
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FROM MODEL FUSION TO LAYER FUSION: A WEIGHT
PERSPECTIVE

Anonymous authors
Paper under double-blind review

ABSTRACT

Although large language models (LLMs) have demonstrated remarkable perfor-
mance in natural language processing tasks, their massive parameter counts and
high inference costs severely limit practical applications. Existing lightweight
approaches, such as quantization, knowledge distillation, and pruning, often suffer
from significant performance degradation, heavy reliance on fine-tuning, or in-
sufficient hardware support. In recent years, layer pruning has gained attention
as a structurally friendly compression strategy. However, existing methods still
struggle to adequately preserve the functional information within removed
layers and typically require complex post-processing. To address these issues,
we propose a novel Layer Fusion (LF) framework, which compresses models by
fusing functional weights across multiple Transformer layers with no fine-tuning
required and without extensive data requirements. The LF framework consists
of five core modules: identifying layer features, determining fusion targets, ex-
tracting residual weights, balancing parameter importance, and generating com-
posite weights through fusion. This approach requires only a small amount of
probe data and facilitates efficient hardware inference. Experiments demon-
strate that LF significantly outperforms mainstream model compression tech-
niques across multiple benchmarks and model architectures, achieving a superior
performance-size trade-off with lower computational overhead. Moreover, LF ex-
hibits strong scalability and compatibility, offering a new direction for model
compression research. Our code has been released on the anonymous github.

1 INTRODUCTION

Traditional LLM (large language model) compression methods primarily include quantization Zhou
et al. (2024), knowledge distillation Gou et al. (2021), and pruning Liu et al. (2018). Quantization
reduces the numerical precision during inference (e.g., converting 32-bit floating-point numbers to
16-bit) to compress the model. Empirical results show that this method has a minimal impact on per-
formance within certain accuracy ranges and can be easily combined with other compression tech-
niques Egashira et al. (2024). Knowledge distillation utilizes a larger, more powerful teacher model
to generate high-quality annotations for training a lightweight student model, aiming to approximate
the performance of the original model. However, this approach typically demands substantial com-
putational resources and training time, posing practical barriers Cho & Hariharan (2019). Pruning
can be categorized into unstructured and structured pruning: unstructured pruning Liao et al. (2023);
Bowen et al. (2024) identifies redundant weights through importance evaluation (e.g., magnitude or
Taylor expansion estimates) and sets them to zero, but the resulting sparse matrices are often diffi-
cult to accelerate efficiently on hardware; structured pruning Fang et al. (2023) alleviates this issue
to some extent by removing entire rows or columns of weights, yet it often leads to irregular model
architectures, limiting flexible deployment.

Recently, a new compression method—layer pruning—has garnered increasing attention. Based
on the assumption of redundancy among Transformer layers Gromov et al. (2024), this approach
directly removes certain layers while striving to preserve model performance. Since removing entire
layers does not alter the computational graph structure, it naturally supports hardware acceleration
and exhibits considerable application potential. Existing studies can be divided into two categories:
one directly identifies and eliminates redundant layers Song et al. (2024) Men et al. (2024), while
the other involves fine-tuning after pruning to recover performance Kim et al. (2024) Gromov et al.

1

https://anonymous.4open.science/r/LayerFusion-2BC1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Our layer fusion approach differs from traditional pruning.

(2024) Chen et al. (2024). However, directly removing layers often results in significant performance
degradation, and fine-tuning requires extensive data and training resources. Although some studies
have attempted to reduce fine-tuning costs Chen et al. (2024), they still necessitate tens of thousands
of data samples, limiting practical applicability. Notably, these methods generally overlook the
underutilized functional information within the pruned layers.

To better leverage the functional weights of the pruned layers, we propose a weight fusion approach
to retain the functionalities of the original layers. Language models typically consist of stacked
Transformer decoder layers with homogeneous structures, a characteristic highly similar to the set-
tings of multi-task model weight fusion Ilharco et al. (2022); Ainsworth et al. (2022). Therefore,
each layer can be regarded as a functional sub-model. By fusing the weights of multiple layers, a
multifunctional composite layer is formed, thereby preserving performance while compressing.

Motivated by this and inspired by key work in the field of weight fusion Ilharco et al. (2022), we
propose a novel layer fusion (LF) framework, which comprises five core modules: Identification,
Decision, Residual Extraction, Balancing, and Fusion. Specifically:

1) Identification: A small amount of probe data (≤ 50 samples) is fed into the model to extract the
input and output hidden states of each decoder layer. 2) Decision: Based on a user-specified com-
pression ratio and layer interval N , the similarity of input/output states across consecutive N layers
is computed. The consecutive layers with the highest similarity (i.e., the greatest functional overlap)
are selected for fusion. 3) Residual Extraction: The functional weighted average of the selected
N layer weights are computed as the baseline weights section 3. The residual between each layer’s
weights and this baseline is calculated to obtain a layer vector (LV) representing layer-specific in-
formation. 4) Balancing: To reduce redundancy and noise, importance weighting is applied to each
dimension of the layer vector, emphasizing information-rich parameters. 5) Fusion: The weighted
layer vectors are fused with the baseline weights to generate a new weight matrix, replacing the
original N decoder layers.

Our method requires only minimal data and achieves high-performance compression without fine-
tuning, offering computational efficiency and hardware-friendliness, making it suitable for plug-
and-play model compression scenarios. Additionally, the LF framework is highly modular and
extensible, with each stage allowing independent optimization.

The main contributions of this paper are as follows: i) We pioneer the concept of layer fusion
from a weight fusion perspective and systematically analyze its similarities and differences with re-
lated methods, providing new insights for future research. ii) The proposed layer fusion framework
exhibits strong compatibility and extensibility, enabling integration with existing weight fusion
techniques and advancing the field of model compression. iii) Our approach significantly outper-
forms mainstream baseline methods with almost no additional computational overhead, enhancing
the practical value of lightweight technologies. iv) We have made our implementation code publicly
available. We believe this will promote the development of the community.

