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Abstract

Shape analysis provides principled means for understanding anatomical structures from
medical images. The underlying notions of shape spaces, however, come with strict assump-
tions prohibiting the analysis of incomplete and/or topologically varying shapes. This work
aims to alleviate these limitations by adapting the concept of soft correspondences. In
particular, we present a graph-based learning approach for morphometric classification of
disease states that is based on a generalized notion of shape correspondences in terms of
functional maps. We demonstrate the performance of the derived classifier on the open-
access ADNI database for differentiating normal controls and subjects with Alzheimer’s
disease. Notably, our experiment shows that our approach can improve over state-of-the-
art from geometric deep learning.
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1. Introduction

Shapes of anatomies and variations thereof pose a key source for the understanding of med-
ical phenomena including physiological processes like growth as well as pathological condi-
tions that are associated to tissue malformations. Concerning the latter, shape-informed
reasoning plays a significant role in medical decision making including therapy planning,
personalized assessment and stratification for clinical interventions. From a mathematical
point of view, shapes are an instance of geometric data that require dedicated computa-
tional treatment. In particular, there is increasing evidence that data-analytical tools that
account for the inherent geometric structure yield improved consistency and performance.
Consequently, there is a strong impetus to generalize established approaches that have been
derived for Euclidean data to geometric ones. This concerns deep learning and statistics as
well as data processing and visualization alike.

Central to morphological analysis is the comparison of related forms. This requires a
coordinization of shapes leading to a notion of shape space in which each point represents
a specific shape (Ambellan et al., 2019). An established approach is to consider transfor-
mations connecting shapes: An object class under study can be represented by a common
deformable template that accounts for the typicality of the objects’ structure. The shape
variability is then represented by deformations that are applied to the template. In this
line of work, approaches based on Riemannian methods have shown promising results for

© 2022 J. Mayer, D. Baum, F. Ambellan & C. von Tycowicz.



Mayer Baum Ambellan von Tycowicz

tasks such as discovery of biomarkers (Tack et al., 2021), risk assessment of clinical out-
comes (Ambellan et al., 2021a), and longitudinal analysis (Gerig et al., 2016; Nava-Yazdani
et al., 2022).

Despite these advances, frameworks for geometric morphometry still rely on point-
to-point correspondences between shapes: Either explicitly in form of homologous land-
marks (von Tycowicz et al., 2018) or implicitly in terms of diffeomorphisms of the ambient
space (Bauer et al., 2014). Point-to-point correspondences have fundamental limitations
that impede the analysis of shape collections with incomplete or topologically varying ob-
jects. This is a major problem for the analysis of empirically given sets of shapes (see Fig. 2
for an illustration), since they often contain topological variations (“real” ones as well as
those caused by acquisition artifacts or reconstruction errors) or are incomplete (e.g., due
to spatial limitations in tomographic reconstructions or due to destruction and decay).

Consequently there is a high interest in developing novel concepts that pose less strict
assumptions. While recent work on non-rigid registration allows for partial matching (An-
tonsanti et al., 2021) and topology changes via user-specified discontinuities (Nielsen et al.,
2019), extensions to group-wise analysis are still at an early stage of research. A promising,
alternative approach (Ovsjanikov et al., 2012) that we evaluate in this work is to gener-
alize the notion of correspondence between shapes in terms of maps between real-valued
functions on the surfaces instead of points thereon. Remarkably, such functional maps fa-
cilitate simple and efficient shape matching (Melzi et al., 2019) as well as shape difference
operators that characterize distortion between shapes (Corman et al., 2017). Furthermore,
recent advances for improving the cycle consistency in functional map networks (Wang
et al., 2013; Huang et al., 2019) via latent representations give rise to novel notions of
soft-correspondence-based shape spaces, the full potential of which remains to be explored.

Another alternative approach to explicit shape spaces is to infer the underlying structure
entirely from the data at hand. In this context, deep learning has lead to qualitative
breakthroughs for various tasks. Still, as shapes are described by curved surfaces, they are
geometric objects in their own right and require dedicated neural network units. The study
of such units falls into the category of geometric deep learning and we refer to (Bronstein
et al., 2017) for an overview.

