑
t′ exp(sim(zG , zt′)/τ)

+ log
exp(sim(zt, zG)/τ)∑
G′ exp(sim(zt, zG′)/τ)

}
,

(2)

where t′ and G′ represent all the texts and molecules
within the batch, respectively, sim(·, ·) indicates
the cosine similarity between the representations,
and τ denotes the temperature hyperparameter.
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Figure 2: Overall model architecture of AMOLE.

4 Methodology

In this section, we introduce our proposed method,
called AMOLE, a novel molecule-text contrastive
learning approach that addresses the two unique
challenges faced in MoLM, i.e., scarcity of
molecule-text paired data in quantity and expertise.
Figure 2 presents the overall model architecture.

4.1 Augmenting Molecule-Text pairs
While image-text pairs can be easily generated by
the general public, molecule-text pairs are typi-
cally produced by specialized experts, making it
more challenging to augment the data with exter-
nal sources such as Web. To this end, we propose
to augment the molecule-text pair by sharing the
textual description among molecules within the
data. Building on the well-established biochem-
ical principle that structurally similar molecules
often display analogous biological activities (Mar-
tin et al., 2002), we propose to share textual de-
scriptions among molecules with structural resem-
blances. Specifically, we begin by computing all
the pairwise structural similarity, i.e., Tanimoto
similarity (Eq. 1), between the molecules in the
training set. Then, given the similarity informa-
tion of a molecule Gi to other molecules, we iden-
tify the top k molecules that exhibit the highest
similarity to Gi. We represent these molecules as
the set Si. During training, a molecule Gi′ is ran-
domly selected from the set Si and substituted for
the original molecule Gi according to a predeter-
mined probability p; otherwise, it is kept identical
to the original molecule Gi. By doing so, the tex-
tual description ti of molecule Gi is shared among
k molecules within the set Si, generating a new
molecule-text pair (Gi′ , ti). As a result, this ap-
proach effectively expands the initial n molecule-
text pairs to n · k pairs.

4.2 Structural Similarity Preserving Loss
While we increase the number of pairs by shar-
ing the descriptions, training the model with aug-
mented pairs is challenging since the shared de-
scription ti is not specifically written for the sub-
stituted molecule Gi′ . Consequently, employing
traditional InfoNCE loss in Eq. 2 for model train-
ing could make the model prone to false positives.

To address this issue, we propose structural
similarity preserving (S2P ) loss, designed to pre-
serve molecules’ structural similarity in molecule-
text joint space. That is, given a text ti and a
molecule Gi′ , instead of directly defining the pair
as positive, we propose to utilize the Tanimoto
similarity sii′ between Gi and Gi′ as a pseudo la-
bel for contrastive learning. In particular, for a
given molecule Gi, we compile a set of sij′ values,
where j′ = 1, . . . , Nbatch represents the range of
molecules within a batch. Then, the pseudo label
is calculated as follows:

yt→m
ij′ =

exp(sij′/τ1)∑Nbatch
k′=1 exp(sik′/τ1)

, (3)

where τ1 is a temperature hyperparameter. Then,
we make a prediction on the pseudo label based on
the similarity between text ti and molecule Gj′ in
representation space as follows:

ŷt→m
ij′ =

exp(sim(zti , zGj′ )/τ2)∑Nbatch
k′=1 exp(sim(zti , zGk′ )/τ2)

, (4)

where τ2 is a temperature hyperparameter. It’s
worth noting that in order to approximate the
representation similarity sim(zti , zGj′ ) between a
molecule and text to structural similarity sij′ , we
generate pseudo labels by applying softmax nor-
malization to structural similarity. Then AMOLE is
trained with the following cross-entropy loss:

Lt→m
S2P = − 1

NBatch

Nbatch∑
i=1

Nbatch∑
j′=1

yt→m
ij′ log ŷt→m

ij′ . (5)

By doing so, the structural similarity between
molecules Gi and Gi′ instructs the model on how
to align the text ti and molecule Gi′ closely in the
representation space, enabling the selective sharing
of descriptions based on structural similarities. For
the symmetricity, we compute Lm→t

S2P and derive
our final training loss: LS2P = Lt→m

S2P + Lm→t
S2P .

4.3 Expertise Transfer Module
Experts in the field often have a specific area of fo-
cus, which results in some molecules lacking com-
prehensive expertise coverage from different spe-
cialists. To address this issue of missing expertise,



we suggest transferring the expertise gained from
molecules with extensive descriptions to those with
less description. Specifically, we use a molecule
Gi with a set of descriptions Ti obtained from vari-
ous experts. We train the language model ftext to
reconstruct the description ti′ ∈ Ti from a given
description ti. This approach allows the language
model ftext to become skilled at inferring expertise
from one institution based on another. It behaves
as if it has access to abundant expertise even when
dealing with molecules with missing expertise.

However, reconstructing the description ti′ in
text space poses a challenge, as our model is de-
signed to learn a qualified representation space
without a decoder structure. To this end, we pro-
pose a novel expertise reconstruction (ER) loss,
which guides the model to reconstruct the descrip-
tion within the representation space rather than
directly in the text space. More formally, when we
have a textual description ti and another associated
description ti′ for a molecule Gi, we formulate the
reconstruction target t̃i by concatenating the two
descriptions with [SEP] token, i.e., t̃i = ti [SEP]
ti′ . Then, the model is trained to minimize the L2
distance as follows:

LER = − 1

NBatch

Nbatch∑
i=1

∥ftext(ti)− SG(ftext(t̃i))∥22,

(6)

where SG denotes the stop-gradient operation,
which halts the propagation of gradients when in-
puts are structured as t̃i, thereby preventing the
model from acquiring degenerate solutions by dis-
regarding the text following the [SEP] token. With
the novel ER training loss, the model simulates
having extensive expertise available, even when
specific expertise is lacking.

4.4 Model Training
Finally, AMOLE is trained by jointly optimizing
two losses, i.e., structural similarity preserving loss
and expertise reconstruction loss, as follows:

L = LS2P + α · LER, (7)

where α denotes the hyperparameter for controlling
the weight of the expertise reconstruction loss.

5 Experiments

5.1 Experimental Setup
Pretraining Dataset. We pre-train AMOLE with
PubChem database (Kim et al., 2021), which is one

of the most extensive public molecular databases
available. Our pre-training dataset is compiled us-
ing the preprocessing script provided in the repos-
itory of the previous work (Liu et al., 2023a).
However, due to regular updates to the PubChem
database, our dataset varies slightly from the pre-
vious work, comprising a total of 299K unique
molecules and 336K molecule-text pairs. We pro-
vide further details on PubChem database and di-
verse datasets utilized across four distinct down-
stream tasks in Appendix C.

Implementation Details. One key benefit of treat-
ing molecules and text as distinct modalities is the
opportunity to leverage powerful pre-trained mod-
els specifically designed for each modality. Follow-
ing a previous work (Liu et al., 2023a), we employ
a GraphMVP (Liu et al., 2021) pre-trained check-
point for graph isomorphism network (GIN) model
(Xu et al., 2018) for our molecule encoder fmol.
Moreover, for our text encoder ftext, we utilize a
pre-trained SciBERT (Beltagy et al., 2019), which
has been trained on a vast corpus of textual data
from the biochemistry domains. We provide further
implementation details in Appendix A.

Baseline Methods. We evaluate AMOLE against
three single encoder models: MolT5 (Edwards
et al., 2022), BioT5 (Pei et al., 2023), and KV-
PLM (Zeng et al., 2022), all of which represent
molecules as 1D SMILES strings. While T5-based
models are not designed for learning representa-
tions of molecules and text, we assess their capabil-
ities by examining the hidden representations pro-
duced by the encoder model following a previous
work (Seidl et al., 2023). Additionally, we com-
pare AMOLE with two separate encoder models:
MoMu (Su et al., 2022) and MoleculeSTM (Liu
et al., 2023a). While MoMu depicts molecules as
2D graph structures, MoleculeSTM introduces two
models that utilize both SMILES and 2D graph rep-
resentations for molecules. For the single encoder
models, we utilize the checkpoints provided by the
authors of the original papers. However, for models
with separate encoders, we independently pre-train
models with the same pre-training data and model
architecture for fair comparison. We provide fur-
ther details on baseline methods in Appendix B.

