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ABSTRACT

Graph Neural Networks (GNNs) have shown strong performance in node clas-
sification across diverse graph structures. Most GNNs apply a uniform global
filter—typically low-pass for homophilic graphs and high-pass for heterophilic
ones. However, real-world graphs often exhibit a complex mix of both patterns,
making a single global filter suboptimal. While a few recent methods incorporate
multiple filters, they typically apply all filters across all nodes, leading to both inef-
ficiency and limited adaptivity. Moreover, these approaches often lack theoretical
grounding for when and why such multi-filter strategies work. In this work, we
provide theoretical analysis showing that global filters optimized for one structural
pattern can harm performance on others, and we characterize conditions under
which node-wise filtering achieves optimal separability. Building on these insights,
we propose NODE-MOE, a novel mixture-of-experts GNN framework that adap-
tively selects filters for each node. Extensive experiments across homophilic and
heterophilic graphs demonstrate the effectiveness and efficiency of NODE-MOE.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Kipf & Welling, 2016) have emerged as powerful tools in repre-
sentation learning for graph structure data, and have achieved remarkable success on various graph
learning tasks (Wu et al., 2020; Ma & Tang, 2021), especially the node classification task. GNNs
usually can be designed and viewed from two domains, i.e., spatial domain and spectral domain.
In the spatial domain, GNNs (Kipf & Welling, 2016; Hamilton et al., 2017; Gasteiger et al., 2018)
typically follow the message passing mechanism (Gilmer et al., 2017), which propagate messages
between neighboring nodes. In the spectral domain, GNNs (Defferrard et al., 2016; Chien et al.,
2020) apply different filters on the graph signals.

Most GNNs have shown great effectiveness in the node classification task of homophilic graphs (Wu
et al., 2019; Gasteiger et al., 2018; Baranwal et al., 2021), where connected nodes tend to share
the same labels. These GNNs usually leverage the low-pass filters, where the smoothed signals are
preserved. However, the heterophilic graphs exhibit the heterophilic patterns, where the connected
nodes tend to have different labels. As a result, several GNNs (Sun et al., 2022; Li et al., 2024;
Bo et al., 2021) designed for heterophilic graphs introduce the high-pass filter to better handle
such diversity. To adapt to both homophilic and heterophilic graphs, GNNs with learnable graph
convolution (Chien et al., 2020; Bianchi et al., 2021; He et al., 2021; 2022) can automatically learn
different types of filters for different types of graphs. Despite the great success, these GNNs usually
apply a uniform global filter across all nodes.

However, real-world graphs often display a complex interplay of homophilic and heterophilic pat-
terns (Luan et al., 2022; Mao et al., 2024), challenging this one-size-fits-all filtering approach.
Specifically, while some nodes tend to connect with others that share similar labels, reflecting
homophilic patterns, others are more inclined to form connections with nodes that have differing
labels, indicative of heterophilic patterns. Several methods, such as ACM-GNN (Luan et al., 2022),
AutoGCN (Wu et al., 2022), PC-Conv (Li et al., 2024) and ASGAT (Li et al., 2021) leverage different
global filters to alleviate this issue. These methods, referred to as post-fusion methods, apply multiple
filters to all nodes and subsequently combine the predictions of different filters using attention or
learned weighting mechanisms. While this allows for some adaptivity, it remains inefficient, as
all filters are evaluated for all nodes regardless of relevance. Moreover, the combination process
typically relies solely on node representations, ignoring local structural cues such as neighborhood
heterogeneity, and the resulting weights often lack theoretical justification—raising concerns about
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Figure 1: A toy example illustrating the effect of global vs. node-wise filtering. Node colors represent
features, and numbers indicate class labels. Solid-edge nodes follow homophilic patterns, with most
neighbors sharing the same label (2 out of 3), while dashed-edge nodes follow heterophilic patterns,
with most neighbors having different labels.

their reliability in distinguishing between homophilic and heterophilic nodes. Besides, reusing the
same filter set for all nodes can lead to potential issues.

To illustrate the limitations of global filtering, consider the toy example in Figure 1(a), where node
colors denote features and numbers indicate labels. Solid and dotted circles represent nodes following
homophilic and heterophilic patterns, respectively. Applying a global low-pass filter 1− λ, where
λ is the eigenvalue of graph Laplacian matrix, uniformly across all nodes causes nodes on the left
to converge to one feature value and those on the right to another, despite having different labels,
resulting in misclassification. The indistinguishability of the filtered features can further impact
post-fusion methods, as these methods rely on those features to compute filter weights.

This toy example clearly illustrates the limitations of one-size-fits-all filtering and highlights the need
for a more adaptive approach. Rather than applying a fixed set of filters to all nodes, we advocate
for a node-wise filtering strategy that assigns different filters to different nodes based on their local
structural patterns. As shown in Figure 1(b), applying a low-pass filter (e.g., 1− λ) to homophilic
nodes and a high-pass filter (e.g., λ− 1) to heterophilic nodes results in nodes from the same class
sharing similar features. This leads to perfect classification in the example and demonstrates the
potential of structure-aware, node-wise filtering.

In this work, we observe that while many real-world graphs contain diverse structural patterns, these
patterns often vary significantly across different communities within the same graph. Using the
Contextual Stochastic Block Model (CSBM) to simulate graphs with mixed patterns, we theoretically
show that global filters optimized for a specific structural pattern can lead to significant performance
degradation on mismatched patterns. In contrast, node-wise filtering guided by structural cues
enables linear separability under mild conditions and offers a principled way to adapt filters based on
local graph structure. Motivated by these findings, we propose NODE-MOE, a node-wise filtering
framework based on a Mixture-of-Experts architecture that adaptively selects appropriate filters for
each node. Extensive experiments across both homophilic and heterophilic graphs demonstrate the
effectiveness and interpretability of NODE-MOE.

2 PRELIMINARY

In this section, we first introduce the notations and background concepts used throughout the paper.
We then examine the structural patterns in real-world graph datasets, which often exhibit a mix of
homophilic and heterophilic connections. Finally, we present a theoretical analysis showing that
global filters tend to fail in such mixed-structure settings, while node-wise filtering can achieve linear
separability under mild assumptions.

Notations. We use bold upper-case letters such as X to denote matrices. Xi denotes its i-th row
and Xij indicates the i-th row and j-th column element. We use bold lower-case letters such as
x to denote vectors. Let G = (V, E) be a graph, where V is the node set, E is the edge set, and
|V| = n. Ni denotes the neighborhood node set for node vi. The graph can be represented by an
adjacency matrix A ∈ Rn×n, where Aij > 0 indices that there exists an edge between nodes vi
and vj in G, or otherwise Aij = 0. For a node vi, we use N (vi) = {vj : Aij > 0} to denote its
neighbors. Let D = diag(d1, d2, . . . , dn) be the degree matrix, where di =

∑
j Aij is the degree of

node vi. Furthermore, suppose that each node is associated with a d-dimensional feature x and we
use X = [x1, . . . ,xn]

⊤ ∈ Rn×d to denote the feature matrix. Besides, the label matrix is Y ∈ Rn×c,
where c is the number of classes. We use yv to denote the label of node v.
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Graph Laplacian. The graph Laplacian matrix is defined as L = D−A. We define the normalized
adjacency matrix as Ã = D− 1

2AD− 1
2 and the normalized Laplacian matrix as L̃ = I − Ã. Its

eigendecomposition can be represented by L̃ = UΛU⊤, where the U ∈ Rn×n is the eigenvector
matrix and Λ = diag(λ1, λ2, . . . , λn) is the eigenvalue matrix. Specifically, 0 ≤ λ1 ≤ λ2 ≤
· · · ≤ λn < 2. The filtered signals can be represented by X̂ = Uf(Λ)U⊤X, where f is the filter
function. As a result, the graph convolution ÃX can be viewed as a low-pass filter, with the filter
f(λi) = 1−λi. Similarly, the graph convolution −ÃX is a high-pass filter with filter f(λi) = λi−1.

Homophily metrics. Homophily metrics measure the tendency of edges to connect nodes with
similar labels (Platonov et al., 2024). There are several commonly used homophily metrics, such as
edge homophily (Zhu et al., 2020), node homophily (Pei et al., 2020), and class homophily (Lim
et al., 2021b). In this paper, we adopt the node homophily H(G) = 1

|V|
∑

vi∈V h(vi), where

h(vi) =
|{u∈N (vi):yu=yv}|

di
measures the label similarity between node vi with its neighbors. A node

with higher h(v) exhibits a homophilic pattern while a low h(v) indicates a heterophilic pattern.

