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Abstract
The field of hypothesis generation promises to re-
duce costs in neuroscience by narrowing the range
of interventional studies needed to study various
phenomena. Existing machine learning methods
can generate scientific hypotheses from complex
datasets, but many approaches assume causal rela-
tionships are static over time, limiting their appli-
cability to systems with dynamic, state-dependent
behavior, such as the brain. While some tech-
niques attempt dynamic causal discovery through
factor models, they often restrict relationships to
linear patterns or impose other simplifying as-
sumptions. We propose a novel method that mod-
els dynamic graphs as a conditionally weighted
superposition of static graphs, where each static
graph can capture nonlinear relationships. This
approach enables the detection of complex, time-
varying interactions between variables beyond lin-
ear limitations. Our method improves f1-scores
of predicted dynamic causal patterns by roughly
22-28% on average over baselines in some of our
experiments, with some improvements reaching
well over 60%. A case study on real brain data
demonstrates our method’s ability to uncover re-
lationships linked to specific behavioral states,
offering valuable insights into neural dynamics.

1. Introduction
Causal discovery methods applied to brain dynamics hold
great promise for designing targeted interventions in var-
ious neurological diseases. A typical approach is to gen-
erate hypotheses about causal relationships between brain
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regions by using Granger causality on time series recorded
from each region (Seth, 2007), which can be extended to
many brain regions to capture more complete network rela-
tionships. Granger causality describes whether the history
of one variable can help predict future information about
another variable (Löwe et al., 2022; Assaad et al., 2022).
Granger causal models are more statistical in nature than
causal (Pearl, 2009); however, we seek to generate hypothe-
ses about causal relationships to then inform causal infer-
ence / assays, hence the use of Granger causal models.

Current machine learning (ML) methods do not capture the
brain’s full complexity, which has well-documented nonlin-
ear interactions and dynamic causal graphs that vary by state
and task. Existing discovery methods tend to assume that
either a) (potentially dynamic) linear models are sufficient
for modeling causal behavior (Huang et al., 2019; Gallagher
et al., 2021) or that b) causal graphs between variables are
static and not state-dependent (Zhang et al., 2017b; Sadeghi
et al., 2024). These limitations reflect a gap in existing
ML methodology, with implications outside neuroscience
for any field seeking to automate hypothesis generation for
potentially nonlinear, state-dependent dynamical systems.

Thus, we focus on generating hypotheses about mechanisms
governing nonlinear and state-dependent (or “dynamic”)
behavior in time series systems (hereafter referred to as
“temporal systems” or simply “systems” to conserve space).
While understandable concerns may be raised about the
detectability of such mechanisms in even simple systems
(see our discussion on identifiability in Appendix A.1), prior
literature has demonstrated that using automated hypothe-
sis generation for these mechanisms can still yield useful
insights which aid scientific discovery (Mague et al., 2022).
Indeed, we accurately estimate causal graphs in observed
systems without making restrictive assumptions as to the
state-dependence or linearity/nonlinearity of causal relation-
ships. We do this by combining key concepts from both
factor-based and nonlinear models of causal time series.

In summary, we seek to reduce the space of hypotheses that
must be tested before a causal relationship is successfully
identified. As such, we present 1) a novel approach to hy-
pothesis generation for dynamic causal graphs using a deep
generative factor model, 2) methods for including auxiliary
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variables - such as behavior - as supervised labels to improve
hypotheses and utility, 3) neuroscience-inspired relational
discovery challenges and datasets for improving ML meth-
ods, and 4) empirical results comparing leading methods on
under-explored hypothesis generation paradigms. We only
assume our data consists of regularly sampled time series
of scalar-valued nodes (see Section 3.1). These time series
may be noisy, and we make no assumptions regarding the
underlying generative processes. In Section 3.5, we assume
the availability of “global state” labels for each time step
that relate to the dominant generative process.

2. Related Work
Causal discovery may be considered to be a sub-field of
hypothesis generation, and is the sub-field most closely
related to our aim of forming hypotheses about causal re-
lationships. Specifically, our proposed method should be
viewed as a preparatory analysis technique preceding more
complex methods such as Dynamic Causal Models (DCMs)
(Friston et al., 2003). This is because we assume we have
no access to any interventional inputs required to construct
a DCM model (Stephan et al., 2010). In such a setting, it is
recommended that Granger causal models (such as ours) be
used to inform DCM models (Friston et al., 2013).

There are numerous causal discovery methods which avoid
Granger causality (Runge, 2020; Gerhardus & Runge, 2020;
Zou & Feng, 2009; Yu et al., 2019). These methods do
not assume causality from temporal correlation, and thus
are better positioned to handle causal relations such as con-
temporaneous effects (Runge, 2020) and latent confounders
(Gerhardus & Runge, 2020). However, these methods tend
to rely on assumptions that rule out hypotheses we would
like to explore in neuroscience; for example, many methods
assume causal graphs are acyclical (Runge, 2020; Gerhardus
& Runge, 2020; Zou & Feng, 2009; Yu et al., 2019), which
recurrent, multi-time scale systems like the brain may fun-
damentally violate - e.g., through cross-frequency coupling
(Dzirasa et al., 2010; Allen et al., 2011). Thus, our approach
differs from these methods and we instead report empiri-
cal comparisons between our method and Regime-PCMCI
(Saggioro et al., 2020) in Section 4.2.

Vector Autoregressive Models (VARs) are often used to
estimate Granger causality, but are limited to linear relation-
ships (Shojaie & Fox, 2022). Recent research has used arti-
ficial neural networks (ANNs) to perform nonlinear causal
discovery in temporal systems (Tank et al., 2021), including
tasks from finding predictive graphical models (Löwe et al.,
2022) to estimating a subject’s emotional state via recorded
electroencephalogram (EEG) signals (Song et al., 2018).
These frameworks tend to focus on estimating static causal
graphs (Tank et al., 2021; Song et al., 2018; Bussmann et al.,
2021; Pamfil et al., 2020; D’Acunto et al., 2022) and we

use them as baselines in this paper. Our contributions are
orthogonal to this line of work, as we focus on capturing
dynamics of graphs over different points in time rather than
estimating a static graph. In fact, our factor-based approach
can use these structures as individual graphs whose strength
modulates over time to make a composite graph.

There is also prior work on identifying dynamic graphs over
time. For example, Fujiwara et al. (2023) developed an
approach to estimate how the strength of causal relation-
ships change over time, but did not capture dynamic graph
structures. Other approaches - based on factor models or
matrix factorizations - capture dynamic graph structures,
but are restricted to discovering linear relationships between
variables (Fox et al., 2011; Mague et al., 2022; Gallagher
et al., 2021; Calhoun et al., 2014). Similarly, the very recent
DyCAST method is tested solely on synthetic data with lin-
ear relationships (Cheng et al., 2025). Building on this work,
we use factor model approaches on top of ANN base units to
capture time-evolving graphs with nonlinear relationships.
This allows us to more realistically capture key properties of
many real-world temporal systems, including brain models.
Additionally, our framework allows for the inclusion of aux-
iliary labels, similar to what has been done previously with
systems limited to linear relationships (Talbot et al., 2023).

There is also work using dynamic nonlinear models through
time, such as State-Dependent Causal Inference (SDCI)
(Rodas et al., 2021), Switching Neural Network Trackers
(SNNTs) (Ghimire, 2018), and Constraint-based causal Dis-
covery from Nonstationary/heterogeneous Data (CD-NOD)
(Zhang et al., 2017a). However, SDCI models connections
between embedded latent variables, which would hamper
identifying variables with a single physical signal/brain re-
gion, and assigns a state label to each latent variable in
the system, a granularity which we cannot attain with la-
bels from behavioral assays in neuroscience. Meanwhile,
SNNTs are probabilistic in nature instead of being designed
for causal discovery and use discrete states instead of a su-
perposition of factors used in our Section 4.3 experiments
and the design of our proposed method. In contrast, the
development of CD-NOD was largely motivated by the task
of performing causal discovery on neurological (esp. fMRI)
data, and it thus shares similarities with our work in much
of the problem setup and certain assumptions. Still, there
are enough differences between our approach and CD-NOD
- such as our focus on autoregressive systems and uncon-
strained directionality of underlying causal relationships -
that our direct comparisons with Regime-PCMCI (Saggioro
et al., 2020) can be considered sufficient for our purposes.

Finally, prior work explored using low-dimensional latent
spaces to model dynamics in neural activity (Linderman
et al., 2017; Keshtkaran et al., 2022). In contrast, we largely
ignore our models’ latent features beyond applying con-
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straints because our focus is on identifying candidates for
causal relationships in recorded data.

3. Methods
3.1. Problem Statement

Suppose we must hypothesize a causal model for a dataset
D of N ∈ N multi-dimensional (i.e., ‘multi-channel’) time
series recordings xn. Let D = (X) = (xn)

N
n=1 denote

the complete dataset of recordings. Each recording xn ∈
X contains the observed history of nc system variables at
regular intervals with T ∈ N temporal measurements. Let
τin ∈ N≤T be the maximal number of time steps over which
we estimate causal relationships. For simplicity, assume
observations are of scalar features such that xn,t:t+τin ∈
Rnc×τin ∀ t ≤ T and n ≤ N .

We assume our data is a noisy realization from a time-
dependent system Φ(t). We must learn a model that a)
reasonably approximates Φ at any point in time and b) esti-
mates causal influences between system variables in Φ. We
approximate Φ by learning a factor model fϕ over the set of
observed variables, where the expression of each factor is
dynamic over time. Indeed, in Sections 4.1, 4.2, and 4.3 we
implement Φ as a factor model itself (see Section 3.2 for
formalization). The functions comprising each factor can
take on many forms including hypothesis generation func-
tions. Additionally, the linear combinations in factor models
enable us to track statistics such as presence of a factor over
time or in relationship to auxiliary variables (e.g., behavior),
making these models useful for scientific research.

3.2. General Notation

Table 1 presents important symbols in this work. In particu-
lar, we use ⊙† to express ‘broadcast multiplication’ between
vectors and 3-axis tensors, in which we take the Hadamard
product (Kolda & Bader, 2009) between vector elements
and corresponding matrix-shaped tensor slices before sum-
ming over all product results; see Appendix A.3 for details.
Using this notation, our experiments treat Φ as

Φ(t) = G(t)⊙† F(t) =

K∗∑
k=1

G(t)kFk(t)

where K∗ is the number of true factors Fk ∈ F acting on all
system variables V at each time step t - i.e., Fk : RV → RV

- according to the system state G(t) ∈ RK∗
.

