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ABSTRACT

Federated learning enables collaborative training across clients without sharing
local data, making it well-suited for privacy preservation. However, statistical het-
erogeneity in local datasets, known as non-identically distributed (non-iid) prob-
lem, leads to client drift and poor convergence for global model. Feature align-
ment for federated learning (FAFL) methods have emerged to tackle this prob-
lem by constraining local feature distribution with global per-class representations
and achieved remarkable performance. However, issues persist around 1) lack-
ing expandability and extensibility (i.e., tight coupling with classification tasks),
2) requiring additional communication and computational cost and 3) expecting
rigorous theoretical analysis. To address these issues, this paper presents a sim-
pler version of FAFL - SimFAFL, which decouples the constantly updated FAFL
constraints from explicit categorical dependencies using two modular constraints.
Specifically, the proposed constraints are i) a fixed global reference distribution
and ii) globally shared task parameters. These act as centroid and shape reg-
ularizers to restrict drift in local feature distributions without requiring explicit
categorization. We provide theoretical analysis proving the constraints reduce the
deviation upper bound of the objective function, demonstrating efficacy of Sim-
FAFL in mitigating harmful drift. Extensive experiments demonstrate SimFAFL’s
state-of-the-art performance compared to prevalent methods. Moreover, the mod-
ular design also expands model flexibility and benefits generalization without im-
posing communication/computation costs.

1 INTRODUCTION

Federated learning (FL) has emerged as a distributed machine learning approach that enables col-
laborative model training across clients, without the need to directly share local private data. This
allows organizations to construct collective intelligence while adhering to stringent data privacy
regulations. The horizontal federated optimization process typically involves clients’ local train-
ing (i.e., alternating rounds of localized stochastic gradient descent on each client’s data), followed
by server aggregation (i.e., weighted aggregation of local models on the central server) (McMahan
et al. (2017)). However, a persistent challenge is that real-world client datasets often demonstrate
statistical heterogeneity, with each client exhibiting distinct data distribution patterns (Zhao et al.
(2018)). This non-identical distribution of data across devices, known as the non-IID problem
(non-identically independent distributed) in federated learning literature, can cause client drift and
impede model convergence. The main issue lies on the divergence in client data distributions dur-
ing localized training, leading to personalized drift in gradient updates, which degrades accuracy
when aggregating to the global. To mitigate this issue, personalized federated learning (PFL) tech-
niques have been proposed (Arivazhagan et al. (2019), Collins et al. (2021), Li et al. (2021)). PFL
aims to adapt the personalized models to local data distribution, while benefits from cooperative
training. Some data-based PFL methods attempt to reduce data divergence among clients by data
augmentation or data generation, relying on proxy datasets (Zhao et al. (2018)). While model-based
PFL methods introduce regularization to reduce client drift during local training without the need
of proxy datasets (Tan et al. (2022), Chen & Chao (2021), Karimireddy et al. (2020)). Feature
alignment is a typical model-based regularization, which has achieved remarkable results.
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Feature Alignment for Federated Learning (FAFL) methods have emerged to improve performance
under heterogeneous data distributions ( Xu et al. (2023), Zhang et al. (2023), Tan et al. (2022)).
These techniques introduce regularization terms during training to align local feature representations
with global per-class centroids. By constraining divergence in latent space, FAFL has been shown
to mitigate harmful client drift and improve convergence compared to unregularized federated opti-
mization.

However, current FAFL approaches still have certain limitations. First, the reliance on explicit
per-class representations reduces extensibility to non-classification tasks, such as regression task.
Without predefined categories, the required global centroids cannot be obtained. Second, existing
techniques expect rigorous theoretical analysis justifying their particular constraints and proving
superior convergence. Regrettable, FedPAC ( Xu et al. (2023)) nor FedCR ( Zhang et al. (2023))
have not done such work. Finally, continuous aggregation of sample features on the server for up-
to-date centroids incurs additional communication and computation costs, which we will detail in
Section 2.

To address these issues, we first provide formal convergence analysis of FedPAC ( Xu et al. (2023)),
a prototypical FAFL algorithm. Drawing on Li et al. (2019), we prove FedPAC’s feature alignment
constraints provably reduce the theoretical upper bound on loss deviation between federated and
centralized learning. This offers a principled explanation of how FAFL mitigates drift compared
to FedAvg. Furthermore, we identify centroid and shape drift as key factors causing performance
degradation under non-IID data, which FAFL aims to restrict such clients’ drift.

Table 1: Test accuracy (%) of Pre-experiments.

