Published as a Tiny Paper at ICLR 2023

A SIMPLE LOSS FUNCTION FOR CONVERGENT
ALGORITHM SYNTHESIS USING RNNS

Alexandre Salle Shervin Malmasi

VTEX Amazon Inc

Porto Alegre, BR Seattle, USA

alexandre.salle@vtex.com malmasi@amazon.com
ABSTRACT

Running a Recurrent Neural Network (RNN) over the same input multiple times,
or iterative reasoning, enables logical extrapolation, where a model can be run on
problems larger than the models were trained on. The loss function used to train
these networks has a profound impact on their extrapolation ability. In this paper,
we propose using a simple loss function called the Delta Loss (Salle & Prates,
2019). We show! that the Delta Loss, like the state-of-the-art Progressive Loss
(Bansal et al., 2022), leads to convergent algorithm synthesis, but with a simpler
formulation, increased training efficiency,? and greater robustness.

1 INTRODUCTION

Iterative reasoning is a fundamental human ability that we use every day to solve problems. For
example, when trying to solve a puzzle, a person would probably start by trying different pieces
and see if they fit together. If they don’t fit, they would put them back and try different ones. This
process of trying different pieces and evaluating the results is iterative reasoning.

Recently, Schwarzschild et al. (2021) showed that iterative reasoning can also be applied to artificial
neural networks: their Deep Thinking Networks — a form of Recurrent Neural Network (RNN) —
can be used to solve prefix-sums, mazes, and chess problems. Subsequent work by Bansal et al.
(2022) showed that inputting the original problem at each reasoning step (running the RNN over
the same input and computing a new state and output solution) and using a different loss function,
called the Progressive Loss, are key to achieve extreme extrapolation, solving problem instances
much larger/harder than seen during training. Their work is closely related to the ideas in Salle &
Prates (2019), who present Think Again Networks and the Delta Loss. Given the similarity between
Deep Thinking Networks and Think Again Networks, we posit that the Delta Loss can be used with
Deep Thinking Networks and test this idea in this paper. We show that using the Delta Loss enables
extreme extrapolation, while being more robust and efficient to train? than the Progressive Loss.

prog

(a) Chess (b) Mazes (c) Prefix-sums

Figure 1: Test performance of models trained with the Delta Loss (delta) and Progressive Loss
(prog). The models were trained using 30 reasoning steps on 32-bit strings, 9x9 mazes, and easy
chess puzzles. The models are tested on hard chess puzzles, 59x59 mazes, and 512-bit strings, using
up to 10x more reasoning steps than used during training.

!Our code and models are available at https://github.com/alexandres/delta-1loss
?Except when the Progressive Loss hyper-parameter o is equal to 0 or 1.

https://github.com/alexandres/delta-loss

Published as a Tiny Paper at ICLR 2023

2 Loss FUNCTIONS

Given (i.) A state dependent function F(z, s;) such as an RNN, where z is the input corresponding
to a problem instance, and s; is the state after ¢ reasoning steps (ii.) An arbitrary loss function £
computed over each 1, ..., 7T reasoning steps used during training (7" set to 30 in all experiments):
the Delta Loss (L) Salle & Prates (2019), which maximizes the drop in £ between consecutive
steps and minimizes the maximum loss over all steps, is defined as:

LA(L,FT) = Y (L(F(w,s141)) — L(F(2,8))) + max L(F(w,s.))
1<t<T—1 == (1)

= L(F(z,st)) — L(F(x,s1)) + 1I%’lttlSXTE(F(JC, st))

The Progressive Loss (£,) Bansal
et al. (2022) is described in algo-
rithm 1. In contrast to the Delta Choose n ~ U{0,T — 1} and k ~ U{1,T — n}

Loss which has no hyperparameters, Compute F(z, sn) w/o tracking gradients

the Progressive Loss has the hyperpa- ~ Compute F(z, sn+) (additional k steps)

rameter a. Furthermore, computing Compute F(x, s7) with new forward pass of 1" steps

the Progressive Loss when 0 < a < Compute £, = (1 — @) - £(F(z, 57)) + & - L(F(, 5n++))

1 is less efficient than the Delta Loss

since it requires 2 forward passes: in expectation, this uses 75% more GPU time and memory for
computing and storing activations (i.e. in Chess, on our GTX1070, the Delta Loss enables batches
78% larger (255 vs. 143), and if using equal batch sizes of 143, computing each batch is 45% faster).