5.2 Zero-Shot Cross-Modal Retrieval

Task Description. This task requires choosing an
appropriate description from several alternatives
for a specific molecule (Given Molecule) or re-



SMILES Graph Given Molecule @ 20 Given Text @ 20

Descr. Pharma. ATC Descr. Pharma. ATC

Single Encoder

MolT5 ✓ ✗
5.06 6.80 6.48 6.66 6.02 6.10
(0.44) (0.28) (0.25) (2.02) (0.57) (0.09)

BioT5 ✓ ✗
6.47 7.42 7.71 6.02 7.36 6.78
(0.13) (0.52) (0.16) (0.42) (0.13) (0.45)

KV-PLM ✓ ✗
42.28 36.84 30.21 45.64 37.93 33.22
(3.29) (0.53) (0.40) (2.51) (0.62) (0.40)

Separate Encoder

MoMu ✗ ✓
97.39 77.82 51.34 96.84 77.05 47.68
(0.19) (0.54) (0.37) (0.17) (0.28) (0.34)

MoleculeSTM ✓ ✗
96.70 77.28 52.36 96.22 75.01 50.01
(0.35) (0.94) (0.29) (0.29) (0.49) (0.40)

MoleculeSTM ✗ ✓
95.87 79.21 52.70 95.82 77.15 48.54
(1.87) (0.75) (0.75) (0.37) (0.74) (0.49)

AMOLE ✗ ✓
96.48 81.46 54.76 97.20 80.11 51.47
(2.94) (0.60) (0.57) (0.26) (0.42) (0.56)

Table 1: Model accuracy (%) in zero-shot cross-modal re-
trieval task. The value within the brackets indicates the vari-
ance observed across five trials.

Aug- S2P ER
Descr. Pharma. ATC

ment Loss Loss

MoleculeSTM ✗ ✗ ✗ 95.85 78.18 50.62
Ablation 1 ✓ ✗ ✗ 96.48 78.65 51.46
Ablation 2 ✓ ✓ ✗ 96.65 80.47 51.55

AMOLE ✓ ✓ ✓ 96.84 80.79 53.12

Table 2: Ablation studies results.

SMILES Graph

MolT5 BioT5 KV-PLM
Molecule

MoMu
Molecule

AMOLE
STM STM

Descr. 24.84 27.54 30.07 36.11 38.31 37.97 39.26
Pharma. 22.49 27.03 26.68 29.60 29.85 29.52 31.58

Table 3: Model accuracy (%) in zero-shot question and
answering task results.

trieving the molecule that aligns with a particular
description (Given Text). Following a previous
work (Liu et al., 2023a), our experiments are car-
ried out with varying numbers of choices, specifi-
cally 4, 10, and 20 options. We report the models’
performance on 20 options in Table 1 of the main
manuscript, while the complete set of experimen-
tal results is available in the Appendix E.1. We
also provide details on the datasets and evaluation
scheme in Appendix C.2 and D.1, respectively.

Empirical Results. In Table 1, we have the fol-
lowing observations: 1) As T5-based models (i.e.,
MolT5 and BioT5) are not intended to build joint
representation space between molecule and text,
their performance was the worst among the mod-
els. This suggests that T5-based models struggle
to learn suitable representations and necessitate
a costly fine-tuning process after the pre-training
step. 2) Additionally, despite the SMILES-based
MoleculeSTM having a significantly higher num-
ber of parameters compared to the graph-based
model, 1 SMILES and graph structure representa-
tions of molecules yield comparable results. This
underscores the efficacy of graph-based representa-
tions in capturing molecular properties. 3) Within
the graph-based models, it is evident that MoMu
generally exhibits the lowest performance across
all but one dataset. This is largely due to the
random augmentation of molecules, such as by
dropping nodes, without taking the chemical va-
lidity of the molecules into account (Lee et al.,
2022b), which makes the model perform even
worse than MoleculeSTM. On the other hand, in the
upcoming Ablation studies, we will demonstrate

1For MoleculeSTM SMILES, we use ChemBERTa, which
contains 83,450,880 parameters, and for MoleculeSTM Graph,
we use GIN, which contains 1,885,206 parameters.

that augmenting molecule-text pairs with chem-
ically valid molecules can consistently improve
MoleculeSTM performance. 4) Overall, we ob-
serve that AMOLE performs the best on five out
of six datasets, demonstrating its ability to compre-
hend and bridge two heterogeneous modalities.

Ablation Studies. Now, we empirically evaluate
the impact of each component in AMOLE by se-
quentially removing them one at a time. We assess
the effectiveness of each component by calculating
the average performance across hard cross-retrieval
tasks, including retrieving among 20 texts given a
molecule and retrieving among 20 molecules given
a text. In Table 2, we have the following observa-
tions: 1) By comparing MoleculeSTM and Abla-
tion 1, we observe that augmenting molecule-text
consistently brings performance gain, indicating
that “scale-is-everything” perspective might also be
applicable and beneficial within the MoLM com-
munity. 2) Additionally, a comparison between
Ablation 1 and Ablation 2 reveals that incorpo-
rating a S2P loss can further enhance the per-
formance. This indicates that aligning molecules
and text based on the structural similarity among
molecules can effectively mitigate issues related
to false positives. 3) Lastly, it is noted that the
ER loss uniformly enhances performance across
all datasets, with a particularly notable improve-
ment in the ATC dataset. This improvement can be
attributed to the nature of the ATC dataset, which
comprises labels for a molecule classification sys-
tem and is inherently abstract. Consequently, re-
constructing missing expertise from such abstract
descriptions proves advantageous for model per-
formance. We provide further model analysis and
statistical significance tests in Appendix E.1.

In summary, our model effectively augments



BBBP Tox21 ToxCast Sider Clintox MUV HIV Bace Avg. Rank

GraphSSL

AttrMask 68.92 (1.68) 74.86 (0.64) 64.12 (0.22) 59.56 (1.51) 86.52 (0.53) 75.68 (1.71) 75.79 (1.06) 78.71 (2.47) 5.50
ContextPred 66.77 (1.39) 73.95 (0.42) 61.77 (0.67) 54.51 (2.11) 81.45 (3.78) 72.88 (1.80) 66.51 (3.74) 74.94 (6.34) 7.63
GPT-GNN 60.74 (0.32) 72.14 (0.55) 59.55 (0.51) 54.69 (0.31) 55.87 (1.92) 71.74 (1.01) 71.20 (0.52) 73.23 (2.63) 8.63
InfoGraph 66.28 (2.12) 73.12 (0.49) 61.52 (0.56) 57.82 (1.86) 89.14 (3.30) 73.94 (3.72) 77.14 (1.32) 69.41 (0.39) 6.38
GraphMVP 69.86 (0.90) 75.37 (0.20) 65.21 (0.26) 60.12 (0.60) 87.98 (1.46) 76.61 (0.91) 76.12 (1.04) 79.30 (1.17) 3.25
Mole-BERT 65.50 (1.19) 74.05 (0.52) 64.75 (0.71) 57.09 (1.05) 92.03 (1.06) 73.95 (1.41) 76.26 (0.67) 76.93 (0.76) 5.50

MoLM w/ Graph

MoMu 69.70 (0.47) 75.16 (0.34) 64.90 (0.26) 60.21 (0.76) 86.20 (0.97) 76.63 (1.02) 77.10 (1.00) 78.78 (0.90) 3.75
MoleculeSTM 69.08 (0.54) 75.47 (0.29) 64.94 (0.51) 59.60 (0.51) 88.46 (0.99) 75.77 (1.19) 77.96 (0.63) 80.10 (1.16) 3.13

AMOLE 69.94 (0.84) 76.19 (0.27) 65.03 (0.27) 60.69 (0.70) 89.94 (0.96) 76.76 (0.96) 78.42 (0.71) 80.26 (1.80) 1.25

Table 4: ROC-AUC performance in molecular property prediction task. The value within the brackets indicates the
variance observed across five trials. Bold text denotes the top performance, while an underline highlights the second
best. ”Avg. Rank" represents the average ranking across all datasets.

molecule-text pair by incorporating chemically vi-
able molecules and employing a S2P loss. Addi-
tionally, transferring the knowledge through ER
loss consistently enhances AMOLE performance,
particularly with brief and abstract descriptions.