Most Relevant Work Yang et al. (2024b) This paper introduces a method called LaCo, which
fuses N consecutive layers of a model into a single layer. The method selects the first layer as
the baseline, calculates the difference between the weights of subsequent layers and the first layer,
and then directly adds these differences to the weights of the first layer to obtain the fused layer.
However, based on our observations, directly adding the differences to the baseline layer results in
excessively large weights, severely impacting performance. Furthermore, LaCo does not address
the relationship between its method and model fusion, nor does it provide a more granular analysis
or explanation of this fusion process. These aspects are comprehensively covered in our paper.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: We partitioned the layers of Llama 3.1-8B Dubey et al. (2024) according to different block
sizes and analyzed the similarity between the hidden states of each block’s inputs and outputs. As
shown in the figure, the similarity between block inputs and outputs increases at deeper layers,
partially demonstrating redundancy characteristics. This provides intuitive support for the rationale
behind our layer fusion approach.

2 PRELIMINARY

In this section, we will provide a detailed introduction to fundamental model fusion techniques
and the rigorous definition of model layer compression. This lays the groundwork for subsequent
discussions of our approach.

2.1 MODEL FUSION: TASK VECTOR BASED

Recent work by Ilharco et al. (2022) introduced task vectors as a mechanism for steering the behavior
of pre-trained models through arithmetic operations in weight space. Formally, given a pre-trained
model with parameters θpre ∈ Rd and a model fine-tuned on a task t with parameters θft

t ∈ Rd, the
task vector τt is defined as the element-wise difference:

τt = θft
t − θpre (1)

This vector encodes the direction in weight space that improves performance on task t. Task vec-
tors can be scaled and combined through arithmetic operations to edit model behavior without
additional training.

If we want to integrate N downstream task models that perform different tasks, we can fuse the task
vectors corresponding to these downstream task models and integrating them onto the pre-trained
weights.

θfused = θpre + λ

N∑
t=1

θft
t (2)

The resulting fusion model θfused possesses the capabilities of the N downstream models that were
fused. This idea has inspired us to explore the integration of layers within the model.

2.2 PROBLEM FORMULATION: RIGOROUS DEFINITION OF MODEL LAYER COMPRESSION

Let a deep neural network model be represented as a sequential composition of L layers. Formally,
the model M is defined as:

M = LL ◦ LL−1 ◦ · · · ◦ L1 (3)

where each layer Li for i = 1, 2, . . . , L is a parametric function with parameters θi ∈ Rdi , and
◦ denotes function composition. The overall parameter set of the model is Θ = {θ1, θ2, . . . , θL}.
Given an input x, the output is computed as y = M(x; Θ).

Layer Redundancy Hypothesis The theoretical foundation of layer compression rests on the layer
redundancy hypothesis, which posits that deep neural networks inherently contain significant func-
tional redundancy across adjacent layers Figure 2. Formally, for a sequence of consecutive layers

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: A brief summary of our layer fusion (LF) framework, the five stages detailed in section 3.

{Li,Li+1, . . . ,Li+k−1}, we hypothesize that their composed transformation can be sufficiently ap-
proximated by a more compact representation:

Li+k−1 ◦ · · · ◦ Li+1 ◦ Li(x) ≈ L̃(x) (4)

where L̃ denotes a compressed transformation that preserves the essential functionality of the origi-
nal k layers. This hypothesis suggests that the parameter spaces of adjacent layers exhibit substantial
linear dependence and functional similarity, creating opportunities for depth reduction without sig-
nificant performance degradation.

The existence of such layer redundancy provides both the motivation and theoretical justification for
model layer compression, indicating that careful recombination of layer parameters can maintain
network performance while substantially reducing computational requirements.

Model Layer Compression aims to reduce the number of layers while preserving the model’s per-
formance. Specifically, we seek a compressed model M′ with L′ layers where L′ < L:

M′ = L′
L′ ◦ L′

L′−1 ◦ · · · ◦ L′
1 (5)

with parameters Θ′ = {θ′1, θ′2, . . . , θ′L′}. The goal is to ensure that the behavior of M′ approximates
that of M over an input distribution X . This is formalized by minimizing a performance gap:

min
Θ′

Ex∼X [D (M(x; Θ),M′(x; Θ′))] (6)

where D is an appropriate discrepancy measure between outputs, and the compression ratio is ρ =
(L− L′)/L.

This compression process involves identifying a transformation f : Θ → Θ′ that reduces layer
count while preserving functional behavior, leveraging the inherent redundancies identified in the
layer redundancy hypothesis.

3 LAYER FUSION: OUR METHOD

3.1 OVERVIEW

Layer Fusion (LF) is a structured compression framework designed to reduce the depth of LLM by
fusing contiguous layers with low functional strength subsection 3.2. The method operates through
five sequential stages: (1) Identification, where layer-wise activations are recorded using probe
data; (2) Decision, where fusion blocks are selected based on activation similarity and user-defined
compression ratio; (3) Residual Extraction, which computes layer-specific residuals relative to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

a geometric centroid; (4) Balancing, which emphasizes salient features in the residuals; and (5)
Fusion, where residuals are combined and merged into a new layer. An overview of the pipeline is
illustrated in Figure 3.

3.2 FUNCTIONAL STRENGTH METRIC

Before introducing our method, we first define a key metric, which we refer to as func-
tional strength. Suppose we now have a continuous network layer represented as S =
{Lt,Lt+1, . . . ,Lt+B−1}. Here, S denotes a continuous layer block. Meanwhile, B indicates the
length of this contiguous block. We can define the input-output similarity of this continuous block
as:

Sim(S) =
1

B

B∑
n=1

κ
(
h
(n)
t−1,h

(n)
t+B−1

)
(7)

Where hi denotes the hidden state output of the i-th layer of the model, as detailed in subsection 3.3,
and κ(·, ·) denotes a similarity function (In our implementation, we employ the most commonly used
cosine similarity). Based on the assumption, blocks with high input-output similarity exhibit lower
functionality (exerting minimal influence on hidden states). We can define the functional strength of
a block as:

Func(S) = 1− Sim(S) (8)
We can use this method to calculate the functional strength of a block in the subsequent discussion,
and it can also be applied to calculate the functional strength of a single layer (B = 1).

3.3 STAGE 1: IDENTIFICATION

To provide essential reference information for subsequent fusion compression processes, we con-
structed a set of probe data to collect the hidden states of each layer in the model.

Let the original model M consist of L layers. We sample a small set of probe data P =
{x1,x2, . . . ,xN}, where N ≤ 50, covering diverse input types. For each input x ∈ P , we record
the hidden state after each layer:

hi = Li(hi−1), for i = 1, 2, . . . , L (9)

with h0 = x. The collected hidden states form a matrix H ∈ RL×N×d, where d is the hidden
dimension.