Algorithm 1 Progressive Loss

3 MATERIALS

We use the exact same datasets, architectures, and code as Bansal et al. (2022). The three datasets
used are: (Chess) Given a 8x8 chessboard, find the optimal move for a given position. Models are
trained on easy chess puzzles and evaluated on hard chess puzzles. (Mazes) Given a 2D square
image representing a maze, find the shortest path from start to end markers. Models are trained
on 9x9 mazes and evaluated on 59x59 mazes. (Prefix-sums) The task is to compute prefix-sums of
binary strings, where the j” bit of a prefix-sum is the sum of all bits 4 < j in the string, modulo 2.
Models are trained on 32-bit strings and evaluated on 512-bit strings. Problems are represented as
images, and the same convolutional neural network (CNN) architecture is used for all three datasets,
changing only its hyperparameters and dimensionality of the filters (1D for Prefix-sums, 2D for
Mazes and Chess). To make the CNN into a state-dependent F(x, s;), the output from one of the
final layers is used as s;, and combined with the input x using a convolutional layer to produce the
next input to the network. Both the Delta Loss and Progressive Loss are used with the same network
hyperparameters. The architecture and hyperparameters are given in the Appendix.

4 RESULTS AND CONCLUSION

Results are shown in fig. 1. On both Prefix-sums and Mazes, both losses achieve accuracy > 99.9%.
On the more challenging Chess dataset, the Delta Loss significantly outperforms the Progressive
Loss (McNemar’s test, p < 0.05). Both losses exhibit convergence on all datasets. As the number
of reasoning steps increase, accuracy stabilizes. Bansal et al. (2022) refer to this convergence as
avoiding overthinking: unlike the losses tested here, they show that using only the loss from the
final reasoning step leads to a collapse in accuracy. Although in our results both the Progressive and
Delta Loss perform similarly, results from Bansal et al. (2022) show that the Progressive Loss is
highly sensitive to «.. To circumvent this, they perform a grid-search over « for each dataset. Here
we report their best configuration for each dataset («=.5,.01,1 on Chess, Mazes, and Prefix-sums
respectively). In contrast, the Delta Loss has no hyperparameter and thus no need to tune it for each
dataset. We refer to this invariance in hyperparameters as robustness. One downside of the Delta
Loss is the larger number of steps to convergence on Chess and Prefix-sums (figs. 1a and 1c). See
appendix A.1 for further discussion on this and other future directions.

In sum, we showed that the Delta Loss, like the Progressive Loss, leads to convergent algorithm
synthesis, but with a simpler formulation, increased training efficiency,” and greater robustness.

Published as a Tiny Paper at ICLR 2023

URM STATEMENT

The authors acknowledge that at least one key author of this work meets the URM criteria of ICLR
2023 Tiny Papers Track.

REFERENCES

Aprit Bansal, Avi Schwarzschild, Eitan Borgnia, Zeyad Emam, Furong Huang, Micah Goldblum,
and Tom Goldstein. End-to-end algorithm synthesis with recurrent networks: Logical extrapola-
tion without overthinking. Advances in Neural Information Processing Systems, 35, 2022.

Alexandre Salle and Marcelo O. R. Prates. Think again networks and the delta loss. ArXiv,
abs/1904.11816, 2019.

Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah Goldblum,
and Tom Goldstein. Can you learn an algorithm? generalizing from easy to hard problems with
recurrent networks. Advances in Neural Information Processing Systems, 34, 2021.

A APPENDIX

A.1 FUTURE WORK

On the Chess and Prefix-sums tasks figs. 1a and 1c, the Delta Loss takes longer to converge than
the Progressive Loss. In initial experiments on Prefix-sums, we observe that during training either
reducing the number of reasoning steps 7" or for each batch drawing Tyqicn, ~ U{2, T'} both signifi-
cantly reduce the number of steps to convergence when testing. We plan to investigate this and other
factors that may contribute to delayed convergence in future work. We also plan to explore other
ideas from Salle & Prates (2019) such as (a) allowing periodic divergence during training (taking
the max operation in eq. (1) every A steps rather than every step), and (b) rather than using only the
previous state in the next reasoning step, using a mixing function to attend to past states.

A.2 HARDWARE

All experiments were performed on a desktop with an Intel i5-4430, 32 GB of RAM, and a single
Nvidia GTX1070.

A.3 ARCHITECTURE AND HYPERPARAMETERS

The architectures we use in our experiments are identical to those described in Bansal et al. (2022).
We provide a summary here for convenience:

1. Problem instances are represented as binary images x, in (Chess): width = 8, height =
8, channels = 12 (6 channels for each player’s piece classes); (Mazes, 9x9 or 59x59):
width = {9 -2+ 3,59 -2+ 3}, height = {9-2 + 3,59 - 2 4+ 3}, channels = 3 in (one
channel for walls, one channel for start position, one channel for end position, each position
is represented by 2x2 pixels and the image has 3 pixel borders); (Prefix-sums, 32 or 512
bits): width = {32,512}, channels = 1 (single channel for bit values).