2.1 STRUCTURAL PATTERNS IN EXISTING GRAPHS

Real-world graphs often exhibit a mixture of homophilic and heterophilic patterns (Luan et al., 2022;
Mao et al., 2024). While most nodes in a graph may follow one predominant pattern, some nodes
exhibit the opposite. Building on these observations, we further examine how such structural patterns
vary across different regions of the same graph. Specifically, we analyze two homophilic datasets,
Cora and CiteSeer (Sen et al., 2008), and two heterophilic datasets, Chameleon and Squirrel (Rozem-
berczki et al., 2021). We apply a community detection algorithm (Fortunato, 2010) to partition each
graph and compute the homophily level within the largest 10 communities.
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Figure 2: Homophily in different communities.

As shown in Figure 2, we sort communities in
each graph by decreasing homophily and observe
substantial variation in homophily levels across
communities within the same graph. For ex-
ample, in the Cora dataset, some communities
exhibit strong homophily (close to 1), while oth-
ers fall below 0.5. Similarly, in the Chameleon
dataset, homophily ranges from near 0 to above
0.6. These findings not only underscore the pres-
ence of mixed structural patterns, but also reveal
that these patterns are distributed non-uniformly
across different regions of the graph.

2.2 ANALYSIS BASED ON CSBM MODEL

To further analyze the impact of mixed structural patterns, we employ the Contextual Stochastic
Block Model (CSBM)(Deshpande et al., 2018), a widely used generative framework in graph
analysis(Fortunato & Hric, 2016; Jiang et al., 2023) and GNN studies (Palowitch et al., 2022;
Baranwal et al., 2021; Ma et al., 2021), to construct graphs that explicitly contain both homophilic
and heterophilic patterns. CSBM typically assumes a uniform structural pattern—nodes with the
same label connect with probability p, and nodes with different labels connect with probability q (Ma
et al., 2021). To reflect the coexistence of diverse patterns in real-world graphs, we adapt the CSBM
by combining two distinct instances, one homophilic and one heterophilic, into a single graph, similar
to the approach of Mao et al. (2024).

Definition 1. CSBM(n,µ,ν, (p0, q0), (p1, q1), P ). For a graph, the generated nodes consist
of two classes, C0 = {i ∈ [n] : yi = 0} and C1 = {j ∈ [n] : yj = 1}. For each node, consider
X ∈ Rn×d to be the feature matrix such that each row Xi is an independent d-dimensional Gaussian
random vectors with Xi ∼ N

(
µ, 1

dI
)

if i ∈ C0 and Xj ∼ N
(
ν, 1

dI
)

if j ∈ C1. Here µ,ν
are the fixed class mean vectors with ∥µ∥2, ∥ν∥2 ≤ 1 and I is the identity matrix. Suppose
there are two patterns of nodes in the adjacency matrix A = (aij), i.e., the homophilic pattern:
H0 = {i ∈ [n] : aij = Ber(p0) if yi = yj and aij = Ber(q0) if yi ̸= yj , p0 > q0} and
the heterophilic pattern: H1 = {i ∈ [n] : aij = Ber(p1) if yi = yj and aij = Ber(q1) if
yi ̸= yj , p1 < q1}. P denotes the probability that a node is in the homophilic pattern. We also
assume the nodes follow the same degree distribution p0 + q0 = p1 + q1.
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For simplification, we consider a linear model with parameters w ∈ Rd and b ∈ R, following the
previous method (Baranwal et al., 2021). The predicted label for nodes is given by ŷ = σ(X̃w+ b1),
where σ is the sigmoid function, and X̃ represents the features after filtering. The binary cross-entropy
loss over nodes V is formulated as L(V,w, b) = − 1

|V|
∑

i∈V yi log(ŷi) + (1− yi) log(1− ŷi).

Theorem 1. Suppose n is relatively large, the graph is not too sparse with pi, qi = ω(log2(n)/n)

and the feature center distance is not too small with ∥µ − ν∥ = ω( logn√
dn(p0+q0)

) and ∥w∥ ≤ R.

For the graph G(V, E ,X) ∼ CSBM(n,µ,ν, (p0, q0), (p1, q1), P ): If the low-pass global filter,
i.e., 1− λ, is applied to the whole graph G, we can find a optimal w∗, b∗ that achieve near linear
separability for the homophilic node set H0. However, the loss for the heterophilic node set H1 can
be relatively large with:

L(H1,w
∗, b∗) ≥ R(q1 − p1)

2(q1 + p1)
∥µ− ν∥ (1 + od(1)) .

The proof is provided in Appendix A.1. Theorem 1 shows that applying a global low-pass filter can
yield a near-optimal classifier for homophilic nodes, achieving linear separability. However, it also
results in substantial loss for heterophilic nodes, underscoring the limitations of a uniform global
filtering strategy in graphs with mixed structural patterns.
Theorem 2. Under the same assumptions as Theorem 1, if different filters are applied to homophilic
and heterophilic sets separately, we can find an optimal w∗, b∗ that all the nodes are linear separable
with the probability:

P
((

X̃i

)
i∈V

is linearly separable
)

= 1− od(1).

The proof can be found in Appendix A.2. Theorem 2 demonstrates that applying different filters to
homophilic and heterophilic nodes separately enables linear separability across all nodes, highlighting
the advantage of node-wise filtering strategies.
Theorem 3. Under the same assumptions as Theorem 1, homophilic and heterophilic nodes can
be separated based on the feature distance between a node and the average feature vector of its
neighbors, given by ∥Xi −

∑
j∈N (i)

Xj

Dii
∥ with probability P = 1− od(1).

The proof is provided in Appendix A.3. Theorem 3 reveals that homophilic and heterophilic nodes
can be effectively distinguished based on their local structure, using the feature distance between a
node and the average of its neighbors’ features. These findings strongly motivate the development of
a node-wise filtering approach that can automatically assign different filters to individual nodes based
on their local structural patterns, thereby improving overall model performance.

3 THE PROPOSED METHOD

In this section, we aim to design a model that addresses the limitations of global filtering in graphs
with mixed structural patterns based on our empirical observations and theoretical analysis.

3.1 NODE-MOE: NODE-WISE FILTERING VIA MIXTURE OF EXPERTS

Mixture of Experts (MoE) (Jacobs et al., 1991; Jordan & Jacobs, 1994), which follows the divide-
and-conquer principle to divide the complex problem space into several subspaces so that each
one can be easily addressed by specialized experts, have been successfully adopted across various
domains (Masoudnia & Ebrahimpour, 2014; Shazeer et al., 2017; Riquelme et al., 2021). For
node classification tasks in graphs exhibiting a mixture of structural patterns, the diversity of node
interactions necessitates applying distinct filters to different nodes as we discussed in Sections 2. This
necessity aligns well with the MoE methodology, which processes different samples with specific
experts. Building on this principle, we introduce a flexible and efficient Node-wise Filtering via
Mixture of Experts (NODE-MOE) framework, designed to dynamically apply appropriate filters to
nodes based on their structural characteristics.

The overall NODE-MOE framework is illustrated in Figure 3, which consists of two primary com-
ponents: the gating model and the multiple expert models. With the graph data as input, the gating
model g(·) computes the weight assigned to each expert for every node, reflecting the relevance
of each expert’s contribution to that specific node. Each expert model, implemented as any GNN
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Figure 3: Overall framework of the proposed NODE-MOE. For each node, the gating model selects
different experts based on the node’s features and local structure.

with different filters, generates node representations independently. The final node classification is
determined by a weighted sum of these representations, where the weights are those assigned by the
gating model. The prediction for node i can be represented by:

ŷi = Classifier

(
m∑
o=1

g(A,X)i,oEo(A,X)i

)
, (1)

where m is the number of experts, Eo denotes the o-th expert, and g(A,X)i,o represents the weight
assigned to the o-th expert for node i by the gating model. In the following, we will delve into the
specific designs of the gating model and the expert models.

3.2 GATING MODEL

The gating model is a pivotal component of the Node-MoE framework, aimed at selecting the most
appropriate experts for each node. Its primary function is to dynamically assign higher weights to
experts whose filtering characteristics best match the node’s patterns. For instance, an expert utilizing
a high-pass filter may receive a higher weight for a node that exhibits heterophilic patterns. However,
a significant challenge arises as there is no explicit ground truth indicating which pattern each node
belongs to. In traditional MoE models, the gating model often utilizes a straightforward feed-forward
network that processes the features of the sample as its input (Shazeer et al., 2017; Riquelme et al.,
2021; Du et al., 2022; Wang et al., 2024). Nevertheless, the nodes with different patterns may share
similar node features after filtering as shown in Figure 1, making this method ineffective.

