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ABSTRACT

We study the problem of model-free reinforcement learning, which is often solved following
the principle of Generalized Policy Iteration (GPI). While GPI is typically an interplay
between policy evaluation and policy improvement, most conventional model-free methods
with function approximation assume the independence of GPI steps, despite of the inherent
connections between them. In this paper, we present a method that attempts to eliminate
the inconsistency between policy evaluation step and policy improvement step, leading to a
conflict averse GPI solution with gradient-based functional approximation. Our method is
capital to balancing exploitation and exploration between policy-based and value-based
methods and is applicable to existing policy-based and value-based methods. We conduct
extensive experiments to study theoretical properties of our method and demonstrate the
effectiveness of our method on Atari 200M benchmark.

1 INTRODUCTION

Model-free reinforcement learning has made many impressive breakthroughs in a wide range of Markov
Decision Processes (MDP) (Vinyals et al., 2019; Pedersen, 2019; Badia et al., 2020). Overall, the methods
could be cast into two categories, value-based methods such as DQN (Mnih et al., 2015) and Rainbow (Hessel
et al., 2017), and policy-based methods such as TRPO (Schulman et al., 2015), PPO (Schulman et al., 2017)
and IMPALA (Espeholt et al., 2018).

Value-based methods learn state-action values and select the action according to their values. The main target
of value-based methods is to approximate the fixed point of the Bellman equation through the generalized
policy iteration (GPI) (Sutton & Barto, 2018), which generally consists of policy evaluation and policy
improvement. One characteristic of the value-based methods is that unless a more accurate state-action value
is estimated by iterations of the policy evaluation, the policy will not be improved. Previous works equip
value-based methods with many carefully designed structures to achieve more promising reward learning and
sample efficiency (Wang et al., 2016; Schaul et al., 2015; Kapturowski et al., 2018).

Policy-based methods learn a parameterized policy directly without consulting state-action values. One
characteristic of policy-based methods is that they incorporate a policy improvement phase in every training
step, while in contrast, the value-based methods only change the policy after the action corresponding to the
highest state-action values is changed. In principle, policy-based methods perform policy improvement more
frequently than value-based methods.

We notice that value-based and policy-based methods locate at the two extremes of GPI, where value-based
methods won’t improve the policy until a more accurate policy evaluation is achieved, while policy-based
methods improve the policy for every training step even when the policy evaluation hasn’t converged. To
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mitigate the defect of each, we pursuit a technique that is capable of balancing between the two extremes
flexibly. We first study the gradients between policy improvement and policy evaluation and notice that
they show a positive correlation statistically during the entire training process. To find out if there exists a
way that the gradients of the policy improvement and the policy evaluation are parallel, we propose CASA,
Critic AS an Actor, which satisfies a weaker compatible condition (Sutton et al., 1999) and enhances gradient
consistency between policy improvement and policy evaluation.

With further delving into the properties of CASA, we find CASA is an innovative combination of value-based
and policy-based methods. When the policy-based methods are equipped with CASA, the collapse to the
sub-optimal solution as the entropy goes to zero is prevented by the evaluation of the state-action values, which
encourages exploration. When the value-based methods are equipped with CASA, the policy improvement
via policy gradient is equivalent to the evaluation of the state-action values and a self-bootstrapped policy
improvement, which enhances exploitation.

To enable CASA for a large scale off-policy learning, we introduce Doubly-Robust Trace (DR-Trace), which
exploits doubly-robust estimator (Jiang & Li, 2016) and guarantees the synchronous convergence of the
state-action values and the state values.

Our main contributions are as follows:

(i) We present a novel method CASA which enhances gradient consistency between policy evaluation and
policy improvement and present extensive studies on the behavior of the gradients.

(ii) We demonstrate CASA could be freely applied to both policy-based and value-based algorithms with
motivating examples.

(iii) We present extensive empirical study on Atari benchmark , where our conflict averse algorithm brings
substantial improvements over the baseline methods.

2 PRELIMINARY

Consider an infinite-horizon MDP, defined by a tuple (S,A, p, r, γ), where S is the state space, A is the
action space, p : S × A × S → [0, 1] is the state transition probability function, r : S × A → R is the
reward function, and γ is the discounted factor. The policy is a mapping π : S ×A → [0, 1] which assigns a
distribution over the action space given a state.

The objective of reinforcement learning is to maximize the return, or cumulative discounted rewards,

maximize J = Etraj∼π

[∑
t

γtr(st, at)

]
, (1)

where traj = {s0, a0, r0, . . . } is a trajectory sampled by π with policy-environment interaction.

Value-based methods maximize J by estimating various type of value functions: the state value func-
tion is defined as V π(s) = Eπ [

∑
t γ

trt|s0 = s], the state-action value function is defined as Qπ(s, a) =
Eπ [

∑
t γ

trt|s0 = s, a0 = a]; the advantage function is defined as Aπ(s, a) = Qπ(s, a)− V π(s). The objec-
tive of maximizing the value functions in value-based methods can be improved through GPI until converging
to the optimal policy. For the approximated state-value function Qθ that estimates Qπ , the policy evaluation
is conducted by:

minimize Eπ[(Q
π(s, a)−Qθ(s, a))

2], (2)

where Qπ is estimated by various methods, e.g., λ-return (Sutton, 1988) and ReTrace (Munos et al., 2016).
The policy improvement is usually achieved by greedily selecting actions with the highest state-action values.
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π*, Q*

Q = Q π

π = pg(Q)
π, Q

Figure 1: The GPI process in our work. Un-
like (Sutton & Barto, 2018), we evaluate π
by Q instead of V , and we improve π using
policy gradient ascent (pg for brevity) instead
of greedy. The learning procedure is shown by
the black arrows, i.e., E → I → E → I · · · .

πθ, Qθ
Qθ = Qπ

π*, Q*
πθ = pg(Qθ)

Figure 2: GPI with function approximation. Due to the constraint
of approximated function space, the ideal policy iteration cannot be
actually achieved. The underlying process of GPI with function ap-
proximation can be regarded as doing policy improvement and policy
evaluation in an ideal space then being projected back into the approxi-
mated function space (Sutton & Barto, 2018; Ghosh et al., 2020).

Policy-based methods maximize J by optimizing some parameterized policy πθ according to the policy
gradient theorem (Sutton & Barto, 2018),

∇θJ = Eπ[Ψ(s, a)∇θ log πθ(a|s)]. (3)

The vanilla policy gradient uses Ψ =
∑∞

t=0 γ
trt. Actor-critic algorithms approximate Ψ(s, a) in the form of

baseline, e.g., IMPALA (Espeholt et al., 2018) adopts Ψ(s, a) = r + γV π̃(s′)− Vθ(s) and uses V-Trace to
estimate V π̃ .

3 METHODOLOGY

3.1 MOTIVATION

We use Vθ to estimate V π , Qθ to estimate Qπ and πθ to represent the policy, where θ represents all parameters
to be optimized. In this work, there is one backbone and two individual heads after the backbone. The
advantage function and the policy share one head, and state value function is the other head. Hence the
policy reuses all parameters of value functions except that temperature τ is only for the policy. We keep
τ static in this work. We use E to represent the policy evaluation, which gives the ascent direction of the
gradient by θ ← θ + ηEπ[(Q

π − Qθ)∇θQθ]. We use I to represent the policy improvement, which gives
θ ← θ + ηEπ[(Q

π − Vθ)∇θ log πθ].

Let’s recap the GPI process as shown in Figure 1. To get rid of the function approximation error, we first
assume the approximation function enjoys infinite capacity. We use < x, y > to denote the angle between two
vectors, where < x, y >= arccos( x·y

||x||·||y|| ) with arccos : [−1, 1]→ [0, π]. We define an important notion β,
which represents the angle between the gradient ascent directions of I and E, as follows,

β
def
= < Eπ[(Q

π −Qθ)∇θQθ], Eπ[(Q
π − Vθ)∇θ log πθ] > . (4)

When β = 0 i.e.cos(β) = 1, I and E become parallel to each other, which is the blue arrow in Figure 1, and
there is no conflict between the gradient ascent directions of I and E anymore. When β = π/2 i.e.cos(β) = 0,
I and E are perpendicular. When β = π i.e.cos(β) = −1, I and E are toward exactly opposite directions.