Aside from the domain of application, learning methods can be categorized into inductive
and transductive approaches. Whereas inductive learning tries to infer a general model from
labeled examples in order to predict labels of unseen ones, transductive approaches infer
labels simultaneously on training and test data and, thus, can exploit patterns in both during
the learning phase. Conceptually, transductive learning faces a simpler problem as it avoids
solving a more general one as an intermediate step. Recently, graph convolutional networks
have been shown to provide effective transductive learning schemes for disease classification
from imaging (Parisot et al., 2018) as well as shape-based features (von Tycowicz, 2020).

In this work, we derive a novel, shape-based classification approach that is based on a
flexible, yet descriptive notion of shape space and, on the other hand, casts the grading
task as semi-supervised node classification problem on a shape-valued graph. In particular,
our approach is tolerant to topological variations and incompleteness in shape collections.
The proposed framework draws upon geometric deep learning to incorporate the geometric
character of shapes as well as to address the irregular structure in sampling patterns found
in collections of clinical observations. We evaluate the performance of our model w.r.t.
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shape-based classification of hippocampus malformations due to Alzheimer’s disease. In
particular, we achieve state-of-the-art accuracies outperforming recent approaches based on
functional maps (Huang et al., 2019) as well as geometric deep learning (han).

2. Method

2.1. Functional correspondence

A functional correspondence between two shapes M and N is given by a map which re-
lates real-valued functions on one shape to real-valued functions on the other shape and is
therefore called functional map. Let UM (resp. UN ) be a finite subspace of the real-valued
functions on M (resp. N) that is stable under small shape deformations and contains good
approximations of smooth functions. Given a basis for UM , UN , the functional map from M
to N can approximately be encoded by a matrix C ∈ Rn×m s.t. b ≈ Ca where a, b represent
two corresponding functions as coordinates w.r.t. their respective basis.
We compute C by using ZoomOut refinement as proposed in (Melzi et al., 2019). As
initialization, we take a 10 × 10 matrix that accounts for correspondences of approximate
landmarks obtained via non-rigid registration.

Shape differences. The area-based shape difference V and the conformal-based shape
difference R defined by Rustamov et al. (2013) are operators respectively characterizing
area and conformal distortion from M to N by altering real-valued functions on M which
are supported in a region of the distortion. In the case of S ∈ {M,N} being discrete, let
HS,V be the matrix encoding the inner product (f1, f2) 7→

∫
f1f2 dµ and HS,R the matrix

encoding the inner product (f1, f2) 7→
∫
(∇f1)

T∇f2 dµ where f1, f2 ∈ US and µ is some

surface area measure. Then V is encoded by DV := H†
M,V C

THN,V C and R is encoded by

DR := H†
M,RC

THN,RC, where † indicates the pseudo-inverse.

The two shape difference operators V and R depend only on the metric (i.e. first funda-
mental form I) and, thus, are determined exclusively in terms of distances on N . A classical
result of surface theory (do Carmo, 1976, p. 236), however, shows that a full characteriza-
tion of the local geometry of a surface also requires knowlege of the differential Dν of the

Figure 1: Comparison of distance isolines. The standard metric (left) does not take extrinsic
geometry into account, in contrast to the isophotic metric (right, with α = 8).
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surface normals ν. Therefore, we propose a novel extension of the original differences in
order to also capture variation in extrinsic geometry. Let III(·, ·) := I(Dν(·), Dν(·)) denote
the third fundamental form. Then, we equip N with the isophotic metric (Pottmann et al.,
2004) I+αIII for which surface distances also depend on the variation of the surface normals
along connecting geodesics (see Figure 1). This approach does not require the construction
of an offset surface as in (Corman et al., 2017) and additionally provides a commensuration
parameter α ≥ 0 that allows to weight the influence of normal variation.

2.2. Latent functional representation

In order to perform group-wise analysis, we require a consistent description of structural
changes at the population level, i.e. shape differences need to be expressed w.r.t. a common
reference frame. To this end, we employ concepts from map synchronization that allow us to
obtain such a reference system in terms of latent spaces. Throughout this paper, we assume
to be given a shape collection S = {S1, . . . , Sn} represented as triangle meshes. We choose
USi to be the space spanned by the first 50 eigenfunctions of the Laplace-Beltrami operator
discretized as in (Botsch et al., 2010) using the standard weighted cotangent scheme. Let
Λi denote the diagonal matrix of its first m eigenvalues in rising order and Φi denote the
matrix containing the respective eigenfunctions as columns.