3.4 STAGE 2: DECISION

Unlike many other approaches, we consider more than just compressing a single contiguous block.
We support users setting different block sizes and compressing multiple blocks discretely to achieve
a specified compression ratio. This method offers greater flexibility and control. The traditional
approach focusing solely on a single block can be viewed as a special case of our method.

Given a target compression ratio ρ < 1 and a block size B ∈ Z+, we aim to reduce the number of
layers such that:

L′ = ⌊L · (1− ρ)⌋ (10)
We generate all contiguous blocks of B layers, denoted as B = {Sj}L−B+1

j=1 , where Sj =

{Lj ,Lj+1, . . . ,Lj+B−1}. For each block Sj , we compute the functional strength Func(Sj). And
select non-overlapping blocks {Sj1 , Sj2 , . . . , SjK} that minimize the total functional strength to
ensure that the blocks we prepare for compression have minimal impact on the overall performance:

min

K∑
k=1

Func(Sjk), subject to K · (B − 1) = L− L′ (11)

ensuring the total number of layers removed aligns with the compression ratio.

3.5 STAGE 3: RESIDUAL EXTRACTION

For each selected block S = {Lt,Lt+1, . . . ,Lt+B−1} with parameters {θt, θt+1, . . . , θt+B−1}, we
compute the baseline weight:

θ̄ = Centroid(θt, θt+1, . . . , θt+B−1) (12)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The layer vector (residual) for each layer Li is defined as:

vi = θi − θ̄, for i = t, t+ 1, . . . , t+B − 1 (13)

These vectors capture layer-specific deviations from the centroid. We have experimentally and the-
oretically demonstrated that layer vector fusion exhibits superior orthogonality compared to direct
fusion of layer parameters.

Extension We primarily employed the Functional Weighted Average method for selecting the cen-
troid. Weights are assigned based on the functional strength indicators of each layer within the
current compressed block, yielding a weighted average to obtain the baseline weight:

Centroid(θt, θt+1, . . . , θt+B−1) =

t+B−1∑
i=t

Func(Li)∑t+B−1
j=t Func(Lj)

θi (14)

We theoretically evaluate the advantages and disadvantages of three distinct baseline weighting
methods and conclude that the functional weighted average (Ours) approach provides a superior
foundation for layer vector extraction. The proof process is detailed in Appendix C and Appendix D.

3.6 STAGE 4: BALANCING

To emphasize important features in the layer vectors, we apply a balancing mechanism ψ : Rd → Rd

that scales each dimension of vi based on its magnitude:

ṽi = ψ(vi) = vi ⊙wi (15)

where wi ∈ Rd is a weight vector whose components are monotonically increasing functions of
|vi,k|. This suppresses noise while preserving salient features.

In our actual implementation, we applied the balancing method described in Du et al. (2024). Further
details will be provided in Appendix E.

3.7 STAGE 5: FUSION

The balanced residuals are fused into a single residual vector:

ṽ = λ

t+B−1∑
i=t

ṽi (16)

Here, λ represents the fusion coefficient, which controls the overall amplitude of the layer vector
during fusion. ṽ is added to the centroid to produce the fused layer parameters:

θfused = θ̄ + ṽ (17)

The new layer Lfused with parameters θfused replaces the original B layers. The process is repeated
for all selected blocks, resulting in a compressed model M′ with L′ layers.

Discussion: What does the layer fusion framework bring? Traditional unstructured pruning
methods and model fusion approaches face significant limitations in practical application. Unstruc-
tured pruning is difficult to leverage directly due to the challenges of hardware acceleration Yang
& Zhang (2021), while model fusion often suffers from substantial performance degradation Yang
et al. (2024a), hindering its deployment. However, our layer fusion framework effectively com-
bines these two techniques for more promising and practical model compression tasks, unlocking
greater potential for future advancements in these fields.

4 EXPERIMENTS

4.1 BENCHMARK

Dataset To comprehensively evaluate the performance of compressed models, we selected six au-
thoritative benchmark datasets: ARC (Easy & Challenge) Clark et al. (2018), HellaSwag Zellers
et al. (2019), OpenBookQA Mihaylov et al. (2018), PIQA Bisk et al. (2020), and Winogrande
ai2 (2019). This combination spans multiple cognitive dimensions—including scientific knowl-
edge, common-sense reasoning, physical understanding, and linguistic disambiguation—effectively

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance Comparison on Multiple Datasets under Different Compression Ratios. Dense
models serve as original model. Best results for each dataset are highlighted in bold, and second-
best results are underlined. CR represents compression ratio (ρ).

CR LLM Method Dataset Performance (%)
ARC-c ARC-e HellaSwag OpenBookQA PIQA WinoGrande Average

25
%

Llama3.1-8B

Dense 55.29 79.67 79.21 43.20 80.97 74.03 68.73
LLMPruner 25.94 26.22 26.05 26.40 50.82 48.78 34.04
SliceGPT 20.48 33.88 28.34 26.00 52.83 50.83 35.39

LaCo 29.92 27.39 27.42 30.40 53.32 52.25 36.78

LF (Avg) 38.57 47.73 56.35 31.80 68.28 65.59 51.39
LF (First) 38.74 46.12 58.92 31.40 67.28 65.87 51.39

LF (Centroid) 38.82 47.94 56.50 32.00 68.82 65.43 51.59

Llama2-13B

Dense 49.32 77.53 79.40 45.20 80.47 71.74 67.28
LLMPruner 34.39 62.75 52.46 36.00 72.47 53.59 51.94
SliceGPT 38.23 60.94 57.39 40.60 67.08 67.88 55.35

LaCo 40.27 59.34 66.00 36.80 70.57 69.38 57.06

LF (Avg) 41.72 61.91 67.29 36.60 71.20 69.22 57.99
LF (First) 41.81 61.99 67.32 37.00 71.44 68.98 58.09

LF (Centroid) 42.66 62.25 67.93 37.40 71.65 70.17 58.68

12
.5

%

Llama3.1-8B

Dense 55.29 79.67 79.21 43.20 80.97 74.03 68.73
LLMPruner 27.22 26.26 26.53 26.60 50.98 49.17 34.46
SliceGPT 20.90 36.83 29.75 25.80 54.68 49.72 36.28