Next, we assume the representation capacity of the approximation function is limited. When the function
approximation is involved, i.e. Qπ is estimated by Qθ and π is approximated by πθ, from the view of
operators (Ghosh et al., 2020), each of I and E can be further decomposed into two operators, as shown
in Figure 2. One is to do the policy improvement and the policy evaluation, the other is to project into the
restricted function space. When β > 0, GPI with function approximation would involve two projection
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Figure 3: Return, χ,
cos(β) and entropy. PPO is
adjusted with two additional
versions to evaluate state-
action values. R2D2 uses a
surrogate policy to approx-
imate policy gradient. En-
tropy of R2D2 is entropy of
Boltzmann policy on state-
action values. Details are in
Appendix B.

operators in each iteration, which introduces inevitable approximation error. When β = 0, if the function
approximation error is not considered, we find that the gradient conflict between I and E would be totally
eliminated. If we consider the limitation of the approximation function, similar to the blue arrow in Figure 1,
one iteration (represented by two black arrows and two dotted arrows) can be united into one arrow and one
dotted arrow (not shown in Figure 2 but analogy to the blue arrow in Figure 1), where the gradient conflict is
eliminated and the two projection operators are reduced to one correspondingly.

As stated above, if β = 0 holds, we can expect that the gradient conflict between the policy improvement
and the policy evaluation is eliminated and the function approximation error could be reduced. However, β
is usually estimated by sampling with stochasticity. It’s difficult to let β = 0 by optimizing θ. Instead, we
consider another notion χ by removing step sizes and taking expectation outside, where the angle of each
state is fully controllable by θ.

χ
def
= Eπ[cos < ∇θQθ,∇θ log πθ >]. (5)

In fact, χ is highly correlated to compatible value function (Sutton et al., 1999), and Theorem 3 shows
that χ = 1 is the necessary condition for the compatible condition ∇θQθ = ∇θ log πθ, which is a weaker
compatible condition. More details about compatible value function are in Appendix A.

To further understand the behavior of β and χ, we track cos(β) and χ of two algorithms PPO and R2D2
as representatives for policy-based and value-based methods, respectively. We show an important fact in
Figure 3 that both χ and cos(β) are statistically positive for both original version and adjusted versions, which
means that arccos(χ) and β are likely to be less then π/2 with neural network approximated functions. The
aforementioned conceptual and empirical findings inspire us to raise the following question on GPI: whether
we can guarantee χ = 1, so that cos(β) is also closer to 1.

3.2 FORMULATION

Denote τ ∈ R+ to be a positive temperature and sg to be a stop gradient operator. CASA can estimate Vθ

and Aθ by any function parameterized by θ, where πθ and Qθ are derived as follows:
πθ(·|s) = softmax(Aθ(s, ·)/τ),

Āθ(s, a) = Aθ(s, a)−
∑
a′

sg(πθ(a
′|s))Aθ(s, a

′),

Qθ(s, a) = Āθ(s, a) + sg(Vθ(s)).

(6)

Note that there exist two sg operators in equation 6. The first sg operator is used for computing advantage
as Āθ = Aθ − Eπ[Aθ] = Aθ − sg(πθ) · Aθ, where the sg operator here guarantees the gradients between
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policy improvement and policy evaluation are parallel, which we elaborate later. Intuitively, this sg operator
also means that we keep πθ unchanged when evaluating the policy πθ. The second sg operator exists in
Qθ = Āθ + sg(Vθ). As (Chen & He, 2020) regards sg in siamese representation learning as a case of
EM-algorithm (Dempster et al., 1977), a similar interpretation exists here. Qθ = Āθ + sg(Vθ) decomposes
the estimation of Qθ into a two stage problem, where the first is to estimate the advantage of each action
without changing the expectation, the second is to estimate the expectation.

The equation 6 includes a straightforward refinement of dueling-DQN. We know dueling-DQN estimates Qπ

by Qθ = Aθ + Vθ, but it cannot guarantee Eπ[Aθ] = 0 i.e. Eπ[Qθ] = Vθ due to the function approximation
error. But if we estimate Qπ by Qθ = Aθ − Eπ[Aθ] + Vθ, it satisfies the necessary condition Eπ[Qθ] = Vθ

without loss of generality.

3.3 PATH CONSISTENCY BETWEEN POLICY EVALUATION AND POLICY IMPROVEMENT

For brevity, we omit θ and V,Q,A, π are all approximated functions. Denote the estimations of V and Q as
V π̃ and Qπ̃ respectively. For instance, one choice is to calculate V π̃ and Qπ̃ by V-Trace (Espeholt et al.,
2018) and ReTrace (Munos et al., 2016) respectively.

At training time, the policy evaluation is achieved by updating θ to minimize,

LV (θ) = Eπ[(V
π̃ − V )2], LQ(θ) = Eπ[(Q

π̃ −Q)2],

which gives the ascent direction of θ by:

∇θLV (θ) = Eπ

[
(V π̃ − V )∇θV

]
, ∇θLQ(θ) = Eπ

[
(Qπ̃ −Q)∇θQ

]
. (7)

And we make the policy improvement by policy gradient, which gives the ascent direction of θ by:

∇θJ (τ, θ) = Eπ

[
τ(Qπ̃ − V )∇θ log π

]
, (8)

where J (τ, θ) = τEπ[
∑

γtrt]. It takes an additional τ , which frees the scale of gradient from τ .

The final gradient ascent direction of θ is given by:

α1∇θLV + α2∇θLQ + α3∇θJ . (9)

With (V,Q, π) defined in equation 6, by Lemma E.1, we have,

∇θQ = (1− π)∇θA = τ∇θ log π. (10)

For brevity, denote the shared gradient path as g = (1− π)∇θA.

Plugging equation 10 into equation 7 equation 8, we have,

∇θLQ = Eπ

[
(Qπ̃ −Q)g

]
,∇θJ = Eπ

[
(Qπ̃ − V )g

]
. (11)

By equation 11, ∇θLQ and ∇θJ walk along the same vector direction of gradient path g for each state. By
equation 10, this is exactly the case χ = 1. Since all parameters to estimate Q and π are shared except for τ ,
we call it Critic AS an Actor.

If we make a subtraction between∇θLQ and ∇θJ , we have,

∇θJ = ∇θLQ + Eπ [(Q− V )g] . (12)

We know Eπ [(Q− V )g] is a self-bootstrapped policy gradient with function approximated Q. Recalling the
fact that the value-based methods improves the policy by greedily selecting actions according to Q, if we
apply∇θJ on θ, it additionally utilizes Q to do policy improvement. This is a more greedy usage of Q to
improve policy than its usual usage.
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If we exploit the structural information as (V,Q, π) defined by equation 6, by Lemma E.2,

Eπ [(Q− V )g] = τEπ [(Q− V )∇θ log π] = −τ2∇θH[π],

then we have,
∇θLQ = ∇θJ + τ2∇θH[π]. (13)

The equation 13 shows∇θLQ is a policy gradient with an entropy regularization. If we apply∇θLQ on θ for
policy-based methods, an entropy regularization works implicitly by α2∇θLQ in equation 9, which prevents
the policy collapse to a sub-optimal solution.

3.4 DR-TRACE AND OFF-POLICY TRAINING

DR-Trace V-Trace / ReTrace

δDR
t =rt + γV (st+1)−Q(st, at) δ

V /Q
t =rt + γV (st+1)/Q(st+1, at+1)− V (st)/Q(st, at)

V π̃ Eµ[Vt +
∑

k≥0 γ
kc[t:t+k−1]ρt+kδ

DR
t+k] Eµ[Vt +

∑
k≥0 γ

kc[t:t+k−1]ρt+kδ
V
t+k]

Qπ̃ Eµ[Qt +
∑

k≥0 γ
kc[t+1:t+k−1](1{k=0} + 1{k>0}ρt+k)δ

DR
t+k] Eµ[Qt +

∑
k≥0 γ

kc[t+1:t+k]δ
Q
t+k]

∇J Eµ[ρt(Q
π̃
t − Vt)∇ log π] Eµ[ρt(rt + V π̃

t+1 − Vt)∇ log π]

Table 1: Comparison between DR-Trace and V-Trace/ReTrace.

To enable off-policy training with behavior policy µ, one choice is to estimate V π̃ and Qπ̃ in equation 7
and equation 8 by V-Trace and ReTrace. As CASA estimates (V,Q, π), applying Doubly Robust (Jiang &
Li, 2016) is feasible and suitable. We propose DR-Trace and find the convergence rate and the fixed point
of DR-Trace are the same as V-Trace’s according to its convergence proof. For completeness, we provide
DR-Trace and its comparison with V-Trace/ReTrace in Table 1. More details are in Appendix D.