To address this challenge, we estimate node patterns by incorporating the contextual features sur-
rounding each node inspired by Theorem 3. If a node’s features significantly differ from those of
its neighboring nodes, it is likely that this node exhibits a heterophilic pattern. Specifically, the
input to our gating model includes a composite vector [X, |AX − X|, |A2X − X|]. This vector
combines the node’s original features with the absolute differences between its features and those of
its neighbors over one and two hops, respectively, to indicate the node’s structural patterns. Moreover,
as discussed in Section 2.1, different structural patterns are not uniformly distributed across the
graph, and distinct communities may exhibit varying structural characteristics. To capitalize on this
phenomenon, we employ GNNs with low-pass filters, such as GIN (Xu et al., 2018), for the gating
model. These networks are chosen due to their strong community detection capabilities (Shchur
& Günnemann, 2019; Bruna & Li, 2017), ensuring that neighboring nodes are likely to receive
similar expert selections. Experimental results in Section 4.3 clearly demonstrate the proposed gating
can efficiently assign different nodes to their suitable filters. We also compare the effectiveness of
different gating backbone models in Appendix D.2

3.3 EXPERT MODELS

The mixed structural patterns found in real-world graphs require that the expert models in NODE-MOE
exhibit diverse capabilities. To this end, we incorporate multiple GNNs equipped with different filters.
While traditional GNNs often rely on fixed filters, these may fall short in capturing the complexity of
diverse structural patterns. Instead, we employ GNNs with learnable convolutions (Chien et al., 2020;
Bianchi et al., 2021; He et al., 2021; 2022), which adapt their filters to better fit varying graph patterns.
However, using identical experts can hinder the gating model’s ability to differentiate between
them (Chen et al., 2022) and may lead all filters to converge similarly. To promote diversity and
ensure each expert specializes in distinct structural patterns, we adopt a differentiated initialization
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strategy. Specifically, we initialize the experts with distinct types of filters, such as low-pass, constant,
and high-pass. More implementation details are provided in Section 4.

Filter Smoothing Loss. While integrating multiple experts with diverse filters significantly enhances
the expressive capacity of our NODE-MOE framework, this complexity can also make the model more
challenging to fit. For example, training multiple filters simultaneously may lead to oscillations in the
spectral domain for each filter as shown in Appendix B. This not only makes the model overfitting but
also impacts its explainability. To mitigate these issues, we introduce a filter smoothing loss designed
to ensure that the learned filters exhibit smooth behavior in the spectral domain. Specifically,

Lo
s =

K∑
i=1

|fo(si)− fo(si−1)|2, (2)

where fo(·) is the learnable filter function of the o-th expert, s0 ≤ s1 ≤ · · · ≤ sK are K + 1 values
spanning the spectral domain. By minimizing the activation differences between neighboring values
in the spectral domain, the filter functions become smoother. The overall training loss is then given by
L = Ltask + γ

∑m
o=1 L

o
s, where the Ltask is the node classification loss and γ is a hyperparameter

that adjusts the influence of the filter smoothing loss.

3.4 TOP-K GATING

The soft gating that integrates all experts in the Node-MoE framework significantly enhances its
modeling capabilities, but it also increases computational complexity since each expert must process
all samples. To improve computational efficiency while maintaining performance, we introduce a
variant of NODE-MOE by leveraging the Top-K gating mechanism. In this variant, NODE-MOE with
Top-K gating selectively activates only the top k experts with the highest relevance for each node.
Specifically, the gating function for a node vi is defined as g(vi) = Softmax (TopK (g (A,X)i , k)).
To prevent the gating model from consistently favoring a limited number of experts, we also incorpo-
rate the load-balancing loss (Shazeer et al., 2017), which encourage the gating model assign similar
number of samples to each expert.

3.5 TIME COMPLEXITY OF NODE-MOE
The time complexity of the proposed NODE-MOE can be significantly reduced through sparse Top-K
gating. For instance, when setting K = 1, each node only needs to be processed by a single expert.
In this case, the time complexity of NODE-MOE becomes comparable to that of a single expert,
with the addition of a lightweight gating model. In the section 4.4, we demonstrate the effective and
efficiency of the proposed NODE-MOE.
4 EXPERIMENT

In this section, we conduct comprehensive experiments to evaluate the effectiveness and efficiency of
the proposed NODE-MOE. We assess its performance, analyze the behavior of the expert selection
mechanism, and examine the influence of key design choices through ablation studies.

4.1 EXPERIMENTAL SETTINGS.
Datasets. To evaluate the efficacy of NODE-MOE, we conduct experiments across seven widely
used datasets. These include four homophilic datasets: Cora, CiteSeer, Pubmed (Sen et al., 2008),
and ogbn-arxiv (Hu et al., 2020); along with four heterophilic datasets: Chameleon, Squirrel (Pei
et al., 2020), Penn94 and pokec Lim et al. (2021a). For Cora, CiteSeer, and Pubmed, we generate
10 random splits, distributing nodes into 60% training, 20% validation, and 20% testing partitions.
For the heterophilic datasets, we utilize the 10 fixed splits as specified in Pei et al. (2020) and Lim
et al. (2021a). The ogbn-arxiv dataset is evaluated using its standard split (Hu et al., 2020). We run
the experiments 3 times for each split and report the average performance and standard deviation.
More details about these datasets are shown in Appendix C.1. We also evaluate on more heterophilic
datasets, i.e., amazon-ratings and tolokers (Platonov et al., 2023), with results in Appendix C.2.

Baselines. We compare our method with a diverse set of baselines, which can be divided into five
categories: (1) Non-GNN methods like MLP and Label Propagation (LP) (Zhou et al., 2003); (2) Ho-
mophilic GNNs utilizing fixed low-pass filters such as GCN (Kipf & Welling, 2016), GAT (Veličković
et al., 2017), APPNP (Gasteiger et al., 2018), and GCNII (Chen et al., 2020); (3) Heterophilic GNNs
including AutoGCN (Wu et al., 2022), WRGCN (Suresh et al., 2021), PC-Conv (Li et al., 2024),
ACM-GCN (Luan et al., 2022), ASGAT (Li et al., 2021) and LinkX (Lim et al., 2021a); (4) GNNs with
learnable filters like GPRGNN (Chien et al., 2020) and ChebNetII (He et al., 2022); (5) MoE-based
GNNs such as GMoE (Wang et al., 2024) and Mowst (Zeng et al., 2023).
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Table 1: Node classification accuracy (%) on benchmark datasets. OOM means out-of-memory. The
bold and underline markers denote the best and second-best performance, respectively. ∗indicates a
t-test with p < 0.05.

Homophilic datasets Heterophilc datasetsMethods Cora CiteSeer PubMed ogbn-arxiv Chameleon Squirrel Penn94 Pokec
MLP 76.49 ± 1.13 73.15 ± 1.36 86.14 ± 0.64 55.68 ± 0.11 48.11 ± 2.23 31.68 ± 1.90 73.61±0.40 62.39 ± 0.06
LP 86.05 ± 1.35 69.39 ± 2.01 83.38 ± 0.64 68.14 ± 0.00 44.10 ± 4.10 31.92 ± 0.82 63.26 ± 0.41 53.28 ± 0.05

GCN 88.60 ± 1.19 76.88 ± 1.78 88.48 ± 0.46 71.91 ± 0.15 67.96 ± 1.82 54.47 ± 1.17 82.37 ± 0.24 75.43 ± 0.15
GAT 88.68 ± 1.13 76.70 ± 1.81 86.52 ± 0.56 71.92 ± 0.17 65.29 ± 2.54 49.46 ± 1.69 81.53 ± 0.55 71.77 ± 6.18

APPNP 88.49 ± 1.28 77.42 ± 1.47 87.56 ± 0.52 71.61 ± 0.30 54.32 ± 2.61 36.41 ± 1.94 74.33 ± 0.38 62.58 ± 0.08
GCNII 88.12 ± 1.05 77.30 ±1.58 90.17 ± 0.57 72.74 ± 0.16 55.54 ± 2.02 56.63 ± 1.17 82.92±0.59 78.94 ± 0.11