Functional map network. A functional map network (FMN) of the shape collection S
is a connected directed graph with the shapes as nodes and edges E between shapes that
are sufficiently similar.
We choose the Euclidean distance between the shape-DNA descriptors (Reuter et al., 2006)
as a measure for similarity and connect each shape with the k nearest shapes, where k is
large enough to guarantee the FMN to be connected. Since the computation of the latent
bases is simplified if the FMN is undirected, we add the edge (j, i) to every (i, j) ∈ E and
set all weights of existing edges to the value 1. Note, the FMN is not used as graph for the
later applied graph neural network, but only to compute the latent bases.

Latent basis. Let Cij be the functional correspondence matrix from Si to Sj for (i, j) ∈ E.
Commonalities among a shape collection with a given FMN are represented by families of
functions that are consistent throughout the whole collection, i.e. yj = Cijyi for all (i, j) ∈ E
where y1, . . . , yn are coordinates of functions of such a family. A basis for the space of all
functions in Ui that belong to such a family is called latent basis. Let Yi denote a matrix
such that its columns are coordinates of functions forming a latent basis on Si.
Following (Wang et al., 2013) and (Huang et al., 2019), we compute Yi by minimizing∑

(i,j)∈E ||CijYi − Yj || s.t.
∑n

i=1 Y
T
i Yi = I and

∑n
i=1 Y

T
i ΛiYi is a diagonal matrix. This

minimization problem defines a basis called canonical consistent latent basis (CCLB). Since
commonly less than 50 functions exist per latent basis, we restrict Yi to 40 columns only.

Limit shape. As examined in (Huang et al., 2019), the CCLB of Si merged to Yi can be
seen as a functional correspondence matrix from an only implicitly given shape called limit
shape to Si. The eigenvalues of

∑n
i=1 Y

T
i ΛiYi are called the spectrum of the limit shape.

Let Λ0 denote the diagonal matrix of these eigenvalues in rising order.
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Eventually, based on the geometry of the limit shape, we can express the shape differ-
ences in this common frame by

DV
i = Y T

i Yi and (1)

DR
i = Λ†

0Y
T
i ΛiYi. (2)

2.3. Transductive learning

In the following, we derive a neural network model that is conditioned on an entire collection
of shapes, each of which belongs to an individual for which we want to predict a disease state.
Typically, the sampling in clinical data sets does not follow a regular grid and there exists
no natural ordering. However, individuals feature heterogeneous pairwise relationships and
interdependencies that can be adequately captured by a graph. In this setting, nodes
represent subject-specific shapes, while edge weights can be used to encode similarities
between subjects potentially integrating auxiliary, phenotypic information.

Semi-supervised classification Based on the graph representation, the transductive
inference problem can be formulated as semi-supervised node classification, where labels
are only given for nodes corresponding to subjects from the training set. As classifier
we construct a multi-layer, feed-forward graph convolutional network with possibly several
hidden layers each followed by a rectified linear unit (ReLU). The final layer has as many
output channels as the desired number of classes and is equipped with a node-wise soft-max
activation. As loss function, a cross-entropy term for each node in the training set is used.
Since the model is conditioned on the adjacency of the graph, there is no need for explicit
graph-based regularization: The gradient information of the loss is propagated through the
model enabling it to learn representations of both labeled and unlabeled nodes. For our
architecture, we opt for a spectral generalization of graph convolutions, which are based on
a Kth-order approximation in terms of Chebyshev polynomials (Defferrard et al., 2016) and
provide fast localized graph convolutions with constant learning complexity.