4 EXPERIMENTS

4.1 BASIC SETUP

We employ a Learner-Actor pipeline (Espeholt et al., 2018) for large-scale training. Motivation and ablation
experiments on PPO and R2D2 don’t use LSTM, only experiments on CASA+DR-Trace use LSTM (Schmid-
huber, 1997), which is for comparison with other algorithms. We use burn-in (Kapturowski et al., 2018) when
LSTM is used. All estimated values share the same backbone, which is followed by two fully connected
layers for each individual head. We use no intrinsic reward and no entropy regularization in any experiment.
We find that using life information can greatly increase the performance of some games. However, to be
general, we will not end the episode if life is lost. All hyperparameters are in Appendix F.

For brevity, we denote ∇LV = Eπ[(V
π − Vθ)∇Vθ], ∇LQ = Eπ[(Q

π −Qθ)∇Qθ] and ∇J = Eπ[(Q
π −

Vθ)∇ log πθ], where expectation is batch-wise average in our implementation. When we write < a, b > with
a, b ∈ {∇LV ,∇LQ,∇J}, we firstly calculate batch-wise averaged gradient of a and b, then we calculate
the angle in-between. When we write cos < ∇Q,∇ log π > or χ, we mean Eπ[cos < ∇θQθ,∇θ log πθ >],
which firstly calculates element-wise cosines and then takes batch-wise average. To avoid numerical problem,
we calculate x·y

||x||·||y|| by x·y
max(||x||,10−8)·max(||y||,10−8) .

4.2 APPLICATION OF CASA ON REPRESENTATIVE ALGORITHMS

CASA is applicable to existing algorithms. We take PPO and R2D2 for demonstration. The application
of CASA on PPO is straightforward. Applying CASA on R2D2 is impossible as either ϵ-greedy policy
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PPO PPO+CASA R2D2 R2D2+CASA

⇒
(V,A) = (Vθ, Aθ)

⇒
(V,A) = (Vθ, Aθ)

Func. (V, logit) = (Vθ, logitθ) π = softmax(A/τ) (V,A) = (Vθ, Aθ) π = softmax(A/τ)
Approx. π = softmax(logit) Ā = A− sg(π) ·A Q = A+ V Ā = A− sg(π) ·A

Q = Ā+ sg(V ) Q = Ā+ sg(V )

Gradient 0.5∇LV +∇J ⇒ 0.5∇LV +∇LQ +∇J ∇LQ ⇒ 0.5∇LV +∇LQ +∇J

Table 2: Examples of applying CASA on policy-based methods (PPO) and value-based methods (R2D2).

or argmaxQ policy breaks the gradient. This problem is the same as calculating the gradients of policy
improvement for value-based methods. We use a surrogate policy πsurrogate = softmax(A/τ), which is
discussed in Appendix B. Table 2 summarizes adjustments of function approximations and training gradients.

Since PPO+CASA and R2D2+CASA have the same function approximation, recalling the fact that value-
based methods improve the policy when a more accurate evaluation is achieved and policy-based methods
improve the policy for every step, we can balance the two flexibly with χ = 1 by α1, α2, α3 in equation 9.

In Figure 3, algorithms with CASA show much higher cos(β) and χ. PPO+CASA does more exploration
than the original PPO, as the entropy of π doesn’t easily drop to zero. R2D2+CASA tends to distinct the
state-action values, where we use the entropy of Q to measure how greedy the current state-action values are.

4.3 BEHAVIOR OF GRADIENTS ON DIFFERENT STRUCTURES

PPO+CASA Q = Aθ − sg(πθ) ·Aθ + sg(Vθ)

type 1 Q = Aθ − πθ ·Aθ + sg(Vθ)
type 2 Q = Aθ − sg(πθ) ·Aθ + Vθ

type 3 Q = Aθ + sg(Vθ)
type 4 Q = Aθ + Vθ

type 5 Q = Qθ

Table 3: Behavior of gradient on different types. Type 1&2 are
CASA-like structures, where type 1 removes sg of π and type 2
removes sg of Vθ . Type 3&4 are dueling-like structures, where type
3 adds sg to V for dueling-Q and type 4 is dueling-Q. Type 5 uses a
new head to estimate Qθ separately, which can be considered as an
auxiliary task to estimate Qπ .

Though we show that CASA satisfies ∇Q ∝ ∇ log π, which means χ = 1, it’s unknown if the structure of
CASA is unique. As Q = A−Eπ[A]+ sg(V ) is a direct refinement of dueling-DQN, we try several different
structures of PPO+CASA. All settings of estimating state-action values are shown in Table 3. We always use
0.5 · ∇LV +∇LQ +∇J as the training gradient. We present Breakout and Qbert in Figure 4.

For the sake of clarity, we group PPO+CASA and type 3 as sg-V group, type 2 and type 4 as no-sg-V
group. The sg-V group has higher χ and higher cos(β), which is closer to the compatible condition and the
consistency between two GPI steps, and no-sg-V group is always worst than its contrast in sg-V group.

PPO+CASA has χ = 1 and the highest cos(β). Type 1 has less returns than PPO+CASA. Hence, when
applying a CASA-like structure, stopping the gradient of π is always preferred.

Type 5 uses an individual head to estimate Qπ , which performs the worst. Hence, a well-designed CASA-like
or dueling-like structure is always preferred.

By scatter plot and box plot in Figure 4, χ and cos(β) are positive correlated depending on different structures.
This phenomenon answers part of the last question of Section 3.1: for these specific designed structures, χ
and cos(β) show positive correlation.

7



0 6 12 18 25 31 37 43 50
Millions of frames

0

100

200

300

400

500
Br

ea
ko

ut
 R

et
ur

n PPO+CASA
type 1
type 2
type 3
type 4
type 5

6 12 18 25 31 37 43 50
Millions of frames

0.0

0.2

0.4

0.6

0.8

1.0

6 12 18 25 31 37 43 50
Millions of frames

0.0

0.2

0.4

0.6

0.8

1.0

co
s 

<
L Q

,
J>

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

co
s 

<
L Q

,
J>

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

co
s 

<
L Q

,
J>

0 6 12 18 25 31 37 43 50
Millions of frames

0

2500

5000

7500

10000

12500

15000

Qb
er

t R
et

ur
n

PPO+CASA
type 1
type 2
type 3
type 4
type 5

6 12 18 25 31 37 43 50
Millions of frames

0.0

0.2

0.4

0.6

0.8

1.0

6 12 18 25 31 37 43 50
Millions of frames

0.0

0.2

0.4

0.6

0.8

1.0

co
s 

<
L Q

,
J>

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

co
s 

<
L Q

,
J>

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

co
s 

<
L Q

,
J>

Figure 4: The ablation results evaluated on Breakout (top row) and Qbert (bottom row). From left to right is
the return curve, χ, cos(β), scatter plot of (χ, cos(β)) and box plot of (χ, cos(β)). Each scatter point is one
batch sampled from every consecutive 100 batches. Each box is the interquartile range of scatter points.

4.4 EVALUATION OF CASA ON ATARI GAMES

We present an extensive evaluation on CASA, where we train CASA + DR-Trace on 57 Atari games and
report the results in terms of two metrics. The first is Human Normalized Score (HNS), which normalizes
the reward by random policy and human expert policies. The other is Standardized Atari BEnchmark for RL
(SABER), which normalizes the reward by random policy and human world records, where the normalized
score is capped by 200%. SABER is considered because recent studies show that the median HNS could
easily get hacked by the algorithm since it is sensitive to improvement on a small subset of games. Table 4
summarizes the results.

Mean HNS Median HNS Mean SABER Median SABER

Rainbow 873.97 230.99 28.39 4.92
IMPALA 957.34 191.82 29.45 4.31
LASER 1741.36 454.91 36.77 8.08
CASA 1941.08 246.36 36.10 10.29

Table 4: Evaluation scores for the methods on Atari benchmark presented in %.

Note that CASA is a variant of IMPALA with DR-Trace, and it achieves substantially better records than
IMPALA across all the evaluation metrics. It also scores substantially better than all the methods in terms
of mean HNS and median SABER scores. Though off-policy methods are known as privileged for HNS
evaluation due to replay, CASA outperforms strong off-policy baseline Rainbow. Though LASER outperforms
CASA in Median HNS and Mean SABER, CASA outperforms it in median SABER and mean HNS. Overall,
the aforementioned results demonstrate the conflict-averse strategy efficiently boosts the performance in large-
scale training scenarios and outperform strong on/off-policy algorithms. Hyperparameters and individual
games are presented in Appendix F and Appendix G, respectively.