AutoGCN 87.59 ± 1.17 75.12 ± 1.94 89.13 ± 0.51 69.34 ± 0.63 65.21 ± 2.97 45.55 ± 1.54 81.02 ± 0.16 79.49 ± 0.33
WRGCN 88.06 ± 1.50 76.28 ± 1.98 86.39 ± 0.55 >24h 65.24 ± 0.87 48.85 ± 0.78 75.50 ± 0.09 >24h
PC-Conv 88.85 ± 1.29 77.30 ± 1.79 85.79 ± 0.64 67.21 ± 0.19 66.86 ± 1.97 44.75 ± 1.58 85.36 ± 0.06 77.86 ± 0.07

ACMGCN 88.01 ± 1.26 76.52 ± 1.72 89.51 ± 0.49 62.09 ± 1.29 69.62 ± 1.22 57.02 ± 0.79 83.02 ± 0.65 74.13 ± 0.14
ASGAT 86.63 ± 1.51 73.76 ± 1.17 OOM OOM 66.50 ± 2.80 55.80 ± 3.20 OOM OOM
LinkX 82.89 ± 1.27 70.05 ± 1.88 84.81 ± 0.65 66.54 ± 0.52 68.42 ± 1.38 61.81 ± 1.80 84.71 ± 0.52 81.86 ± 0.21

GPR-GNN 88.54 ± 0.67 76.44 ± 1.89 88.46 ± 0.31 71.78 ± 0.18 62.85 ± 2.90 54.35 ± 0.87 83.54 ± 0.32 80.74±0.22
ChebNetII 88.71 ± 0.93 76.93 ± 1.57 88.93 ± 0.29 72.32 ± 0.23 71.14 ± 2.13 57.12 ± 1.13 84.86 ± 0.33 81.16 ± 0.04

GMoE 87.27 ± 1.74 76.56 ± 1.57 88.14 ± 0.56 71.74 ± 0.29 71.88 ± 1.60 51.97 ± 3.16 75.76 ± 4.39 59.30 ± 1.92
Mowst 86.18 ± 1.45 75.27 ± 2.19 88.92 ± 0.61 70.37 ± 0.16 65.50 ± 1.86 52.14 ± 1.25 79.78 ± 0.26 77.05 ± 0.06

NODE-MOE 89.38 ± 1.26∗ 77.78 ± 1.36 89.58 ± 0.60 73.19 ± 0.22∗ 73.64 ± 1.80∗ 62.31 ± 1.98∗ 85.37 ± 0.31 82.94 ± 0.06∗

NODE-MOE settings. The proposed NODE-MOE framework is highly flexible, supporting a variety
of gating and expert model choices. The pseudocode is provided in Appendix C.3. In this work, we
use GIN (Xu et al., 2018) as the gating model. For expert models, we adopt ChebNetII (He et al.,
2022) for its efficient filter learning, experimenting with 2, 3, and 5 experts initialized with different
filters. More details and parameter settings are in Appendix C.4. We also experiment with using
GPR-GNN as the expert backbone, and MLP and GCN as the gating models. The results can be
found in Appendix D.1 and Appendix D.2, respectively.

4.2 PERFORMANCE COMPARISON

In this section, we evaluate NODE-MOE on both homophilic and heterophilic datasets. Node
classification results are shown in Table 1, leading to the following observations:

• The proposed NODE-MOE demonstrates robust performance across both homophilic and het-
erophilic datasets, outperforming the baselines in most cases. This indicates its effectiveness in
handling diverse graph structures.

• The GNNs and methods like LP that use fixed low-pass filters generally do well on homophilic
datasets but tend to underperform on heterophilic datasets. Conversely, specialized models like
LinkX, designed for heterophilic graphs, do not perform as well on homophilic datasets.

• The GNNs equipped with learnable filters generally perform well on both types of datasets, as
they can adapt their filters to the dataset’s structural patterns. However, their performance is still
not optimal. The proposed Node-MoE, which utilizes multiple ChebNetII as experts, significantly
outperforms a single ChebNetII, especially on heterophilic datasets. This result validates the
effectiveness of our node-wise filtering approach.

• We also compare the proposed NODE-MOE with two MoE methods, i.e., GMoE, which adapts
the receptive field for each node but still applies traditional graph convolution with low-pass filters
and Mowst, which selects MLP or GNN for prediction based on the confidence of GNN. We can
find NODE-MOE consistently outperforms GMoE and Mowst across all datasets.

4.3 ANALYSIS OF NODE-MOE
In this section, we delve into an in-depth analysis of the behaviors of NODE-MOE to demonstrate its
rationality and effectiveness. We aim to uncover several key aspects of how NODE-MOE operates
and performs: What specific types of filters does Node-MoE learn? Are nodes appropriately assigned
to these diverse filters by the gating model? Finally, which types of nodes benefit the most from
the proposed NODE-MOE for different datasets? We conduct experiments on both CiteSeer and
Chameleon datasets using configurations with 2 experts. The results for the Chameleon dataset are
presented below. For more results and analysis, please refer to Appendix D.

Figure 4 showcases the two filters learned by NODE-MOE on the Chameleon dataset, where filter
0 functions as a low-pass filter and filter 1 as a high-pass filter. To analyze the behavior of the
gating model in NODE-MOE, we split nodes into different groups based on their homophily levels.
Figure 5 displays the weights assigned by the gating model to these two experts. The results reveal
that nodes with lower homophily levels predominantly receive higher weights for the high-pass filter
(filter 1), and as the homophily level increases, the weight for this filter correspondingly decreases.
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Figure 4: Learned 2 filters by
NODE-MOE on Chameleon.

Figure 5: The average weight generated by the gating model
for nodes in different homophily groups on Chameleon.

This pattern confirms our design that nodes with varying structural patterns require different filters,
demonstrating the effectiveness of the proposed gating model. The analysis on more datasets can be
found in Appendix D.3

Figure 6 presents the performance of different models on node groups with varying levels of ho-
mophily. We observe that the proposed NODE-MOE significantly improves the performance of
low-homophilic nodes in the Cora dataset, and enhances the performance of high-homophilic nodes
in the Chameleon dataset, compared to the single-expert ChebNetII. Moreover, NODE-MOE consis-
tently outperforms GAT on low-homophilic nodes in both datasets. These results further validate the
effectiveness of our node-wise filtering approach in adapting to diverse local structural patterns.

(a) Cora (b) Chameleon

Figure 6: The performance of different models on node groups with different homophily.

4.4 ABLATION STUDIES

In this section, we conduct ablation studies to investigate the effectiveness of key components in
the NODE-MOE framework. For the gating mechanism, we compare a standard MLP-based gating
model that uses input features X and the Top-K gating strategy introduced in Section 3.4. As shown
in Figure 7, we make two key observations: (1) the MLP-based gating performs comparably to a
single ChebNetII expert and lags behind the proposed gating method in NODE-MOE; (2) Top-1
gating achieves similar performance to soft gating with all experts, demonstrating that NODE-MOE
can maintain strong performance while preserving computational efficiency.

Table 2: Average training time (s) per epoch.
Dataset ChebNetII NODE-MOE-3 NODE-MOE-5

ogbn-arxiv 1.57 1.77 1.93
pokec 15.58 16.6 16.79

We also compared the average training time of
the proposed NODE-MOE with Top-1 gating.
Specifically, we select two large datasets, ogbn-
arxiv and pokec, and compared the average train-
ing time of NODE-MOE with 3 and 5 experts,
denoted as NODE-MOE-3 and NODE-MOE-5, respectively. As shown in Table 2, despite utilizing 3
or 5 experts, NODE-MOE ’s training time remains comparable to that of the single-expert ChebNetII
as the gating model only select Top-1 expert, demonstrating its efficiency.

Additionally, we explore the effects of the number of experts and the value of K in Top-K gating.
The results, shown in the Appendix D.4 and D.5, demonstrate that NODE-MOE achieves excellent
performance with just a few experts (e.g., 2) and small K values (e.g., 1). Furthermore, we explored
using smaller hidden dimensions in NODE-MOE to match the number of learnable parameters in the
baselines. The results in Appendix D.6 confirm that Node-MoE maintains similar performance while
consistently outperforming the baselines.
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Figure 7: The performance comparison of differ-
ent gating variants.

0 0.1 0.5 1 5
gamma

55

60

65

70

75

80

A
cc

ur
ac

y

Citeseer
Squirrel

Figure 8: The performance with different weight
parameters γ of the filter smoothing loss.