Our model consists of functions fϕk
for each factor, each

mapping a record of past variable states to present vari-
able states. By predicting present variable states from time-
lagged states of (other) variables, each fϕk

learns Granger
causal relationships between variables (Seth, 2007).

We now discuss how estimates of these relationships can be

Table 1. Common symbols in this paper.

SYMBOL DESCRIPTION

‘ˆ’ PREDICTION, FORECAST, AND/OR ESTIMATE

‘⊙†’ ‘BROADCAST MULTIPLICATION’ (SEC. 3.2)
‘∗’ (EMPH.) SCALAR-VECTOR MULTIPLYING

‘(...)’ AVERAGE VALUE OF (...)
‘MSE’ THE MEAN SQUARED ERROR PENALTY
‘COSSIM’ THE COSINE SIMILARITY MEASURE

formally represented during evaluation. We turn to graph
theory to express each factor’s estimate of the strength of
Granger causal relationships as a series of adjacency matri-
ces mapping past variable (i.e., ‘node’) states/values to the
present. The flexibility of graphs lets us also consider an
abstract adjacency matrix summarizing the effect of Φ(t) on
variables in the true system. Formally, we summarize our
models’ estimated Granger causal relationships in a series of
adjacency matrices Â ∈ Rnc×nc×τin , where each ai,j,t ∈ Â
is the estimated weight of the Granger causal relationship
where the state of node νj ∈ V from t time steps in the
past ‘causally’ effects current node νi ∈ V . To make quan-
titative comparisons, we standardized the representation(s)
of baselines’ and our models’ estimated causal graph(s) by
summing over time-lagged features (see Appendix B.2);
hence, we define the lag-summed view of Â as

Ã =
∑
t

Â[:,:,t]. (1)

Importantly, Â and Ã are summary statistics computed
separately from the forecasting operation, and do not imply
any linearization assumption in the forecasts themselves.

3.3. Base (Single-Factor) Model

Consider the case where our factor model is a single factor
function fϕ1 . We can use any algorithm for fϕ1 so long as
it learns relevant Granger causal information by forecasting
time series. In this paper we implement fϕ1

as a cMLP
(Tank et al., 2021) due to its versatile design. Formally, the
forward computation is given as

fϕ1(xn,t:t+τin) = x̂n,t+(τin+1). (2)

Regarding the loss function of this single-factor model, we
assume no direct knowledge of the target system’s under-
lying causal graph, since we are performing hypothesis
generation. Instead, we estimate causal connections in an
unsupervised fashion. Hence, our objective function is es-
sentially a sum over regularization terms guiding the model
towards solutions with desirable qualities, like sparsity.

Formally, suppose we are given a recorded signal xn ∈
X, the model’s corresponding forecast x̂n ∈ X̂, and an
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estimated adjacency matrix Â ∈ ϕ formed via a subset
of the model’s parameters ϕ. Our implementation of fϕ
learns Â in the first layer of weights, which together take
on the shape (nc × nc × τin) and can be interpreted as a
series of time-lagged adjacency matrices (Tank et al., 2021);
details in Appendix B.1. Hence, we include a lag-dependent
L1-norm sparsity penalty on the time-lagged slices of Â
(favoring the discovery of temporally-local interactions in
cases of cyclical or chained causal relationships in the factor)
along with a MSE loss over forecasts in our base objective

Lβ(ϕ,D) = η

τin∑
t=1

log(t+ 1)||Â:,:,t||1 + ωMSE(X, X̂)

(3)
where η, ω ∈ R are chosen hyperparameters. Again, the L1
regularization term here serves two purposes for the factor’s
causal model: 1) to encourage sparsity/parsimony, and 2)
to emphasize reliance on more recent time lags via the log
term. We use the Adam optimization algorithm to train
our model to minimize the above loss function. We also
include weight decay (i.e., L2-norm regularization) on all
parameters as done in prior work (Tank et al., 2021).

3.4. RElational Discovery via ConditionaLly Interacting
Forecasting Factors (REDCLIFF)

Now consider general cases where our model has nk ≥ 1
factors. We seek to learn a Granger causal model fϕ satisfy-
ing fϕ(xn,t:t+τin) =

∑nk

k=1 αn,k,t+(τin+1)fϕk
(xn,t:t+τin)

where nk ∈ N is the total number of model factors, fϕk

is the k-th factor generator, and αn,k,t+(τin+1) ∈ R is the
coefficient for fϕk

at time t+ (τin + 1).

To learn factor coefficients for each factor, we introduce a
‘state model’ gθ which is a parameterized function that gen-
erates factor weights (or ‘scores’) conditioned on the history
of the system. Note gθ can be seen as trying to classify each
factor as either likely or unlikely to be needed in each time
series forecast. Thus, gθ is fundamentally different from
the generative factors of fϕ (which perform regression on
the time series itself); indeed, we found that gθ typically
required more historical information than the generative
factors to effectively learn their tasks (see Section 3.6 and
Appendix A.2). Thus, we provide additional historical in-
formation of length τcl ∈ N≤T to gθ so gθ sees a combined
context window of τin + τcl time steps.

We define the forward computation of gθ according to
gθ(xn,t−τcl:t+τin) = αn,:,t+(τin+1) where αn,:,t+(τin+1) ∈
Rnk are conditional factor scores. Thus, our model forecasts
Φ’s evolution as:

x̂n,t+τin+1 = gθ(xn,t−τcl:t+τin)⊙† fϕ(xn,t:t+τin) (4)

=

nk∑
k=1

αn,k,t+(τin+1)fϕk
(xn,t:t+τin)

where we have the nk factor scores αn,k,t+(τin+1) ∈ R ∀ k
being broadcast-multiplied against the nk factor outputs
fϕk

(xn,t:t+τin) ∈ Rnc×1. We refer to the resulting model
as a RElational Discovery via ConditionaLly Interacting
Forecasting Factors (REDCLIFF) model (see Figure 1).

The objective function for training REDCLIFF models has
two main components. Modifying Equation 3, the first
component Lf pertains to the generative factors fϕk

and
retains the MSE forecasting penalty, but now includes all
nk ≥ 1 factors in the L1-norm penalty. We also include a
cosine similarity penalty to induce our prior that each factor
should serve different purposes by encouraging factors to
dissociate (details in Appendices B.3 and C.6). Specifically,

Lf (ϕ,D) = η

nk∑
k=1

τin∑
t=1

log(t+ 1)||kÂ:,:,t||1 (5)

+ωMSE(X, X̂)

+ρ

nk∑
p=1

nk∑
q=(p+1)

CosSim(pÃ− I,q Ã− I)

where I ∈ Rnc×nc is the identity matrix and pÃ and qÃ are
the lag-summed views of the adjacency matrices derived
from factors p and q (Eq. 1).1 We set η, ω, and ρ as real-
valued hyperparameters. The second loss component Lg

enforces sparsity (offset by 1) in the factor scores of gθ,

Lg(θ,D) = γ
(
− 1 +

N∑
n=1

||αn,:||1
)
, (6)

where γ ∈ R is another constant hyperparameter. Putting it
together gives the full objective function:

L(ϕ, θ,D) = Lf (ϕ,X, X̂) + Lg(θ,D). (7)

In review, the state model gθ is how a REDCLIFF model
adjusts weights of relationships between variables. By em-
phasizing factors with different relationships, gθ can model
changes in the causal direction of relationships, making it
the main function for estimating dynamic causal behavior.

3.5. REDCLIFF-Supervised (REDCLIFF-S)

Now suppose D includes a set Y of “global state” (i.e.,
“behavioral state” in our motivating neurobehavioral cases)
labels for the span of each recording in X; that is, D =
(X,Y). We assume the set Y takes the form Y = (yn ∈
RB×T )Nn=1 where B ∈ N is the number of global state
variables and both N and T are as before.

1Subtracting the identity induces an implicit assumption that
each variable is involved in each factor (via self-connection); this is
reasonable for recurrent systems like the brain and in our Synthetic
Systems experiments. Future work should explore alternatives.
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Figure 1. Illustration of the REDCLIFF(-S) algorithm. A) The two
primary subtasks performed by a REDCLIFF(-S) model. B) An
illustration of a nk = 3 factor REDCLIFF-S model’s forward pass.

We seek to estimate causal patterns linked to specific behav-
iors in signals. Thus, we follow prior literature and assign
behaviors to the first B elements of α (Mague et al., 2022).
To enforce better separation between the factors fϕk

and
state model gθ and because our behavioral labels may be
noisy, we define invertible functions gα and gy such that
ŷ = gy(g

−1
α (α:B)). Invertibility is necessary for fully pre-

serving information between these operations, allowing us
to deduce the relationship between label predictions and
factor weights; see discussion in Appendix A.2 for further
details. When the behavioral label yn is a known quantita-
tive variable, we can generate ŷn via supervised regression.
Alternatively, if yn is categorical, we can predict a behavior
as ‘present’ in the signal when the value of one of these
behavioral elements crosses a threshold cb ∈ R.

We put this all together by re-defining gθ such that

gθ(x) =

[
gα(g

′
h(x))

gy(g
′
h(x):B)

]
=

[
gα(α

′)
gy(α

′
:B)

]
=

[
α
ŷ

]
(8)

where gα : Rnk → Rnk and gy : RB → RB are invertible
and now g′h represents the original function gθ prior to our
inclusion of gα and gy. The predicted behavioral label
ŷb ∈ ŷ indicates the presence of behavior yn,b if ŷn,b > cb
where cb is some threshold. We make no change to the
REDCLIFF forward computation (Equation 4) other than to
note the output of gθ now includes ŷ, which must be ignored
in the broadcast multiplication step so just α is used.

To complete the definition of a REDCLIFF-S model, we
add a supervised component to L in Eq. 7 to obtain

L(ϕ, θ,D) = Lf (ϕ,D) + Lg(θ,D) + λMSE(Y, Ŷ) (9)

where λ is a real-valued hyperparameter. We hypothesize
this new MSE term constrains the Granger causal graph(s)
of the relevant factor(s) to correspond to Ŷ (as would any
other supervised loss term).

3.6. Training Strategies and Details

We train REDCLIFF(-S) using the Adam optimizer with
weight decay. To effectively learn each model, we first
pre-train the state model gθ using the terms Lg and
λMSE(Y, Ŷ) from Equation 9 (setting λ = 0 in the unsu-
pervised case). Then, we freeze the state model and train
the generative factors in fϕ using Equation 5 (we call this
“acclimation”). Following these steps, we employ the full
training objective (Equation 7 or 9) to jointly update all
parameters.