5 RELATED WORKS

Both value-based or policy-based approaches comply with the principle of GPI, but two GPI steps are coarsely
related to each other such that jointly optimizing both functions might potentially bring conflicts. Despite of
such crucial issue in GPI with function approximation, most decent model-free algorithms adopt a standard
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policy improvement/evaluation regime without considering conflict diminishing properties. The issue of
reducing conflicts among multiple models trained simultaneously was considered in earlier machine learning
literature, such as for robust parameter estimation for multiple estimators under incomplete data (Robins &
Rotnitzky, 1995; Lunceford & Davidian, 2004; Kang & Schafer, 2007) and multitask learning with gradient
similarity measure (Chen et al., 2020; Yu et al., 2020; Javaloy & Valera, 2022).

When the idea is introduced to reinforcement learning, earliest attempts tackle conservative and safe policy
iteration problems (Kakade & Langford, 2002; Hazan & Kale, 2011; Pirotta et al., 2013). Recently, more
works have emerged to study GPI in a fine-grained manner. In (Ghosh et al., 2020), a new Bellman operator
is introduced which implements GPI with a policy improvement operator and a projection operator, where
the projection attempts to find the best approximation of policy among realizable policies. In (Raileanu &
Fergus, 2021), the policy and value updates are decoupled by approximating two networks with representation
regularization. In (Cobbe et al., 2021), GPI is separated into a policy improvement and a feature distillation
step. On contrast to the aforementioned works, we tackle the conflicts in GPI at the gradient-level, with
theoretical analysis. Our work is related to (Nachum et al., 2017), which utilizes both the unbiasedness
and stability of on-policy training and the data efficiency of off-policy training to form a soft consistency
error. Our work bridges the gap between the two GPI steps from an alternative angle of establishing a closer
relationship between policy and value functions in their forms, without the focus on off-policy correction.
Due to the difficulty of controlling the gap between GPI steps, we instead consider χ. The condition χ = 1 is
close to compatible value function (Sutton et al., 1999; Kakade, 2001), shown in Section 3.1 and Appendix A.

6 LIMITATION

It’s noticeable that CASA is only applied on discrete action space for now. We further find CASA applicable
to any function approximation that is able to estimate advantage functions of all actions. We provide additional
discussion on continuous action space in Appendix C.

Since π shares all parameters of value functions, it brings χ = 1 but sacrifices the freedom of π to be
parameterized by other parameters. We conjecture that CASA is one endpoint of a trade-off curve between χ
and the freedom of π, where the other endpoint is that π shares no parameter with value functions.

7 ETHICS AND REPRODUCIBILITY STATEMENT

This paper is aimed at academic issues in deep reinforcement learning, and the experiment used is also in
the early stage, but it may provide opportunities for malicious applications of reinforcement learning in the
future. We describe all details to reproduce the main experimental results in Appendix F.

8 CONCLUSION

This paper attempts to eliminate gradient inconsistency between policy improvement and policy evaluation.
The proposed innovative actor-critic design Critic AS an Actor (CASA) enhances consistency of two GPI
steps by satisfying a weaker compatible condition. We present both theoretical proof and empirical evaluation
for CASA. The results show that our proposed method achieves state-of-the-art performance standards with
noticeable performance gain over several strong baselines when evaluated on ALE 200 million (200M)
benchmark. We also present several ablation studies, which demonstrates the effectiveness of the proposed
method’s theoretical properties. Future work includes studying the connection between the compatible
condition and the gradient consistency between policy improvement and policy evalution.
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A COMPATIBLE VALUE FUNCTION

The original policy gradient with compatible value function is stated as follow.
Theorem 1 (Sutton et al. (1999)). Let Qw be a state-action function with parameter w and πθ be a policy
function with parameter θ. If Qw satisfies Eπ[(Q

π −Qw)∇wQw] = 0 and∇wQw = ∇θ log πθ, then

∇θJ = Eπ[Qw∇θ log πθ].

If we let w = θ in Theorem 1, where Qw and πθ share parameters, we have the following theorem.
Theorem 2. Let Qθ be a state-action function with parameter θ and πθ be a policy function with parameter
θ. If Qθ satisfies Eπ[(Q

π −Qθ)∇θQθ] = 0 and ∇θQθ = ∇θ log πθ, then

∇θJ = Eπ[Qθ∇θ log πθ].

Define
χ

def
= Eπ[cos < ∇θQθ,∇θ log πθ >].

We show that χ = 1 is the necessary condition for the compatible condition∇θQθ = ∇θ log πθ.
Theorem 3. i) If ∇θQθ ∝ ∇θ log πθ for all states, then χ = 1.

ii) If χ = 1, then ∇θQθ ∝ ∇θ log πθ for all states.

By Theorem 3, χ = 1 is equivalent to∇θQθ ∝ ∇θ log πθ, and∇θQθ ∝ ∇θ log πθ is the necessary condition
for ∇θQθ = ∇θ log πθ, hence χ = 1 is the necessary condition for∇θQθ = ∇θ log πθ.

Proof. i) Since∇θQθ ∝ ∇θ log πθ, we have < ∇θQθ,∇θ log πθ >= 0. By definition of χ, we have

χ = Eπ[cos < ∇θQθ,∇θ log πθ >] = Eπ[1] = 1.

ii) Since χ ≤ 1 and cos(x) is monotonic decreasing as x goes from 0 to π, the equality χ = 1 only holds
when all states satisfy cos < ∇θQθ,∇θ log πθ >= 0, which means ∇θQθ ∝ ∇θ log πθ.

13



B GRADIENTS BETWEEN POLICY IMPROVEMENT AND POLICY EVALUATION

Function Approximation Train Gradients Cosine of Interested Angles

PPO (V, logit) = (Vθ, logitθ) 0.5∇LV +∇J
π = softmax(logit)

PPO ver.1 (Q, logit) = (Qθ, logitθ), 0.5∇LV +∇J cos < ∇LQ,∇J >
π = softmax(logit) cos < ∇Q,∇ log π >
V = sg(π) ·Q

PPO ver.2 (Q, logit) = (Qθ, logitθ), 0.5∇LV +∇LQ +∇J cos < ∇LQ,∇J >
pi = softmax(logit) cos < ∇Q,∇ log π >

V = sg(π) ·Q
PPO+CASA (V,A) = (Vθ, Aθ), 0.5∇LV +∇LQ +∇J cos < ∇LQ,∇J >

π = softmax(A/τ), cos < ∇Q,∇ log π >
Ā = A− sg(π) ·A
Q = Ā+ sg(V )

Table 5: PPO is the original PPO. PPO ver.1 and PPO ver.2 are adapted versions to calculate ∇LQ.
PPO+CASA is applying CASA on PPO, which is described in Sec. 4.2.

Function Approximation Train Gradients Cosine of Interested Angles

R2D2 (V,A) = (Vθ, Aθ) ∇LQ cos < ∇LQ,∇J >
Q = A+ V

π = softmax(A/τ)

R2D2 ver.1 (V,A) = (Vθ, Aθ) 0.5∇LV +∇LQ cos < ∇LQ,∇J >
Q = A+ V

π = softmax(A/τ)

R2D2+CASA (V,A) = (Vθ, Aθ), 0.5∇LV +∇LQ +∇J cos < ∇LQ,∇J >
π = softmax(A/τ),
Ā = A− sg(π) ·A
Q = Ā+ sg(V )

Table 6: R2D2 is the original R2D2. R2D2 ver.1 is adapted version to include∇LV for training. R2D2+CASA
is applying CASA on R2D2, which is described in Sec. 4.2.

To understand the behavior of

β
def
= < Eπ[(Q

π −Qθ)∇θQθ], Eπ[(Q
π − Vθ)∇θ log πθ] >

and
χ

def
= Eπ[cos < ∇θQθ,∇θ log πθ >]

in reinforcement learning algorithms, we choose PPO as a representative for policy-based methods and R2D2
as a representative for value-based algorithms.