Methods CIFAR10-1 CIFAR10-2 CIFAR100-1 CIFAR100-2
FedAvg 76.86 76.07 26.87 28.54
FedCR 81.55 82.09 59.06 42.91
Pre-exp I 81.42 81.48 57.72 41.41
Pre-exp II 84.44 83.50 57.39 38.16

Motivated by these insights, we propose a simplified and extensible FAFL framework called Sim-
FAFL that relaxes the strict alignment constraints. To avoid continuous centroid updates, we con-
strain local features to a fixed global reference distribution, which improves accuracy as shown in
Table 1. However, this only aligns centroids. To further capture shape, we freeze global task pa-
rameters from the previous round for local training. Moreover, as analyzed in Section 4.3 and 5,
both constraints provably reduce loss divergence. Experiments demonstrate enhanced performance
and robustness over existing FAFL approaches, while expanding model capabilities. In addition,
ablation experiments show that both constraints provide significant performance improvements in-
dividually. Furthermore, we investigate the sensitivity of model accuracy to the constraint coefficient
in extension studies.

Contributions. This paper elucidates several pivotal contributions:
1. Convergence Analysis of FAFL: We present a comprehensive analysis and proof of the conver-
gence of FAFL, underscoring the theoretical utility of global representation constraints.
2. Introduction of Simplified Constraints: The ongoing updates in FAFL methods’ representations
are simplified into 2 unyielding constraints: i) a fixed representation and ii) global task parameters.
Note, these newly introduced constraints deftly limit the feature distribution in local training.
3. Empirical Validation for Enhanced Performance and Robustness: Rigorous experimental
assessments substantiate the enhanced performance and robustness of SimFAFL. This empirical ev-
idence affirms the superiority of the proposed dual constraints, offering practical proof of SimFAFL’s
broadened applicability and efficacy in diverse tasks.

Benefits. The introduction of SimFAFL, as propounded in this work, yields considerable benefits:
1. Enhanced Performance: SimFAFL outperforms existing methodologies, particularly in scenar-
ios with heterogeneous client data distributions.
2. Efficiency and Privacy: By circumventing the need for computation and transmission of fea-
tures, SimFAFL not only conserves time and computational resources but also significantly enhances
the privacy protection of local data.
3. Expanded Applicability: The relaxed constraints, now more generic, find utility in a broader
array of tasks beyond classification, including regression tasks.
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4. Robustness and Generalization: SimFAFL exhibits augmented robustness and generalization
capabilities, standing as a testament to its well-rounded design.

The remainder of this paper is organized as follows. Section 2 reviews relevant prior work, includ-
ing typical FAFL algorithms. Section 3 formulates the problem and analyzes the convergence and
intuitions behind FAFL. Section 4 further introduces the proposed SimFAFL method and provides
theoretical efficacy analysis. Section 5 presents our experimental setup, results, and discussions.
Finally, Section 6 concludes the paper.

2 RELATED WORKS

Feature Alignment for Federated Learning (FAFL). Recently, feature alignment techniques have
gained traction in federated learning as a way to constrain local model adaptations based on glob-
ally shared representations. The notion of using prototype features, such as averaged centroids, as a
proxy for task classes has been explored across various domains (e.g., FedProto, Tan et al. (2022))).
Building on prototype regularization concepts, FedPAC (Xu et al. (2023)) combines explicit align-
ment of local features to global class centroids along with model averaging. By regularizing local
training to remain close to the globally aggregated per-class means, FedPAC induces a form of fea-
ture distribution alignment to mitigate client drift. Extending this, FedCR (Zhang et al. (2023))
models the global class representations as Gaussian distributions rather than deterministic points.
The mean and variance parameters are then aggregated across clients using a product of experts
approach Hinton (2002). Local updates aim to minimize the KL divergence between their learned
feature distributions and the global centroids. Since FedPAC uses an L2 loss, it can be viewed as
a special case of FedCR’s divergence regularization framework. While these methods have empiri-
cally demonstrated the benefits of feature alignment, they lack rigorous theoretical analysis into why
constraining distributions improves optimization. Our work consequently aims to address this gap
by providing formal convergence guarantees that reveal how alignment reduces deviation between
local and global objectives. We further distill key principles that motivate a simplified approach
without reliance on explicit class representations.