Node features For use as network features, the shape differences in Eqs. (1) and (2) need
to be linearized. To this end, we note that the area-based differences belong to the space
of symmetric positive-definite (SPD) matrices. This space again exhibits a rich, geometric
structure. Remarkably, it can be equipped with a Lie group structure inducing an efficient
Riemannian metric (Arsigny et al., 2006). Furthermore, the group structure provides a
canonical linearization in terms of the group logarithm that we can readily employ. In
particular, linear computations on the logarithms correspond to Riemannian operations on
the SPD manifold and, hence, do not suffer from defects like the swelling effect inherent to
flattening of SPD matrices. Additionally, we note that the conformal-based differences can
be transformed to symmetric matrices via the left action of Λ0. We therefore also employ
the group logarithm on the resulting operators as linearized features.

Graph construction While the construction of the FMN is driven by geometric con-
siderations (viz. establishing consistent, group-wise correspondences), it does not encode
phenotypic relationships and interdependencies between the subjects that are informative
to the grading task. We therefore condition our model on another graph that also leverages
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Figure 2: Illustration of two MRI-derived hippocampi from the ADNI dataset. Note the
topological noise present in the right instance.

non-geometric information. Following (Parisot et al., 2018), we define the adjacency matrix
W of the population graph by

Wij = Sim(Si,Sj)
∑
k

δ(mk
i ,m

k
j ),

where Sim gauges similarity between subject shapes and δ is a threshold function testing
for closeness of phenotypic measures mk such as age and sex. Whereas the exact choice
of Sim should be application-dependent, a canonical candidate is to employ a radial basis
function kernel based on distances of the node features.

3. Application to Alzheimer’s Classification

Morbus Alzheimer is a complex, multifactorial, neurodegenerative disease (McGirr et al.,
2020). In 2014, it was the sixth leading cause of death in the United States, accounting for
3.6% of all deaths (Taylor et al., 2017; Heron, 2016; Alzheimer’s Association et al., 2017).
Moreover, nearly everyone in the final stages of Alzheimer’s disease needs constant care
as the result of functional and cognitive declines (Alzheimer’s Association et al., 2017).
This poses an enormous burden for the society, clearly indicating the need for a deeper
understanding of the disease. Alzheimer’s disease is known to affect large regions of the
human brain (Castellani et al., 2010), among others, the two hippocampi (Van Hoesen and
Hyman, 1990), that play a certain role in the formation of memories (Squire, 1992).

Within the following experiment we focus on (global) morphological changes of the right
hippocampus in order to classify the presence of Alzheimer’s disease.

3.1. Data

We employ a dataset consisting of right hippocampi (see, e.g., Figure 2) from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI)1 database comprising 60 subjects showing Alz-
heimer’s disease and 60 cognitive normal controls. We prepared this dataset using imaging
data that contains, among others, 1632 brain MRI scans, with respective hippocampus

1. adni.loni.usc.edu
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Figure 3: The proposed GCN approach achieves the highest average classification accuracy
of 0.787± 0.055 followed by CNN (0.77± 0.06), MCNN (0.767± 0.038) and MLP
(0.749± 0.074).

segmentations, collected at four different time points. The dataset was randomly assem-
bled from isosurfaces extracted from given connected segmentation masks at baseline time
point. This experiment was first carried out in the work by Ambellan et al. (2021b) and
a list of employed (unique) scan ids can be found there. Public availability of the utilized
hippocampus segmentations as part of the ADNI database enables reproducibility of the
experiment below.

3.2. Disease grading

We evaluate the proposed Graph Convolutional Network (GCN) for the discrimination be-
tween normal controls and subjects with Alzheimer’s disease. To this end, we employ three
layers of second-order graph convolutions with input dimensions (nshapes, 64, 64). As phe-
notype measures, we selected sex and Apolipoprotein E (APOE) genotype as proposed
in (Parisot et al., 2018). Gene APOE appears in three major types: E2, E3 and E4. Es-
pecially E4 is known as genetic risk factor for Alzheimer’s disease. Affinity between two
connected nodes is considered high if sex and APOE type coincide. Regarding classifica-
tion accuracy we compare it to three different approaches. On the one hand, we employ
classification approaches using a MultiLayer Perceptron (MLP), as well as a Convolutional
Neural Network (CNN) applied on the area- and conformal-based shape differences with
isophotic metric, as detailed in (Huang et al., 2019). On the other hand, we report results
for MeshCNN (MCNN) as described by han. In contrast to all other methods that where
taken into consideration, MCNN is applied directly on the shape-forming triangular mesh.
Note that MLP, CNN and MCNN are following the inductive learning approach. We eval-
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uated all methods on a 70%/30% training/testing split performing a stratified Monte Carlo
cross-validation drawing 300 times for MLP, CNN, GCN and due to its demanding com-
plexity 10 times for MCNN. The results are summarized in Figure 3, indicating that (i) the
transductive GCN approach achieves the hightest (78.7%) average classification accuracy,
(ii) CNN and MCNN are approximately on par (77.0%/76.7%), and (iii) MLP achieves the
lowest performance with 74.9% accuracy.