Define
LV (θ) = Eπ[(V

π − Vθ)
2], LQ(θ) = Eπ[(Q

π −Qθ)
2],

and
∇θJ (θ) = Eπ [(Q

π − Vθ)∇θ log π] .
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We usually have above three kinds of loss functions in reinforcement learning, which aim to estimate the state
values, state-action values and the policy. We do not talk about the estimations of V π and Qπ as they are
estimated as their usual way of PPO’s and R2D2’s. All hyperparameters are listed in Appendix F.

For brevity, we write

cos < ∇Q,∇ log π >= Eπ[cos < ∇θQθ,∇θ log πθ >],

and
cos < ∇LQ,∇J >= cos < Eπ[(Q

π −Qθ)∇θQθ], Eπ[(Q
π − Vθ)∇θ log πθ] >,

cos < ∇LV ,∇J >= cos < Eπ[(V
π − Vθ)∇θVθ], Eπ[(Q

π − Vθ)∇θ log πθ] >,

cos < ∇LV ,∇LQ >= cos < Eπ[(V
π − Vθ)∇θVθ], Eπ[(Q

π −Qθ)∇θQθ] > .

The fact that PPO only has∇θLV and∇θJ and R2D2 only has∇θLQ is the main difficulty to track cos(β)
and χ. To solve the problem, we adjust PPO and R2D2 with different versions.

For PPO, we displace the estimation of Vθ by sg(π) ·Qθ, where Qθ is estimated by function approximation
and Vθ is estimated by taking the expectation of Qθ. All versions of PPO are listed in Table 5.

For R2D2, we point out that though we apply ϵ-greedy to interact with environments, ϵ is only used for
exploration and the final target policy of value-based methods is simply argmaxQθ. Because argmaxQθ

breaks the gradient, we use a surrogate policy to approximate the gradient of policy improvement. Since
R2D2 uses dueling structure and softmax(Aθ/τ) = softmax(Qθ/τ)

τ→0+−→ argmaxQθ, we use πsurrogate =
softmax(Aθ/τ) to calculate the policy gradient. We only use πsurrogate on learner to calculate the gradient,
where the policy that interacts with environments is still ϵ-greedy. All versions of R2D2 are listed in Table 6.
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C ON DISCUSSING APPLICATION OF CASA ON CONTINUOUS ACTION SPACE

As we can see CASA is only applied to discrete action space in the main context, we make a discussion on
whether CASA is applicable on continuous action space. For brevity, we let τ = 1 and write equation 6 as:

π = softmax(A),

Ā = A− Eπ[A],

Q = Ā+ sg(V ).

(14)

The difficulty comes from estimating two quantities, one is softmax(A), the other is Eπ[A]. This comes from
the fact that discrete action space is countable so these two quantities are expressed in a closed-form, while
continuous action space is uncountable so an accurate estimation of these two quantities is intractable. We
can surely apply Monte Carlo methods to approximate, but a more elegant close-form expression may be
preferred. Then this becomes another problem: how to estimate (state-action values / advantages / policy
probabilities) of all actions in a continuous action space efficiently without loss of generality? This is another
representational design problem, which is out of scope of this paper, so we don’t touch much about it. But
with the hope of inspiring a better solution to this problem, we provide one practical way of applying CASA
on continuous action space based on kernel-based machine learning.

Let a0, . . . , ak to be basis actions in the action space. Let A(s, a0), . . . , A(s, ak) to be advantage functions
for tuples of states and basis actions. They can either share parameters or be isolated. Let K(·, ·) be a kernel
function defined on the product of two action spaces. For any a in the action space, we can estimate A(s, a)
by a decomposition such like

A(s, a) =
1

Za
(K(a0, a)A(s, a0) + · · ·+K(ak, a)A(s, ak)),

where Za =
∑k

i=0 K(ai, a) is a normalization constant.

Since K(·, a) is a closed-form function of a, and |{A(s, a0), . . . , A(s, ak)}| is finite, we can make a closed-
form expression of both softmax(A) and Eπ[A]. Then we can apply CASA directly on this expression, with
one function estimates V and the other function estimates advantages of all actions in a closed-form with
only state as input. The policy is defined directly by softmax of all advantages. In details, we define

π(s, a) = exp(A(s, a))/

∫
a

exp(A(s, a))da,

Ā(s, a) = A(s, a)−
∫
a

sg(π(s, a))A(s, a)da,

Q(s, a) = Ā(s, a) + sg(V (s)).

(15)

Then it satisfies the consistency of CASA on continuous action space.

∇ log π(s, a) = ∇A(s, a)−
∇
∫
a
exp(A(s, a))da∫

a
exp(A(s, a))da

= ∇A(s, a)−
∫
a
exp(A(s, a))∇A(s, a)da∫

a
exp(A(s, a))da

= ∇A(s, a)−
∫
a

exp(A(s, a))∫
a
exp(A(s, a))da

∇A(s, a)da

= ∇A(s, a)−
∫
a

π(s, a)∇A(s, a)da

= ∇Ā(s, a) = ∇Q(s, a).
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D DR-TRACE

As CASA estimates (V,Q, π), we would ask i) how to guarantee that π̃V Trace = π̃ReTrace, ii) how to
exploit (V,Q, π) to make a better estimation. Though we can apply V-Trace to estimate V and ReTrace to
estimate Q with proper hyperparameters to guarantee π̃V Trace = π̃ReTrace, it’s more reasonable to estimate
(V,Q) together. Inspired by Doubly Robust, which is shown to maximally reduce the variance, we introduce
DR-Trace, which estimates V by

V π̃
DR(st)

def
= Eµ[V (st) +

∑
k≥0

γkc[t:t+k−1]ρt+kδ
DR
t+k],

where µ is the behavior policy, δDR
t

def
= rt + γV (st+1) − Q(st, at) is one-step Doubly Robust error,

ρt
def
= min{πt

µt
, ρ̄} and ct

def
= min{πt

µt
, c̄} are clipped per-step importance sampling, c[t:t+k]

def
=

∏k
i=0 ct+i.

With one step Bellman equation, we estimate Q by

Qπ̃
DR(st, at)

def
= Est+1,rt∼p(·,·|st,at)[rt + γV π̃

DR(st+1)]

= Eµ[Q(st, at) +
∑
k≥0

γkc[t+1:t+k−1]ρ̃t,kδ
DR
t+k],

where ρ̃t,k = 1{k=0} + 1{k>0}ρt+k.
Theorem 4. Define Ā = A− Eπ[A], Q = Ā+ sg(V ),

T (Q)
def
= Eµ[Q(st, at) +

∑
k≥0

γkc[t+1:t+k−1]ρ̃t,kδ
DR
t+k],

S (V )
def
= Eµ[V (st) +

∑
k≥0

γkc[t:t+k−1]ρt,kδ
DR
t+k],

U (Q,V ) = (T (Q)− Eπ[Q] + S (V ),S (V )),

U (n)(Q,V ) = U (U (n−1)(Q,V )),

then U (n)(Q,V )→ (Qπ̃, V π̃) that corresponds to

π̃(a|s) = min {ρ̄µ(a|s), π(a|s)}∑
b∈A min {ρ̄µ(b|s), π(b|s)}

.

as n→ +∞.

Proof. See Appendix E, Theorem E.1.

Theorem 4 shows that DR-Trace is a contraction mapping and (V,Q) converges to (V π̃, Qπ̃) that corresponds
to

π̃(a|s) = min {ρ̄µ(a|s), π(a|s)}∑
b∈A min {ρ̄µ(b|s), π(b|s)}

.

According to our proof, DR-Trace should work similar to V-Trace and ReTrace, as the convergence rate and the
limitation are same. We compare DR-Trace with V-Trace+ReTrace in Figure 5, where we replace estimation
of state values by V-Trace and estimation of state-action values by ReTrace. We call V-Trace+ReTrace as
No-DR-Trace for brevity. No-DR-Trace performs better on Breakout and ChopperCommand, but fails to make
a breakthrough on Krull. Recalling the fact that Doubly Robust can maximally reduce the variance of Bellman
error, No-DR-Trace is less stable but also potential to achieve a better performance. A conclusion cannot be
made about No-DR-Trace, as this phenomenon means that No-DR-Trace is less stable than DR-Trace, but it
also holds the potential to achieve a better performance.
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Figure 5: Ablation study for w/wo DR-Trace on Breakout, ChopperCommand and Krull.

E PROOFS

Lemma E.1. (i) Define π = softmax(A/τ), then∇ log π = (1− π)∇A
τ . (ii) Denote sg to be stop gradient

and define Ā = A− Eπ[A], Q = Ā+ sg(V ), then ∇Q = (1− π)∇A.