Convergence Guarantees of non-IID Federated Learning. While performance degrades under
non-IID data, federated optimization can still converge. Formal proofs are provided in several works
including Zhao et al. (2018) and Li et al. (2019). Li et al. (2019) established that the model de-
viation between federated learning and centralized learning diminishes to zero as rounds increase,
under common assumptions like learning rate decay. Meanwhile, Zhao et al. (2018) characterized
the dependence of this deviation on data heterogeneity, motivating distribution alignment techniques.
Related results (e.g., Zhu et al. (2021) and Ben-David et al. (2006)) are cited in FedCR, though
lacking detailed discussion ( Zhang et al. (2023)), indicated that the upper bound of loss deviation
is positively correlated with divergence of distribution. Ultimately, despite empirical success, FAFL
methods are expecting supporting theory regarding the efficacy of their constraints in reducing de-
viation and improving convergence.

3 CONVERGENCE ANALYSIS OF FAFL

Based on the problem of interest, this chapter provides theoretical analysis and proof regarding the
convergence properties of feature alignment for federated learning (FAFL) methods. Note, this of-
fers theoretical grounding for the empirical benefits of feature alignment in mitigating heterogeneity.

Problem Formulation. We formally define the optimization problem for feature alignment in fed-
erated learning. Let fi(ϕi) denote client i’s feature extractor parameterized by ϕi. Let vi repre-
sent personalized task parameters. Following FAFL conventions, the feature extractor is globally
shared while task parameters are localized. The end-to-end model for client i can be expressed as
Fi(ϕi, vi;xi), where (xi, yi) denotes the local dataset. The local objective function of client i is

L(ϕi, vi;xi, yi) = Ls(F(ϕi, vi;xi), yi) + λLd(f(ϕi;xi), C̄) (1)

where C̄ denotes the global per-class centroids aggregated from clients features, λ controls the reg-
ularization strength, Ls(·) denotes the empirical risk of original task, and Ld(·) denotes the feature
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alignment loss between the global per-class centroids and the local centroids. In FedPAC, Ld(·)
denotes L2-norm regularizer, while for FedCR, it denotes KL divergence.

The global objective aggregates local objective function weighted by the data fraction pi at client i

Lg
t =

∑
i

piLs(ϕ̄, vi;xi, yi) + λLd(f(ϕ̄;x), C̄t) (2)

where ϕ̄ represents the globally shared parameters, pi denotes the ratio of sample number of client
i to the global data. The objective function deviation between the model of current communication
round t+ 1 and the optimal model can be expressed as

Lg
t+1 − Lg∗

t ≤L

2
∥ w̄t+1 − w∗

t ∥2 +λ ∥ C̄t+1 − C̄t ∥2 (3)

Convergence Guarantees. We analyze the convergence behavior of FAFL methods. Based on
standard assumptions Appendix A.1 and theorems from Li et al. (2019), the main difference between
the objective function of FAFL and original FL is that FAFL involves updating of C̄, making loss
function change during training. The upper of loss deviation represented as △t+1 = L

2 ∥ w̄t+1 −
w∗

t ∥2 +λ ∥ C̄t+1 − C̄t ∥2 follows △t+1 ≤ (1− ηtµ)△t + η2tD, where ηt denotes the learning rate
of round t. Thus, we can show that the gap between the global objective Lg and optimal centralized
model L∗

g satisfies

E
[
Lg
t+1 − Lg∗

t

]
≤ κ

γ + t
(
2H

µ
+

µ(γ + 1)

2
E ∥ w̄1 − w∗ ∥22) (4)

Note, this demonstrates that FAFL achieves a convergence rate of O( 1
T ) despite non-IID data, akin

to FedAvg. The full proof is provided in the Appendix A.1.

Efficacy of Feature Alignment. This subsection analyzes how feature alignment improves conver-
gence. Based on the assumptions in Appendix A.1 and analysis in Tan et al. (2022), the upper loss
deviation can be bounded as

Lg
t+1 − Lg

t ≤ (
L

2
η2 − η)

∑
i

pi
∑
e

∥ ▽i(w̄tE+e+ 1
2
) ∥22 +

1

2

∑
i

pi ∥ ▽i(wi
(t+1)E+ 1

2
) ∥22

+
1

2

∑
pi ∥ w̄t+1 − wi

t+1 ∥22 +
L

2
Eη2σ2 − λ ∥ C̄t+1 − C̄t+2 ∥2

(5)

which can be transferred in the format

Lg
t+1 − Lg

t ≤1

2
G2 + 2η2t (E − 1)2G2 +

L

2
η2t σ

2 − λ ∥ C̄t+1 − C̄t+2 ∥2 (6)

where the λ-dependent term can be denoted as
T (λ) = (4η2t (E − 1)2 + 1)G2

2λ
2 + Lη2t σ

2
2λ

2 − λ ∥ C̄t+1 − C̄t+2 ∥2 (7)

This indicates that T (λ) is a quadratic function to λ with T (0) = 0 that opens upwards. Therefore,
there should exist a positive interval where T (λ) < 0, reducing the overall upper bound. Intuitively,
this reveals the FAFL regularization term can decrease loss divergence when properly tuned. The
detailed derivations of Eq 5- 7 are provided in the Appendix A.1.