One challenge for hypothesis generation is that you can-
not perform model selection explicitly using holdout graph
discovery performance on real data as the true graph is un-
known. Instead, we stop training once the number of maxi-
mal iterations is reached or when the following criterion is
minimized on the validation set Dv = (Xv,Yv):

Ls(ϕ, θ,Dv) = ωMSE(Xv, X̂v)+λMSE(Yv, Ŷv) (10)

+ρ

nk∑
p=1

nk∑
q=(p+1)

CosSim
( pÃ

max(pÃ)
,

qÃ

max(qÃ)

)
.

For more details on Ls, see Appendix B.3.

In terms of computational complexity, the REDCLIFF(-S)
implementations we tested in this work scale (in training
and testing) as the product of the number of factors nk and
the number of forward passes nsim made by each factor 2

2We experimented with having nsim ∈ N≥1 forward passes
before updating REDCLIFF-S parameters in some grid searches.
In practice, nsim = 1 performed best, but we include the general
form in our complexity analyses for rigor.
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plus the computational complexity of the state model. More
formally, let Cϕ∗ represent the maximal (temporal or spatial,
depending on context) complexity of any factor in ϕ and
Cθ be the complexity of the state model; then the temporal
complexity of our implementation is O(nk ·nsim ·Cϕ∗ +Cθ)
and the spatial complexity is the same. Learning can also
be parallelized over factors for scalable implementations.

Additional theoretical analyses in Appendix A.2 support our
findings that gθ required more context than each fϕk

.

4. Experiments on Simulated Datasets
We now report empirical comparisons of REDCLIFF-S
against other methods3, with additional results given in Ap-
pendix C. All algorithms were trained using a local cluster
that featured various GPU devices, including A6000 GPUs.

We focus much of our analysis on f1-score performance,
partly because our neuroscientific application implicitly as-
sumes all parts of the brain are causally related to some
degree and the difficulty is determining which connections
are the most relevant at key moments; the f1-score’s em-
phasis on the presence of positive-label relationships is thus
well suited to our setting. As is common practice, we report
‘optimal’ f1-scores in which we compute each evaluated al-
gorithm’s f1-score using a classification threshold (i.e., the
value at which logits are labeled negative or positive) which
yields the highest possible f1-score for that algorithm on the
task. We do use the “Adjustment Identification Distance” (or
AID) family of causal distance metrics (Henckel et al.) in
our comparisons against several supervised baselines (Table
2 and Appendix C.3), since all algorithms in this compari-
son had access to ‘global state’ information related to causal
edge relevancy, possibly making it harder for the f1-score
to differentiate algorithms. We also report some ROC-AUC
scores, as in Table 2 and the appendices.

4.1. Synthetic Data Generation and Analyses

We rely on synthetic data to test REDCLIFF-S’ ability to es-
timate known causal relationships. To create these datasets,
we defined each artificial temporal system as a set of Vector
Auto-Regressive (VAR) models (Zivot & Wang, 2006), one
for each factor. Our implementation allows for inter-variable
edge activations between time-lags to be either linear or
nonlinear; in this work, we included nonlinear activations
between different time-lags. Specifically, we used the ReLU
(that is ReLU(x) = x1[max(x,0)](x)) and negative ReLU
(that is nReLU(x) = x1[min(x,0)](x)) nonlinear activations.
For each experiment, we selected hyperparameters such as
the number of VAR models used, how many time series
were present, and how many lags were in each VAR (see

3Code has been made available at github.com/carlson-
lab/redcliff-s-hypothesizing-dynamic-causal-graphs

Figure 2. Synthetic Systems results from select systems. A) Av-
erage optimal f1-score and standard error of the mean (SEM)
between true and estimated inter-variable causal relationships. B)
Average pairwise improvement and SEM between optimal f1-
scores obtained by REDCLIFF-S and baselines.

Appendix D). Here we set the number of lags for each VAR
to τ = 2 time steps for visualization purposes, but any in-
teger greater than 0 would suffice. Defining these systems
also meant selecting square adjacency matrices mapping
values from past to present system states for each VAR
model in the system. We included self-connections in each
adjacency matrix to better visualize their generated time se-
ries. The number of inter-variable connections between time
series was varied across systems, with connections chosen
randomly. Our Synthetic Systems were designed to approxi-
mate the conditions of the TST dataset (Carlson et al., 2023)
discussed in Section 5, with increasing fidelity / complexity
(the largest systems had 12 nodes, which corresponded to
12 channels in our preprocessed TST dataset).

Once we defined a system, we sampled recordings and their

6

https://github.com/carlson-lab/redcliff-s-hypothesizing-dynamic-causal-graphs
https://github.com/carlson-lab/redcliff-s-hypothesizing-dynamic-causal-graphs
https://github.com/carlson-lab/redcliff-s-hypothesizing-dynamic-causal-graphs


Generating Hypotheses of Dynamic Causal Graphs in Neuroscience

labels for the dataset. First, a random state vector was drawn
from a uniform distribution for each VAR model in the sys-
tem. This vector was recurrently fed through its correspond-
ing VAR model for a number of ‘burn-in’ steps, after which
we recorded the resulting multivariate time series for T time
steps; innovations were simulated throughout by multiply-
ing draws from uniform and Gaussian distributions. Record-
ings obtained from each VAR model were then weighted
over time with linearly interpolated weights (randomly se-
lected between 0 and 1). These weighted recordings were
added together along with a level of Gaussian noise. We
augmented labels by marking with a one-hot vector which
factor weight was largest at each time step, meaning all of
our Synthetic Systems experiments contain label noise.

We stratified results by marking systems as low (L), moder-
ate (M), or high (H) complexity C, according to

C(nc,ne) = r−1
graph =

( ne
(nc2 − nc)

)−1

(11)

where rgraph is the ratio of true inter-variable interactions
in each system state to the number of possible inter-variable
interactions. In essence, C is inversely related to the sparsity
of relationships in the graph. We provide additional details
regarding this complexity score in Appendices C and D.

4.2. Hypothesis Generation for Synthetic Systems

Figure 2 gives results from a high-complexity system (6-
2-2) and three moderate system configurations for which
we generated five random repeats (i.e., unique systems) to
train each algorithm (more results in Appendix C). Each
repeat was designed to have 1040 training samples and 240
validation samples for each factor/system state in the system,
with each sample recording 100 sequential time steps. We
used the cMLP and cLSTM (Tank et al., 2021); DGCNN
(Song et al., 2018); and dCSFA-NMF (Talbot et al., 2023;
Mague et al., 2022) methods as baselines. Hyperparameters
for each algorithm were chosen via grid search on a single
repeat in our (low-complexity) nc = 12-node, ne = 33-edge
(inter-variable), nk = 3-factor Synthetic System dataset.
Our grid searches selected parameters which minimized
stopping criteria (for DYNOTEARS and REDCLIFF-S) or
objective functions (for all other baselines), with ties won
by the most ‘parsimonious’ parameters (see Appendices
D and E). The same hyperparameters were used across
all the experiments reported in this section, with limited
adjustments - e.g., to the number of REDCLIFF-S factors or
the value of loss coefficients - made to account for certain
characteristics in the target system (see Appendix E). Each
algorithm was trained on a given system repeat dataset,
after which we computed the average optimal f1-score and
standard error of the mean (SEM) of each algorithm’s inter-
variable causal predictions against the true causal graphs
across factors and repeats for each synthetic system.

Figure 3. Visualizing true and REDCLIFF-S Top-10 estimated
inter-variable causal relationships of a factor from Synthetic Sys-
tem “12-11-5”. REDCLIFF-S captures 7 of 11 true relationships,
while incorrect/missed pathways share functional similarities; the
fact that REDCLIFF-S extracted these relationships with four other
system states/factors adding noise in the dataset marks a sea change
in modeling capability over baselines. While we could have high-
lighted examples with higher optimal f1-scores, we highlight this
one due to its comparable complexity to our TST case study.

As another test, we re-trained REDCLIFF-S models along
with Regime-PCMCI (Saggioro et al., 2020) and supervised
versions of ‘SLARAC’, ‘QRBS’, and ‘LASAR’ from the
tidybench repository (Weichwald et al., 2020) 4 on our ‘12-
11-2’ Synthetic Systems (Fig. 2A) using 10 different ran-
dom seeds and compared their ability to detect unweighted
causal edges. In Table 2, we report the average median per-
formance of each method on several metrics, with additional
details and results given in Appendix C.3.

4.3. D4IC Multi-State Extension of DREAM4

We also validated REDCLIFF-S on an adaptation of the pub-
lic DREAM4 dataset (Marbach et al., 2009). We chose to
adapt the DREAM4 dataset due to 1) it’s use as a benchmark
dataset in prior hypothesis generation and causal discovery
research (Pamfil et al., 2020) and 2) its relatively small size
since some baseline implementations required that data not
be batched - namely, the DYNOTEARS algorithm (Pamfil
et al., 2020) and the NAVAR algorithm (Bussmann et al.,
2021) with recursive cLSTM-based (NAVAR-R) and cMLP-
based (NAVAR-P) implementations. We measured the aver-
age optimal f1-score of each algorithm’s causal estimates
between variables, with causal relationships defined by fac-
tors taken from different folds of the DREAM4 dataset and
presented to the algorithms in a single training session as

4We also tried training ‘SELVAR’ from tidybench, but could
not compile it locally.

7



Generating Hypotheses of Dynamic Causal Graphs in Neuroscience

Table 2. Comparing unweighted inter-variable edge detection by supervised discovery methods on the 12-11-2 Synthetic Systems (Fig. 2)
- note REDCLIFF-S’ f1-scores differ from Fig. 2 which included edge weighting. Edge predictions were determined by optimal f1-score
thresholds. Values report the mean (over repeats) of the median (over 10 random seeds and system factors) statistic ± SEM. ‘Upper’ and
‘Lower’ refer to upper- and lower-triangular portions of adjacency matrices, which we split to avoid cycles (see Sec. 4.1 & Appendix B.2).
We also report the mean comparative placement (from 1 to 5) of each method’s mean performance (details in Appendix C.3).

(F1 THRESH.) PARENT AID ERROR STRUCTURAL HAMMING DIST. MEAN
ALGORITHM OPTIMAL F1 ROC-AUC UPPER LOWER UPPER LOWER PLACE.