We also investigate the impact of the weight parameter, γ, of the filter smoothing loss on the overall
performance. As shown in Figure 8, incorporating the filter smoothing loss generally enhances
performance, especially for the Citeseer dataset. For more detailed insights into the effects of the filter
smoothing loss, please refer to Appendix B. Additionally, We evaluate NODE-MOE’s performance
under noisy feature settings. As shown in Appendix D.7, NODE-MOE still outperforms the single-
expert model even at higher noise levels. Furthermore, we explore the use of diverse expert models
in NODE-MOE, such as GCN and LinkX. The results shown in Appendix D.11 demonstrate the
flexibility and effectiveness of NODE-MOE using different types of experts.

5 RELATED WORKS
Graph Neural Networks (GNNs) have been widely used across various tasks, most of which adopt
the message-passing framework(Gilmer et al., 2017) and exhibit low-pass filtering behavior (Nt &
Maehara, 2019; Zhao & Akoglu, 2019). While effective on homophilic graphs, these models struggle
on heterophilic graphs, prompting the development of specialized models such as GloGNN (Li et al.,
2022), LinkX (Lim et al., 2021a), and MixHop (Abu-El-Haija et al., 2019). Additionally, models
like BernNet (He et al., 2021), GPRGNN (Chien et al., 2020), and ChebNetII (He et al., 2022)
introduce learnable filters that adapt to varying structural patterns. To better capture mixed structural
patterns in real-world graphs (Suresh et al., 2021; Li et al., 2022; Mao et al., 2024), several methods
introduce multiple filters, including ACM-GNN (Luan et al., 2022), AutoGCN (Wu et al., 2022),
PC-Conv (Li et al., 2024), and ASGAT (Li et al., 2021). Our method is distinct from these methods:
they typically adopt a post-fusion strategy in which all nodes are processed by all filters, leading to
increased computational cost. In contrast, NODE-MOE employs a Top-K gating mechanism that
activates only the most relevant filters for each node, substantially improving efficiency. Moreover, as
illustrated in Figure 1, post-fusion methods may struggle to reflect filter relevance accurately, as they
assign weights solely based on the filtered node representations. By contrast, the gating mechanism
in NODE-MOE is theoretically grounded in Theorem 3.

Mixture-of-Experts (MoE) architectures (Jacobs et al., 1991; Jordan & Jacobs, 1994) have been
widely used to improve the efficiency of large models in NLP (Du et al., 2022; Zhou et al., 2022)
and vision (Riquelme et al., 2021). In the graph domain, GraphMETRO (Wu et al., 2023) and
GMoE (Wang et al., 2024) apply MoE to address distribution shifts and adapt propagation depth.
Link-MoE (Ma et al., 2024) selects from different models based on node-pair heuristics for link
prediction. Mowst (Zeng et al., 2023) switches between MLP and GNN predictions based on model
confidence. While effective in specific settings, these methods rely on post-fusion or fixed filters,
limiting their flexibility. In contrast, NODE-MOE introduces learnable, node-wise expert selection,
achieving both higher adaptability and efficiency.

6 CONCLUSION
In this paper, we explored the complex structural patterns inherent in real-world graph datasets, which
typically exhibit a mixture of homophilic and heterophilic patterns. Notably, these patterns exhibit
significant variability across different communities within the same dataset, highlighting the intricate
and diverse nature of graph structures. Our theoretical analysis reveals that the conventional single
global filter, commonly used in many GNNs, is often inadequate for capturing such complex structural
patterns. To address this limitation, we proposed the node-wise filtering method, NODE-MOE, a
flexible and effective solution that adaptively selects appropriate filters for different nodes. Extensive
experiments demonstrate the proposed NODE-MOE demonstrated excellent performance on both
homophilic and heterophilic datasets. Further, our behavioral analysis and ablation studies validate
the design and effectiveness of the proposed NODE-MOE.
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A PROOFS OF THEOREMS

In this section, we present the proofs of the theorems from Section 2. These theorems analyze
the separability when different filters are applied to graphs generated by a mixed CSBM model in
Defination 1 - CSBM(n,µ,ν, (p0, q0), (p1, q1), P ) using a linear classifier.

Notably, the following proof is derived based on Baranwal et al. (2021), which analyzes the linear
separability of a single graph convolution under a single CSBM model with only one pattern -
CSBM(n,µ,ν, (p, q)). We extend the analysis to graphs with mixed CSBM models. Besides, we
analyze the scenarios in which different filters are applied to the same graph.

We follow the assumption 1 and 2 in Baranwal et al. (2021): The graph size n should be relatively
large with ω(d log d) ≤ n ≤ O(poly(d)), and the graph is not too sparse with p0, q0, p1, q1 =
ω
(
log2(n)/n

)
.

A.1 PROOF OF THEOREM 1

Proof. For the low-pass filter, consider the filtered feature X̃ = D−1AX. Due to the normal
distribution of node feature X, the filtered feature of node i still follows the normal distribution.
Specifically, the mean of nodes in different classes and partterns can be represented by:

m(i) = E(X̃i) =



p0µ+ q0ν

p0 + q0
(1 + o(1)) for i ∈ C0 and i ∈ H0

q0µ+ p0ν

p0 + q0
(1 + o(1)) for i ∈ C1 and i ∈ H0

p1µ+ q1ν

p1 + q1
(1 + o(1)) for i ∈ C0 and i ∈ H1

q1µ+ p1ν

p1 + q1
(1 + o(1)) for i ∈ C1 and i ∈ H1

,

where C0 and C1 represent the class 0 and class 1, respectively; H0 and H1 are the homophilic and
heterophilic node sets, respectively. The covariance matrix can be represented by: Cov(X̃i) =

1
dDii

I.. Lemma 2 in Baranwal et al. (2021) demostrate that for any unit vector w, we have:∣∣∣(X̃i −m(i)
)
·w
∣∣∣ = O

(√
logn

dn(p0+q0)

)
.

If we only consider the nodes with homophilic patterns, i.e., i ∈ H0, we can find the optimal linear
classifier with w∗ = R ν−µ

∥ν−µ∥ and b∗ = − 1
2 ⟨ν + µ,w∗⟩. We also have the assumption that the

distance between µ and ν are relatively large, with ∥ν − µ∥ = Ω
(

logn
dn(p0+q0)

)
.

Then, for i ∈ C0 and i ∈ H0, we have:
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⟨X̃i,w
∗⟩+ b∗ =

⟨p0µ+ q0ν,w
∗⟩

p0 + q0
(1 + o(1))+

O

(
∥w∗∥

√
log n

dn(p+ q)

)
− 1

2
⟨ν + µ,w∗⟩

=
⟨2p0µ+ 2qoν − (p0 + q0)(µ+ ν),w∗⟩

p0 + q0
(1 + o(1))

+ o(∥w∗∥)

=
p0 − q0

2(p0 + q0)
⟨µ− ν,w∗⟩(1 + o(1)) + o(∥w∗∥)

=− R(p0 − q0)

2(p0 + q0)
∥µ− ν∥(1 + o(1)) < 0

Similarly, for i ∈ C1 and i ∈ H0, we have:

⟨X̃i,w
∗⟩+ b∗ = −R(q0 − p0)

2(p0 + q0)
∥µ− ν∥(1 + o(1)) > 0

Therefore, the linear classifier with w∗ and b∗ can separate class C0.

However, if we apply this linear classifier to the heterophilic node set H1, where p1 < q1, we have:

⟨X̃i,w
∗⟩+ b∗ =



−R(p1 − q1)

2(p1 + q1)
∥µ− ν∥(1 + o(1)) > 0

for i ∈ C0 and i ∈ H1

−R(q1 − p1)

2(p1 + q1)
∥µ− ν∥(1 + o(1)) < 0

for i ∈ C1 and i ∈ H1

Therefore, all nodes in H1 are misclassified. The binary cross-entropy over node set H1 can be
represented by:

L(H1,w
∗, b∗) =

1

|H1|
∑
i∈H1

−yi log
(
σ
(〈

X̃i,w
∗
〉
+ b̃
))

−

(1− yi) log
(
1− σ

(〈
X̃i,w

∗
〉
+ b∗

))
=

1

|H1|
∑
i∈H1

log
(
1 + exp

(
(1− 2yi)

(〈
X̃i, w̃

〉
+ b∗

)))
= log

(
1 + exp

(
−R(p1 − q1)

2(p1 + q1)
∥µ− ν∥(1 + o(1))

))

As for x = −R(p1−q1)
2(p1+q1)

∥µ− ν∥ > 0, we have ex ≥ x. As a result, we have

L(H1,w
∗, b∗) ≥ R(q1 − p1)

2(p1 + q1)
∥µ− ν∥(1 + o(1))

A.2 PROOF OF THEOREM 2

Proof. Suppose we apply a high-pass filter to the heterophilic nodes H1 and the filtered features are
X̃ = −D−1AX. For nodes in H1,

14
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m(i) = E(X̃i) =


−p1µ+ q1ν

p1 + q1
(1 + o(1)) for i ∈ C0 and i ∈ H1

−q1µ+ p1ν

p1 + q1
(1 + o(1)) for i ∈ C1 and i ∈ H1

Therefore, if we apply the same linear classifier with w∗ and b∗, then we have:

⟨X̃i,w
∗⟩+ b∗ =



R(p1 − q1)

2(p1 + q1)
∥µ− ν∥(1 + o(1)) < 0

for i ∈ C0 and i ∈ H1

R(q1 − p1)

2(p1 + q1)
∥µ− ν∥(1 + o(1)) > 0

for i ∈ C1 and i ∈ H1

As a result, the same linear classifier can separate both the homophilic set H0 and heterophilic set
H1.