How FAFL works: an intuitive visualization. To provide intuition for how FAFL improves fed-
erated learning, we visualize the latent feature distributions from two different FedCR clients on
the CIFAR-10 dataset, shown in Figure 1. The left plots show the client feature distributions (i.e.,
client1 and client 6 in round 101) after local training without any alignment constraints. We observe
clear centroid and shape divergence between the two clients, seen in the shifting of color-coded class
clusters like orange and blue. Consequently, FAFL introduces global class representations during
local training to restrict this harmful drift. As illustrated in the right plots, constraining features
to public centroids maintains more consistent distributions across clients. Overall, the global class
representations act to align the centroid and shape of local features. This mitigates the impact of
non-IID data distributions.
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Figure 1: Two-dimensional latent feature distributions for different FedCR clients on CIFAR-10.
Without alignment (left), we see centroid and shape divergence across clients. The proposed con-
straints (right) reduce this drift. Features are color-coded by ground truth class.

4 PROPOSED SIMFAFL

While feature alignment improves federated learning, prevailing techniques like FedPAC and FedCR
have limitations in extensibility and efficiency. To address these issues, we propose SimFAFL, which
relaxes the strict alignment constraints into two modular components.

4.1 FIXED GLOBAL REPRESENTATION CONSTRAINTS

To make the constraints independent of the class distribution, we attempt to calculate one global
representation rather than per-class representations. A straightforward method to obtain an overall
representation for feature alignment is to aggregate all features of all clients into one centroid. Since
FedPAC ( Xu et al. (2023)) is a special case of FedCR ( Zhang et al. (2023)), we employ the more
general FedCR as the basic framework. Base on FedCR, we perform feature distribution aggrega-
tion on features of all samples by PoE ( Hinton (2002)). To preliminarily verify the feasibility of
this novel constraint, we conducted two pre-experiments with FedAvg ( McMahan et al. (2017))
and FedCR as baseline. Pre-experiment I implements feature alignment with the continuously up-
dated overall centroid. Although the overall representation can be decoupled from the classification
task, additional calculations are still required due to continuous updates. Therefore, we conduct
pre-experiment II, which enforces a fixed feature distribution (multi-dimensional standardized nor-
mal distribution) as a global representation. The pre-experiments are conducted on two datasets
(CIFAR10 and CIFAR100) with two data partition methods (non-IID1 and non-IID2), which will be
intorduced in Section 5.

Table 1 shows that the fixed distribution constraint achieves better accuracy than baselines and pre-
experiment I on CIFAR10. However, that the improvement of pre-experiment I and pre-experiment
II compared to FedAvg is lower than FedCR on CIFAR100. This is reasonable because the two
improved constraints only restrict the feature centroid drift, whereas FAFL constrained the centroid
and shape drift simultaneously. The pre-experiments verify the validity of the fixed global represen-
tations zf , and this constraint on centroid alignment can be expressed as

Li
ca = Ld(fi(ϕi;xi), zf ) (8)
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4.2 GLOBAL TASK LAYER PARAMETER CONSTRAINTS

To restrict the task-dependent feature distribution shapes, we consider the global task branch as a
constraint condition. Specifically, we consider the network for a specific task as the feature extractor
and the task-related branch. Structurally, the feature extractor can be adapted to other tasks while
the task branch can only be applied to the specific task. During local training, the task branches’
drift occurs due to data distribution heterogeneity among clients. The drift of the task branch further
leads to the drift of the feature distribution generated by the feature extractor, as shown in Figure 1.
To mitigate the distribution drift, we introduce a common frozen task branch into the local training
process. The task branch vf is aggregated from the local branches vi of each client in the last round.
This constraint on alignment of distribution shape can be expressed as

Li
sa = Ls(F(ϕi, vf ;xi), yi) (9)

4.3 ANALYSIS AND DISCUSSION

Limitations. While the proposed method demonstrates strong performance under heterogeneous
conditions, the loss deviation in Eq. 4 indicates there may be even greater gains in extreme non-IID
scenarios. This suggests our approach may not be uniformly optimal across all data distributions.
Additionally, although SimFAFL avoids continuous alignment communication, the proposed con-
straints do introduce some extra computational overhead during local training.