LaCo 47.03 67.63 70.51 38.20 74.27 71.19 61.47

LF (Avg) 48.29 67.80 70.01 40.80 73.39 70.64 61.82
LF (First) 46.67 66.46 68.84 41.00 73.07 70.96 61.17

LF (Centroid) 48.63 68.43 70.37 41.00 73.94 70.72 62.18

Llama2-13B

Dense 49.32 77.53 79.40 45.20 80.47 71.74 67.28
LLMPruner 45.14 73.36 72.99 41.40 78.62 64.80 62.72
SliceGPT 45.48 73.53 69.42 45.00 75.35 70.80 63.26

LaCo 44.62 70.50 73.97 41.40 76.06 70.48 62.84

LF (Avg) 46.33 71.63 74.71 44.00 76.66 70.17 63.92
LF (First) 46.12 71.42 75.24 44.40 76.24 70.72 64.02

LF (Centroid) 46.25 72.10 74.76 44.20 77.04 70.32 64.11

testing models’ overall capabilities in preserving core competencies and handling tasks of varying
difficulty. This ensures our evaluation results remain comparable with mainstream research.

LLMs At the model level, we selected the most widely used Llama series models, specifically
choosing Llama 3.1-8B Dubey et al. (2024) and Llama 2-13B Touvron et al. (2023), two models
with different parameter counts—to demonstrate the stability of the proposed method.

4.2 PROBE DATA

The probe data is carefully constructed to cover diverse functional aspects of language model capa-
bilities. We design samples spanning multiple linguistic dimensions, including syntactic process-
ing, semantic comprehension, logical reasoning, knowledge retrieval, and mathematical computa-
tion. Each dimension contains representative examples that can effectively trigger different layers
of the model to exhibit their specialized processing patterns. This multifaceted probe design ensures
that our layer similarity analysis captures the true functional redundancy across various language
understanding tasks. In all experiments, the total number of probe data points was set to 50. The
complete taxonomy and specific examples for each functional dimension are detailed in Appendix F.

4.3 MAIN RESULT

Setup We conducted an exhaustive performance comparison with existing mainstream model com-
pression methods (without post-training). Specifically, our selected baseline methods include LLM-
Pruner, SliceGPT, and LaCo. LLM-Pruner Ma et al. (2023) employs a structured pruning strategy
that first divides the entire model into distinct subnetworks by identifying path dependencies, then
selects which subnetworks to prune by estimating the importance of model weights. SliceGPT
Ashkboos et al. (2024) uses orthogonal transformations to prioritize important dimensions of the
input matrix, subsequently pruning the weight matrices of other dimensions to preserve the model’s
original functionality as much as possible. LaCo is a widely adopted layer-wise pruning method.
It uses the model’s first layer as a baseline, calculates the differences between subsequent layers

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30

Block Index

0.0

0.2

0.4

0.6

0.8

1.0

In
p
u
t-

O
u
tp

u
t

S
im

il
ar

it
y

Spearman: 0.999

Block Size 3
Avg Pearson: 1.000

Seed 42

Seed 123

Seed 456

0 5 10 15 20 25

Block Index

0.0

0.2

0.4

0.6

0.8

1.0

In
p
u
t-

O
u
tp

u
t

S
im

il
ar

it
y

Spearman: 0.998

Block Size 5
Avg Pearson: 0.999

Seed 42

Seed 123

Seed 456

0 5 10 15 20

Block Index

0.0

0.2

0.4

0.6

0.8

1.0

In
p
u
t-

O
u
tp

u
t

S
im

il
ar

it
y

Spearman: 0.975

Block Size 9
Avg Pearson: 0.996

Seed 42

Seed 123

Seed 456

Probe Data Stability Analysis Across Different Block Sizes

Figure 4: We selected 10 samples from a large probe database using different random seeds and
employed these samples to compute input-output similarity, thereby verifying the stability of our
method for probe data.

and the first layer, and directly adds these differences to the first layer to perform layer pruning.
In practice, we observed that directly adding the differences caused the first layer’s weight magni-
tudes to become excessively large, rendering the model ineffective. Therefore, we introduced an
empirical coefficient at this step to control the magnitude of the differences and performed param-
eter tuning. LF (Avg), LF (First), and LF (Centroid) represent three methods for calculating the
baseline weight: using the average of the inner layer weights within the block to be compressed, the
first layer weights within the block, and the functionally weighted average of the inner layer weights
within the block. These can be regarded as three variants of our method. The experimental results
are shown in Table 1. More detailed settings are described in Appendix B.

Layer Compression Vs. Structured Pruning First, we can observe from the comparison between
layer compression methods (LaCo and LF) and traditional structured pruning approaches (LLM-
Pruner, SliceGPT) that layer compression consistently outperforms structured pruning. This sug-
gests that structured pruning is more prone to disrupting the model’s internal architecture, whereas
layer compression, operating at a coarser granularity, avoids this issue and thus better preserves the
model’s capabilities.

LaCo Vs. LF Next, we focus on the internal comparison between the LaCo method and our LF
method. It can be observed that under the Llama 3.1-8B model with a compression ratio of 25%,
the average performance of LF surpasses that of LaCo by 14.81%. This indicates that our approach
better leverages model information compared to LaCo in smaller models and under high compres-
sion rates, mitigating information loss caused by noise introduction during layer fusion. Although
this difference tends to decrease as the model depth increases and the compression ratio decreases,
our LF method consistently outperforms the LaCo method.

Different Baseline Weight Calculation Strategies Finally, by comparing several variants of the LF
method, we observe that using functional weighting as the baseline weight consistently yields the
best performance (highest Average metric) across different compression ratios and model depths.
Under the Llama 3.1-8B model with 25% compression, it outperforms the LF(Avg) and LF(First)
methods on the Average metric. This demonstrates that when the model is smaller (each layer
is relatively more important) and the compression ratio is high, the functional weighting-derived
baseline weight effectively guides the residual extraction and fusion process, leading to improved
results. This can also be viewed as an ablation study of our LF method.