LASAR (SUP.) 0.344±0.034 0.579±0.018 7.0±1.995 4.3±0.460 21.2±5.410 20.9±5.905 3.5
QRBS (SUP.) 0.203±0.016 0.536±0.008 4.5±1.631 3.0±0.949 35.9±5.049 38.8±4.258 3.5
SLARAC (SUP.) 0.169±0.016 0.512±0.010 2.7±1.973 0.7±0.179 54.5±5.194 56.3±4.447 3.7
REGIME-PCMCI 0.407±0.027 0.673±0.026 6.1±1.212 4.8±0.782 9.1±0.219 9.4±1.033 2.3
REDCLIFF-S 0.383±0.038 0.705±0.022 3.9±0.607 3.1±0.727 10.9±1.513 11.8±1.753 2.0

Figure 4. Average optimal f1-score between true and estimated
inter-variable causal relationships across the D4IC HSNR dataset.

a single dynamic-causal system. Non-stochastic noise was
simulated by adding down-weighted recordings from all but
one DREAM4 folds to a recording from the dominant fold at
three different signal-to-noise ratios: low (LSNR), moderate
(MSNR), and high (HSNR). We refer to the resulting dataset
as the “DREAM4 In Silico-Combined” (D4IC) dataset.

Hyperparameters for each algorithm were tuned to a single
repeat of the D4IC MSNR dataset prior to training on all
D4IC noise levels and repeats. Model selection proceeded
as in Section 4.2, although we increased the weight on the
cosine similarity penalty in selecting our final REDCLIFF-S
model which balanced the scale of variation of the cosine
similarity penalty with that of the other penalties (details
in Appendix B.3). We include two cMLP baseline models
(v1 and v2) with slightly different hyperparameters. Results
are visualized in Figure 4, in which we see REDCLIFF-S
improves over alternative approaches on this dataset.

4.4. Discussion

The main strength of REDCLIFF-S is that its hypotheses
can be easily tested. Equations 4 and 8 are designed for
this in several ways. As discussed, factor scores αn,k,t can
be given explicit behavioral designations. Factor scores
can also be constrained (via Sigmoid or similar activation
functions) to be nonnegative, and thereby be viewed as
how (physically) present the corresponding factors are in
predicted signals.5 Thirdly, trained factors fϕk

rely on fixed
graphs explicitly showing relationships between variables.
Finally, the sum over factors allows us to inspect individual
contributions of each factor. Overall, REDCLIFF-S shows
performance improvements in many scenarios.

First, Figure 2 and Table 2 together give the core results
on our Synthetic Systems Dataset experiments. Figure 2A
presents average optimal f1-scores (across all samples and
repeats) of REDCLIFF-S and applicable baselines. Surpris-
ingly, the single-factor baselines attain fairly competitive
f1-scores in some cases, seemingly learning an ‘average
factor graph’ that may not be particularly accurate for any
single factor but which performs well ‘on average’. Even
so, in Figure 2B we see the average pairwise improvement
of REDCLIFF-S’ predictions is at least a standard error of
the mean above zero for all baselines on all four systems,
suggesting REDCLIFF-S yields improvements with statisti-
cal significance. These findings are further supported by the
results shown in Table 2. Despite the fact that REDCLIFF-S
was the only algorithm trained to predict global state infor-
mation (all other baselines in Table 2 had direct access to
the state label), REDCLIFF-S is uniquely able to achieve
competitive performance across all metrics used. This can
be seen in that when we rank the algorithms based on their
mean performance for each metric, REDCLIFF-S’ ranking
(or ‘comparative placement’, to avoid confusion with ‘ma-
trix rank’) tends to be lower than the other methods’. Taken
together, our findings in Section 4.2 suggest REDCLIFF-S

5Our early experiments included these constraints, but we omit
them here due to different models being selected for by our criteria.
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Table 3. Summarizing effects of REDCLIFF-S ablations on mean
optimal f1-score across various datasets (Appendix C.6).

ABLATION
DATASET ρ = 0 nk = 1 α = 1 λ = 0

SYN.SYS. 6-2-2 ↓ ↓ ↓ ↓
SYN.SYS. 6-4-2 ↑ ↓ ↓ ↓
SYN.SYS. 12-11-2 ↓ ↓ ↓ ↓
SYN.SYS. 12-11-5 ↑ ↓ ↓ ↓
D4IC HSNR ↓ ↓ ↓ ↓

generates hypotheses about the presence of dynamic causal
relationships that prove accurate at state-of-the-art rates, and
this pattern holds true for systems with differing numbers
of variables, inter-variable relationships, and factors.

Results from our D4IC HSNR experiments are shown in
Figure 4, where we see the REDCLIFF-S (cMLP) model
achieves the highest average optimal f1-score with a statisti-
cally significant margin. While the improvements over com-
peting methods are somewhat modest in this case, a brief
investigation into the factor networks of D4IC HSNR sug-
gests that four of the five factors in each repeat would have
been rated as ‘low complexity’ according to Equation 11;
importantly, REDCLIFF-S tends to make the least improve-
ment over baselines in the ‘low complexity’ regime (see Ap-
pendix C.3). In all, our D4IC experimental results generally
support those in Section 4.2, verifying that REDCLIFF-S is
effective at hypothesizing dynamic causal relationships.

We also ran ablation tests to study the effect of REDCLIFF-
S model parameters on performance, which we discuss in
detail in Appendix C.6 and summarize in Table 3.

See further discussion in Appendix B.4.

5. Experiments on Real-World Datasets
We tested REDCLIFF-S on real-world data using the pub-
licly available Tail Suspension Test (TST) dataset (Carlson
et al., 2023) - which we discuss here - and the Social Pref-
erence (SP) dataset described in Mague et al. (2022) (see
Appendix C.5). Where possible, we combined multiple lo-
cal field potential (LFP) recordings within a single brain
region by taking their average. The number of factors and
other hyperparameters were chosen based on grid searches
minimizing the stopping criteria for training. Appendix
D covers TST preprocessing in detail, and Appendix C.4
elaborates on TST model selection and additional results.

In Figure 5 we show the difference between mean normal-
ized causal estimates for the REDCLIFF-S factors assigned
to the Open Field (OF) and Home Cage (HC) behavioral
paradigms in this case study. The OF factor relies more
heavily than the HC factor on information from the Nucleus

Figure 5. Difference in REDCLIFF-S’ mean, normalized inter-
variable causal estimates in the Open Field vs Home Cage
paradigms of our TST Case Study.

Accumbens Core (Acb Core) to predict behavior in the Pre-
limbic and Infralimbic cortices, and from the Anterior-Left
Lateral Habenula (‘alLH HAB’) and Medial Dorsal Hip-
pocampal (mDHip) channels to predict activity in several
regions, including the Thalamus (Md Thal). Interestingly,
our model’s hypothesis that the Anterior-Left Lateral Habe-
nula (‘alLH HAB’) is important for predicting LFP activ-
ity across several brain regions in the more stressful OF
paradigm appears to be validated by recent research impli-
cating the Lateral Habenula in stress responses of mice (Tan
et al., 2024). Previous research also identified a brain-wide
‘anxiety network’ involving the Nucleus Accumbens Shell
and the Prelimbic and Infralimbic cortices (Talbot et al.,
2023), which our REDCLIFF-S model appears to express,
in part, as pathways from the Nucleus Accumbens Core
to the Prefrontal Cortex and from there to the Infralimbic
Cortex and then to the Nucleus Accumbens Shell.

6. Conclusion
We present the novel REDCLIFF-S hypothesis generation
algorithm for temporal systems featuring dynamic causal
interactions. By learning to combine nonlinear factors using
weights conditioned on signal history, REDCLIFF-S attains
state-of-the-art performance in estimating multiple causal
graphs simultaneously in various settings and in a way con-
ducive to follow-up scientific inquiry. Experiments on real
data suggest that REDCLIFF-S can provide scientific value
to computational neuroscience and other fields.
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A. Supporting Theory and Proofs
A.1. Identifiability Analysis of Systems Featuring Nonlinear, Dynamic Causal Graphs

In this section, we provide theoretical arguments as to why the systems at the center of our work - dynamical systems
featuring nonlinear, dynamic causal graphs - are generally not identifiable. At the same time, we point out that prior work has
demonstrated that using causal discovery methods can still benefit scientific research in real-world settings where nonlinear,
dynamic causal graphs are the norm rather than the exception (Mague et al., 2022). Throughout our discussion, we follow
the common definition of identifiability, in which if the likelihood of two models is the same, then their parameterizations
must also be the same (Maclaren & Nicholson, 2019).

There are three cases related to causal identifiability in our setting: the case where auxiliary variables are not available (the
unsupervised case), that where some - but not all - auxiliary variables are available (the partially supervised case), and the
case where an auxiliary variable can be assigned to every system state (the fully supervised case). For the unsupervised
and partially supervised cases, the lack of identifiability is readily apparent in that we can swap various factors and factor
weights tied to unsupervised states within our REDCLIFF(-S) architecture and arrive at functionally identical models.

The fully supervised case is also not identifiable, as we illustrate via a counterexample. Consider the system with nk = 2
states (0 and 1) and nc = 2 nodes (A and B) where both nodes are self-connected. Assume all innovations in A and B
follow a symmetric random distribution (e.g., the uniform or normal distributions) in both states 0 and 1 at each time step.
Finally, assume the only difference between states 0 and 1 is that in state 0 we have that A drives B (i.e., A → B) via
the ReLU (that is ReLU(x) = x1[max(x,0)](x)) function at lag t = 2, whereas in state 1 we have A → B is the negative
ReLU (that is nReLU(x) = x1[min(x,0)](x)) function at lag t = 2. In this setting, the functional form of the A → B edge
cannot be uniquely identified for either state 0 or 1 when given an infinite number of samples. This is because for any given
sequence of innovations S = ([At,Bt])

T
t=1, we have that ∃S′ = ([−At,Bt])

T
t=1 which satisfies

ReLU(At) + Bt = nReLU(−At) + Bt

for any t ∈ N≤T . In other words, for every instance in which it appears that A is influencing B via the ReLU update rule, we
will observe another instance in which A is possibly influencing B via the nReLU update with the exact same effect. Thus,
the ReLU and nReLU update rules are equally likely in both state 0 and in state 1, rendering the two states unidentifiable by
definition.

In summary, we have demonstrated that systems featuring nonlinear, dynamic causal graphs are not identifiable unless
one makes sweeping assumptions, which preclude even fairly simple systems (such as our 2-node system with ReLU-like
nonlinearities) from being considered. Despite this, previous work has shown that causal discovery methods still benefit
scientific research in real-world settings where nonlinear, dynamic causal graphs are common (Mague et al., 2022).