5.3 Zero-Shot Question and Answering

Task Description. While earlier studies have as-
sessed the retrieval capabilities of MoLM by con-
trasting the correct description with randomly cho-
sen descriptions from other molecules (Liu et al.,
2023a; Su et al., 2022), we propose a novel task,
termed the “Zero-shot Question and Answering”
task. Specifically, given a textual description of a
molecule, we instruct GPT-4 (Achiam et al., 2023)
to generate a multiple-choice question comprising
five options, all derived from the given textual de-
scription. Then, with a generated question and
its five corresponding options, we merge the ques-
tion with each option to form a single input, i.e.,
inputi = Concat(question, optioni), where
i = 1, . . . , 5. Given a molecule and these com-
bined inputs, we then select the one that includes
the correct answer from the options. In Appendix
C.3, we offer details for generating and validat-
ing questions and answer datasets, along with an
evaluation scheme for the task in Appendix D.2.

Empirical Results. In Table 3, we have the fol-
lowing observations: 1) Comparing to Table 1,
we observe that despite having far fewer options
for retrieval, most models learning representation
space (i.e., KV-PLM, MoMu, MoleculeSTM, and
AMOLE) perform much worse in the task. This is
because the model must discern based solely on the
subtle differences between the options provided,
requiring the model to have a more fine-grained
understanding of molecules than cross-modal re-

trieval. 2) On the other hand, AMOLE consistently
outperforms baseline models in this task, showcas-
ing its ability to extract more intricate information
from the slight variations in options through the
inference of related expertise. In conclusion, we
posit that AMOLE offers benefits in tasks that de-
mand a more intricate understanding of molecules,
achieved by integrating additional expertise. In Ap-
pendix E.2, we further showcase the effectiveness
of the expertise transfer module by integrating mod-
ified inputs as AMOLE into the baseline methods.

5.4 Molecular Property Prediction

Task Description. In this task, we assess the po-
tential benefits of incorporating external knowl-
edge, i.e., textual descriptions, into the molecule
encoder fmol as done in AMOLE, in enhancing
the prediction of molecular properties. We mainly
compare to recent graph self-supervised learning
(GraphSSL) approaches, i.e., AttrMask (Hu et al.,
2019), ContextPred (Hu et al., 2019), GPT-GNN
(Hu et al., 2020), InfoGraph (Sun et al., 2019),
MolCLR (Wang et al., 2022), GraphMVP (Liu
et al., 2021), and Mole-BERT (Xia et al., 2022),
and MoLMs which represent molecules with graph
structure (MoLM w/ Graph). Following previous
works (Liu et al., 2021, 2023a), we pre-train the
molecule encoder fmol using each of the proposed
strategies, and fine-tuning on MoleculeNet bench-
mark (Wu et al., 2018). We provide further details
on the dataset and evaluation scheme for the task
in Appendix C.4 and D.3, respectively.

Empirical Results. In Table 4, we have follow-
ing observations: 1) We observe that incorporating
external textual descriptions into the pre-training
phase uniformly enhances the prediction of molec-
ular properties, as evidenced by improved overall



Dataset Prompt

HIA
Human intestinal absorption (HIA)

The molecule is positive w.r.t. a property that is defined as the ability of the body
to be absorbed from the human gastrointestinal system into the bloodstream · · ·

Pgp Inhibition
P-glycoprotein Inhibition

This molecule is known to inhibit P-glycoprotein, which is an ABC transporter
protein involved in intestinal absorption, drug metabolism, and brain · · ·

DILI
Inducing liver injury

This molecule induces liver injury that is most commonly caused by Amoxicillin
clavulanate isoniazid, and nonsteroidal anti-inflammatory drugs.

VDR
Vitamin D receptor

This molecule is active w.r.t. Vitamin D receptor. The best pharmacophore
hypothesis contains one hydrogen bond acceptor (A), one hydrogen bond · · ·

Table 5: Examples of abstractive and detailed prompts for each dataset.
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Figure 3: Hit rate (%) in virtual screen-
ing task.

performance (i.e., averaged across all eight tasks).
This improvement is credited to the implicit influ-
ence of external domain knowledge, i.e., the tex-
tual descriptions of molecules, which is proved to
be beneficial for property prediction. (Liu et al.,
2023a). 2) Among the MoLM, AMOLE outper-
forms baseline methods on six out of eight tasks,
demonstrating that the knowledge can be more effi-
ciently transferred to molecular property prediction
through our strategy. In summary, our methodol-
ogy is advantageous not just for cross-modal tasks,
but also for tasks within a single modality, demon-
strating the versatility of AMOLE across a wide
range of downstream applications.

5.5 Zero-Shot Virtual Screening
Task Description. Virtual screening is a compu-
tational technique to search large libraries of com-
pounds quickly to identify those structures most
likely to have desired properties, emerging as a
principal technique in the drug discovery process
(Mehta et al., 2021). Therefore, in this paper, we
propose a novel task named “Zero-shot Virtual
Screening,” where we assess the model’s profi-
ciency in virtual screening drugs by supplying a
textual description of a desired property. Specifi-
cally, our evaluation of the model’s capability in
virtual screening is conducted by providing two dis-
tinct prompts for each property as shown in Table
5: one brief and abstract, and the other longer and
more detailed, offering comprehensive information
about the property. For each description, we iden-
tify the top 100 molecules nearest to the prompt in
the representation space and compute the hit rate
to evaluate the model’s performance. We provide
further details on each dataset and used prompts
for virtual screening in Appendix C.5 and D.4.

Empirical Results. In Figure 3, we have the fol-

lowing observations: 1) While previous studies
have shown comparable results on various down-
stream tasks, their effectiveness in virtual screen-
ing leaves room for improvement. Notably, these
models often yield results inferior to the mere ran-
dom selection of molecules (i.e., gray dashed line
in Figure 3), and their performance significantly
fluctuates based on the specific textual descrip-
tion used. 2) However, AMOLE consistently per-
forms the best in various datasets and different
types of descriptions, further demonstrating its abil-
ity to learn a more qualified joint space between
molecules and text. 3) One interesting observa-
tion is that, AMOLE demonstrates notably robust
performance compared to the baseline methods, re-
gardless of whether the description is abstract or
detailed. This can be attributed to the expertise
transfer module, which equips the model with the
ability to deduce related information even when
only an abstract level of detail is provided. In con-
clusion, AMOLE can consistently screen the quali-
fied molecules given any textual description, high-
lighting the adaptability of AMOLE for real-world
drug discovery process. We provide additional ex-
perimental results on more datasets, how the exper-
tise transfer module affects the model performance
with various levels of α in Appendix E.3.

6 Conclusion

In this paper, we propose AMOLE, addressing the
two unique challenges in MoLM, i.e., scarcity of
molecule-text paired data in both quantity and ex-
pertise. Our extensive testing on four downstream
tasks, notably including two innovative and practi-
cal tasks such as zero-shot question and answering
and zero-shot virtual screening, demonstrate the
efficacy of AMOLE in grasping the nuances of
molecules and their textual descriptions.
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A Implementation Details

In this section, we provide implementation details
of AMOLE.