4.4 PROBE DATA SENSITIVITY

Random Probe Data Selection To further demonstrate the exceptional robustness of our method
even under extremely sparse probe data conditions, we selected 10 probe data points from a large
probe database (2000 entries) using three random seeds (42, 123, 456) to compute input-output
similarity for layer compression. The results obtained under different block size settings are shown
in Figure 4. It can be observed that despite the extremely limited quantity (only 10) and high
randomness of the probe data, the similarity trends between different blocks are nearly consistent
(have a Pearson correlation coefficient close to 1). Although absolute similarity values differ for
blocks with greater lengths, this does not affect the similarity of the overall trend. The previous

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 1 2 3

Fusion Iteration

48

49

50

51

52

53

54

55

P
er

fo
rm

an
ce

 o
n
 A

R
C

-e
 (

%
)

Original Model

Performance During Iterative Layer Fusion

1-step (8 layers at once)

4-step (2 layers each)

2-step (4 layers each)

1-step 2-step 4-step

Compression Strategy

48

49

50

51

52

53

54

55

F
in

al
 P

er
fo

rm
an

ce
 (

%
)

47.9%

48.9%
49.3%

Final Performance Comparison

Figure 5: Visualization of Iterative Layer Fusion Effects for Different Step Lengths.

work Chen et al. (2024) included similar tests, but they only examined trends in scenarios with large
datasets, whereas our experiments focus on scenarios with extremely small datasets.

4.5 ITERATIVE LAYER FUSION

Setup Unlike one-time direct model compression, our LF framework also holds significant potential
for iterative layer fusion. Specifically, if we aim to achieve a high compression ratio ρ, we can
perform multiple-layer fusions on a model using smaller compression ratios. This differs from
direct layer fusion in that iterative fusion may utilize the weights from the previous fusion layer,
thereby minimizing changes to the original model layers while ensuring the desired compression
ratio. We employed Llama 3.1-8B with a 25% compression ratio (reducing 8 layers) as our iterative
experimental setup. We selected three compression approaches: the first directly fused 8 layers in
one step (1 Step), the second reduced 4 layers per iteration with 2 iterations (2 Step), and the third
reduced 2 layers per iteration with 4 iterations (4 Step). The model’s performance on ARC-e served
as our evaluation metric. More detailed experimental settings are provided in Appendix G.

Results Analysis As shown in Figure 5, when maintaining the same compression rate, the multi-
step iterative fusion method ultimately yields a model with superior performance. Moreover, as
the number of iterations increases (with a corresponding decrease in the number of fusion layers
per iteration), the compressed model demonstrates enhanced capabilities. Compared to single-step
compression, the four-step iterative compression approach achieves approximately 1.4% higher per-
formance. This demonstrates that the Layer Fusion method holds greater potential.

5 LIMITATION & FUTURE WORK

Current LF methods still face several issues that need to be addressed. Firstly, although the compu-
tation of baseline weights has been improved to some extent through strategies such as functional
strength-weighted averaging, there remains a lack of intuitive analysis from perspectives such as
loss landscapes. Moreover, more advanced methods for calculating baseline weights—such as those
based on training dynamics, loss landscape properties, or requiring fewer hyperparameters—warrant
further investigation in the future. Secondly, traditional model fusion methods typically treat layers
within networks as parallel and independent entities, neglecting potential inter-layer dependencies.
However, from the perspective of layer fusion, the weight of a subsequent layer often heavily de-
pends on that of the preceding one. Thus, incorporating such hierarchical dependencies into the
weight fusion process represents a promising research direction.

6 CONCLUSION

In this paper, we propose a Layer Fusion framework for large language models (LLMs). This
method fuses consecutive layer weights into a single layer through specific steps, aiming to maxi-
mize the utilization of information contained within the layer weights to enhance the performance
of compressed models. Simultaneously, our approach bridges the traditional model fusion domain
with the unstructured pruning domain. While addressing the long-standing lack of practical ap-
plications in these fields, it also injects new vitality into the domain of LLM streamlining.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

The research presented in this paper is based entirely on the analysis of existing, publicly available
data. As no human or animal subjects were involved, and the data utilized are anonymous and
do not contain any identifiable personal information, this study is exempt from ethical approval
requirements.

8 REPRODUCIBILITY STATEMENT

We provide the main code files via anonymous links in the Abstract section of the paper, and include
all hyperparameter settings potentially used in the experiments in the Appendix. We believe these
details will help the community better understand our paper.

REFERENCES

Winogrande: An adversarial winograd schema challenge at scale. 2019.

Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
modulo permutation symmetries. arXiv preprint arXiv:2209.04836, 2022.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Tian Bowen, Lai Songning, Wu Jiemin, Shuai Zhihao, Ge Shiming, and Yue Yutao. Beyond task
vectors: Selective task arithmetic based on importance metrics. arXiv preprint arXiv:2411.16139,
2024.

Xiaodong Chen, Yuxuan Hu, Jing Zhang, Yanling Wang, Cuiping Li, and Hong Chen. Streamlining
redundant layers to compress large language models. arXiv preprint arXiv:2403.19135, 2024.

Jang Hyun Cho and Bharath Hariharan. On the efficacy of knowledge distillation. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 4794–4802, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Guodong Du, Junlin Lee, Jing Li, Runhua Jiang, Yifei Guo, Shuyang Yu, Hanting Liu, Sim K Goh,
Ho-Kin Tang, Daojing He, et al. Parameter competition balancing for model merging. Advances
in Neural Information Processing Systems, 37:84746–84776, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Kazuki Egashira, Mark Vero, Robin Staab, Jingxuan He, and Martin Vechev. Exploiting llm quan-
tization. Advances in Neural Information Processing Systems, 37:41709–41732, 2024.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 16091–16101, 2023.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International journal of computer vision, 129(6):1789–1819, 2021.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The
unreasonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and
Hyoung-Kyu Song. Shortened llama: A simple depth pruning for large language models. arXiv
preprint arXiv:2402.02834, 11:1, 2024.

Zhu Liao, Victor Quétu, Van-Tam Nguyen, and Enzo Tartaglione. Can unstructured pruning reduce
the depth in deep neural networks? In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 1402–1406, 2023.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270, 2018.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun Kim, Yulhwa Kim, and Jae-Joon Kim. Sleb:
Streamlining llms through redundancy verification and elimination of transformer blocks. arXiv
preprint arXiv:2402.09025, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng Tao.
Model merging in llms, mllms, and beyond: Methods, theories, applications and opportunities.
arXiv preprint arXiv:2408.07666, 2024a.

Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse.
arXiv preprint arXiv:2402.11187, 2024b.