Key Insights. Constraining all feature distributions to a common centroid may seem counterintu-
itive, as it could overly restrict the classifier. However, experiments show accuracy improvements,
likely because compacting features provides more difficult samples to improve decision boundaries.
The dense clusters also indirectly enhance the local task network’s capabilities. Furthermore, prior
techniques like FedCR perform aggregation concurrently with unstable local training, risking inac-
curate centroids which may degrade performance.

Overall, based on observed feature drift patterns and analysis of prior alignment techniques, we pro-
pose two improved constraints: 1) a fixed reference distribution to constrain local feature centroids,
and 2) frozen global task parameters to restrict feature distribution geometry. The local objective
(Eq. 10) formalizes how SimFAFL elegantly incorporates these constraints to bound drift while
avoiding continuous alignment communication and reliance on task categories.

Li = Li
s(ϕi(θ(x)), y) + β1Li

ca + β2Li
sa (10)

where β1 and β2 denote the coefficients of the two constraint terms, respectively.

5 EXPERIMENTS

We empirically evaluate SimFAFL against state-of-the-art federated learning algorithms, assessing
convergence, accuracy, and robustness on benchmark datasets.

5.1 EXPERIMENT SETTINGS

Datasets. We train and evaluate the proposed SimFAFL and other methods on four datasets, i.e.,
EMNIST-L, Fashion-MNIST (FMNIST), CIFAR10, and CIFAR100.There are two common meth-
ods for data partition employed for non-IID settings. The first one is that each client of EMNIST-L,
and CIFAR10 is randomly assigned 5 classes(3 classes per client for FMNIST and 15 classes per
client for CIFAR100), with the same amount of data for each class; The second one is that each
client has an undetermined number of classes and the sample labels of clients is set according to
a Dirichlet distribution with a Dirichlet parameter 0.5 for EMNIST-L, FMNIST and CIFAR10 (for
CIFAR100, Dirichlet parameter is set as 0.3). All data is split into 70% training set and 30% eval-
uation set, which have the same data distribution. These two non-IID settings are represented as
non-IID1 and non-IID2.

Baselines. We compare average accuracy of all clients on the evaluation sets of the proposed Sim-
FAFL to other methods, with fine-tuning version denoted as “-FT”. These methods include FedAvg
( McMahan et al. (2017)), FedSR ( Nguyen et al. (2022)), FedPer ( Arivazhagan et al. (2019)),
FedRep ( Collins et al. (2021)), LG-FedAvg ( Liang et al. (2020)), FedBABU ( Oh et al. (2021)),
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Table 2: Final test accuracy (%) of the proposed SimFAFL and other methods.

Method EMNIST FMNIST CIFAR10 CIFAR100
non-IID1 non-IID2 non-IID1 non-IID2 non-IID1 non-IID2 non-IID1 non-IID2

FedAvg 94.3988 94.5000 84.1754 86.6588 76.8556 76.0722 26.8667 28.5389
FedAvg-FT 96.2500 95.8036 95.8294 91.7630 83.6444 83.3500 53.1222 38.3222

FedPer 94.21429 91.39286 95.08531 88.3223 71.2278 68.8056 39.4944 24.3167
LG-FedAvg 87.8571 85.1429 94.0569 87.1043 62.9056 63.7611 43.9889 27.3722

FedRep 91.1369 87.8333 93.0995 85.9479 67.7333 67.4167 40.6444 23.1667
FedBABU 94.2143 91.3929 95.0569 88.3460 71.2278 68.8056 39.4944 24.3167

Ditto 95.7321 95.88010 91.1422 84.8673 78.5111 78.9722 26.5500 35.7833
FedSR-FT 85.0721 80.5706 91.9182 83.1364 57.5833 60.5778 37.9445 24.0167
FedPAC 97.3512 96.6012 95.7630 91.5024 82.9611 81.2167 63.7000 41.1444
FedCR 97.1765 96.3088 96.3318 93.0000 82.9161 82.7333 59.0556 42.9111

SimFAFL (Ours) 97.6824 97.0015 96.7400 92.8227 85.0722 84.2222 61.2111 46.1333

Ditto ( Li et al. (2021)), FedPAC ( Xu et al. (2023)) and FedCR ( Zhang et al. (2023)). Note, the
experimental settings on datasets and comparative methods are similar with settings in FedCR, for
convenient comparison.