Proof. As Q = Ā+ sg(V ) = A− sg(π) ·A+ sg(V ), it’s obvious that∇Q = (1− π)∇A.

For log π, it’s a standard derivative of cross entropy, so we have∇ log π = (1−π)∇(A/τ) = (1−π)∇A
τ .

Lemma E.2. Define Ā = A− Eπ[A], Q = Ā+ sg(V ), π = softmax(A/τ), then

Eπ [(Q− V )∇ log π] = −τ∇H[π].

Proof. Since

π = exp(A/τ)/Z, Z =

∫
A
exp(A/τ),

we have
A = τ log π + τ logZ.

Based on the observation that Eπ [f(s)∇ log π(·|s)] = 0, we have

Eπ [Eπ[A] · ∇ log π] = 0,

Eπ [logZ · ∇ log π] = 0.

On the one hand,

Eπ [(Q− V )∇ log π] = Eπ [A∇ log π]− Eπ [Eπ[A] · ∇ log π]

= τEπ [log π∇ log π] + τEπ [logZ · ∇ log π]

= τEπ [log π∇ log π] .
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On the other hand,

∇H[π] = −∇
∫
A
πi log πi

= −
∫
A
∇πi · log πi −

∫
A
πi∇ log πi

= −
∫
A
πi∇ log πi · log πi −

∫
A
πi
∇πi

πi

= −Eπ [log π∇ log π] .

Hence, Eπ [(Q− V )∇ log π] = −τ∇H[π].

Theorem E.1. Define Ā = A− Eπ[A], Q = Ā+ sg(V ). Define

T (Q)
def
= Eµ[Q(st, at) +

∑
k≥0

γkc[t+1:t+k−1]ρ̃t,kδ
DR
t+k],

S (V )
def
= Eµ[V (st) +

∑
k≥0

γkc[t:t+k−1]ρt,kδ
DR
t+k],

U (Q,V ) = (T (Q)− Eπ[Q] + S (V ),S (V )),

U (n)(Q,V ) = U (U (n−1)(Q,V )),

then U (n)(Q,V )→ (Qπ̃, V π̃) that corresponds to

π̃(a|s) = min {ρ̄µ(a|s), π(a|s)}∑
b∈A min {ρ̄µ(b|s), π(b|s)}

.

as n→ +∞.

Remark. T (Q)−Eπ[Q]+S (V ) is exactly how Q is updated at training time. Since Q = Ā+sg(V ), if we
apply gradient ascent on Q and V in directions∇LQ(θ) and∇LV (θ) respectively, change of Q comes from
two aspects. One comes from∇LQ(θ), which changes A, the other comes from∇LV (θ), which changes V .
Because the gradient of V is stopped when estimating Q, the latter is captured by "minus old baseline, add
new baseline", which is −Eπ[Q] + S (V ) in Theorem E.1.

Proof. Define

T̃ (Q) = −Eπ[Q] + T (Q),

Ũ (Q,V ) = (T̃ (Q),S (V )),

Ũ (n)(Q,V ) = Ũ (Ũ (n−1)(Q,V )).

By Lemma E.3, T̃ (n)(Q) converges to some A∗ as n→∞. This process will not influence the estimation of
V as the gradient of V is stopped when estimating Q. According to the proof, A∗ does not depend on V .
By Lemma E.4, S (n)(V ) converges to some V ∗ as n→∞.
Hence, we have

Ũ (n)(Q,V )→ (A∗, V ∗) as n→ +∞.

By definition,

U (Q,V ) = (T̃ (Q) + S (V ),S (V )),
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we can regard T̃ (Q) + S (V ) as Q and regard S (V ) as V , then

U (2)(Q,V ) = U (T̃ (Q) + S (V ),S (V ))

= (T (T̃ (Q) + S (V ))−S (V ) + S (2)(V ),S (2)(V ))

= (T̃ (2)(Q) + S (2)(V ),S (2)(V )).

By induction,
U (n)(Q,V ) = (T̃ (n)(Q) + S (n)(V ),S (n)(V ))

→ (A∗ + V ∗, V ∗) as n→ +∞.

Same as (Espeholt et al., 2018),

π̃(a|s) = min {ρ̄µ(a|s), π(a|s)}∑
b∈A min {ρ̄µ(b|s), π(b|s)}

.

is the policy s.t. the Bellman equation holds, which is

Eµ[ρt(rt + γVt+1 − Vt)|Ft] = 0,

and U (Qπ̃, V π̃) = (Qπ̃, V π̃).
So we have (A∗ + V ∗, V ∗) = (Qπ̃, V π̃).

Lemma E.3. Define Ā = A− Eπ[A], Q = Ā+ sg(V ), then operator

T (Q)
def
= Eµ[Q(st, at) +

∑
k≥0

γkc[t+1:t+k−1]ρ̃t,kδ
DR
t+k]

is a contraction mapping w.r.t. Q.

Remark. Note that T (Q) is exactly equation D.

Since Q = A + sg(V ), the gradient of V is stopped when estimating Q, updating Q will not change V ,
which is equivalent to updating A. Without loss of generality, we assume V is fixed as V ∗ in the proof.

Proof. Ā = A − Eπ[A] shows Eπ[Ā] = 0, which guarantees that no matter how we update A, we always
have Eπ[Q] = V ∗.

Based on above observations, define

T̃ (Q)
def
= −Eπ[Q] + T (Q).

It’s obvious that we only need to prove T̃ (Q) is a contraction mapping.

For brevity, we denote
Qt = Q(st, at), At = A(st, at), V

∗
t = V ∗(st).

Noticing that ρ̃t,0 = 1, let F represent filtration, we can rewrite T̃ as

T̃ (Q) = Eµ[At +
∑
k≥0

γkc[t+1:t+k−1]ρ̃t,kδ
DR
t+k]

= Eµ[−V ∗
t +

∑
k≥0

γkc[t+1:t+k−1]ρ̃t,krt+k +
∑
k≥0

γk+1c[t+1:t+k−1]∆k],
(16)
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where
∆k = Eµ

[
ρ̃t,kV

∗
t+k+1 − ct+kρ̃t,k+1Qt+k+1|Ft+k

]
. (17)

By definition of Q,
Eµ[V

∗
t+k+1|Ft+k] = Eµ[Eπ[Qt+k+1|Ft+k+1]|Ft+k],

we can rewrite equation 17 as

∆k = Eµ[(ρ̃t,k
πt+k+1

µt+k+1
− ct+kρ̃t,k+1)Qt+k+1|Ft+k]. (18)

For any Q1 = A1 + sg(V ∗), Q2 = A2 + sg(V ∗), since

Eµ[(ρ̃t,k
πt+k+1

µt+k+1
− ct+kρ̃t,k+1)|Ft+k] ≥ 0,

by equation 16 equation 18, we have

||T̃ (Q1)− T̃ (Q2)|| ≤ C||Q1 −Q2||,

where
C = Eµ[

∑
k≥0

γk+1c[t+1:t+k−1](ρ̃t,k
πt+k+1

µt+k+1
− ct+kρ̃t,k+1)]

= Eµ[1− 1 +
∑
k≥0

γk+1c[t+1:t+k−1] (ρ̃t,k − ct+kρ̃t,k+1)]

= 1− (1− γ)Eµ[
∑
k≥0

γkc[t+1:t+k−1]ρ̃t,k]

≤ 1− (1− γ) < 1.

Hence, T̃ (Q) is a contraction mapping and converges to some fixed function, which we denote as A∗. So
T (Q) is also a contraction mapping and converges to A∗ + V ∗.

Lemma E.4. Define Q = A+ sg(V ) with Eπ[A] = 0, then operator

S (V )
def
= Eµ[V (st) +

∑
k≥0

γkc[t:t+k−1]ρt,kδ
DR
t+k]

is a contraction mapping w.r.t. V .

Remark. Note that S (V ) is exactly equation D.

Proof. Same as Lemma E.3, we can get

∆k = Eµ

[
(ρt+k − ct+kρt+k+1)Vt+k+1 − ct+kρt+k+1A

∗
t+k+1|Ft+k

]
,

so we have
∆1

k −∆2
k = Eµ

[
(ρt+k − ct+kρt+k+1) · (V 1

t+k+1 − V 2
t+k+1)|Ft+k

]
.