Zhengwu Yang and Han Zhang. Comparative analysis of structured pruning and unstructured prun-
ing. In International Conference on Frontier Computing, pp. 882–889. Springer, 2021.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, 2019.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning
Wang, Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language
models. arXiv preprint arXiv:2404.14294, 2024.

A LLM USAGE STATEMENT

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.

B MAIN RESULT PARAMETER SETTINGS

In our experiments, we uniformly employed 50 probe data inputs to extract input-output data for
each model layer. These data points were evenly sampled from different probe data classifications.
For both SliceGPT 1 and LLM-Pruner 2, we utilized their official open-source code repositories from
GitHub for implementation. For the actual implementation of LaCo, we set the fusion coefficient
to 0.2 when fusing 8 layers. Since our LF method employs different granularities during fusion (8
layers, 4 layers, 2 layers), we set the fusion coefficients λ to (0.2, 0.4, 0.6) respectively. Additionally,
during the Balancing phase, we measure the importance of each position weight. We set the LVs
with importance in the bottom 80% to zero to enhance the fusion effect.

C MATHEMATICAL PROOF OF BASELINE WEIGHT SELECTION

In this section, we provide a mathematical proof demonstrating the superiority of using the mean
of layer weights as the reference point over using the first layer’s weights in our Layer Fusion
framework.

C.1 NOTATION AND DEFINITIONS

Let Θ = {θ1, θ2, . . . , θN} represent the weights of N consecutive decoder layers, where each θi ∈
Rd is a weight vector (or flattened weight matrix). We define the mean weight vector as:

θ̄ =
1

N

N∑
i=1

θi

We consider two schemes for selecting the reference point B:

1. Scheme A: B = θ1 (First layer as reference)

2. Scheme B: B = θ̄ (Mean as reference)

The layer vector (LV) for each layer i is defined as LVi = θi −B.

C.2 MEAN PROPERTIES OF LAYER VECTORS

Lemma 1. The mean of the layer vectors across all layers is zero for Scheme B but not necessarily
for Scheme A.

Proof. For Scheme A, the mean layer vector is:

µ(A) =
1

N

N∑
i=1

LV
(A)
i =

1

N

N∑
i=1

(θi − θ1) = θ̄ − θ1

which is generally non-zero unless θ1 = θ̄. For Scheme B, the mean layer vector is:

µ(B) =
1

N

N∑
i=1

LV
(B)
i =

1

N

N∑
i=1

(θi − θ̄) = θ̄ − θ̄ = 0

1https://github.com/microsoft/TransformerCompression
2https://github.com/horseee/LLM-Pruner

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

C.3 VARIANCE ANALYSIS FOR IMPORTANCE MEASUREMENT

In the balancing module, we measure the importance of each position j in the weight vector by
computing the variance of the layer vectors across layers:

σ2
j =

1

N

N∑
i=1

(LVi,j − µj)
2

where LVi,j is the j-th element of LVi and µj is the j-th element of the mean layer vector.
Theorem 1. The variance calculation in Scheme A introduces a systematic bias term (θ̄j − θ1,j)

2

that does not represent true inter-layer variation.

Proof. For Scheme A, the variance at position j is:

σ
2(A)
j =

1

N

N∑
i=1

(LV
(A)
i,j − µ

(A)
j)2

=
1

N

N∑
i=1

[(θi,j − θ1,j)− (θ̄j − θ1,j)]
2

=
1

N

N∑
i=1

(θi,j − θ̄j)
2

However, the balancing module typically uses the second moment rather than the variance for im-
portance measurement:

E
(A)
j =

1

N

N∑
i=1

(LV
(A)
i,j)2

=
1

N

N∑
i=1

(θi,j − θ1,j)
2

=
1

N

N∑
i=1

[(θi,j − θ̄j) + (θ̄j − θ1,j)]
2

=
1

N

N∑
i=1

(θi,j − θ̄j)
2 + (θ̄j − θ1,j)

2 +
2

N
(θ̄j − θ1,j)

N∑
i=1

(θi,j − θ̄j)

= σ
2(B)
j + (θ̄j − θ1,j)

2

where σ2(B)
j = 1

N

∑N
i=1(θi,j − θ̄j)

2 is the variance for Scheme B. The cross term vanishes because∑N
i=1(θi,j − θ̄j) = 0.

The proof shows that Scheme B (using the mean as reference) provides a pure measurement of
inter-layer variation in the balancing module, while Scheme A (using the first layer as reference)
introduces a systematic bias term (θ̄j − θ1,j)

2. This bias term reflects the deviation of the first layer
from the mean rather than true variation across layers, potentially leading to inaccurate importance
measurements. Therefore, using the mean weight as the reference point is mathematically superior
for the Layer Fusion framework, as it ensures that the balancing module can accurately identify
important positions based solely on genuine inter-layer variation.

D PROOF OF FUNCTIONAL WEIGHTED AVERAGE SUPERIORITY

In this section, we provide a mathematical proof demonstrating the superiority of using the func-
tional weighted average as the reference point over the simple average in the Layer Fusion frame-
work. The proof hinges on the functional strength metric, which quantifies the influence of each
layer on the hidden states. We show that the functional weighted average ensures a more accurate
importance measurement in the balancing module, leading to better fusion results.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

D.1 NOTATION AND DEFINITIONS

Consider a block of consecutive decoder layers S = {Lt,Lt+1, . . . ,Lt+B−1} with B layers. Each
layer Li has a weight vector θi ∈ Rd. The functional strength of a layer Li is defined as:

Func(Li) = 1− Sim(Li)

where Sim(Li) is the cosine similarity between the input and output hidden states of Li. The func-
tional strength is non-negative and higher values indicate stronger functionality. The weights for the
weighted average are defined as:

wi =
Func(Li)∑t+B−1

j=t Func(Lj)
, so that wi ≥ 0 and

t+B−1∑
i=t

wi = 1.

We compare two schemes for selecting the reference point B:

1. Scheme A (Simple Average): Bavg = θ̄ = 1
B

∑t+B−1
i=t θi

2. Scheme B (Functional Weighted Average): Bw = θw =
∑t+B−1

i=t wiθi

The layer vector (LV) for each layer i is defined as the deviation from the reference point:
LVi = θi −B

D.2 WEIGHTED MEAN OF LAYER VECTORS

Lemma 2. In Scheme B, the weighted mean of the layer vectors with weights wi is zero.