Model architecture. All methods share the same model architecture per dataset - fully-connected
nets for EMNIST and CNNs for FMNIST, CIFAR10, CIFAR100 datasets. The CNN extractor has
two convolutional layer, two max-pooling layers and two fully-connected layers, while two fully-
connected layers correspondingly for EMNIST.

Hyperparameters. We use 100 clients with 0.1 participation per round. Constraint coefficients are
β1 = 0.0025, β2 = 0.1 for 10-class tasks (EMNIST, FMNIST and CIFAR10), and β1 = 0.003,
β2 = 0.2 for CIFAR-100.

5.2 COMPARISON TO STATE-OF-THE-ART METHODS

The performance of the proposed SimFAFL approach is benchmarked against state-of-the-art feder-
ated learning algorithms under two non-IID settings, as summarized in Table 2. The results demon-
strate that SimFAFL achieves the best or second-best performance across the evaluated datasets and
heterogeneity conditions. For instance, on the CIFAR-100 dataset under non-IID scenario 2, Sim-
FAFL attains an accuracy improvement of 3.2% compared to FedCR. These gains can be attributed
to the joint centroid and geometry alignment constraints employed in SimFAFL, which serve to
mitigate harmful client drift and improve generalization of localized learning.

As illustrated qualitatively in Figure 1, the proposed technique encourages more consistent feature
distributions across heterogeneous clients compared to unconstrained federated learning. SimFAFL
also induces more compact intra-class feature distributions while enlarging inter-class margins, fa-
cilitating the learning of clear decision boundaries. The convergence plots in Figure 2 further show-
case that SimFAFL provides faster convergence and maintains performance gains in later training
rounds, which we posit is due to the globally aggregated task parameters being updated continuously
throughout the training process.

Figure 2: Convergence curves of different methods. The images from left to right show the conver-
gence curves on CIFAR10 with non-IID1, CIFAR10 with non-IID2 and CIFAR100 with non-IID2.
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It should be noted that the results in Table 2 do not indicate the optimal accuracy, as the parameters
are set in a uniform manner (i.e., fixed settings of β1 = 0.0025 and β2 = 0.1 for the 10-class tasks
(EMNIST, FMNIST and CIFAR10) and β2 = 0.2 for CIFAR100). Thus, fine-tune mechanism can
help to capture better results. Note, the sensitivity analysis in Section 5.4 demonstrates opportunities
for further performance tuning through careful calibration of the regularization weights.

Nonetheless, under uniform settings, SimFAFL demonstrates state-of-the-art capabilities in mitigat-
ing non-IID drift.

5.3 ABLATION STUDIES

We performed ablation experiments with the two constraints proposed. Specifically, we implement
four types of conditions on different data cases, i.e., 1) training without any constraints, 2) training
with Lca for centroid alignment of feature distribution, 3) training with Lsa for shape alignment of
feature distribution and 4) training with Lca and Lsa. These four conditions correspond to rows 2
to 5 of Table 3, indicating that both Lca and Lsa have a positive effect on feature alignment. The
combination of two constraints has a better effect than the single constraint, which is reflected in
the fact the fourth condition 4) outperformes the other three conditions on each dataset, especially
on CIFAR100. In the ten-classification tasks (EMNIST, FMNIST and CIFAR10), the performance
gap between single constraint and the joint constraint is slight. The reason is that for simple tasks
(CIFAR10), the client drift of feature distributions is not as great as for complex tasks (CIFAR100).
Centroid alignment or distribution shape alignment is sufficient to solve the heterogeneity of data
distribution for simple tasks. While the CIFAR100 is more difficult, and most methods have not
achieved obvious performance on this case. The improvement of performance on CIFAR100 shows
that our approach is more advantageous in difficult cases.

Table 3: Average test accuracy (%) on ablation studies of the proposed constraints.

Method EMNIST FMNIST CIFAR10 CIFAR100
non-IID1 non-IID2 non-IID1 non-IID2 non-IID1 non-IID2 non-IID1 non-IID2

non-constraint 94.8389 94.9533 93.3728 90.9202 63.2619 68.3190 39.9522 29.7148
with Lca 96.1380 96.3144 96.0014 92.5024 84.4444 83.4911 57.3922 38.1615
with Lsa 96.2799 96.5000 95.1832 91.3411 82.2167 82.0900 56.6933 36.2740
SimFAFL 97.6824 97.0015 96.7400 92.8227 85.0722 84.2222 61.2111 46.1333