Text Encoder ftext. Following previous work (Liu
et al., 2023a), we use BERT architecture (Devlin
et al., 2018) as the text encoder ftext, and adapt
the SciBERT (Beltagy et al., 2019) checkpoint to
initialize the model parameters 2. Text encoder
contains a total 109,918,464 number of parameters.

Molecule Encoder fmol. We use GIN (Xu et al.,
2018) architecture as a molecular encoder fmol,
which has been widely used as the backbone model
in recent graph self-supervised learning works (Hu
et al., 2019; Liu et al., 2021). Additionally, we
initialize the encoder parameters using the Graph-
MVP (Liu et al., 2021) checkpoints provided by
the original authors 3. Molecule encoder contains
a total 1,885,206 number of parameters.

Training Details. Our method is implemented
on Python 3.7.16, PyTorch 1.10.1, and Torch-
geometric 2.0.3. All experiments are conducted
using an 80GB NVIDIA A100 GPU. It takes 90
minutes per epoch for training, a total of 2700 min-
utes for training.

Hyperparameters. We list the key hyperparame-
ters used during training in Table 6.

Hyperparameter Value

Training epochs 30
Learning rate for text encoder ftext 1e-5
Learning rate for molecule encoder fmol 1e-5
Temperature for pseudo label τ1 0.1
Temperature for model prediction τ2 0.1
Number of similar molecules k 50
Replacement ratio for original molecule p {0.2, 0.5}
Weight of expertise reconstruction loss α {0.1, 1.0}

Table 6: Hyperparameter specifications for AMOLE pre-
training.

B Baseline Methods

In this section, we elaborate on baseline methods
compared during the experiments.

Single Encoder Models. For single encoder mod-
els, we mainly compare AMOLE with MolT5,
BioT5, and KV-PLM. While T5-based models were

2https://huggingface.co/allenai/scibert_
scivocab_uncased

3https://huggingface.co/chao1224/MoleculeSTM/
tree/main/pretrained_GraphMVP

not originally created for capturing the representa-
tions of molecules and text descriptions, we eval-
uate their performance by leveraging the hidden
representations, aligning with approaches used in
prior studies (Seidl et al., 2023).

• MolT5 (Edwards et al., 2022) stands out as
a trailblazer in the field of molecule language
models. It introduces a novel approach of pre-
training the model on an extensive dataset of
unlabeled natural language texts and molecular
strings (SMILES), using a denoising objective.
Subsequently, the model undergoes fine-tuning
for tasks such as molecule captioning and gener-
ation. For evaluation, we utilize the checkpoints
provided by the authors, which are available in
the Huggingface repository 4.

• BioT5 (Pei et al., 2023) extends MolT5 by incor-
porating a diverse array of pre-training tasks, such
as denoising molecule SELFIES, protein FASTA
sequences, general text, wrapped text, as well as
translating between bio-sequences and structured
text descriptions. We also utilize checkpoints pro-
vided by the authors, which are available in the
Huggingface repository 5.

• KV-PLM (Zeng et al., 2022) introduces a pre-
training approach for language models that incor-
porates masked language modeling on a special-
ized corpus featuring inserted SMILES strings.
We utilize the checkpoint available on the author’s
Github repository 6.

Separate Encoder Models. For separate en-
coder models, we mainly compare AMOLE with
MoleculeSTM and MoMu. To isolate the impact
of the training loss on model performance, we en-
sure that all models are trained under uniform con-
ditions, using the same training data and model
architecture. This approach guarantees that any
differences in performance can be attributed to the
distinct training losses employed by each model.

• MoleculeSTM (Liu et al., 2023a) suggests de-
veloping representations for molecules and texts
through contrastive learning, where a molecule
and its corresponding text are considered a pos-
itive pair, and all other combinations within the

4https://huggingface.co/laituan245/
molt5-large-caption2smiles

5https://huggingface.co/QizhiPei/
biot5-base-text2mol

6https://github.com/thunlp/KV-PLM?tab=
readme-ov-file
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same batch are treated as negative pairs. Addition-
ally, the authors introduce the extensive dataset,
named PubChemSTM, which includes 250K dis-
tinct molecules and 281K molecule-text pairs.
They introduce two distinct models, one utilizing
SMILES representations of molecules as model
input and the other as graph representations. For
the SMILES model, they initially use the Meg-
aMolBART (Irwin et al., 2022) checkpoint, and
for the graph model, the GraphMVP (Liu et al.,
2021) checkpoint. However, due to issues with
the CUDA environment, we utilize ChemBERTa
(Chithrananda et al., 2020) 7 as the initial check-
point for the SMILES model training and Graph-
MVP 8 for the graph model in MoleculeSTM.

• MoMu (Su et al., 2022) introduces a method of
contrasting among molecules themselves with
an additional loss function besides contrasting
molecules and texts.

Graph Self-Supervised Learning Methods. In
Section 5.4, we compare AMOLE to representative
graph self-supervised learning approaches, which
will be briefly introduced here.

• Attribute Masking (AttrMask) (Hu et al., 2019)
introduces a technique of randomly masking the
attributes of nodes or edges in the input and pre-
training a GNN to predict these masked attributes.

• Context Prediction (ContextPred) (Hu et al.,
2019) proposes to pre-train GNN to ensure nodes
situated in analogous structural contexts are rep-
resented by proximate embeddings by using sub-
graphs to predict their surrounding graph struc-
tures.

• GPT-GNN (Hu et al., 2020) introduces a method
for pre-training GNN through the generation of
attributed graphs, which is achieved by dividing
the generation process into two distinct phases:
the generation of node attributes and the forma-
tion of edges between nodes.

• InfoGraph (Sun et al., 2019) proposes to maxi-
mize the mutual information between graph-level
representation and node-level representation via
contrastive learning.

• GraphMVP (Liu et al., 2021) introduces a hy-
brid training approach that merges generative and

7https://huggingface.co/seyonec/
ChemBERTa-zinc-base-v1

8https://huggingface.co/chao1224/MoleculeSTM/
tree/main/pretrained_GraphMVP

contrastive methodologies. In the contrastive set-
ting, 2D molecular graphs and their correspond-
ing 3D structures are considered positive pairs,
while all other combinations are treated as nega-
tive pairs. On the generative side, the model aims
to reconstruct the representation of a 3D structure
from its 2D molecular graph counterpart and vice
versa, facilitating a comprehensive understanding
of molecular structures from both dimensions.

C Datasets

C.1 Pre-training

We pre-train AMOLE with the PubChem database,
which is one of the most extensive public molec-
ular databases available. PubChem database con-
sists of multiple data sources including DrugBank,
CTD, PharmGKB, and more. Please refer to the fol-
lowing URL for more details: https://pubchem.
ncbi.nlm.nih.gov/sources/.

The PubChem database we used during train-
ing comprises a total of 299K unique molecules
and 336K molecule-text pairs. During preprocess-
ing, we consolidate each expertise into a unified
description. Thus, each description for an individ-
ual molecule originates from a distinct database
(expertise). On average, molecules are associated
with 1.115 descriptions, with a maximum of 17
descriptions and a minimum of one. We provide a
histogram and boxplot on the number of descrip-
tions per molecule in Figure 4. As shown in Fig-
ure 4, it is evident that the majority of molecules
have a singular description, indicating a lack of
comprehensive expertise across various experts for
numerous molecules. Moreover, each description
in training data consists of 17.62 words on average,
with a maximum of 874 words and a minimum of
one. We also provide a histogram on the number
of words per description in Figure 5.