A.3 PROOF OF THEOREM 3

Proof. Let A be the adjacency matrix of G, D be the diagonal degree matrix where Dii is the degree
of node i, and X ∈ Rn×d be the feature matrix with Xi denoting the feature vector of node i. The
filtered feature is defined as:

X̃ = D−1AX,

where D−1A averages features across neighbors of each node.

We now analyze the squared feature change, f2
i = (X̃i−Xi)

2, which represents the squared deviation
of the aggregated feature from the original feature. For node i, this is:

f2
i =

 ∑
j∈N (i)

Xj

Dii
−Xi

2

,

where N (i) is the neighborhood of i.

Nodes are divided into:

• H0: Homophilic nodes where intra-class connections dominate.

• H1: Heterophilic nodes where inter-class connections dominate.

Each node belongs to one of two classes C0 or C1, with the class means µ and ν, respectively.

If fi = X̃i −Xi ∼ N(µfi , σ
2
fi
), then f2

i follows a scaled Chi-squared distribution:

f2
i ∼

σ2
fi

σ2
χ2(1, λi),

where:

• χ2(1, λi) is a non-central Chi-squared distribution with 1 degree of freedom and non-

centrality parameter λi =
µ2
fi

σ2
fi

.

• σ2
fi

= σ2

d

(
1 + 1

Dii

)
for node i.
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• The mean µfi depends on the node type (homophilic or heterophilic):

µfi =


q0

p0+q0
(ν − µ), if i ∈ H0, C0,

− q0
p0+q0

(ν − µ), if i ∈ H0, C1,
q1

p1+q1
(ν − µ), if i ∈ H1, C0.

− q1
p1+q1

(ν − µ), if i ∈ H1, C1.

For each node i, the expected squared feature change f2
i is:

E[f2
i ] = µ2

fi + σ2
fi ,

and the variance of f2
i is:

Var(f2
i ) = 2σ4

fi + 4µ2
fiσ

2
fi .

Misclassification occurs when the squared feature changes of nodes i ∈ H0 and j ∈ H1 overlap.
Define the difference in squared feature changes:

DFij = f2
i − f2

j .

The expectation of DFij is:
E[DFij ] = E[f2

i ]− E[f2
j ].

Substituting E[f2
i ] = µ2

fi
+ σ2

fi
, we get:

E[DFij ] = (µ2
fi − µ2

fj ) + (σ2
fi − σ2

fj ),

where:

• The difference in means µ2
fi
− µ2

fj
is:

µ2
fi − µ2

fj =

(
q0

p0 + q0
− q1

p1 + q1

)2

(ν − µ)2 = ∆2(ν − µ)2.

Here, ∆ = q0
p0+q0

− q1
p1+q1

represents the normalized connection bias between classes.

• The variance difference σ2
fi
− σ2

fj
is:

σ2
fi − σ2

fj =
σ2

d

(
1

Dii
− 1

Djj

)
.

As d → ∞, this term vanishes.

Thus:

E[DFij ] = ∆2(ν − µ)2 +O
(
1

d

)
.

The variance of DFij is:
Var(DFij) = Var(f2

i ) + Var(f2
j ).

For each node:
Var(f2

i ) = 2σ4
fi + 4µ2

fiσ
2
fi .

Since σ2
fi

= σ2

d

(
1 + 1

Dii

)
and µ2

fi
∝ 1

d , we get:

Var(f2
i ) ∼ O

(
1

d

)
.

The misclassification probability P(DFij ≤ ϵ) can be bounded using the Chernoff inequality:

P(DFij ≤ ϵ) ≤ exp

(
− (E[DFij ]− ϵ)2

2Var(DFij)

)
.
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Substituting the results:

E[DFij ] = ∆2(ν − µ)2 +O
(
1

d

)
, Var(DFij) ∼ O

(
1

d

)
.

Thus:
(E[DFij ]− ϵ)2

2Var(DFij)
∼ O(d),

implying that the exponential decay in the Chernoff bound becomes increasingly sharp as d → ∞,
making P(DFij ≤ ϵ) approach 1.

B THE IMPACT OF FILTER SMOOTHING LOSS

In this section, we explore the impact of the proposed filter smoothing loss on the behavior of the
learned filters in our NODE-MOE framework. Figures 9 and 10 display the effects of the NODE-MOE
framework without and with the application of filter smoothing loss, respectively. Without the filter
smoothing loss, as shown in Figure 9, the learned filters exhibit significant oscillations, making it
challenging to discern their specific functions. In contrast, with the filter smoothing loss applied, as
illustrated in Figure 10, the behavior of the filters becomes more distinct: filter 0 clearly functions as
a low-pass filter, and filter 1 as a high-pass filter.

Figure 9: Learned 2 filters by NODE-MOE on
Chameleon without filter smoothing loss.

Figure 10: Learned 2 filters by NODE-MOE on
Chameleon with filter smoothing loss.

Additionally, we assessed the training dynamics of the proposed Node-MoE framework by comparing
performance with and without the filter smoothing loss, while keeping other hyperparameters constant.
For the Citeseer dataset, applying the filter smoothing loss resulted in a higher average training
accuracy of 99.37 ± 0.17, compared to 93.51 ± 1.27 when the loss was not applied. A similar pattern
was observed on the Squirrel dataset, where the training accuracy was 96.54 ± 1.42 with the filter
smoothing loss, versus 95.54 ± 0.94 without it. These results suggest that oscillations in the filters
without the smoothing loss can hinder the model’s ability to fit the data effectively, resulting in
suboptimal performance as shown in Section 4.4.

C DATASETS AND EXPERIMENTAL SETTINGS

In this section, we detail the datasets used and the experimental settings for both the baseline models
and the proposed NODE-MOE framework.

C.1 DATASETS

We conduct experiments across seven widely recognized datasets, which encompass both homophilic
and heterophilic types. The homophilic datasets include Cora, CiteSeer, and Pubmed (Sen et al.,
2008), along with ogbn-arxiv (Hu et al., 2020); the heterophilic datasets comprise Chameleon,
Squirrel (Pei et al., 2020), Penn94 and pokec Lim et al. (2021a). For Cora, CiteSeer, and Pubmed, we
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generate ten random splits, allocating nodes into training, validation, and testing sets with proportions
of 60%, 20%, and 20%, respectively. For the heterophilic datasets, we adhere to the ten fixed splits as
defined in Pei et al. (2020). The ogbn-arxiv dataset is assessed using its standard split as established
by (Hu et al., 2020). Detailed statistics of these datasets are shown in Table 3.

Table 3: Statistics of datasets. The split ratio is for train/validation/test.
Homophilic Datasets Heterophilc Datasets

Cora CiteSeer PubMed ogbn-arxiv Chameleon Squirrel Penn94 pokec

#Nodes 2,708 3,327 19,717 169, 343 2,277 5,201 41,554 1,632,803
#Edges 5,429 4,732 44,338 1, 166, 243 31,421 198,493 1,362,229 30,622,564

#Classes 7 6 3 40 5 5 2 2
#Node Features 1,433 3,703 500 128 2,325 2,089 4814 65

#Split Ratio 60/20/20 60/20/20 60/20/20 54/18/28 48/32/20 48/32/20 50/25/25 50/25/25

C.2 RESULTS ON ADDITIONAL HETEROPHILIC DATASETS FROM PLATONOV ET AL. (2023)

Platonov et al. Platonov et al. (2023) introduced a set of heterophilic graphs with diverse properties
and showed that standard GNNs often outperform specialized models on these datasets. We further
evaluate the proposed NODE-MOE on two of their benchmarks: amazon-ratings and tolokers.
Specifically, we report Accuracy on amazon-ratings and ROC AUC on tolokers, following the settings
in Platonov et al. (2023). The results are presented in Table 4, where NODE-MOE achieves the best
performance on both datasets, further validating its effectiveness on newly introduced heterophilic
benchmarks.