5.4 EXTENSION STUDIES ON HYPERPARAMETER ANALYSIS

We conduct extension studies for the influence of hyper-parameters β1 and β2 on each dataset with
two non-IID settings. Table 4 shows partial results with different hyper-parameters on CIFAR100
with non-IID2 setting. As β1 (β in FedCR) grow from 0.0001 to 0.008, accuracy of FedCR rises
from 40.81% to 42.91% and then down to 14.75%. While the accuracy of SimFAFL rises to 46.78%
and then remains above 45%. As β2 grows from 0 to 0.6, the accuracy stays between 44% and 47%.
β2 is fixed at 0.3 when β1 varies, and β1 is fixed at 0.003 when β2 varies. The results indicate that
the proposed constraint terms are less sensitive to the value of coefficient. The less sensitivity brings
greater robustness in practical. Another rule is reflected in Table 5-7, as β1 increases, β2 at optimal
performance also increases. That is, the simultaneous change of β1 and β2 in the same direction can
lead to better performance. After experiments on various data sets, the optimal parameters in each
case are determined. The best β1 is 0.0025 for CIFAR10/EMNIST, 0.002 for FMNIST and 0.003
for CIFAR100. The best β2 is 0.1 for FMNIST/CIFAR10, 0.2 for EMNIST and 0.3 for CIFAR100.

Table 4: Average test (%) accuracy on CIFAR100 (non-IID2) under varying weight β1 and β2.

Weight 0.0001 0.0005 0.001 0.0015 0.002 0.003 0.005 0.008
FedCR-β 40.81 40.14 42.91 41.07 39.74 35.10 21.89 14.75

SimFAFL-β1 39.17 41.95 44.79 45.27 46.04 46.78 46.59 45.96
Weight 0 0.05 0.1 0.2 0.3 0.4 0.5 0.6

SimFAFL-β2 44.79 45.02 45.50 46.13 46.78 46.66 46.33 46.80
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6 CONCLUSIONS

In this paper, we propose a simplified feature alignment for federated learning method called Sim-
FAFL, which decouples the constantly updated alignment constraints into more flexible restrictions
based on dual relaxations. The proposed SimFAFL approach confers benefits in terms of enhanced
task extensibility and reduced resource requirements for communication and computation. At the
same time, SimFAFL achieves state-of-the-art performance compared to existing federated learning
methods on benchmark datasets. Furthermore, we provide theoretical analysis into the convergence
and advantages of feature alignment techniques, and formally prove the efficacy of SimFAFL in
reducing loss divergence across heterogeneous clients. Overall, SimFAFL offers a lightweight and
effective framework for FAFL that does not require continuous alignment communications or re-
liance on task categorization. The dual relaxation constraints provide provable bounds on model
divergence while expanding model flexibility.
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APPENDIX A PROOFS OF THEORETICAL RESULTS

A.1 CONVERGENCE OF FEDPAC

Problem formulation. The local objective function of client i can be expressed as

L(ϕi, vi;xi, yi) = Ls(Fi(ϕi, vi;xi), y) + λ ∥ fi(ϕi;xi)− C̄ ∥2 (11)

where

C̄ =

m∑
i=1

qiCi (12)

qi =
| Di |∑m
i=1 | Di |

(13)

m∑
i=1

qi = 1 (14)

Ci =
1

| Di |
∑
Di

fi(ϕi;xi) (15)

The global loss function can be expressed as

Lg
t =

∑
i

piLs(ϕ̄, vi;xi, yi) + λLd(f(ϕ̄;x), C̄t) (16)

Assumptions 1. (Lipschitz Smooth). Each local objective function is L-Lipschitz smooth, which
means that the gradient of local objective function is L-Lipschitz continuous,

Li
s(w1)− Li

s(w2) ≤
〈
▽Li

s(w2), (w1 − w2)
〉
+

L

2
∥ w1 − w2 ∥22 (17)

Assumptions 2. (Convex). Each local objective function is µ-strongly convex,

Li
s(w1)− Li

s(w2) ≥
〈
▽Li

s(w2), (w1 − w2)
〉
+

µ

2
∥ w1 − w2 ∥22 (18)

Assumptions 3. (Unbiased Gradient and Bounded Variance). The stochastic gradient gi, t =
▽L(wt, ξt) is an unbiased estimator of the local gradient for each client. Suppose its expectation

Eξi∼Di
[gi, t] = ▽L(wi, t) (19)

and its variance is bounded by σ2:

E
[
∥ gi −▽Li(w) ∥2

]
≤ σ2 (20)