C.2 Zero-Shot Cross-Modal Retrieval

Following previous work (Liu et al., 2023a), we use
the datasets extracted from the Description field,
the Pharmacodynamics field, and the anatomical
therapeutic chemical (ATC) field in the DrugBank
database (Wishart et al., 2018). Each field contains
the following information:

• Description (Descr.) field provides an overview
of 1,154 drugs, including their chemical charac-
teristics, development history, and standing in
terms of regulatory approval.

https://huggingface.co/seyonec/ChemBERTa-zinc-base-v1
https://huggingface.co/seyonec/ChemBERTa-zinc-base-v1
https://huggingface.co/chao1224/MoleculeSTM/tree/main/pretrained_GraphMVP
https://huggingface.co/chao1224/MoleculeSTM/tree/main/pretrained_GraphMVP
https://pubchem.ncbi.nlm.nih.gov/sources/
https://pubchem.ncbi.nlm.nih.gov/sources/


(a) Histogram (b) Boxplot

Figure 4: (a) Histogram and (b) Boxplot on the number of descriptions
per molecule.

Figure 5: Histogram on the number of
words per description.

• Pharmacodynamics (Pharma.) field explores
the effects and mechanisms of 1,005 drugs on the
body, detailing the biochemical and physiological
interactions and responses induced by the drug
within the organism.

• ATC field represents a classification framework
that organizes 3,007 molecules based on the or-
gan or system they target and their therapeutic,
pharmacological, and chemical characteristics.

We use the datasets provided in the repository from
MoleculeSTM 9 for our evaluation purposes. It is
worth noting that, we ensure that molecules appear-
ing in the training dataset with identical canonical
SMILES are excluded to avoid data leakage. More-
over, for the ATC dataset, exclusion criteria also
consider high similarity between textual descrip-
tions in addition to identical canonical SMILES.

C.3 Zero-Shot Question and Answering
We generate questions based on the textual descrip-
tions used for the cross-modal retrieval task in Sec-
tion 5.2. Please note that we restrict our question
generation to descriptions and pharmacodynamics
datasets since the ATC dataset consists of brief
labels for molecules.
Question and Answer Generation. In Section 5.3,
we assess the MoLM’s capacity to discern the cor-
rect answer from options with minor differences,
aiming to evaluate a more nuanced understanding
of molecules and their textual descriptions. To
achieve this, we employ GPT-4 to craft a multiple-
choice question with five options, each based on
the textual descriptions of molecules, by provid-
ing specific prompts to guide its generation. We

9https://huggingface.co/datasets/chao1224/
MoleculeSTM/tree/main/DrugBank_data/raw

provide the precise prompts used for generating
questions and answers (QAs) in Figure 7 (a). Con-
sequently, we acquire a sum of 8,215 QA pairs for
the description dataset and 7,300 QA pairs for the
pharmacodynamics dataset.

Question and Answer Validation. While GPT-4
proficiently generates questions and answers based
on the textual descriptions of molecules, there are
cases where it produces questions with wrong an-
swers. Consequently, we refine the generated ques-
tions and answers by assessing if GPT-4 accurately
identifies the same answers as GPT-4 provided us-
ing the original textual descriptions and the gener-
ated questions. As an example, given the context
of the original description and the GPT-4 gener-
ated questions, there are cases where the answers
generated by GPT-4 and the answers validated by
GPT-4 are different, as shown in Figure 8. Since
GPT-4 fail to produce consistent answers based on
the original context, we consider these instances
as unsuccessful question and answer generation,
excluding them from our analysis. We provide the
specific prompts for validating QAs in Figure 7 (b).
After filtering out invalid QA pairs, we obtain a
sum of 7,986 QA pairs for the description dataset
and 7,184 QA pairs for the pharmacodynamics
dataset.

C.4 Molecular Property Prediction

For the molecular property prediction task, we use
the MoleculeNet benchmark (Wu et al., 2018) for
evaluation, which is commonly used for evaluat-
ing the machine learning methods for molecular
property prediction (Liu et al., 2021). The Molecu-
leNet benchmark encompasses a diverse array of
datasets, each characterized by distinct properties

https://huggingface.co/datasets/chao1224/MoleculeSTM/tree/main/DrugBank_data/raw
https://huggingface.co/datasets/chao1224/MoleculeSTM/tree/main/DrugBank_data/raw


GPT-4 API
This molecule is a 
member of naphthalenes.
+ PROMPT (Figure 5 (a))

{‘question’: ‘To which chemical family does the molecule belong?,
‘answer’: The molecule belongs to the naphthalenes family.
‘options’: [‘Alkanes’, ‘Naphthalenes’, ‘Phenols’, ‘Esters’, ‘Aldehydes’],
’correct_option’: 1}

‘Description’: ‘This molecule is a member of naphthalenes.’
‘question’: ‘To which chemical family does the molecule belong?’
‘options’: [‘Alkanes’, ‘Naphthalenes’, ‘Phenols’, ‘Esters’, ‘Aldehydes’]
+ PROMPT (Figure 5 (b))

GPT-4 API

If Same

If Different
Answer

QA Dataset

Discard

Question and Answer Generation

Question and Answer Validation

Figure 6: Overall pipeline for generating and validating questions and answering datasets.

Generate a set of chemically relevant questions from the paragraph. Do not include the name of the molecule in the question. Refer to it as 'the molecule'. The questions should have two k
inds of answers. One is a short descriptive sentence answering the question. The second is a set of five options, of which one is correct. Make sure that the questions are chemically relevan
t, and of good quality, and chemically/biologically relevant content in the paragraph are covered in the questions. The answers should also be discriminative and should contain chemically 
relevant options. Question/answer should focus on a specific characteristic. Only one of the options should be correct. Questions and answers should be sourced from the paragraph only. 

The output should be JSON formatted and should include only the QA and nothing else. Include as many questions as possible. The JSON should have the following format:

{ "questions": [ 
{ "question": "Description of the question", 
"answer": "Description of the answer", 
"options": [ "optionA", "optionB", "optionC", "optionD", "optionE" ], 
"correct_option": 1 }, 
{ "question": "Description of the question", 
"answer": "Description of the answer", 
"options": [ "optionA", "optionB", "optionC", "optionD", "optionE" ], 
"correct_option": 2 } 
] 

}

Strictly adhere to the format and DO NOT include any additional text with the response.

You are given a description about molecule and a list of questions following with a list options. For each question, provide the index of the correct option. If the answer cannot be inferred f
rom the description or the correct option is not available, output 0 for that question. The output be a list of integers and strictly do not include any other text before or after the answer. Str
ictly adhere to the output format. 

Example Output: [answer_idx_for_q1, answer_idx_for_q2, ....]. 

(a) Question and Answer Generation

(b) Question and Answer Validation

Figure 7: Prompts for (a) generating and (b) validating question and answer from textual description of molecule.

Case study on Failures in Question and Answer Generation

Original Description
C18 steroid with androgenic and anabolic properties. It is generally prepared from alkyl et
hers of estradiol to resemble testosterone but less one carbon at the 19 position. It is a sc
hedule III drug in the U.S.

GPT-4 Generated Answer (Figure 5 (a))
It is a direct isomer of testosterone

GPT-4 Validated Answer (Figure 5 (b))
The molecule resembles testosterone but less one carbon at the 19 position

GPT-4 Generated Question (Figure 5 (a))
How is the molecule structurally related to testosterone?

Different Discard

Figure 8: Failure cases in generating questions and answers.

To which chemical family does the molecule belong? Alkanes
To which chemical family does the molecule belong? Naphtalenes
To which chemical family does the molecule belong? Phenols
To which chemical family does the molecule belong? Esters
To which chemical family does the molecule belong? Aldehydes

MoLM

Question and Answer Task
Given molecule, Retrieve the input that contains the correct option 

Figure 9: Evaluation scheme for question and answering task.



as follows:

• The blood-brain barrier penetration (BBBP)
dataset comprises binary labels for 2,039 com-
pounds regarding their barrier permeability, ad-
dressing a critical challenge in the development
of drugs aimed at the central nervous system.