Proof. The weighted mean of the layer vectors is:
t+B−1∑
i=t

wiLV
w
i =

t+B−1∑
i=t

wi(θi − θw) =

t+B−1∑
i=t

wiθi − θw

t+B−1∑
i=t

wi = θw − θw = 0.

This shows that the weighted mean is zero, which is a desirable property for unbiased variance
calculation in the balancing module.

In Scheme A, the simple mean of the layer vectors is:

1

B

t+B−1∑
i=t

LV avg
i =

1

B

t+B−1∑
i=t

(θi − θ̄) = θ̄ − θ̄ = 0.

Thus, both schemes have a zero mean for the layer vectors under their respective weighting. How-
ever, the key difference lies in the variance calculation.

D.3 VARIANCE CALCULATION FOR IMPORTANCE MEASUREMENT

In the balancing module, the importance of each position j in the weight vector is measured by the
variance of the layer vectors across layers. For Scheme B, we use the weighted variance:

σ
2(w)
j =

t+B−1∑
i=t

wi(LV
w
i,j)

2

where LV w
i,j is the j-th element of LV w

i . Since the weighted mean is zero, this is an unbiased
estimator of the weighted variance. For Scheme A, the variance is computed with equal weights:

σ
2(avg)
j =

1

B

t+B−1∑
i=t

(LV avg
i,j)2

To compare these variances, we model each weight vector as:
θi = θ∗ + ϵi

where θ∗ is a common underlying weight vector, and ϵi is a layer-specific deviation capturing the
functional characteristics. Layers with high functional strength have larger deviations ϵi, meaning
they exert more influence on the hidden states.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Theorem 2. The weighted variance σ2(w)
j in Scheme B more accurately reflects the variability of

functionally strong layers compared to the simple variance σ2(avg)
j in Scheme A.

Proof. In Scheme B, the reference point is:

θw =

t+B−1∑
i=t

wiθi = θ∗ +

t+B−1∑
i=t

wiϵi.

Since wi is proportional to Func(Li), and functionally strong layers have larger ϵi, θw is biased
towards these layers. The layer vector is:

LV w
i = θi − θw = ϵi −

t+B−1∑
k=t

wkϵk.

The weighted variance at position j is:

σ
2(w)
j =

t+B−1∑
i=t

wi

(
ϵi,j −

t+B−1∑
k=t

wkϵk,j

)2

.

This expression gives more weight to layers with large wi (i.e., functionally strong layers), so the
variance is dominated by these layers. In Scheme A, the reference point is:

θ̄ = θ∗ +
1

B

t+B−1∑
i=t

ϵi.

The layer vector is:

LV avg
i = ϵi −

1

B

t+B−1∑
k=t

ϵk.

The simple variance at position j is:

σ
2(avg)
j =

1

B

t+B−1∑
i=t

(
ϵi,j −

1

B

t+B−1∑
k=t

ϵk,j

)2

.

This variance treats all layers equally, regardless of their functional strength. Consequently, it may be
unduly influenced by layers with low functional strength (small ϵi), which act as noise, while diluting
the signal from functionally strong layers. To quantify the difference, consider the expectation of
the variances. Assume that the deviations ϵi are uncorrelated with mean zero and variance σ2

i for
each layer. Then, for Scheme A:

E[σ2(avg)
j] =

1

B

t+B−1∑
i=t

σ2
i −

1

B2

t+B−1∑
i=t

σ2
i =

B − 1

B2

t+B−1∑
i=t

σ2
i .

For Scheme B, the weighted variance has expectation:

E[σ2(w)
j] =

t+B−1∑
i=t

wiσ
2
i −

t+B−1∑
i=t

w2
i σ

2
i .

Since wi is larger for layers with high functional strength (and thus large σ2
i), Scheme B emphasizes

layers with high variability. In contrast, Scheme A averages over all layers equally, which may
suppress the signal from strong layers if there are many weak layers. Therefore, Scheme B provides a
more accurate importance measurement by focusing on functionally strong layers, which are critical
for fusion.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D.4 CONCLUSION

The functional weighted average scheme (Scheme B) is mathematically superior to the simple aver-
age scheme (Scheme A) because:

1. It ensures the weighted mean of layer vectors is zero, facilitating unbiased variance calcu-
lation.

2. It assigns higher weights to layers with strong functionality, so the variance calculation em-
phasizes these layers, leading to more accurate importance measurements in the balancing
module.

3. It reduces the influence of layers with low functionality, which often contribute noise rather
than signal.

This proof justifies the use of a functional weighted average in the Layer Fusion framework, as it
enhances the quality of the fused weights by preserving the characteristics of functionally strong
layers.

E CALCULATION DETAILS FOR THE BALANCING STAGE

In this stage, we perform feature-aware refinement of the extracted layer vectors through a mecha-
nism inspired by Du et al. (2024). For a selected block S = {Lt,Lt+1, . . . ,Lt+B−1} with corre-
sponding layer vectors {vt,vt+1, . . . ,vt+B−1}, we apply a balancing function ψ : Rd → Rd that
adaptively reweights each dimension based on its significance.

The balancing process consists of two complementary components:

Intra-Balancing: Measures the importance of each parameter within a single layer vector. We com-
pute a self-aware importance score vector βintra,i ∈ Rd for each vi using a normalized activation
function (e.g., softmax) over squared magnitudes:

βintra,i = Softmax
(
B · Norm(|vi|2)

)
(18)

where the factor B (number of layers in the block) regulates the degree of suppression applied to
redundant parameters.

Inter-Balancing: Assesses cross-layer interactions by evaluating pairwise similarities between pa-
rameters at the same position across different layer vectors in the block. For the k-th parameter
across all layer vectors, we compute:

β
(k)
inter,i =

t+B−1∑
j=t

Softmax
(
v
(k)
i · v(k)

j

)
(19)

which promotes consistency among important features and suppresses conflicting signals.

The final balanced layer vector is obtained via element-wise multiplication of the intra- and inter-
balancing components:

ṽi = ψ(vi) = vi ⊙ (βintra,i ⊙ βinter,i) .

This process enhances the representational quality of layer vectors by emphasizing informative fea-
tures and reducing noise, thereby facilitating more effective fusion in the subsequent stage.