The remaining proof is identical to (Espeholt et al., 2018)’s.
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F HYPERPARAMETERS

Our python packages are shown in Table 7.

Package Version
ale-py 0.6.0.dev20200207
gym 0.19.0
tensorflow 1.15.2
opencv-python 4.1.2.30
opencv-contrib-python 4.4.0.46

Table 7: Versions for python packages among all experiments.

All experiments follow the shared hyperparameters as in Table 8. The specific hyperparameters for PPO,
R2D2 and CASA+DR-Trace are shown in Table 9, Table 10 and Table 11. The only exceptions are V -loss
scaling, Q-loss scaling and π-loss scaling, which may be zero depending on some specific ablation settings.
We will state these three hyperparameters every time in all experiments.

Parameter Value
Atari Version NoFrameskip-v4
Atari Wrapper gym.wrappers.atari_preprocessing
Image Size (84, 84)
Grayscale Yes
Num. Action Repeats 4
Num. Frame Stacks 4
Action Space Full
End of Episode When Life Lost No
Num. Environments 160
Random No-ops 30
Burn-in Stored Recurrent State Yes
Bootstrap Yes
Optimizer Adam Weight Decay
Weight Decay Rate 0.01
Weight Decay Schedule Anneal linearly to 0
Learning Rate 5e-4
Warmup Steps 4000
Learning Rate Schedule Anneal linearly to 0
AdamW β1 0.9
AdamW β2 0.98
AdamW ϵ 1e-6
AdamW Clip Norm 50.0
Learner Push Model Every n Steps 25
Actor Pull Model Every n Steps 64

Table 8: Configurations for shared hyperparameters among all experiments.
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Parameter Value
Num. States 50M
Sample Reuse 1
Reward Shape clip(r, 0, 1)
Burn-in 0
Seq-length 40
Discount (γ) 0.995
Batch size 8
Backbone IMPALA,shallow without LSTM
PPO clip ϵ 0.2
GAE λ 0.8
Temperature (τ ) 0.1

Table 9: Hyperparameter configurations for PPO.

Parameter Value
Num. States 50M
Sample Reuse 2
Target Shape Qπ̃

t = h(
∑n−1

i=0 γirt+i + γnh−1(Double(Qt+n)))

Target Shape Function h h(x) = sign(x) · (
√
|x|+ 1− 1) + 10−3x

Bootstrap Length n 5
ϵ-greedy ϵ ∼ 0.4uniform(1,8)

PER Sample Temperature α 0.9
PER Buffer Size 400000
Burn-in 0
Seq-length 40
Discount (γ) 0.997
Batch size 8
Backbone IMPALA,shallow without LSTM
Temperature (τ ) 0.1

Table 10: Hyperparameter configurations for R2D2.

Parameter Value
Num. States 200M
Sample Reuse 2
Reward Shape log(|r|+ 1.0) · (2 · 1{r≥0} − 1{r<0})
Burn-in 40
Seq-length 80
Discount (γ) 0.997
Batch size 64
Backbone IMPALA,deep
LSTM Units 256
V -loss Scaling (α1) 1.0
Q-loss Scaling (α2) 10.0
π-loss Scaling (α3) 10.0
Temperature (τ ) 1.0
Importance Sampling Clip c̄ 1.05
Importance Sampling Clip ρ̄ 1.05

Table 11: Hyperparameter configurations for CASA + DR-Trace.
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G EVALUATION OF CASA ON ATARI GAMES

Random scores and average human’s scores are from (Badia et al., 2020). Human World Records (HWR) are
from (Toromanoff et al., 2019). Rainbow’s scores are from (Hessel et al., 2017). IMPALA’s scores are from
(Espeholt et al., 2018). LASER’s scores are from (Schmitt et al., 2020), no sweep at 200M.

Games RND HUMAN RAINBOW HNS(%) IMPALA HNS(%) LASER HNS(%) CASA HNS(%)

Scale 200M 200M 200M 200M

alien 227.8 7127.8 9491.7 134.26 15962.1 228.03 35565.9 512.15 26137 375.50
amidar 5.8 1719.5 5131.2 299.08 1554.79 90.39 1829.2 106.4 560 32.34
assault 222.4 742 14198.5 2689.78 19148.47 3642.43 21560.4 4106.62 16228 3080.37
asterix 210 8503.3 428200 5160.67 300732 3623.67 240090 2892.46 213580 2572.80

asteroids 719 47388.7 2712.8 4.27 108590.05 231.14 213025 454.91 80339 170.60
atlantis 12850 29028.1 826660 5030.32 849967.5 5174.39 841200 5120.19 3211600 19772.10

bank heist 14.2 753.1 1358 181.86 1223.15 163.61 569.4 75.14 895.3 119.24
battle zone 236 37187.5 62010 167.18 20885 55.88 64953.3 175.14 91269 246.36
beam rider 363.9 16926.5 16850.2 99.54 32463.47 193.81 90881.6 546.52 57456 344.70

berzerk 123.7 2630.4 2545.6 96.62 1852.7 68.98 25579.5 1015.51 1648 60.81
bowling 23.1 160.7 30 5.01 59.92 26.76 48.3 18.31 162.4 101.24
boxing 0.1 12.1 99.6 829.17 99.96 832.17 100 832.5 98.3 818.33

breakout 1.7 30.5 417.5 1443.75 787.34 2727.92 747.9 2590.97 624.3 2161.81
centipede 2090.9 12017 8167.3 61.22 11049.75 90.26 292792 2928.65 102600 1012.57

chopper command 811 7387.8 16654 240.89 28255 417.29 761699 11569.27 616690 9364.42
crazy climber 10780.5 36829.4 168788.5 630.80 136950 503.69 167820 626.93 161250 600.70

defender 2874.5 18688.9 55105 330.27 185203 1152.93 336953 2112.50 421600 2647.75
demon attack 152.1 1971 111185 6104.40 132826.98 7294.24 133530 7332.89 291590 16022.76
double dunk -18.6 -16.4 -0.3 831.82 -0.33 830.45 14 1481.82 20.25 1765.91

enduro 0 860.5 2125.9 247.05 0 0.00 0 0.00 10019 1164.32
fishing derby -91.7 -38.8 31.3 232.51 44.85 258.13 45.2 258.79 53.24 273.99

freeway 0 29.6 34 114.86 0 0.00 0 0.00 3.46 11.69
frostbite 65.2 4334.7 9590.5 223.10 317.75 5.92 5083.5 117.54 1583 35.55
gopher 257.6 2412.5 70354.6 3252.91 66782.3 3087.14 114820.7 5316.40 188680 8743.90
gravitar 173 3351.4 1419.3 39.21 359.5 5.87 1106.2 29.36 4311 130.19

hero 1027 30826.4 55887.4 184.10 33730.55 109.75 31628.7 102.69 24236 77.88
ice hockey -11.2 0.9 1.1 101.65 3.48 121.32 17.4 236.36 1.56 105.45
jamesbond 29 302.8 19809 72.24 601.5 209.09 37999.8 13868.08 12468 4543.10
kangaroo 52 3035 14637.5 488.05 1632 52.97 14308 477.91 5399 179.25

krull 1598 2665.5 8741.5 669.18 8147.4 613.53 9387.5 729.70 64347 5878.13
kung fu master 258.5 22736.3 52181 230.99 43375.5 191.82 607443 2701.26 124630.1 553.31

montezuma revenge 0 4753.3 384 8.08 0 0.00 0.3 0.01 2488.4 52.35
ms pacman 307.3 6951.6 5380.4 76.35 7342.32 105.88 6565.5 94.19 7579 109.44

name this game 2292.3 8049 13136 188.37 21537.2 334.30 26219.5 415.64 32098 517.76
phoenix 761.5 7242.6 108529 1662.80 210996.45 3243.82 519304 8000.84 498590 7681.23
pitfall -229.4 6463.7 0 3.43 -1.66 3.40 -0.6 3.42 -17.8 3.16
pong -20.7 14.6 20.9 117.85 20.98 118.07 21 118.13 20.39 116.40

private eye 24.9 69571.3 4234 6.05 98.5 0.11 96.3 0.10 134.1 0.16
qbert 163.9 13455.0 33817.5 253.20 351200.12 2641.14 21449.6 160.15 27371 204.70

riverraid 1338.5 17118.0 22920.8 136.77 29608.05 179.15 40362.7 247.31 11182 62.38
road runner 11.5 7845 62041 791.85 57121 729.04 45289 578.00 251360 3208.64