• The toxicology in the 21st Century (Tox21)
dataset provides qualitative toxicity measure-
ments for 7,831 compounds across 12 distinct
targets.

• The ToxCast dataset offers toxicological data
collected from more than 600 experiments on
8,577 compounds.

• The side effect resource (Sider) dataset catego-
rizes the side effects of 1,427 approved drugs into
27 different organ system classes.

• The Clintox dataset comprises two classification
tasks for 1,477 drug compounds, focusing on 1)
toxicity during clinical trials and 2) FDA approval
status.

• The MUV dataset features 17 demanding tasks
for 93,087 compounds, curated from the Pub-
Chem BioAssay database.

• The HIV dataset, created by the Drug Therapeu-
tics Program (DTP) AIDS Antiviral Screen, as-
sesses the capacity of more than 41,127 com-
pounds to block the replication of HIV.

• The BACE dataset offers qualitative binding out-
comes for a collection of inhibitors targeting hu-
man β-secretase 1, encompassing 1,513 com-
pounds.

C.5 Zero-Shot Virtual Screening

For the zero-shot virtual screening task, we uti-
lize datasets from the Therapeutics Data Commons
(TDC) (Huang et al., 2021)10 and LIT-PCBA (Tran-
Nguyen et al., 2020)11, containing the drugs that
exhibit a range of desirable properties. Among the
various datasets, we utilize the following datasets:

• The human intestinal absorption (HIA) dataset
comprises 578 drugs and their capacity for ab-
sorption from the human gastrointestinal tract
into the bloodstream.

• The P-glycoprotein inhibition (Pgp Inhibition)
dataset includes 1,212 drugs, detailing their Pgp
inhibitory activities, which can significantly af-
fect a drug’s bioavailability and safety profile.
10https://tdcommons.ai/
11https://drugdesign.unistra.fr/LIT-PCBA/

• The drug-induced liver injury (DILI) dataset in-
cludes 475 drugs, annotated with information re-
garding their potential to induce liver damage.

• The Vitamin D Receptor (VDR) dataset initially
contains 263,303 drugs, of which 655 are active.
Considering the significant imbalance between
active and inactive drugs, we sample a subset
of 10,000 drugs from the inactive category for
analysis, i.e., a total of 10,655 drugs.

In addition to the previously mentioned datasets,
we explore the virtual screening capabilities of the
methods detailed in Appendix E.3 on the following
datasets:

• The oral bioavailability (Bioavailability) dataset
encompasses 640 drugs, each labeled to indicate
the extent to which the drug’s active ingredient
is absorbed into the systemic circulation and be-
comes accessible at the intended site of action.

• The blood-brain barrier (BBB) serves as a protec-
tive shield, preventing most foreign substances
from entering. This dataset encompasses 1,975
drugs, each annotated with their ability to pene-
trate the BBB, posing a significant challenge in
developing drugs for the central nervous system.

• The human ether-a-go-go related gene (hERG)
plays a vital role in regulating the heart’s rhythm.
This dataset includes 648 drugs, each evaluated
for their potential to block hERG, a condition that
may result in significant adverse effects.

• The HIV dataset contains 41,127 drugs and the
label about its ability to inhibit HIV replication.

• The SARS-CoV-2 dataset contains 1,480 drugs
and the label about their activity against
SARSCoV2.

D Experimental Setups

D.1 Zero-Shot Cross-Modal Retrieval

In this section, we provide further details on ex-
perimental setups for the zero-shot cross-modal
retrieval task. Following previous work (Liu et al.,
2023a), we evaluate the task performance in two
distinctive settings 1) given molecule to retrieve
the textual description, and 2) given texture de-
scription to retrieve the molecule. In each scenario,
we conducted experiments with a range of options,
specifically 4, 10, and 20 choices. Within these
options, one is the matching counterpart, while the
others are randomly selected from the dataset. Fol-
lowing this, the model performance is determined

https://tdcommons.ai/
https://drugdesign.unistra.fr/LIT-PCBA/


by its capacity to pinpoint the correct counterpart
from the options provided, such as correctly match-
ing the description to the given molecule or vice
versa. For the evaluation, we conducted five sepa-
rate experiments, each featuring a distinct random
selection of options, and we present both the mean
and standard deviation of these experiments.

D.2 Zero-Shot Question and Answering
In this section, we provide further details on the
zero-shot questions and answering task. We pro-
vide an overall pipeline for generating a dataset
for the question and answering tasks in Figure 6.
After the creation of a set of validated questions
and answers, we design the question and answer-
ing task as a retrieval task. Specifically, for a given
question and its five options, we concatenate the
question with each option to generate a singular
input, i.e., inputi = Concat(question, optioni),
for i = 1, . . . , 5. The MoLM then determines the
correct answer by selecting from these inputs the
one that correctly matches the question as shown
in Figure 9. The only difference between the op-
tions comes from optioni, makes the task much
harder compared to the cross-modal retrieval task
in Section 5.2.

D.3 Molecular Property Prediction
In this section, we provide details on experimen-
tal setups for the molecular property prediction
task. In this task, we evaluate how the pre-training
methods affect the prediction of various molecu-
lar properties. To achieve this, we initially divide
the dataset according to scaffold information us-
ing an 8:1:1 ratio for the training, validation, and
test sets, respectively. That is, the molecules in the
training, validation, and test sets possess distinct
scaffolds. Subsequently, we fine-tune the molec-
ular encoder fmol using the training data across
100 epochs. Following previous work (Liu et al.,
2023a), the model’s performance is then evaluated
on the test set where the hyperparameters achieve
optimal performance on the validation set. We ran
five individual experiments and report the average
and standard deviation of the results.

D.4 Zero-Shot Virtual Screening
In this section, we provide further details on the
zero-shot virtual screening task. In this task, we
assess the model’s capability to conduct virtual
screening for drugs with specific properties de-
scribed in a language model prompt. Given a
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Figure 10: Model performance depending on the size of
training data.

dataset with binary labels, we evaluate the model
performance by identifying and counting the num-
ber of molecules tagged with a positive label among
those that have been screened. We start by encod-
ing the prompt into its representation, followed
by identifying the top 100 molecules whose repre-
sentations are nearest to that of the prompt in the
representation space. For instance, in the case of
the HIA dataset, we initially identify the top 100
molecules that are closest to the prompt ”Human
intestinal absorption (HIA)" within the represen-
tation space among a total of 578 molecules and
count the molecules with positive labels. Addi-
tionally, for every dataset, we employ two types of
prompts with distinct characteristics, i.e., one with
short and abstract descriptions and one with long
and detailed descriptions. In Tab. 7, we provide the
specific prompts used for each dataset.

E Additional Experimental Results

E.1 Zero-Shot Cross-Modal Retrieval

Complete Set of Experimental Results. In this
section, we provide a complete set of experimental
results for the zero-shot cross-modal retrieval task.
In Table 8, we provide empirical results on the (a)
description, (b) pharmacodynamics, and (c) ATC
dataset. We observe that as tasks get harder, i.e.,
increase in the number of options from 4 to 20, the
performance disparity between baseline methods
and AMOLE broadens.

Statistical Significance Test. To demonstrate the
statistical significance of the improvement in Table
1, we performed a paired t-test in the representa-
tion learning context for each dataset. Since we
evaluate models on five independent trials, we com-
pared the mean performances of MoleculeSTM,
ablations, and AMOLE across each trial. The p-
values presented in the table are the outcomes of
these paired t-tests, based on the following hypothe-
sis: H0 : µAMOLE = µBaseline and H1 : µAMOLE ≥



Dataset Prompt

HIA
Human intestinal absorption (HIA)

The molecule is positive w.r.t. a property that is defined as ’the ability of the body to be absorbed
from the human gastrointestinal system into the bloodstream of the human body’

Pgp Inhibition
P-glycoprotein Inhibition

This molecule is known to inhibit P-glycoprotein, which is an ABC transporter protein involved in intestinal absorption,
drug metabolism, and brain penetration, and its inhibition can seriously alter a drug’s bioavailability and safety

DILI
Inducing liver injury

This molecule induces liver injury that is most commonly caused by Amoxicillin
clavulanate isoniazid, and nonsteroidal anti-inflammatory drugs.