A.2. Noisy Classification vs Generative Task Information Requirements

We now provide a theoretical argument as to why it may be necessary to provide additional system history to the REDCLIFF(-
S) state model gθ, and even to drastically limit its modeling capabilities (e.g. via the invertible gα and gy functions of Section
3.5). Our argument centers on the implications of the parameters τin and τcl (Eq. 4), and is thus related to long-standing
prior work investigating the effects of similar parameters on state-space models of dynamical systems (Kugiumtzis, 1996).
Here, we argue that the task of predicting the state of a signal requires more historical time steps than is required to generate
the same time series in the presence of nontrivial noise, at least for some dynamical systems. We now present a summary of
our theoretical argument, followed by a proof sketch, and finally a discussion of the theoretical implications.

A.2.1. MOTIVATING EXAMPLE (LEMMA 1 PRELIMINARIES)

As a motivating example, we explore a system for which a classifier needs more historical information as opposed to a
generative model. In our example, there are at least two system states governed by different causal relationships operating
on similar time scales, for which a classifier cannot both a) distinguish between these two states and b) be unbiased.

Let Φ be a system consisting of D ∈ N interacting variables according to N ∈ N states, in which the dynamics of Φ are
governed by M ∈ N distinct causal graphs between variables. Define τ as the maximal number of historical time steps
required to generate the behavior of Φ across all states6. Assume ∃ two states of Φ (call them states i and j where i ̸= j) for

6Effectively, τ is the number of time steps required to reduce Φ to a Markov Chain.
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which the generative functions can be expressed as fi(xt) = Aixt−τ and fj(xt) = Ajxt−τ where both Ai ∈ RD×D and
Aj ∈ RD×D are invertible with Ai ̸= Aj .

Finally, let Xi ∈ RD×T be a recorded signal of T ∈ N observations made while Φ was in state i ≤ N . We say that Xi

exhibits nontrivial noise if ∃ another recording Xj ∈ RD×T such that 0 < j ≤ N with j ̸= i for which the initial conditions

are independently, identically distributed with those of Xi, that is: Xi:,0
i.i.d.∼ Xj:,0 . 7

A.2.2. LEMMA 1: STATEMENT AND PROOF SKETCH

Lemma 1 To learn an accurate and unbiased state model gθ mapping recorded signals with nontrivial noise to states of Φ
(i.e., gθ : RD×T → N≤N ), it must be true that T > τ .

Proof Sketch Lemma 1 follows from Bayes’ Theorem, which we use to show that two windows of length τ sampled from a
distribution featuring nontrivial noise cannot be readily distinguished by an unbiased model gθ.

Suppose the recording x ∈ RD×T with T < τ is randomly sampled from Φ according to a uniform distribution over all N
states. By way of contradiction, assume we have an unbiased classifier (i.e., the REDCLIFF-S state model gθ) for which
p(fi|X) ̸= p(fj |X).

Notice that since both Ai and Aj are invertible, we have both that X:,T−τ = f−1
i (X:,T ) = A−1

i X:,T ∼ p(X|fi) as well
as that X:,T−τ = f−1

j (X:,T ) = A−1
j X:,T ∼ p(X|fj).

Hence, we have

=⇒ p(X|fi) = p(X|fj). (12)

Applying Bayes’ Theorem, we have that

=⇒ p(fi,X)p(X)

p(fi)
= p(X|fi) = p(X|fj) =

p(fj ,X)p(X)

p(fj)
=⇒ p(fi,X)

p(fi)
=

p(fj ,X)

p(fj)
(13)

Now recall that X was randomly sampled according to a uniform distribution over states. Therefore, p(fi,X) = p(fj ,X),
which yields

=⇒ 1

p(fi)
=

1

p(fj)
=⇒ p(fi) = p(fj) (14)

However, we can also apply Bayes’ Theorem to the output of our classifier p(fi|X) ̸= p(fj |X). Doing this yields

p(fi,X)p(fi)

p(X)
= p(fi|X) ̸= p(fj |X) =

p(fj ,X)p(fj)

p(X)
(15)

As before, we use the fact that p(fi,X) = p(fj ,X) to obtain

=⇒ p(fi,X)p(fi) ̸= p(fj ,X)p(fj) =⇒ p(fi) ̸= p(fj) (16)

But the finding that p(fi) ̸= p(fj) contradicts our assumption that our classifier was unbiased, for which p(fi) = p(fj).

⇒⇐

A.2.3. DISCUSSION

Lemma 1 has important implications for training REDCLIFF-based models. Effectively, once the state model gθ in a
REDCLIFF model has enough capacity to accurately distinguish between states, Lemma 1 indicates that gθ may also
have access (by necessity) to at least as much information as that required to forecast the evolution of Φ (assuming
the proper noise profile) in one or more states of the system, at least for restricted (yet simple and arguably common)
classes of temporal systems. These findings indicate that it may be necessary to restrict the modeling capabilities of gθ to
ensure the proper delineation of tasks within a REDCLIFF-S model.

7This is relevant to hypothesis generation, where we often start by assuming signals are generated from similarly distributed initial
conditions, and we attempt to identify where this assumption fails.
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A.3. ‘Broadcast Multiplication’: Formal Definition

Here we formally define broadcast multiplication, the linear operation used to combine outputs of our generative factors.

Definition: Let N -dimensional vectors v,v′ ∈ RN be given along with 3-axis tensors Z,Z′ ∈ RN×P×Q where both
P,Q ∈ N. Then ‘broadcast multiplication’, denoted by ⊙†, is an operation such that

v ⊙† Z =

N∑
n=1

vn · Zn,:,: (17)

B. Methodological Details
B.1. Factor-level Implementation - A Brief Review of cMLPs (Tank et al., 2021)

As mentioned in the main paper, we implement each factor of the REDCLIFF-S models in this work as a “component-wise
Multi-Layer Perceptron” or “cMLP” (Tank et al., 2021); here we briefly summarize the cMLP architecture and refer the
reader to the original paper for more details. Essentially, the cMLP architecture is a 1D convolutional neural network
that treats the first layer of weights as an information filter mapping prior variable values of a dynamic system to the next
predicted value of a single variable. Since the architecture allows for a set of historical system observations to be input, the
first layer of a cMLP comes to represent a set of estimated, time-lagged Granger causal connections. One can view the
magnitude of each weight in the first layer of parameters as the strength of a Granger causal connection from one of the
input variables to the predicted variable. By instantiating a different cMLP for each variable in a dynamical system, one can
learn a sequence of time-lagged, full adjacency matrices mapping prior variable values to future variable values. We found
this architecture to be flexible for our purposes and it proved at least as effective in predictive tasks as other architectures we
tested in preliminary experiments (namely the cLSTM (Tank et al., 2021) and DGCNN (Song et al., 2018) architectures).

B.2. Standardizing Causal Graph Estimates

To facilitate fair comparison between both baseline and our REDCLIFF-based algorithms, we needed to standardize the
form in which each algorithm’s estimated Granger causal graphs were presented. This was nontrivial, since some of the
algorithms incorporated a lag-dimension into their causal graph estimates (esp. those based on the cMLP architecture from
Tank et al. (2021)), while others (esp. DYNOTEARS from Pamfil et al. (2020)) treated each feature measured from a
channel - be it a historical scalar value or a power spectral feature - as an individual node in the estimated graph, while yet
others (esp. dCSFA-NMF in Gallagher et al. (2021) and REDCLIFF-based models) learned multiple causal graph factors.

The standard we chose to adopt was that each estimated (and true) Granger causal graph would need to be presented as a
simple adjacency matrix; that is, if there were nc variables in the recorded system, then the true/estimated graph(s) from
each system/model were compressed to lie within Rnc×nc . In practice, this meant that graphs involving lags and/or node
features had their representations compressed by summing over the lag and/or feature values corresponding to each node.

If an algorithm could only estimate a single graph for a system governed by nk > 1 graphs, the estimated graph was copied
nk times and compared to each of the m true causal graphs, with results averaged across each comparison.

B.3. REDCLIFF-S Stopping Criteria and Model Selection

Here we describe how we arrived at the stopping criteria for REDCLIFF-S model training and how it was used in model
selection. Our stopping criteria are summarized in Equation 10, which has three main components: a forecasting term, a state
classification term, and an estimated Granger causal graph similarity term. Intuitively, the two MSE terms (forecasting and
state classification) are in the stopping criteria to ensure that our performance on the two main subtasks of our REDCLIFF-S
models (predicting factor effect and relevance; see Figure 1A) is being optimized.

The third cosine similarity-based term (estimated Granger causal graph similarity) is included for several reasons. For one
thing, the very premise of REDCLIFF-S is that the target system being modeled has different causal relationships over time;
hence, our third term implicitly assumes that factors should be different by minimizing this estimated Granger causal graph
similarity term. A potentially useful side effect of minimizing similarity between factors is that it reduces the size and
complexity of our REDCLIFF-S model.

In addition to these intuitive motivations for minimizing cosine similarity between factors, we also found this cosine
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similarity-based term was correlated with the value of various graph similarity metrics comparing factor estimates with
their ground truth representations over the course of training (for example, see Supplemental Table 4). Other interesting
phenomena include our finding that troughs in our mean cosine similarity curve coincided with peaks in the DeltaCon0
similarity (a measure of functional similarity between two graphs (Koutra, 2015)) between estimated and true causal graphs,
as well as the onset of instabilities in the ROC-AUC curves when comparing estimates to ground truth. These observations
(along with similar ones from many other experiments) demonstrate why this penalty for the sum of cosine similarity
between factor estimates served as a reasonable proxy to determine when to stop training.

Table 4. Comparing correlation between stopping criteria elements and the ROC-AUC between final REDCLIFF-S factor predictions of
causal relationships and the true factor graphs in our Synthetic Systems grid search over REDCLIFF-S model parameters. Values rounded
to three significant figures, with the strongest negative correlation bolded.

LOSS/PENALTY TERMS INCLUDED IN CRITERIA
FORECASTING STATE PREDICTION GRAPH SIMILARITY PEARSON’S R VALUE

✓ - - -0.368
- ✓ - 0.529
- - ✓ -0.332
✓ ✓ - -0.176
✓ - ✓ -0.654
- ✓ ✓ -0.201
✓ ✓ ✓ -0.674

One open question is how to balance the significant differences in variation between the forecasting and state prediction
penalties on the one hand and the significantly less-variable cosine similarity term on the other. In selecting the final model
for our D4IC experiment, we found that weighting the cosine similarity penalty by 60ρ (instead of just ρ) in our selection
criteria balanced the three variation scales to all roughly lie within the same order of magnitude. More sophisticated
balancing schemes would likely improve results.