4. Conclusion and future work

In this work, we presented a geometric classification scheme from shape data employing a
flexible, yet descriptive characterization of shape variability. Based on a graph convolutional
neural network, we further perform transductive inference taking the irregular structure
in sampling patterns of clinical data sets into account. Furthermore, we extended the
functional characterization of shape variation via an alternative metric that is sensitive
to extrinsic curvature and employed a geometric linearization based on the Log-Euclidean
framework for positive matrices.

In application to Alzheimer’s disease classification, we achieved an improved classifi-
cation that outperforms recent work for deep learning on 3D surfaces (han) as well as
inductive inference from functional descriptions (Huang et al., 2019). Furthermore, our
method is able to significantly decrease the gap towards Riemannian shape spaces that rely
on the more restrictive setting of dense vertex correspondence (Ambellan et al., 2021b)
and for which 80.4% classification accuracy has been reported. In future work, we plan to
investigate further the potential of our approach for topologically-varying and incomplete
shape collections in order to widen to scope of shape analysis methodology and to provide
more extensive empirical evidence of its performance.

As the right hippocampus shape very likely does not provide a complete enough picture
to classify Alzheimer’s disease, we probably have already reached a certain limit in our
experimental setup. Therefore, on the application side, a promising line of future work is
to extend the dataset with the respective left hippocampi. This will help to assess the very
complex Alzheimer’s disease in a more anatomically holistic manner. Another direction for
future work is the graph construction itself, which should be further analyzed as it poses a
structural core element in our setup and potentially is the key property for discriminative
tasks such as disease grading.
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Processing. Natick, Mass.: AK Peters, Ltd., 2010.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: going beyond Euclidean data. IEEE Signal Processing Maga-
zine, 34(4):18–42, 2017.

Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Associa-
tion; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers
Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Com-
pany; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE
Healthcare; IXICO Ltd.;Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson &
Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.;Meso
Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corpo-
ration; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Thera-
peutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites
in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes
of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research
and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the
University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at
the University of Southern California.

9



Mayer Baum Ambellan von Tycowicz

Rudy J Castellani, Raj K Rolston, and Mark A Smith. Alzheimer disease. Disease-a-month:
DM, 56(9):484, 2010.

Etienne Corman, Justin Solomon, Mirela Ben-Chen, Leonidas Guibas, and Maks Ovs-
janikov. Functional characterization of intrinsic and extrinsic geometry. ACM Trans-
actions on Graphics (TOG), 36(2):1–17, 2017.

M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. In Advances in neural information processing sys-
tems, pages 3844–3852, 2016.

Manfredo P. do Carmo. Differential geometry of curves and surfaces. Prentice Hall, 1976.

Guido Gerig, James Fishbaugh, and Neda Sadeghi. Longitudinal modeling of appearance
and shape and its potential for clinical use. Medical Image Analysis, 33:114–121, 2016.

Melonie Heron. Deaths: Leading causes for 2014. Natl Vital Stat Rep, 65(5):1–96, 2016.

Ruqi Huang, Panos Achlioptas, Leonidas Guibas, and Maks Ovsjanikov. Limit shapes–
a tool for understanding shape differences and variability in 3d model collections. In
Computer Graphics Forum, volume 38, pages 187–202. Wiley Online Library, 2019.

Samantha McGirr, Courtney Venegas, and Arun Swaminathan. Alzheimers disease: A brief
review. Journal of Experimental Neurology, 1(3):89–98, 2020.
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