robotank 2.2 11.9 61.4 610.31 12.96 110.93 62.1 617.53 10.44 84.95
seaquest 68.4 42054.7 15898.9 37.70 1753.2 4.01 2890.3 6.72 11862 28.09
skiing -17098 -4336.9 -12957.8 32.44 -10180.38 54.21 -29968.4 -100.86 -12730 34.23
solaris 1236.3 12326.7 3560.3 20.96 2365 10.18 2273.5 9.35 2319 9.76

space invaders 148 1668.7 18789 1225.82 43595.78 2857.09 51037.4 3346.45 3031 189.58
star gunner 664 10250 127029 1318.22 200625 2085.97 321528 3347.21 337150 3510.18
surround -10 6.5 9.7 119.39 7.56 106.42 8.4 111.52 -10 0.00

tennis -23.8 -8.3 0 153.55 0.55 157.10 12.2 232.26 -21.05 17.74
time pilot 3568 5229.2 12926 563.36 48481.5 2703.84 105316 6125.34 84341 4862.62
tutankham 11.4 167.6 241 146.99 292.11 179.71 278.9 171.25 381 236.62
up n down 533.4 11693.2 125755 1122.08 332546.75 2975.08 345727 3093.19 416020 3723.06

venture 0 1187.5 5.5 0.46 0 0.00 0 0.00 0 0.00
video pinball 0 17667.9 533936.5 3022.07 572898.27 3242.59 511835 2896.98 297920 1686.22
wizard of wor 563.5 4756.5 17862.5 412.57 9157.5 204.96 29059.3 679.60 26008 606.83
yars revenge 3092.9 54576.9 102557 193.19 84231.14 157.60 166292.3 316.99 118730 224.61

zaxxon 32.5 9173.3 22209.5 242.62 32935.5 359.96 41118 449.47 46070.8 503.66
MEAN HNS(%) 0.00 100.00 873.97 957.34 1741.36 1941.08

MEDIAN HNS(%) 0.00 100.00 230.99 191.82 454.91 246.36
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Games RND HWR RAINBOW SABER(%) IMPALA SABER(%) LASER SABER(%) CASA SABER(%)

Scale 200M 200M 200M 200M

alien 227.8 251916 9491.7 3.68 15962.1 6.25 976.51 14.04 26137 10.29
amidar 5.8 104159 5131.2 4.92 1554.79 1.49 1829.2 1.75 560 0.53
assault 222.4 8647 14198.5 165.90 19148.47 200.00 21560.4 200.00 16228 189.99
asterix 210 1000000 428200 42.81 300732 30.06 240090 23.99 213580 21.34

asteroids 719 10506650 2712.8 0.02 108590.05 1.03 213025 2.02 80339 0.76
atlantis 12850 10604840 826660 7.68 849967.5 7.90 841200 7.82 3211600 30.20

bank heist 14.2 82058 1358 1.64 1223.15 1.47 569.4 0.68 895.3 1.07
battle zone 236 801000 62010 7.71 20885 2.58 64953.3 8.08 91269 11.37
beam rider 363.9 999999 16850.2 1.65 32463.47 3.21 90881.6 9.06 57456 5.71

berzerk 123.7 1057940 2545.6 0.23 1852.7 0.16 25579.5 2.41 1648 0.14
bowling 23.1 300 30 2.49 59.92 13.30 48.3 9.10 162.4 50.31
boxing 0.1 100 99.6 99.60 99.96 99.96 100 100.00 98.3 98.3

breakout 1.7 864 417.5 48.22 787.34 91.11 747.9 86.54 624.3 72.20
centipede 2090.9 1301709 8167.3 0.47 11049.75 0.69 292792 22.37 102600 7.73

chopper command 811 999999 16654 1.59 28255 2.75 761699 76.15 616690 61.64
crazy climber 10780.5 219900 168788.5 75.56 136950 60.33 167820 75.10 161250 71.95

defender 2874.5 6010500 55105 0.87 185203 3.03 336953 5.56 421600 6.97
demon attack 152.1 1556345 111185 7.13 132826.98 8.53 133530 8.57 291590 18.73
double dunk -18.6 21 -0.3 46.21 -0.33 46.14 14 82.32 20.25 98.11

enduro 0 9500 2125.9 22.38 0 0.00 0 0.00 10019 105.46
fishing derby -91.7 71 31.3 75.60 44.85 83.93 45.2 84.14 53.24 89.08

freeway 0 38 34 89.47 0 0.00 0 0.00 3.46 9.11
frostbite 65.2 454830 9590.5 2.09 317.75 0.06 5083.5 1.10 1583 0.33
gopher 257.6 355040 70354.6 19.76 66782.3 18.75 114820.7 32.29 188680 53.11
gravitar 173 162850 1419.3 0.77 359.5 0.11 1106.2 0.57 4311 2.54

hero 1027 1000000 55887.4 5.49 33730.55 3.27 31628.7 3.06 24236 2.32
ice hockey -11.2 36 1.1 26.06 3.48 31.10 17.4 60.59 1.56 27.03
jamesbond 29 45550 19809 43.45 601.5 1.26 37999.8 83.41 12468 27.33
kangaroo 52 1424600 14637.5 1.02 1632 0.11 14308 1.00 5399 0.38

krull 1598 104100 8741.5 6.97 8147.4 6.39 9387.5 7.60 64347 61.22
kung fu master 258.5 1000000 52181 5.19 43375.5 4.31 607443 60.73 124630.1 12.44

montezuma revenge 0 1219200 384 0.03 0 0.00 0.3 0.00 2488.4 0.20
ms pacman 307.3 290090 5380.4 1.75 7342.32 2.43 6565.5 2.16 7579 2.51

name this game 2292.3 25220 13136 47.30 21537.2 83.94 26219.5 104.36 32098 130.00
phoenix 761.5 4014440 108529 2.69 210996.45 5.24 519304 12.92 498590 12.40
pitfall -229.4 114000 0 0.20 -1.66 0.20 -0.6 0.20 -17.8 0.19
pong -20.7 21 20.9 99.76 20.98 99.95 21 100.00 20.39 98.54

private eye 24.9 101800 4234 4.14 98.5 0.07 96.3 0.07 134.1 0.11
qbert 163.9 2400000 33817.5 1.40 351200.12 14.63 21449.6 0.89 27371 1.13

riverraid 1338.5 1000000 22920.8 2.16 29608.05 2.83 40362.7 3.91 11182 0.99
road runner 11.5 2038100 62041 3.04 57121 2.80 45289 2.22 251360 12.33

robotank 2.2 76 61.4 80.22 12.96 14.58 62.1 81.17 10.44 11.17
seaquest 68.4 999999 15898.9 1.58 1753.2 0.17 2890.3 0.28 11862 1.18
skiing -17098 -3272 -12957.8 29.95 -10180.38 50.03 -29968.4 -93.09 -12730 31.59
solaris 1236.3 111420 3560.3 2.11 2365 1.02 2273.5 0.94 2319 0.98

space invaders 148 621535 18789 3.00 43595.78 6.99 51037.4 8.19 3031 0.46
star gunner 664 77400 127029 164.67 200625 200.00 321528 200.00 337150 200.00
surround -10 9.6 9.7 100.51 7.56 89.59 8.4 93.88 -10 0.00

tennis -23.8 21 0 53.13 0.55 54.35 12.2 80.36 -21.05 6.14
time pilot 3568 65300 12926 15.16 48481.5 72.76 105316 164.82 84341 130.84
tutankham 11.4 5384 241 4.27 292.11 5.22 278.9 4.98 381 6.88
up n down 533.4 82840 125755 152.14 332546.75 200.00 345727 200.00 416020 200.00

venture 0 38900 5.5 0.01 0 0.00 0 0.00 0 0.00
video pinball 0 89218328 533936.5 0.60 572898.27 0.64 511835 0.57 297920 0.33
wizard of wor 563.5 395300 17862.5 4.38 9157.5 2.18 29059.3 7.22 26008 6.45
yars revenge 3092.9 15000105 102557 0.66 84231.14 0.54 166292.3 1.09 118730 0.77

zaxxon 32.5 83700 22209.5 26.51 32935.5 39.33 41118 49.11 46070.8 55.03
MEAN SABER(%) 0.00 100.00 28.39 29.45 36.78 36.10

MEDIAN SABER(%) 0.00 100.00 4.92 4.31 8.08 10.29
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