B.4. Discussion: Limitations and Future Work

Most limitations of REDCLIFF-S arise as trade-offs for scientific utility. For example, the set of REDCLIFF-S factors has
many hyperparameters that can be costly to tune; this cost restricted us to tuning on a single repeat of our 12-node, 33-edge,
3-factor system in Section 4.2, and may have limited REDCLIFF-S’ measured performance.

We also wish to draw attention to a general lack of methods for measuring functional similarity in nonlinear graphs.
As discussed in relation to Equation 5, we found it helpful to approximate the DeltaCon0 metric (which measures
functional/compositional similarity between lagged linear graphs) (Koutra, 2015) using a cosine similarity penalty; however,
to the best of our knowledge, the nonlinear version of DeltaCon0 has not been developed. This poses a major obstacle to
evaluating the performance of models on our Synthetic Systems task, and is a research question we hope our work motivates.

B.5. Comparing State Prediction Error with 1-Factor Models

To test the ability of the REDCLIFF-S algorithm to dynamically adjust factor weightings at each time step in preliminary
experiments, we compared the mean squared error of each state label prediction ŷ made by REDCLIFF-S models against a
‘Naı̈ve 1-Factor Model’ state prediction. For this, we adopted the convention that a state label prediction made by a 1-factor
model (such as the cMLP and cLSTM models by (Tank et al., 2021) or the DGCNN method by (Song et al., 2018)) would
be equivalent to predicting that all system factors (represented by the model’s single factor) would always be present; hence,
ŷ = 1 for any input xin. The difference in MSE between these naı̈ve predictions and the true label y was taken with the
MSE obtained by the predictions of the REDCLIFF-S models across many samples and then averaged.

C. Additional Experimental Results
C.1. Pairwise Optimal F1-Score Improvement of REDCLIFF-S on Synthetic Systems’ 6-2-2 Data

As we alluded to in the abstract of the main paper, REDCLIFF-S “improves f1-scores of predicted dynamic causal patterns
by roughly 22-28% on average over baselines in some of our experiments, with some improvements reaching well over
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Figure 6. Pairwise optimal f1-Score Improvement of REDCLIFF-S on the Synthetic Systems 6-2-2 experiment.

60%”; Figure 6 plots these levels of improvement explicitly.

C.2. Additional D4IC Results

We report the main results of our D4IC Low Signal-to-Noise Ratio (LSNR) experiments in Figure 7 and those of our D4IC
Moderate Signal-to-Noise Ratio (MSNR) experiments in Figure 8.

Figure 7. Optimal f1-score on D4IC-LSNR experiments. Figure 8. Optimal f1-score on D4IC-MSNR experiments.

We also report ROC-AUC statistics corresponding to REDCLIFF-S, cMLP-v2, and dCSFA-NMF models trained on the
D4IC dataset in Table 5.

C.3. Additional Synthetic Systems Results

We now report additional results from our Synthetic Systems experiments for transparency.
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Table 5. Average inter-variable ROC-AUC score ± SEM on the D4IC LSNR, MSNR, and HSNR datasets. Averages are taken across
factors and repeats. Note that predictions included edge weighting, but we converted true-edge weights into binary ‘present’/‘not-present’
values during evaluation to facilitate ROC-AUC calculations.

D4IC NOISE LEVEL
ALGORITHM LSNR MSNR HSNR

CMLP-V2 0.550±0.016 0.594±0.017 0.567±0.015
DCSFA-NMF - 0.567±0.013 0.554±0.013
REDCLIFF-S (CMLP) 0.632±0.014 0.635±0.016 0.629±0.018

Figure 9. Summary plot of pairwise optimal f1-score improvement of REDCLIFF-S across Synthetic Systems experiments.

In Table 6 we report ROC-AUC scores corresponding to the models and optimal f1-score statistics in Figure 2 of the main
manuscript.

We give additional results related to Table 2 in Supplemental Table 7. Note that between the two tables, the top performing
baselines - usually Regime-PCMCI (Saggioro et al., 2020) and SLARAC (Weichwald et al., 2020) - appear to ‘trade off’
between performance on metrics such as optimal f1-score and structural hamming distance (SHD) versus performance on
the AID metrics. In contrast, REDCLIFF-S does not exhibit this trade-off, regularly attaining competitive performance
(statistically similar to the best or second-best performance) across all metrics.

Regarding optimal f1-score performance, we provide a summary plot of these results in Supplemental Figure 9 and a
visualization comparing true to estimated factors in Supplemental Figure 10. Optimal f1-score and ROC-AUC score results
are grouped by systems rated with similar complexity scores. Scores of C ≤ 7.0 received a ‘Low’ categorization; results
on systems with this rating can be found in Supplementary Figures 11 through 16. Scores that satisfied 7.0 < C ≤ 13.0
were categorized as ‘Moderate’ complexity; results on systems with this rating can be found in Supplementary Figures 17
through 22. Scores were categorized as ‘High’ complexity if they satisfied C > 13.0; the results on systems with this rating
can be found in Supplementary Figures 23 through 24.
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Table 6. Average inter-variable ROC-AUC score ± SEM on the Synthetic System 6-2-2, 6-4-2, 12-11-2, and 12-11-5 datasets. Averages
are taken across factors and repeats. Note that predictions included edge weighting, but we converted true-edge weights into binary
‘present’/‘not-present’ values during evaluation to facilitate ROC-AUC calculations.

SYNTHETIC SYSTEM
ALGORITHM 6-2-2 6-4-2 12-11-2 12-11-5

CMLP 0.544±0.035 0.591±0.021 0.572±0.020 0.562±0.015
CLSTM 0.612±0.050 0.534±0.040 0.532±0.024 0.552±0.020
DGCNN 0.556±0.072 0.566±0.036 0.562±0.030 0.536±0.015
DCSFA-NMF - - - 0.557±0.012
REDCLIFF-S (CMLP) 0.797±0.036 0.682±0.037 0.756±0.019 0.743±0.019

Table 7. Supplemental results to Table 2. Note that the final column now gives the average placement across metrics from both tables
combined. Again, note that performance is averaged across 10 random seeds, leading to slight differences with REDCLIFF-S performance
given in Table 6.

(NO THRESHOLD) ANCESTOR AID ERROR OSET AID ERROR OVERALL
ALGORITHM ROC-AUC UPPER LOWER UPPER LOWER AVG. PLACE.

LASAR (SUP.) 0.457±0.043 4.9±1.466 2.9±0.434 4.7±1.331 2.9±0.434 3.8
QRBS (SUP.) 0.424±0.029 2.1±0.385 1.9±0.537 2.5±0.548 1.9±0.537 3.0
SLARAC (SUP.) 0.347±0.023 0.8±0.716 0.4±0.219 0.7±0.626 0.4±0.219 2.8
REGIME-PCMCI 0.775±0.018 3.8±0.540 3.6±0.518 4.1±0.477 3.8±0.502 3.1
REDCLIFF-S 0.782±0.021 2.2±0.335 2.1±0.434 2.7±0.390 2.3±0.522 2.3

C.4. Additional Region-Averaged TST 100 Hz Results

We provide a visualization of our approach to model selection (specifically with respect to determining the number of
REDCLIFF-S factors) in Supplemental Figure 25. Plots of the supervised adjacency matrices learned by our REDCLIFF-S
models trained on the Region-Averaged TST 100 Hz dataset can be found in Supplemental Figures 26 through 28. We
provide additional plots of the differences between the average Open Field (OF) and Tail Suspended (TS) supervised factors
in Supplemental Figure 29 and between the average TS and Home Cage (HC) supervised factors in Supplemental Figure 30.

C.5. Region-Averaged Social Preference 100 Hz Results

In addition to the TST dataset, we also applied our REDCLIFF-S method to analyze the Social Preference (SP) dataset
described in Mague et al. (2022). It should be noted that our analysis here is preliminary and was not as thorough as our
analysis of the TST data due to time constraints. Supplemental Figure 31 provides a visualization of how we selected the
number of factors for the REDCLIFF-S models trained on different folds of the SP data; note that the selection criteria
history does not decrease monotonically as the number of factors increases (as it did on the TST data), suggesting that a
more detailed search of REDCLIFF-S’ hyperparameter settings may yield more accurate results. Plots of the supervised
adjacency matrices learned by our REDCLIFF-S models trained on the Region-Averaged SP 100 Hz dataset can be found in
Supplemental Figures 32 and 33.

We provide an additional plot of the mean normalized difference between Social Preference (SP) and Object Preference
(OP) supervised factors in Supplemental Figure 34. While several of the connections found by REDCLIFF-S do appear to
have been published previously (compare with Figure 4A in Mague et al. (2022)), we highlight the fact that the network
identified by REDCLIFF-S seems to break from previously published results by including the Hippocampus in multiple
network edges. Interestingly, Mague et al. (2022) report that elevated power in certain frequency bands recorded in the
Hippocampus was implicated in social behavior, but they did not seem to detect any coherence between activity in the
Hippocampus and other regions. Given that our REDCLIFF-S method is designed to estimate both linear and nonlinear
granger causal relationships, whereas the dCSFA-based technique employed by Mague et al. (2022) focuses exclusively on
linear causal relationships, these findings may suggest that the Hippocampus shares nonlinear causal relationships with
other regions of the brain during social activity. More follow-up work would need to be done to confirm this hypothesis, but
we are excited to see that REDCLIFF-S appears to be identifying plausible, novel hypotheses.
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Table 8. Mean optimal f1-score ± SEM obtained by REDCLIFF-S ablations across various datasets (summarized in Table 3 of the main
paper). Values should be compared against those depicted in Figures 2A and 4 of the main paper.

ABLATION
DATASET ρ = 0 (EQ. 5, 10) nk = 1 (≡ EQ. 2) α = 1 (EQ. 4) λ = 0 (EQ. 9)

SYNTHETIC SYSTEM 6-2-2 0.463±0.057 0.279±0.044 0.291±0.045 0.279±0.044
SYNTHETIC SYSTEM 6-4-2 0.517±0.054 0.335±0.031 0.407±0.037 0.335±0.031
SYNTHETIC SYSTEM 12-11-2 0.296±0.037 0.188±0.033 0.208±0.018 0.188±0.033
SYNTHETIC SYSTEM 12-11-5 0.362±0.031 0.156±0.014 0.197±0.018 0.156±0.015
D4IC HSNR 0.370±0.014 0.304±0.002 0.336±0.009 0.342±0.010

C.6. Ablation Analyses

In Table 8 we provide details of our ablation experiments summarized in Table 3 of the main paper. With the exception of our
ρ = 0 ablation experiments, we see that the ablation scores are worse - in many cases by a large margin - than those of the
full REDCLIFF-S model, suggesting that these hyperparameters play an important role in the performance of REDCLIFF-S.