Assumptions 4. (Bounded Expectation of Euclidean norm of Stochastic Gradients). The expectation
of the stochastic gradient is bounded by G

E[∥ gi ∥2] ≤ G (21)

Assumptions 5. (Lipschitz Continuity). Each feature extractor is Lc-Lipschitz continuous, that is,

∥ fi(ϕi1)− fi(ϕi2) ∥2≤ Lc ∥ ϕi1− ϕi2 ∥2 (22)

Proof of Eq 4. The main difference between the objective function of FAFL and the normal FL is
that FAFL involves updating of C̄, which means the loss function changes during training process.
Let Assumption 1 hold and the loss function after round t+ 1 satisfies

Lg
t+1 ≤ L

2
∥ w̄t+1 − w∗

t ∥2 +λ ∥ C̄t+1 − C̄t ∥2 (23)

11
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where the λ term is due to the update of C̄. As mentioned in Li et al. (2019), the first term of the
upper bound satisfies

∥ w̄t+1 − w∗
t ∥22≤ (1− ηtµ) ∥ w̄t − w∗

t ∥22 +η2tB (24)

where B is a constant related to σ, G, L and the data distribution. Let Assumption 5 hold, The second
term in Eq 23 satisfies

∥ C̄t+1 − C̄t ∥2 ≤
∑
i

pi ∥ wi
t+1 − wi

t ∥2

≤
∑
i

pi(∥ wi
t+1 − w̄t ∥2 + ∥ w̄t − wi

t ∥2)

≤ 4η2t+1(E − 1)2G2 + 4η2t (E − 1)2G2

≤ 8η2t (E − 1)2G2

(25)

where E denotes the number of local steps. The above inequality is derived based on the Assumption
5 and theorem in Li et al. (2019) that ∥ wi

t+1 − w̄t ∥2≤ 4η2t+1(E − 1)2G2. The upper bound in
Eq 23 can be expressed as

L

2
△t+1 =

L

2
∥ w̄t+1 − w∗

t ∥2 +λ ∥ C̄t+1 − C̄t ∥2

≤ L

2
(1− ηtµ) ∥ w̄t − w∗

t ∥2 +
L

2
η2tB + 8η2t (E − 1)2G2λ

=
L

2
(1− ηtµ) ∥ w̄t − w∗

t ∥2 +
L

2
η2tH

≤ L

2
(1− ηtµ) ∥ w̄t − w∗

t ∥2 +
L

2
η2tH + λ(1− ηtµ) ∥ C̄t+1 − C̄t ∥2

=
L

2
△t +

L

2
η2tH

(26)

Thus, according to Eq 23 with Lg
t+1 < L

2△t+1 and △t+1 ≤ (1−ηtµ)△t+
L
2 η

2
tH , the convergence

of FAFL can be expressed as

Lg
t+1E [Lg

t − Lg∗] ≤ κ

γ + t
(
2H

µ
+

µ(γ + 1)

2
E ∥ w̄1 − w∗ ∥22) (27)

where κ denotes L
µ and γ > 0. This demonstrates that FAFL achieves a convergence rate of O( 1

T ).
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APPENDIX B ADDITIONAL EXPERIMENT RESULTS

B.1 EXTENSION EXPERIMENTS ON β1 AND β2

In the Tables 5-7, horizontal parameters represent the change of A, and vertical parameters represent
the change of B

Table 5: Average test (%) accuracy on CIFAR100 (non-IID1) under varying weight β1 and β2.

Weight 0.001 0.0015 0.002 0.0025 0.003
0.1 59.75 59.99 60.13 60.22 60.73
0.2 59.91 60.19 60.57 60.94 61.21
0.3 59.89 59.99 60.87 60.60 60.53
0.4 59.68 59.74 60.97 61.06 61.42

Table 6: Average test (%) accuracy on CIFAR10 (non-IID1) under varying weight β1 and β2.

Weight 0.001 0.0015 0.002 0.0025 0.003
0.0 84.44 84.51 84.83 84.79 84.74

0.1 84.72 84.82 84.83 85.07 85.04

0.2 84.57 84.74 84.87 84.86 84.87

Table 7: Average test (%) accuracy on CIFAR10 (non-IID2) under varying weight β1 and β2.

Weight 0.001 0.0015 0.002 0.0025 0.003
0.0 83.50 84.07 83.83 83.85 83.93

0.1 83.79 83.89 83.98 84.22 83.90

0.2 83.63 83.65 83.65 84.02 83.77

0.3 83.50 83.55 83.58 83.88 83.91
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