VDR
Vitamin D receptor

This molecule is active w.r.t. Vitamin D receptor. The best pharmacophore hypothesis
contains one hydrogen bond acceptor (A), one hydrogen bond donor (D) and two hydrophobic regions (H).

Bioavailability
Oral Bioavailability

The molecule is positive w.r.t. a property that is defined as ‘the rate and extent to which the
active ingredient or active moiety is absorbed from a drug product and becomes available at the site of action’

BBB
Blood-Brain Barrier penetration

The molecule is able to penetrate the Blood-Brain Barrier, which is the protection layer that blocks most foreign drugs
as a membrane separating circulating blood and brain extracellular fluid, to deliver to the site of action.

hERG
hERG Blocker

This molecule blocks the hERG, which is crucial for the coordination of the heart’s beating.

HIV
Active against HIV virus

This molecule is active against HIV virus. These drugs typically possess one or more of the following properties:
Reverse Transcriptase Inhibitors, Protease Inhibitors, Integrase Inhibitors, Fusion Inhibitors, CCR5 Antagonists, Post-Attachment Inhibitors.

SARS-CoV-2
Active against SARS-CoV-2 virus

This molecule is active against SARS-CoV-2 virus. These drugs typically possess one or more of the following properties:
Viral Entry Inhibitors, RNA Polymerase Inhibitors, Protease Inhibitors, Immune Modulators, Interferon Inducers, Antibody-based Therapies.

Table 7: The abstractive and detailed prompts used for each dataset during the virtual screening task.

(a) Description (b) Pharamacodynamics (c) ATC

SMILES Graph Given Molecule Given Text Given Molecule Given Text Given Molecule Given Text

4 10 20 4 10 20 4 10 20 4 10 20 4 10 20 4 10 20

Single Encoder

MolT5 ✓ ✗
25.39 10.08 5.06 27.94 11.81 6.66 25.88 11.70 6.80 25.70 11.29 6.02 25.80 11.56 6.48 25.22 10.84 6.10
(2.93) (0.30) (0.13) (4.15) (1.98) (0.42) (0.55) (0.18) (0.28) (0.90) (0.70) (0.57) (0.45) (0.21) (0.25) (0.24) (0.11) (0.09)

BioT5 ✓ ✗
27.42 11.48 6.47 27.95 12.73 6.02 27.43 12.79 7.42 27.74 12.65 7.36 29.26 13.05 7.71 28.01 12.08 6.78
(2.34) (0.30) (0.13) (4.15) (1.98) (0.42) (0.52) (0.37) (0.52) (0.80) (0.92) (0.13) (0.57) (0.31) (0.16) (0.53) (0.42) (0.45)

KV-PLM ✓ ✗
72.42 53.73 42.28 73.77 56.47 45.64 68.61 47.85 36.84 67.86 49.46 37.93 59.13 40.28 30.21 60.91 43.07 33.22
(2.76) (2.71) (3.29) (2.51) (2.60) (2.51) (1.06) (0.64) (0.53) (0.98) (0.44) (0.62) (0.42) (0.40) (0.40) (0.40) (0.70) (0.40)

Separate Encoder

MoMu ✗ ✓
99.22 98.48 97.39 99.07 98.04 96.84 89.50 82.98 77.82 88.59 82.06 77.05 73.27 59.99 51.34 69.71 56.13 47.68
(0.08) (0.22) (0.19) (0.58) (0.21) (0.17) (0.69) (0.56) (0.54) (0.60) (0.46) (0.28) (0.43) (0.48) (0.37) (0.46) (0.26) (0.34)

MoleculeSTM ✓ ✗
99.17 98.08 96.70 98.95 97.61 96.22 90.38 83.27 77.28 88.98 81.69 75.01 73.90 60.75 52.36 71.86 58.56 50.01
(0.10) (0.18) (0.35) (0.16) (0.25) (0.29) (0.66) (0.86) (0.94) (0.41) (0.92) (0.49) (0.49) (0.41) (0.75) (0.10) (0.54) (0.49)

MoleculeSTM ✗ ✓
99.14 97.06 95.87 98.92 97.29 95.82 91.11 84.84 79.21 90.01 83.26 77.15 75.39 61.83 52.70 71.98 57.79 48.54
(0.13) (1.85) (1.87) (0.09) (0.34) (0.37) (0.67) (0.61) (0.75) (0.56) (0.74) (0.74) (0.49) (0.41) (0.75) (0.10) (0.54) (0.49)

AMOLE ✗ ✓
99.30 97.52 96.48 99.16 98.13 97.20 91.93 85.84 81.46 90.67 85.24 80.11 75.85 63.03 54.76 73.52 60.48 51.47
(0.04) (1.89) (2.94) (0.13) (0.32) (0.26) (0.28) (0.54) (0.60) (0.52) (0.53) (0.42) (0.34) (0.57) (0.57) (0.22) (0.45) (0.56)

Table 8: Zero-shot cross-retrieval task results on (a) description, (b) pharmacodynamics, and (c) ATC dataset.



Aug- S2P ER
Descr. Pharma. ATC

ment Loss Loss

Ablation 2 ✓ ✓ ✗ 96.65 80.47 51.55
Ablation 3 ✓ ✗ ✓ 96.02 78.83 51.85
Ablation 4 ✗ ✓ ✓ 96.69 79.78 50.35

AMOLE ✓ ✓ ✓ 96.84 80.79 53.12

Table 9: Additional ablation studies.

µBaseline. In Table 11, we observe that AMOLE’s
improvement over previous works is statistically
significance at a p-value of 0.05.

Moreover, we also conduct a statistical signif-
icance test in ablation studies results in Table 2
to demonstrate the effectiveness of each compo-
nent in our model. The p-values detailed in the
table are derived from these paired t-tests, underpin-
ning the hypothesis: H0 : µAMOLE = µAblation and
H1 : µAMOLE ≥ µAblation. From Table 12, we ob-
serve that each component of AMOLE statistically
significantly contributes to the model performance
in the most cases.

Model Performance on Dataset Scale. In Figure
10, the impact of training data volume on model
effectiveness is depicted. It’s evident that enlarging
the training dataset size invariably enhances model
efficacy, underscoring the significance of data scale
not just in the realm of VLM but equally in MoLM.
We also note that AMOLE uniformly surpasses
MoleculeSTM across all data volumes, showcasing
AMOLE’s superior data efficiency.

Additional Ablation Studies. In Table 9, we pro-
vide further ablation studies to evaluate the effec-
tiveness of each component in AMOLE. As done
in Section 5.2, we assess the effectiveness of each
component by calculating the average performance
across hard cross-retrieval tasks, i.e., retrieving
among 20 texts given a molecule and retrieving
among 20 molecules given a text. The significance
of individual components is observed to change
across datasets due to the distinct characteristics of
the descriptions they contain. Nonetheless, when
all elements are integrated, namely in AMOLE, it
uniformly surpasses a range of simplified models
in performance. This underlines AMOLE’s capa-
bility to effectively amalgamate different modules
for enhanced outcomes.

Sensitivity analysis on k. In Figure 11, we illus-
trate how model performance fluctuates depending
on k, the hyperparameter that specifies the num-
ber of molecules sharing the same description. We
note that as k is reduced (k = 10), the count of

Figure 11: Sensitivity analysis on k.
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Figure 12: Sensitivity analysis on α.

molecule-text pairs diminishes, leading to a slight
decline in model performance. Conversely, as k
increases (k = 100), the issue of false positives
intensifies, suggesting that an optimal level of k
needs to be determined during training. Despite
these variations, we observe that AMOLE consis-
tently surpasses MoleculeSTM across all values of
k, showcasing the robustness of AMOLE against
changes in the hyperparameter k.