The ρ = 0 ablation experiments tell a more nuanced story, with performance degrading marginally for three of the five
systems tested and actually increasing when ρ was ablated for two of the systems. These observations are somewhat
unsurprising for a few reasons. Firstly, we reiterate that we only tuned the hyperparameters - including ρ - on a single
synthetic system configuration due to time constraints, so it is unsurprising that at least one of our parameter settings is
suboptimal in certain cases. Secondly, we note that there appears to be a pattern in Table 8 where the systems with relatively
fewer edges and factors (esp. the 6-2-2 and 12-11-2 Synthetic Systems) tend to perform worse after setting ρ = 0, whereas
those with more edges and factors (esp. the 6-4-2 and 12-11-5 Synthetic Systems) see improvements when ρ = 0. This
makes intuitive sense, since state graphs in systems with more edges and factors are simply more likely to share similar
causal relationships than those with fewer connections and states. Finally, the CosSim loss term modulated by ρ was
introduced into the REDCLIFF training process after we observed that doing so was loosely correlated with improved
ROC-AUC performance at test time in preliminary experiments (see Appendix B.3); since the ROC-AUC and F1 metrics are
fundamentally different, the correlated relationship between minimized CosSim and ROC-AUC may not always indicate
improved F1 performance. In summary, it would seem that ρ is more sensitive than other hyperparameters to properties
of the system being modeled and should thus be carefully tuned to suit the particular target system (and possibly dropped
entirely for sufficiently dense or expressive systems).
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Figure 10. Visualizing true (left column) and REDCLIFF-S Top-10 estimated (right column) inter-variable causal relationships of two
factors (‘A’ - also depicted in main paper Figure 3 - and ‘B’) from Synthetic System “12-11-5”. The color map shows (normalized) weight
of inter-variable causal relationships.
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Figure 11. Average optimal f1-scores ± SEM from our Low-
complexity Synthetic Systems experiments.

Figure 12. Average improvement in optimal f1-scores ± SEM
by the REDCLIFF-S algorithm over baselines from our Low-
complexity Synthetic Systems experiments.

Figure 13. Average optimal f1-scores ± SEM from our Low-
complexity Synthetic Systems experiments.

Figure 14. Average improvement in optimal f1-scores ± SEM
by the REDCLIFF-S algorithm over baselines from our Low-
complexity Synthetic Systems experiments.
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Figure 15. Average optimal f1-scores ± SEM from our Low-
complexity Synthetic Systems experiments.

Figure 16. Average improvement in optimal f1-scores ± SEM
by the REDCLIFF-S algorithm over baselines from our Low-
complexity Synthetic Systems experiments.

Figure 17. Average optimal f1-scores ± SEM from our Moderate-
complexity Synthetic Systems experiments.

Figure 18. Average improvement in optimal f1-scores ± SEM by
the REDCLIFF-S algorithm over baselines from our Moderate-
complexity Synthetic Systems experiments.
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Figure 19. Average optimal f1-scores ± SEM from our Moderate-
complexity Synthetic Systems experiments.

Figure 20. Average improvement in optimal f1-scores ± SEM by
the REDCLIFF-S algorithm over baselines from our Moderate-
complexity Synthetic Systems experiments.

Figure 21. Average optimal f1-scores ± SEM from our Moderate-
complexity Synthetic Systems experiments.

Figure 22. Average improvement in optimal f1-scores ± SEM by
the REDCLIFF-S algorithm over baselines from our Moderate-
complexity Synthetic Systems experiments.
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Figure 23. Average optimal f1-scores ± SEM from our High-
complexity Synthetic Systems experiments.

Figure 24. Average improvement in optimal f1-scores ± SEM
by the REDCLIFF-S algorithm over baselines from our High-
complexity Synthetic Systems experiments.

Figure 25. Visualizing model selection in the Region-Averaged
TST 100 Hz case study. Figure 26. Average estimated strength of causal relationships be-

tween channels recorded in the Home Cage state from the Region-
Averaged TST 100 Hz experiment.
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Figure 27. Average estimated strength of causal relationships be-
tween channels recorded in the Open Field state from the Region-
Averaged TST 100 Hz experiment.

Figure 28. Average estimated strength of causal relationships be-
tween channels recorded in the Tail Suspended state from the
Region-Averaged TST 100 Hz experiment.

Figure 29. Difference between Open Field vs Tail Suspended aver-
age estimated strength of causal relationships between channels
from the Region-Averaged TST 100 Hz experiment.

Figure 30. Difference between Tail Suspended vs Home Cage av-
erage estimated strength of causal relationships between channels
from the Region-Averaged TST 100 Hz experiment.
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Figure 31. Visualizing model selection in the Region-Averaged SP 100 Hz case study.

Figure 32. Average estimated strength of causal relationships be-
tween channels recorded in the Social Preference state from the
Region-Averaged SP 100 Hz experiment.

Figure 33. Average estimated strength of causal relationships be-
tween channels recorded in the Object Preference state from the
Region-Averaged SP 100 Hz experiment.

27



Generating Hypotheses of Dynamic Causal Graphs in Neuroscience

Figure 34. Difference in average estimated strength of causal relationships between channels predicted in the Social Preference vs Object
Preference behavioral paradigms of the Region-Averaged SP 100 Hz experiment.
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D. Datasets Used: Additional Details
In this section, we report various hyperparameters used in curating/preparing the datasets used in our experiments. Sup-
plemental Table 9 presents hyperparameters for the D4IC dataset (see Section 4.3). Supplemental Table 10 presents
hyperparameters for the Synthetic Systems Dataset (see Section 4.2). Supplemental Table 11 presents hyperparameters for
the Region-Averaged TST 100 Hz dataset (see Section 5). We briefly discuss the Region-Averaged SP 100 Hz dataset in
Appendix D.2.

Note that some elements in these hyperparameter tables appear as functions/equations rather than numerical values or lists of
numbers. Due to the vast number of models we had to train for our quantitative results, portions of our code were designed
to compute various hyperparameters rather than have them hard-coded and/or passed in as arguments. We release this
code in the project repository for the main paper; again, the repository can be accessed at github.com/carlson-lab/redcliff-s-
hypothesizing-dynamic-causal-graphs.

Table 9. D4IC Dataset (Section 4.3) - hyperparameters across experiments.

PARAMETER NAME VALUE

NETWORK SIZE 10
NUMBER OF FACTORS PER SYSTEM 5
NUMBER OF CROSS VALIDATION FOLDS 5
DOMINANT COEFFICIENT 10
POSSIBLE BACKGROUND COEFF.S ∈ [0.0, 0.1, 1.0]

Table 10. Synthetic Systems Dataset (Sections 4.1-4.2) - hyperparameters across experiments. Of particular note, repeat number 3 (indexed
from 0) of the nc = 12-node, ne = 33-edge (inter-variable), nk = 3-factor synthetic system dataset was used to perform grid searches
over hyperparameters across our Synthetic Systems experiments. Generally speaking, we find that the greater the number of edges per
node in the system, the more ‘complex’ the Granger causal estimation task.

PARAMETER NAME VALUE

NUMBER OF REPEATS PER SYSTEM 5
NUMBER OF FACTORS/VAR-MODELS (nk = B) nk ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
DIMENSIONALITY (nc) nc ∈ {3, 6, 12}
LAGGED DEPENDENCIES (τ ) 2
NUMBER OF TIMESTEPS IN RECORDINGS 100
TRAINING SAMPLES PER CLASS LABEL (TSCL) 1040
VALIDATION SAMPLES PER CLASS LABEL (VSCL) 240
NUMBER OF SAMPLES IN TRAINING SET = TSCL ∗ (B + 1)
NUMBER OF SAMPLES IN VALIDATION SET = VSCL ∗ (B + 1)
INNOVATIONS AMP COEFFS = NP.ONES((nc , 1))
INNOVATIONS VAR = NP.ZEROS((nc , 1))
INNOVATIONS MU = NP.ZEROS((nc , 1))

BASE FREQUENCIES = np.pi ∗ np.array([i ∗ 707 + i%2for i in range(nc)]
).reshape(nc, 1)/120000

D.1. Preprocessing the TST 100 Hz Datasets

As mentioned in the main paper, we applied some preprocessing steps to the publicly available TST dataset (Carlson
et al., 2023) to prepare it for our experiments. Specifically, we first sorted the publicly available local field potential (LFP)
recordings and associated behavioral label files according to the identifier of the mouse being observed; this was done to
ensure all mice were equally represented in each data repeat and so that different mice could be designated as ‘holdout’
subjects for each repeat. We then iterated through each subject mouse’s files and performed the following operations on
each recording:

• Removed LFP recordings from any channel/brain-region that was not present across all recordings of all mice;

• Marked any time point for which the LFP value was more than 15 median absolute deviations above the median value
of the (filtered - see below) recorded signal as outliers (i.e., ‘nan’ values);
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Table 11. Region-Averaged TST 100 Hz Dataset (Section 4.4) - hyperparameters across experiments.

PARAMETER NAME VALUE

NUM PROCESSED SAMPLES 10000
SAMPLE TEMP WINDOW SIZE 1500
SAMPLE FREQ 1000
POST PROCESSING SAMPLE FREQ 100
CUTOFF 35
MAD THRESHOLD 15
Q 2
ORDER 3
FILTER TYPE LOWPASS
HOMECAGE STOP = 300*SAMPLE FREQ
DOWNSAMPLING STEP SIZE = SAMPLE FREQ // POST PROCESSING SAMPLE FREQ

• Filtered the resulting (outlier-marked) LFPs - where we zero-ed out all outliers - with a low-pass Butterworth filter
followed by IIR notch filter;

• Filtered LFP channel recordings were then stacked into an nc × Trec recording where nc was the number of selected
LFP channels and Trec was the full length of the recording.