F DETAILS FOR PROBE DATA

F.1 PROBE DATA STRUCTURE DESIGN

This study designs a structured probe data system to comprehensively evaluate language model
performance across different linguistic functional dimensions. Each probe sample contains four core
elements: probe text content, main category, specific subcategory, and expected language capability
to be tested. The data structure is defined using a Python dataclass with fields for text content,
category classification, subcategory specification, and expected capability assessment.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

This structured design ensures the systematic nature and interpretability of probe data, facilitating
subsequent analysis of how different task types affect model layers. The categorization scheme
covers five main dimensions: syntax, semantics, reasoning, mathematics, and knowledge, each with
specific subcategories to target particular linguistic capabilities.

F.2 PROBE DATA ACQUISITION PROCESS

In the layer fusion system, probe data acquisition follows a systematic four-stage process:

Probe Generation Phase: A specialized probe generator creates a diverse set of probe samples,
with the number of samples being configurable. The text content is then extracted from the generated
probe set for subsequent processing.

Text Encoding Phase: The extracted probe texts are encoded using a tokenizer that converts them
into tensor representations. This process includes padding and truncation operations to ensure uni-
form input length, with a specified maximum sequence length parameter.

Embedding Representation Acquisition: The encoded token IDs are transformed into embedding
vectors using the model’s embedding layer. This operation is performed in inference mode without
gradient computation to preserve computational efficiency.

Layer Activation Collection: For each layer in the model, the input and output activation states
are collected. The activations from the last token position are extracted, detached from the com-
putation graph, and transferred to CPU memory for subsequent analysis. This process creates a
comprehensive record of layer-wise information processing.

F.3 REPRESENTATIVE PROBE SAMPLE DEMONSTRATION

Based on the comprehensive probe dataset, we selected representative samples organized in a struc-
tured table format:

F.4 APPLICATION OF PROBE DATA IN LAYER FUSION

INTER-LAYER SIMILARITY CALCULATION

The probe data enables calculation of input-output similarity for continuous layer blocks. The simi-
larity computation involves extracting the input state from the starting layer and the output state from
the ending layer of the block. Cosine similarity is then computed between corresponding input and
output vectors across all samples in the batch. The final similarity metric represents the mean cosine
similarity across all probe samples, providing a quantitative measure of information preservation
through the layer block.

FUNCTIONAL WEIGHT CALCULATION

Based on probe data, functional weights are computed for each layer to guide the fusion process.
The calculation involves determining the input-output similarity for individual layers, where lower
similarity indicates stronger functional transformation. The functional score is defined as one minus
the layer similarity value. These scores are then normalized to create a probability distribution that
reflects the relative functional importance of each layer within the specified range. The normal-
ized scores are subsequently applied to weight the fusion process, emphasizing layers with stronger
functional characteristics.

F.5 QUALITY ASSURANCE OF PROBE DATA

To ensure the scientific validity and reliability of probe data, multiple quality assurance measures are
implemented. Diversity is guaranteed through systematic sampling that uniformly distributes sam-
ples across all categories, preventing over-representation of any particular type while maintaining
a configurable total sample size. Reproducibility is emphasized by storing probe data in a stan-
dardized JSON format, enabling exact experiment replication. Consistent data structure definitions
ensure cross-experiment comparability, and the system supports loading and utilization of custom
probe datasets for extended research applications.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 2: Representative Probe Samples Organized by Linguistic Category. Each sample is designed
to test specific language understanding capabilities across five major categories: syntax, semantics,
reasoning, mathematics, and knowledge.

Probe Text Category Subcategory

Syntax Understanding
Birds fly in the blue sky. Syntax Simple Sentence

Although it was raining, they continued their journey. Syntax Complex Sentence

Why did you choose this option? Syntax Question Form

Semantic Analysis
Apples and oranges are both fruits. Semantics Word Relations

Time is money. Semantics Metaphor

Logical Reasoning
Heavy objects fall down due to gravity. Reasoning Common Sense

All birds have wings. Penguins are birds. Therefore,
penguins have wings.

Reasoning Logical Inference

Mathematical Computation
12 × 4 = 48 Mathematics Arithmetic

A car travels 60 km/h. How far does it travel in 3 hours? Mathematics Word Problems

Factual Knowledge
The capital of France is Paris. Knowledge Factual

Water has the chemical formula H2O. Knowledge Scientific

Through this systematic probe data construction methodology, we achieve a comprehensive and ob-
jective evaluation of functional characteristics across language model layers. The carefully designed
probe system provides a reliable data foundation for informed layer fusion decisions, supporting ro-
bust experimental analysis and conclusive validation of research findings.

G DETAILS FOR ITERATIVE LAYER FUSION

In the iterative layer fusion experiment, we repeatedly ran our compression code. For the goal of
compressing 8 layers, we performed two compressions using a block size of 4 and four compressions
using a block size of 2. Each compression ran independently, meaning that layers obtained from
previous fusion steps could be re-fused as ordinary layers. This approach preserves more original
information compared to a single fusion step involving fewer layer weights, potentially leading to
improved model performance. In this experiment, when multiple compression steps are involved,
we retain the model after each compression step for evaluation.

18

	Introduction
	Preliminary
	Model Fusion: Task Vector Based
	Problem Formulation: Rigorous Definition of Model Layer Compression

	Layer Fusion: Our Method
	Overview
	Functional Strength Metric
	Stage 1: Identification
	Stage 2: Decision
	Stage 3: Residual Extraction
	Stage 4: Balancing
	Stage 5: Fusion

	Experiments
	Benchmark
	Probe Data
	Main Result
	Probe Data Sensitivity
	Iterative Layer Fusion

	Limitation & Future Work
	Conclusion
	Ethics Statement
	Reproducibility statement
	LLM Usage Statement
	Main Result Parameter Settings
	Mathematical Proof of Baseline Weight Selection
	Notation and Definitions
	Mean Properties of Layer Vectors
	Variance Analysis for Importance Measurement

	Proof of Functional Weighted Average Superiority
	Notation and Definitions
	Weighted Mean of Layer Vectors
	Variance Calculation for Importance Measurement
	Conclusion

	Calculation Details for the Balancing Stage
	Details for Probe Data
	Probe Data Structure Design
	Probe Data Acquisition Process
	Representative Probe Sample Demonstration
	Application of Probe Data in Layer Fusion
	Quality Assurance of Probe Data

	Details for Iterative Layer Fusion