E.2 Zero-Shot Question and Answering
In this section, we explore how changes in the in-
put format impact the performance of graph-based
baseline models on Zero-Shot question-and-answer
tasks. Specifically, during training, we randomly
replace the input textual description ti (Original
Input) with t̃i = ti [SEP] ti′ (Modified Input),
which is incorporated for the ER loss in AMOLE.
According to Table 13, we see a decline in the
performance of baseline models when the input
textual description is altered in this manner. This
suggests that simply concatenating textual descrip-
tions into t̃i does not aid the Zero-Shot Question
and Answering task, despite their similar input for-
mat. It underscores the need for a more advanced
approach, such as expertise reconstruction module
in AMOLE, to effectively handle QA tasks.

E.3 Zero-Shot Virtual Screening
Additional Experimental Results. In this section,
we present supplementary experimental outcomes
for the zero-shot virtual screening task across mul-
tiple datasets. As shown in Table 10, it is evident
that AMOLE uniformly surpasses the baseline ap-



Dataset Prompt Model
Random

MoMu MoleculeSTM AMOLE

HIA
Human intestinal absorption (HIA) 72.00 70.00 92.00

86.50
The molecule is positive w.r.t. a property that is defined as the ability of the body · · · 86.00 76.00 92.00

(+19.44%) (+8.57%) (-)

Pgp Inhibition
P-glycoprotein Inhibition 76.00 83.00 97.00

53.36
This molecule is known to inhibit P-glycoprotein, which is an ABC transporter · · · 85.00 89.00 96.00

(+11.84%) (+7.22%) (-1.03%)

DILI
Inducing liver injury 34.00 49.00 56.00

49.68
This molecule induces liver injury that is most commonly caused by Amoxicillin · · · 61.00 67.00 76.00

(+79.41%) (+36.73%) (+35.71%)

VDR
Vitamin D receptor 10.00 10.00 10.00

6.14
This molecule is active w.r.t. Vitamin D receptor. The best pharmacophore · · · 8.00 5.00 11.00

(-20.00%) (-50.00%) (+10.00%)

Bioavailability
Oral Bioavailability 82.00 93.00 88.00

76.88
The molecule is positive w.r.t. a property that is defined as ’the rate and extent · · · 81.00 66.00 82.00

(-1.22%) (-29.03%) (-6.82%)

BBB
Blood-Brain Barrier penetration 94.00 90.00 96.00

76.40
The molecule is able to penetrate the Blood-Brain Barrier, which is the protection layer · · · 85.00 86.00 88.00

(-9.57%) (-4.44%) (-8.33%)

hERG
hERG Blocker 80.00 82.00 87.00

68.86
This molecule blocks the hERG, which is crucial for the coordination of the heart’s beating.

68.00 71.00 78.00
(-15%) (-13.41%) (-10.33%)

HIV
Active against HIV virus 2.00 1.00 3.00

3.51
This molecule is active against HIV virus. These drugs typically possess · · · 1.00 3.00 4.00

(-50%) (+200.00%) (+33.33%)

SARS-Cov-2
Active against SARS-CoV-2 virus 5.00 5.00 6.00

5.93
This molecule is active against SARS-CoV-2 virus. These drugs typically possess · · · 4.00 5.00 7.00

(-20%) (-) (+16.67%)

Table 10: Additional zero-shot virtual screening task results. The numbers in the bracket indicate the performance
increase with detailed (long) prompts compared to abstract (short) prompts.

Given Molecule @ 20 Given Text @ 20

Descr. Pharma. ATC Descr. Pharma. ATC

MoMu 7.8e-01 5.2e-04 6.5e-06 1.6e-03 3.9e-05 5.2e-05
MoleculeSTM (SMILES) 5.7e-01 5.9e-04 4.3e-04 5.1e-04 4.8e-05 3.4e-03
MoleculeSTM (Graph) 4.3e-03 2.4e-03 3.1e-04 1.6e-03 2.2e-03 1.4e-05

Table 11: Statistical significance test results. Each num-
ber indicates the p-value for the test. Bold indicates the
p-values below 0.05.

Given Molecule @ 20 Given Text @ 20

Descr. Pharma. ATC Descr. Pharma. ATC

MoleculeSTM 4.3e-03 2.4e-03 3.1e-04 1.6e-03 2.2e-03 1.4e-05
Ablation1 3.6e-01 4.7e-03 4.7e-03 9.1e-04 1.3e-02 1.9e-02
Ablation2 7.3e-01 6.6e-03 3.2e-03 2.9e-02 6.7e-01 3.9e-03

Table 12: Statistical significance test on ablation studies
results. Each number indicates the p-value for the test.
Bold indicates the p-values below 0.05.

proaches across a range of datasets. Additionally,
it is often noted that the model’s efficacy declines
when provided with long and detailed descriptions
as opposed to short and abstract ones. This sug-
gests that detailed prompts are not invariably bene-
ficial, underscoring the significance of the model’s
resilience across different types of descriptions.

Sensitivity Analysis on α. We further investigate
the impact of the expertise reconstruction (ER)

Original Input Modified Input
AMOLE

MoMu
Molecule

MoMu
Molecule

STM STM

Descr. 36.62 38.21 36.05 37.09 38.61
Pharma. 30.73 30.72 29.57 30.58 31.44

Table 13: Model Performance comparison when the
baseline models trained with modified input.

loss weighting factor, α, on virtual screening per-
formance. It is found that while the model’s perfor-
mance remains largely consistent when provided
with a detailed and lengthy prompt, its performance
on abstract and brief prompts significantly varies
with the choice of α. Specifically, the model’s effec-
tiveness on abstract and concise prompts improves
as α increases. This suggests that the expertise
transfer module effectively allows the model to in-
fer related information, thereby enhancing stability
and performance, even when faced with brief and
abstract prompts.

E.4 Effect of ER Loss during training
As illustrated by our data analysis in Appendix C.1,
molecules described by more than two texts are
rare, and this scarcity could reduce the effective-



Figure 13: Training curve in AMOLE.

ness of the ER Loss. To analyze the effect of ER
loss, we have visualized the change of the S2P loss
and ER loss during training with various levels of
α. Figure 13 demonstrates a significant decrease in
ER loss as α increases, signifying that the module
is capable of efficiently performing expertise recon-
struction. However, given our main objective is to
align molecule and text representations effectively,
it is appropriate for the S2P Loss to play a more
substantial role than the ER loss. To sum up, we
contend that our model adeptly learns the represen-
tations of molecules and texts based on structural
similarity and enriches the language model through
the reconstruction of expertise.

F License for the Datasets

Dataset License URL

PubChem https://www.nlm.nih.gov/web_policies.html
MoleculeNet https://opensource.org/license/mit/

DrugBank https://creativecommons.org/licenses/by-nc/4.0/legalcode.en
TDC https://opensource.org/license/mit/

Table 14: Licenses for the datasets used in the paper

In Table 14, we detail the sources and data rights
for all data components used in this paper. All
data sources underwent thorough examination to
confirm that their licensing agreements allow for
the type of research we conducted and its further
applications.

Throughout the paper, we believe we have prop-
erly attributed the creators of the scientific artifacts
cited. We affirm that all data utilized in this study
adhere to the conditions of the CC BY 4.0 License.
We accept the obligation to promote transparent
and equitable data usage, acknowledging the orig-
inal creators’ efforts. Furthermore, we guarantee
that our dataset is free of personally identifiable or
privacy-sensitive information.

https://www.nlm.nih.gov/web_policies.html
https://opensource.org/license/mit/
https://creativecommons.org/licenses/by-nc/4.0/legalcode.en
https://opensource.org/license/mit/