Table 4: The results on amazon-ratings and tolokers datasets.
amazon-ratings tolokers

GCN Kipf & Welling (2016) 48.70 ± 0.63 83.64 ± 0.67
SAGE Hamilton et al. (2017) 53.63 ± 0.39 82.43 ± 0.44
GAT Veličković et al. (2017) 49.09 ± 0.63 83.70 ± 0.47

GAT-sep Platonov et al. (2023) 52.70 ± 0.62 83.78 ± 0.43
Graph Transformer(GT) Shi et al. (2020) 51.17 ± 0.66 83.23 ± 0.64

GT-sep Platonov et al. (2023) 52.18 ± 0.80 82.52 ± 0.92
GPR-GNN Chien et al. (2020) 44.88 ± 0.34 72.94 ± 0.97

ChebNetII He et al. (2022) 52.23 ± 0.58 82.52 ± 0.98
Node-MoE 54.02 ± 0.71 84.87 ± 0.92

C.3 ALGORITHM OF NODE-MOE

The algorithm of NODE-MOE is shown in Algorithm 1. Lines 2-3 initialize the filters of experts
based on the setting in Section C.4. Line 4 calculates the input for the gating model. Lines 6-7
calculate the prediction with top-k gating. Line 8 update the model based on the loss in Section 3.3.

Algorithm 1: NODE-MOE
1 Input graph A, Node feature X, m experts, i.e., E1, E2, . . . , Em, Gating model g, Top-K gating
k

2 for i = 1, 2, . . . ,m do
3 Initialize the filter i-th expert Ei

4 Calculate the gating input GX = [X, |AX−X|, |A2X−X|]
5 repeat
6 G = Softmax(KeepTopK(g(GX), k))
7 ŷ =

∑m
o=0 GoEo(A,X)

8 Update NODE-MOE weight by gradient descent on L
9 until Model converges;
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C.4 EXPERIMENTAL SETTINGS

For the baseline models, we adopt the same parameter setting in their original paper. For the proposed
NODE-MOE, we adopt GCNII as the experts. Specifically, for smaller datasets, we use GIN as the
gating model, while for larger datasets, such as Pokec, we use an MLP as the gating model. Notably,
the GCNII model has different learning rates and weight decay for the filters and other parameters.
All the hyperparameters are tuned based on the validation accuracy from the following search space:

• Gating Learning Rate: {0.0001, 0.001, 0.01 }
• Gating Dropout: {0, 0.5, 0.8}
• Gating Weight Decay: {0, 5e-5, 5e-4}
• Expert Learning Rate for Filters: {0.001, 0.01, 0.1}
• Expert Weight Decay for Filters: {0, 5e-5, 5e-3, 5e-2 }
• Expert Learning Rate: {0.001, 0.01, 0.1, 0.5}
• Expert Dropout: {0, 0.5, 0.8}
• Filter Smoothing loss weight: {0, 0.01, 0.1, 1}
• Load balancing weight for top-k gating: {0, 0.001, 0.01, 0.1, 1}
• Number of experts: {2, 3, 5}

For the initialization of filters in ChebNetII, which uses a K-order approximation, we employ a set of
initialization strategies for the polynomial coefficients. These strategies include: decreasing powers
[α0, α1, · · · , αK ], increasing powers [αK , αK−1, · · · , α0], and uniform values [1, 1, · · · , 1]. For
configurations with 2 or 3 experts, we set α = 0.9. When expanding to 5 experts, we use two values
of α, setting them at 0.9 and 0.8, respectively, to diversify the response characteristics of the filters.
The code of the proposed NODE-MOE can be found via: https://anonymous.4open.science/r/Node-
MoE-A05D/.

We use a single GPU of NVIDIA RTX A5000 24Gb, to run the experiments.

D ANALYSIS OF THE PROPOSED NODE-MOE

In this section, we provide more analysis of the proposed NODE-MOE by comprehensive experiments.

D.1 NODE-MOE WITH GPRGNN AS EXPERT BACKBONE

In the Section 4, we selected ChebNetII as the expert backbone. In this section, we experiment
with GPR-GNN as the expert model. The results in Table 5 show that Node-MoE with GPR-GNN
significantly enhances the performance of the base GPR-GNN model, further demonstrating the
flexibility and effectiveness of our approach.

Table 5: NODE-MOE with different expert backbones.
Method Cora CiteSeer Chameleon Squirrel

GPR-GNN 88.54 ± 0.67 76.44 ± 1.89 62.85 ± 2.90 54.35 ± 0.87
Node-MoE (GPR-GNN) 89.30 ± 1.44 77.12 ± 1.60 70.88 ± 2.22 56.92 ± 0.61

ChebNetII 88.71 ± 0.93 76.93 ± 1.57 71.14 ± 2.13 57.12 ± 1.13
Node-MoE (ChebNetII) 89.38 ± 1.26 77.78 ± 1.36 73.64 ± 1.80 62.31 ± 1.98

D.2 NODE-MOE WITH DIFFERENT MODELS AS GATING BACKBONE

In Section 4, we selected GIN as the gating model backbone. In this section, we experiment with
alternative gating models, including GCN and MLP. The results in Table 6 show that GNN-based
models, such as GCN and GIN, generally outperform MLP, particularly on heterophilic datasets.
These findings align with the analysis in Section 2, which highlights the significant variation in
homophily across different communities and supports the rationale for using a gating model.
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Table 6: NODE-MOE with different gating backbones.
Gating Model Cora CiteSeer Chameleon Squirrel

MLP 89.26 ± 1.34 77.59 ± 1.27 72.70 ± 1.75 59.88 ± 2.33
GCN 89.28 ± 0.96 77.89 ± 1.29 73.29 ± 1.71 62.04 ± 1.92
GIN 89.38 ± 1.26 77.78 ± 1.36 73.64 ± 1.80 62.31 ± 1.98

D.3 THE BEHAVIOR OF NODE-MOE WITH 2 EXPERTS

The learned filters and the corresponding gating weights for nodes with different homophily levels
are illustrated below. For the Chameleon dataset, these are displayed in Figure 11 for the filters and
Figure 12 for the gating weights. Similarly, for the Citeseer dataset, the filters are shown in Figure 13
and the gating weights in Figure 14.

Figure 11: Learned 2 filters by
NODE-MOE on Chameleon.

Figure 12: The average weight generated by the gating model
for nodes in different homophily groups on Chameleon.

Figure 13: Learned 2 filters by
NODE-MOE on Citeseer.

Figure 14: The average weight generated by the gating model
for nodes in different homophily groups on Citeseer.

For both datasets, the learned filters demonstrate distinct characteristics: filter 0s function as low-pass
filters, effectively smoothing signals, while filter 1s respond more strongly to high-frequency signals,
characteristic of high-pass filters. Specifically, for the heterophilic dataset, such as Chameleon, the
gating model generally assigns higher weights to filter 1, indicating a preference for high-pass filtering
to accommodate the less homophilic nature of the dataset. Conversely, for the homophilic dataset,
such as Citeseer, higher weights are typically assigned to filter 0, emphasizing low-pass filtering.

Moreover, within the Chameleon dataset, the weight assigned to the high-pass filter (filter 1) decreases
as the homophily level increases. In contrast, in the Citeseer dataset, the weight to the low-pass
filter (filter 0) increases with rising homophily levels. This pattern supports our initial hypothesis:
nodes with lower homophily are better served by high-pass filters to capture the dissimilarity among
neighbors, while nodes with higher homophily benefit from low-pass filters to reinforce the similarity
among neighboring nodes.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 7: The performance of Node-MoE with different number of experts.
Experts 1 2 3 5

Cora 88.71 ± 0.93 89.19 ± 1.53 89.38 ± 1.26 89.47 ± 0.85
Chameleon 71.14 ± 2.13 73.55 ± 1.74 73.64 ± 1.80 73.42 ± 1.43

Table 8: The performance of Top-K gating for Node-MoE with 3 experts.
K Single Expert 1 2 3

Cora 88.71 ± 0.93 89.58 ± 1.44 89.56 ± 1.39 89.38 ± 1.26
Chameleon 71.14 ± 2.13 73.18 ± 1.45 73.37 ± 1.86 73.64 ± 1.80

D.4 EFFECT OF THE NUMBER OF EXPERTS IN NODE-MOE

In this section, we analyze the impact of using different numbers of experts in NODE-MOE with soft
gating. Specifically, we experiment with 1, 2, 3, and 5 experts on the Cora and Chameleon datasets,
following the same settings as outlined in Section 4.1. The experimental results, shown in Table 7,
indicate that NODE-MOE achieves excellent performance with only a few experts. Notably, even
with just 2 experts, it outperforms the baseline models.