2. All convolutional layers use 3 x 3 filters (or filters of length three in the 1D case) with stride
equal to one and 1-padding, preserving the input width (and height for 2D problems).

3. Initial state s; is created by a convolutional layer that maps the number of channels in x to
the number of channels used in the internal block (item 5).

4. The input to the internal block is formed by a convolutional layer that maps the concate-
nation of the input and state [z, s;] channels to the number of channels used in the internal
block, followed by a ReL.U.

5. The internal block is a standard residual block with four convolutional layers each having
the same # of output channels (described in table 1), each followed by a ReLU, and skip
connections every two layers .

Published as a Tiny Paper at ICLR 2023

6. The output of the internal block forms the state s;,;. This has the same width (and height
in the 2D case) as the input z, but has the # of channels specified in table 1. This is then
input to item 4 to perform the next reasoning step, turning this entire CNN into an RNN.

7. Next comes the head block which is composed of three convolutional layers with decreas-
ing # of output channels (sizes are in table 1), and ReLUs after the first two layers.

8. The final convolutional layer in the head block has two-channel outputs for binary pixel
classification, used to compute the binary cross-entropy loss (move start/end positions are
1s and rest are Os in Chess, shortest path is 1s and rest is Os in Magzes, and targets are Os and
Is in Prefix-sums).

Table 1: Model hyperparameters. The exact same hyperparameters were used for both the Delta
Loss and the Progressive Loss.

Dataset # output channels in internal block # output channels in head layers
Chess 512 32,8,2
Mazes 128 32,8,2
Prefix-sums 400 400, 200, 2

A.4 DATASET AND TRAINING DETAILS
Dataset sizes are given in table 2.

Table 2: Dataset sizes.

Dataset Train Valid Test
Chess easy 480,000 120,000 -
Chess hard - - 100,000
Mazes 9x9 40,000 20,000 -
Mazes 59x59 - - 10,000
Prefix-sums 32 bits 8,000 2,000 -
Prefix-sums 512 bits - - 10,000

Training details are given in tables 3 and 4.

Table 3: Training hyperparameters. Dashes indicate that we did not utilize those options. If LR
Throttle is “Yes”, the learning rate of parameters in the internal block is divided by 1" (reasoning
steps used during training).

Loss Task Optimizer Learning Rate Decay Schedule Decay Factor Warm-Up Epochs Clip LR Throttle
Chess Adam 0.001 [100, 110] 0.01 3 120 - Yes
Delta Mazes Adam 0.001 - - 10 50 10.0 Yes
Prefix Sums Adam 0.001 [60, 100] 0.01 10 150 0.1 No
Chess SGD 0.010 [100, 110] 0.01 3 120 - No
Prog Mazes Adam 0.001 - - 10 50 - Yes
Prefix Sums Adam 0.001 [60, 100] 0.01 10 150 1.0 No

A.5 DETAILED RESULTS

Detailed results for Chess, Mazes, and Prefix-sums are shown in tables 5 to 7 respectively.

Published as a Tiny Paper at ICLR 2023

Table 4: Training results. Time per epoch on the machine described in appendix A.2.

Loss Task I::‘:llrz:;‘zlu?j Max validation accuracy (%) maxE\Fa?ic:aril(l;? (%) Time per epoch (hours) m::iilfl:ﬁg;h(}r L[ll:b)
Chess 100.0 95.8 130 1.57 204.5
Delta Mazes 100.0 100.0 35 0.15 5.15
Prefix Sums 100.0 100.0 6 0.01 0.07
Chess 99.7 94.6 106 2.13 226.1
Prog Mazes 93.7 100.0 43 0.18 7.6
Prefix Sums 100.0 100.0 6 0.007 0.044

Table 5: Steps until maximum accuracy for Chess. * indicates the models plotted in fig. 1.

Loss « Steps until max accuracy Max accuracy (%)
Delta* - 33 85.83
Progressive 0.0 29 82.12
Progressive* 0.5 46 82.79

Table 6: Steps until maximum accuracy for Magzes. * indicates the models plotted in fig. 1.

Loss «a Steps until max accuracy Max accuracy (%)
Delta* - 657 99.90
Progressive 0.00 999 82.72
Progressive* 0.01 808 100.0

Table 7: Steps until maximum accuracy for Prefix-sums. * indicates the models plotted in fig. 1.

Loss « Steps until max accuracy Max accuracy (%)
Delta* - 318 100.0
Progressive 0.0 466 96.19
Progressive* 1.0 222 100.0

	Introduction
	Loss Functions
	Materials
	Results and Conclusion
	Appendix
	Future work
	Hardware
	Architecture and Hyperparameters
	Dataset and Training Details
	Detailed Results