Once a recording file had been run through the above steps, we drew samples evenly across the parts of the recording
representing the a) Home Cage (HC), b) Open Field (OP), and c) Tail Suspended (TS) behavioral paradigms. Each sample
was drawn in such a way that it was guaranteed to have no marked outlier time points. Once a sample had been drawn, a
one-hot vector label corresponding to the behavioral paradigm was attached to it, and the sampled signal was downsampled
to reduce computational overhead in later experiments.

D.2. Preprocessing the SP 100 Hz Datasets

We used the same parameters to preprocess the Social Preference (SP) dataset (Mague et al., 2022) as were used to prepare
the Region-Averaged TST 100 Hz dataset. The only fundamental differences between the preprocessed TST data and the
Region-Averaged SP 100 Hz dataset were 1) the labels in the datasets (three behavioral labels for TST and two for SP) and
2) the dimensionality of the time series being analyzed.

E. Model Hyperparameters Used in Experiments: Additional Details
In this section, we report hyperparameters used to configure and train the models used in our experiments. Hyperparameters
for the cLSTM models that appear in this paper (see Sections 4.2 and 4.3) are given in Supplemental Table 12. Hyper-
parameters for the cMLP models that appear in this paper (see Sections 4.2 and 4.3) are given in Supplemental Table 13.
Hyperparameters for the DGCNN models that appear in this paper (see Sections 4.2 and 4.3) are given in Supplemental Table
14. Hyperparameters for the DYNOTEARS models that appear in this paper (see Section 4.3) are given in Supplemental
Table 15. Hyperparameters for the NAVAR-R (cLSTM) models that appear in this paper (see Section 4.3) are given in
Supplemental Table 16. Hyperparameters for the NAVAR-P (cMLP) models that appear in this paper (see Section 4.3) are
given in Supplemental Table 17. Hyperparameters for the dCSFA models that appear in this paper (see Sections 4.2 and 4.3)
are given in Supplemental Table 18. Hyperparameters for the REDCLIFF-S (cMLP) models that appear in this paper (see
Sections 4.2, 4.3, and 5) are given in Supplemental Tables 19 and 20.

E.1. Identifying Datasets Used to Tune Parameters

Along with the hyperparameters for each model, we report the dataset(s) used to derive those parameters. Models represented
by columns with “Synth. Systems” in the column name used hyperparameters selected by grid search(es) on Repeat 3 of the
dataset for a (nonlinear, noisy) system with nc = 12, ne = 33, and nk = 3; code for generating this dataset is included
in the project repository for the main paper. Models represented by columns with “D4IC” in the column name had their
hyperparameters selected by grid search(es) performed on Repeat 0 of the Moderate SNR D4IC dataset (see Table 9), with
the cMLP v1 model being less optimal than cMLP v2 according to the original selection criteria.
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Table 12. cLSTM - hyperparameters across experiments.

PARAMETER NAME SYNTH. SYSTEMS D4IC

BATCH SIZE 128 128
MAX ITER 300 1000
NUM SIMS 1 1
CONTEXT 2 2
MAX INPUT LENGTH 4 4
FORECAST COEFF. 1.0 1.0
ADJ. L1 REGULARIZATION COEFF. 1.0 10.0
GEN HIDDEN 25 25
GEN LR 0.0001 0.0005
GEN EPS 0.0001 0.0001
GEN WEIGHT DECAY 0.0001 0.0001
EMBED HIDDEN SIZES 10 10

Table 13. cMLP - hyperparameters across experiments.

PARAMETER NAME SYNTH. SYSTEMS D4IC (V1) D4IC (V2)

BATCH SIZE 128 128 128
MAX ITER 300 1000 1000
GEN LAG AND INPUT LEN 2 2 2
FORECAST COEFF. 1.0 1.0 1.0
ADJ. L1 REGULARIZATION COEFF. 1.0 1.0 1.0
GEN HIDDEN 25 50 50
GEN LR 0.0001 0.0005 0.001
GEN EPS 0.0001 0.0001 0.0001
GEN WEIGHT DECAY 0.0001 0.0001 0.0001
EMBED HIDDEN SIZES 10 60 10

E.2. Hyperparameters Represented by Functions

We noticed in preliminary experiments that some hyperparameters were highly sensitive to certain aspects of the dynamical
systems being modeled; furthermore, we noticed these sensitivities could be described by fairly simple functions of system
aspects. Rather than set a fixed value for these model hyperparameters, we tuned ‘meta-hyperparameters’ (e.g., coefficients)
of the functions for these sensitive hyperparameters to a particular dataset, and then recomputed the output of their functions
each time the ‘tuned’ model was transferred to a new target dynamical system. We report the tuned functional form (with
tuned meta-hyperparameters) in place of any fixed value for this type of sensitive hyperparameter.
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Table 14. DGCNN - hyperparameters across experiments.

PARAMETER NAME SYNTH. SYSTEMS D4IC

BATCH SIZE 128 128
MAX ITER 300 1000
NUM CHANNELS 10 10
GEN EPS 0.0001 0.0001
GEN WEIGHT DECAY 0.0001 0.0001
NUM FEATURES PER NODE 2 2
NUM CLASSES = SAME AS DATASET 5
NUM GRAPH CONV LAYERS 3 1
NUM HIDDEN NODES 250 100
GEN LR 0.0001 0.0001

Table 15. DYNOTEARS - hyperparameters across experiments.

PARAMETER NAME D4IC

MAX ITER 100
LAMBDA W 0.9
LAMBDA A 0.1
H TOL 0.00000001
W THRESHOLD 0.0
TABU EDGES NONE
TABU PARENT NODES NONE
TABU CHILD NODES NONE
LAG SIZE 1

Table 16. NAVAR-R (cLSTM) - hyperparameters across experiments.

PARAMETER NAME D4IC

BATCH SIZE 128
EPOCHS 1000
NUM NODES 10
MAXLAGS 2
NUM HIDDEN 256
HIDDEN LAYERS 1
LEARNING RATE 0.0001
WEIGHT DECAY 0
LAMBDA1 0.0

Table 17. NAVAR-P (cMLP) - hyperparameters across experiments.

PARAMETER NAME D4IC

BATCH SIZE 128
EPOCHS 1000
NUM NODES 10
MAXLAGS 20
NUM HIDDEN 256
HIDDEN LAYERS 2
LEARNING RATE 0.0001
WEIGHT DECAY 0
LAMBDA1 0.0

32



Generating Hypotheses of Dynamic Causal Graphs in Neuroscience

Table 18. dCSFA - hyperparameters across experiments.

PARAMETER NAME SYNTH. SYSTEMS D4IC

BATCH SIZE 128 128
N EPOCHS 250 1000
N PRE EPOCHS 50 50
NMF MAX ITER 10 20
NUM HIGH LEVEL NODE FEATURES 13 5
NUM NODE FEATURES 50 20
N COMPONENTS = SAME AS DATASET 5
N SUP NETWORKS = N COMPONENTS 5
RECON WEIGHT 2.0 1.0
SUP WEIGHT 1.0 2.0
SUP RECON WEIGHT 1.0 1.0
SUP SMOOTHNESS WEIGHT 1.0 2.0
H 256 256
MOMENTUM 0.9 0.5
LR 0.0005 0.001
FS 100 100
MIN FREQ 0.0 0.0
MAX FREQ 50.0 50.0
DIRECTED SPECTRUM TRUE TRUE
DETREND CONSTANT CONSTANT
WINDOW HANN HANN
NPERSEG = NUM NODE FEATURES = NUM NODE FEATURES
NOVERLAP = NUM NODE FEATURES//2 = NUM NODE FEATURES//2
NFFT NONE NONE

Table 19. REDCLIFF-S - hyperparameters across experiments on synthetic data. Note that for the Synthetic Systems datasets we set nc

equal to the dimensionality of the system, while for the D4IC datasets we had nc = 10.

PARAMETER NAME SYNTH. SYSTEMS D4IC

BATCH SIZE 128 128
MAX ITER 300 1000
nk = SAME AS DATASET 5
B = nk 5
τin (EQ. 2) 4 4
ω (EQ. 5) 10.0 10.0
ρ (EQ. 5) = 1.0∑nk−1

i=1 i
0.1 = 1.0∑nk−1

i=1 i

η (EQ. 5) = 0.1

nk

√
nc

2−1
0.00201 ≈ 0.1

nk

√
nc

2−1

γ (EQ. 6) 0.001 0.001
λ (EQ. 9) 100.0 100.0
GEN HIDDEN [25] [100]
GEN LR 0.0005 0.0005
GEN EPS 0.0001 0.0001
GEN WEIGHT DECAY 0.0001 0.0001
NUM PRETRAIN EPOCHS 100 50
NUM ACCLIMATION EPOCHS 100 15
FACTOR SCORE EMBEDDER TYPE DGCNN DGCNN
EMBED NUM HIDDEN NODES 100 30
EMBED NUM GRAPH CONV LAYERS 3 2
EMBED LR 0.0005 0.0002
EMBED EPS 0.0001 0.0001
EMBED WEIGHT DECAY 0.0001 0.0001
EMBED LAG (τin + τclass) 16 20
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Table 20. REDCLIFF-S - hyperparameters across experiments on real-world data. Note that for the Region-Averaged TST 100 Hz dataset
we had nc = 12 while for the Region Averaged SP dataset we had nc = 9.

PARAMETER NAME REG. AVG. TST 100 HZ REG. AVG. SP 100 HZ

BATCH SIZE 128 128
MAX ITER 300 300
nk 9 [2, 4, 6, 9, 18, 36]
B 3 2
τin (EQ. 2) 4 4
ω (EQ. 5) 10.0 10.0
ρ (EQ. 5) = 1.0∑nk−1

i=1 i
≈ 0.0278 = 1.0∑nk−1

i=1 i

η (EQ. 5) = 0.1

nk

√
nc

2−1
≈ 0.000929 = 0.1

nk

√
nc

2−1

γ (EQ. 6) 0.001 0.001
λ (EQ. 9) 100.0 100.0
GEN HIDDEN [25] [25]
GEN LR 0.0005 0.0005
GEN EPS 0.0001 0.0001
GEN WEIGHT DECAY 0.0001 0.0001
NUM PRETRAIN EPOCHS 100 100
NUM ACCLIMATION EPOCHS 100 100
FACTOR SCORE EMBEDDER TYPE DGCNN DGCNN
EMBED NUM HIDDEN NODES 100 100
EMBED NUM GRAPH CONV LAYERS 3 3
EMBED LR 0.0005 0.0005
EMBED EPS 0.0001 0.0001
EMBED WEIGHT DECAY 0.0001 0.0001
EMBED LAG (τin + τclass) 16 16
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