D.5 EFFECT OF THE NUMBER OF SELECTED EXPERTS IN TOP-K GATING

In this section, we explore the impact of the number of selected experts K in NODE-MOE with Top-K
gating. Specifically, we use 3 experts in the MoE and vary K in [1, 2, 3] in the the Top-K gating. The
results in Table 8 demonstrate that even with Top-1 gating, Node-MoE achieves superior performance,
highlighting its effectiveness and maintaining good efficiency.

D.6 NODE-MOE WITH SMALLER HIDDEN DIMENSIONS

We further conducted experiments with Node-MoE using 3 experts and a significantly reduced hidden
dimension size, decreasing it from 64 to 21. This adjustment ensures that the proposed Node-MoE
has a comparable number of learnable parameters to models like MLP and GCN. Despite the lower
hidden dimension, the results in Table 9 demonstrate that Node-MoE maintains similar performance
and continues to outperform the baselines.

D.7 NODE-MOE WITH NOISE FEATURE SEETING

The effectiveness of the gating model in NODE-MOE depends on the quality of node features, and
noisy features can hinder its ability to accurately classify node patterns. In this section, we investigate
the impact of noisy features on NODE-MOE. Specifically, we add varying levels of Gaussian noise to
the features in Cora and Chameleon dataset, i.e., X = X + ϵN (0, 1) with ϵ ∈ [0, 0.01, 0.03, 0.05],
where N (0, 1) is the standard normal distribution.

Table 9: The performance of NODE-MOE with different hidden dimensions.
Hidden Size Cora CiteSeer Chameleon Squirrel

Node-MoE 21 89.36 ± 1.00 77.93 ± 1.52 73.51 ± 1.77 60.93 ± 1.89
Node-MoE 64 89.38 ± 1.26 77.78 ± 1.36 73.64 ± 1.80 62.31 ± 1.98

Table 10: Node classification performance with different levels of noise in the node features.
Dataset Cora Chameleon
Noise 0 0.01 0.03 0.05 0 0.01 0.03 0.05
MLP 76.49 ± 1.13 59.08 ± 2.36 31.05 ± 1.23 29.58 ± 1.39 48.11 ± 2.23 30.31 ± 1.74 23.71 ± 1.79 21.80 ± 1.76
GAT 88.68 ± 1.13 87.78 ± 0.98 85.35 ± 0.98 84.61 ± 1.29 65.29 ± 2.54 64.47 ± 2.77 63.73 ± 2.19 62.92 ± 2.42

ChebyNetII 88.71±0.93 87.90 ± 1.41 86.25 ± 1.62 85.85 ± 1.09 71.14 ± 2.13 71.45 ± 1.87 71.54 ± 1.48 71.62 ± 1.56
NODE-MOE 89.38 ± 1.26 87.98 ± 1.51 86.45 ± 1.35 86.05 ± 1.19 73.64 ± 1.80 73.16 ± 1.18 72.13 ± 1.62 71.95 ± 1.66
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The results on Cora and Chameleon dataset are shown in Table 10. As the noise level increases,
the performance gap between NODE-MOE and the single-expert ChebyNetII decreases. However,
NODE-MOE consistently outperforms the single expert, even with higher noise levels. The reason is
that when noise is too high, the gating model may randomly assign nodes to different experts, making
the learned filters converge to a performance similar to the single-expert model.

Table 11: Comparison between the fixed filters and learnable filters.
Method Cora CiteSeer Chameleon squirrel

NODE-MOE-Fixed 87.26 ± 1.79 76.15 ± 1.99 71.78 ± 3.37 56.96 ± 1.51
NODE-MOE 89.38 ± 1.26 77.78 ± 1.36 73.64 ± 1.80 62.31 ± 1.98

Table 12: Node classification performance with filtered datasets.
Method Chameleon Squirrel Chameleon-filterd Squirrel-filtered
PCNet 41.23 ± 1.42 26.28 ± 0.32 34.51 ± 1.86 33.08 ± 0.20

ASGAT 66.50 ± 2.80 55.80 ± 3.20 37.4 ± 6.40 35.10 ± 1.30
ACM-GCN 69.62 ± 1.22 57.02 ± 0.79 37.78 ± 2.28 36.59 ± 1.75

Mowst 65.50 ± 1.86 52.14 ± 1.25 43.45 ± 3.90 38.04 ± 2.14
NODE-MOE 73.64 ± 1.80 62.31 ± 1.98 43.32 ± 3.56 42.37 ± 1.98

Table 13: Semi-supervised Node classification performance with low labeling rate.
Cora 20 Chameleon 20%

GCN 79.41 ± 1.30 56.71 ± 1.72
LinkX 52.93 ± 3.04 60.62 ± 1.93
GMoE 76.00 ± 1.14 65.18 ± 1.45

ChebNetII 81.20 ± 1.04 64.66 ± 1.86
Node-MoE 82.12 ± 1.19 68.81 ± 1.96

Table 14: The performance of NODE-MOE with diverse experts.
Cora CiteSeer Chameleon Squirrel

LinkX 82.89 ± 1.27 70.05 ± 1.88 68.42 ± 1.38 61.81 ± 1.80
GCN 88.60 ± 1.19 76.88 ± 1.78 67.96 ± 1.82 54.47 ± 1.17

Node-MoE(LinkX+GCN) 88.92 ± 2.00 77.02 ± 2.03 73.84 ± 1.25 64.69 ± 1.84

D.8 EFFECT OF LEARNABLE FILTERS IN NODE-MOE

The propose NODE-MOE leverages ChebNetII as the experts, which automatically learn the filters.
In contrast, a few prior works use multiple fixed filters. To evaluate the effect of learnable filters,
we conducted experiments with fixed filters. Specifically, we used 3 experts in NODE-MOE and
fixed the filters in each expert to predefined types (low-pass, high-pass, and all-pass), referred to as
NODE-MOE-fixed.

The performance comparison between NODE-MOE and NODE-MOE-fixed is shown in Table 11.
NODE-MOE with learnable filters achieves better performance than with fixed filters across all
datasets. This suggests that learnable filters are better suited for capturing the complex patterns
present in real-world graphs.

D.9 DUPLICATES IN THE CHAMELEON AND SQUIRREL DATASETS

Platonov et al. Platonov et al. (2023) identified that some nodes in the Chameleon and Squirrel
datasets are duplicated, sharing identical neighbors, which may affect the performance of GNNs.
To further validate the effectiveness of the proposed method, we also tested it on filtered versions
of the Chameleon and Squirrel datasets, where the duplicate nodes were removed, referred to as
Chameleon-filtered and Squirrel-filtered.
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As shown in Table 12, NODE-MOE continues to perform well on these filtered datasets, demonstrating
its robustness.

D.10 NODE-MOE WITH LOW LABELING RATE

We also evaluate the semi-supervised node classification performance under a low labeling rate.
Specifically, we randomly select 20 training nodes per class for the Cora dataset and use 20% of
the training nodes for the Chameleon dataset. The results are shown in Table 13. Even under these
low-labeling rate conditions, the proposed NODE-MOE continues to outperform the baseline models.

D.11 NODE-MOE WITH DIVERSE EXPERTS

We explored the use of diverse expert models by selecting GCN and LinkX as two representative
architectures tailored for homophilic and heterophilic patterns, respectively. We integrated these two
models as the experts in Node-MoE and conducted end-to-end training. The results are summarized
in the Table 14.

GCN performs exceptionally well on homophilic datasets, while LinkX excels on heterophilic datasets.
The proposed Node-MoE, utilizing both GCN and LinkX as experts, achieves better performance
across both homophilic and heterophilic datasets. This demonstrates the flexibility and effectiveness
of Node-MoE in leveraging diverse expert models to adapt to varying structural patterns within
graphs.
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