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Abstract

We study the problem of scalable design of Error-Correcting Output Codes (ECOC)
for multi-class classification. Prior works on ECOC-based classifiers are limited to
codebooks with small number of rows (classes) or columns, and do not provide op-
timality guarantees for the codebook design problem. We address these limitations
by developing a codebook design approach based on a Mixed-Integer Quadratically
Constrained Program (MIQCP). This discrete formulation is naturally suited for
maximizing the error-correction capability of ECOC-based classifiers and incorpo-
rates various design criteria in a flexible manner. Our solution approach is tractable
in that it incrementally increases the codebook size by adding columns to maximize
the gain in error-correcting capability. In particular, we show that the maximal
gain in error-correction can be upper bounded by solving a graph-coloring problem.
As a result, we can efficiently generate near-optimal codebooks for very large
problem instances. These codebooks provide competitive multi-class classification
performance on small class datasets such as MNIST and CIFAR10. Moreover,
by leveraging transfer-learned binary classifiers, we achieve better classification
performance over transfer-learned multi-class CNNs on large class datasets such as
CIFAR100, Caltech-101/256. Our results highlight the advantages of simple and
modular ECOC-based classifiers in improving classification accuracy without the
risk of overfitting.

1 Introduction
Error-correcting codes have found many applications in machine learning. Their use range from
natural classification tasks [8, 24, 2, 17, 21] including multi-label classification [11] to robust
classification [43, 46, 16] to federated learning [22] to zero-shot learning [40] to life-long learning
[20]. The seminal paper of [8] proposed the use of error-correcting output codes (ECOCs) for
classification tasks. Their framework lead to a significant activity on the design of ECOCs with a
variety of features; for e.g. the use of different class of encodings [7, 17, 39], hierarchical classifiers
[14, 12], decoding schemes [2, 9] and accounting for the underlying data-distribution [49, 47, 30, 33].
However, a key challenge that remains to be addressed is a flexible and tractable approach for
designing high-quality codebooks. Our paper addresses this challenge.

We tackle some of the limitations of prior works on solving the discrete codebook design problem.
In particular, we depart from the classical approach that performs a continuous relaxation of the
discrete codebook design problem and attempts to solve the resulting non-linear optimization problem
[7, 49, 47, 33]. That approach has been shown to scale to large number of classes k, but under the
limitation that the size of the codebook (i.e. number of columns L) is small. However, with small
L, codebooks do not fully exploit the error-correcting capability, which is the key motivation to use
ECOCs in the first place. Besides, the continuous relaxation approach typically does not provide
codebooks with strong optimality guarantees.
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We formulate the codebook design problem as a mixed integer quadratically constrained program
(MIQCP) and develop a greedy algorithm to efficiently solve this MIQCP. Each iteration of our
algorithm adds a new set of columns to the current codebook such that the gain in error-correcting
capability is maximal. Importantly, we exploit a graph-coloring based upper-bound to accelerate the
iterations of the greedy algorithm. Thus, our algorithm provides the flexibility to choose codebook
size based on the desired level of final accuracy. The key advantage of our approach is that it easily
scales to large problem instances (k = 500). In comparison, the recent paper of [16] generates
high-quality codebooks but only for k ≤ 50. Thus, our approach can be maximally leverage the
benefit of ECOCs in aforementioned applications of error-correcting codes for realistic problem
instances.

Our main contributions are as follows: (i) In contrast to [8, 33, 49, 47, 16], we model the codebook
design problem as an element-wise optimization problem (MIQCP formulation). (ii) We develop a
solution approach using a greedy algorithm to solve large instances of the MIQCP with low-optimality
gaps. (iii) We make a theoretical connection to the vertex-coloring problem to upper bound the
maximal gain in the error-correction which leads to faster iterations of the greedy algorithm. (iv) Our
codebooks achieve very high classification accuracy similar to multi-class CNNs on datasets with
small number of classes. (v) Finally, we show a novel benefit of ECOCs with transfer-learning on
large class datasets. Our codebooks outperform multi-class CNNs when trained with transfer-learning
under both nominal and robust feature settings.

2 ECOC for Classification
The ECOC-based framework [8], encodes each class of a k-class classification problem with a unique
codeword of length L. This encoding results in a codebook (coding matrix)M of size k × L. For
binary codes: M ∈ {+1,−1}k×L. The rows (resp. columns) ofM correspond to distinct classes
(resp. binary classifiers or hypotheses). Figure 1 shows two example codebooks for a classification
problem with 5 classes. For every column inM a binary classifier is trained over the training data,
where all training data from classes with entry +1 (resp. entry −1) forms the positive class (resp. the
other class).

f1 f2 f3 f4 f5

C1 +1 -1 -1 -1 -1
C2 -1 +1 -1 -1 -1
C3 -1 -1 +1 -1 -1
C4 -1 -1 -1 +1 -1
C5 -1 -1 -1 -1 +1

f1 f2 f3 f4 f5 f6

C1 +1 +1 +1 +1 +1 +1
C2 -1 -1 -1 -1 +1 +1
C3 -1 -1 +1 -1 -1 -1
C4 -1 +1 +1 -1 -1 +1
C5 +1 -1 +1 -1 +1 -1

Figure 1: Example codebooks and their corresponding binary classifiers for a 5-class classification
problem.

For a test example x, let f1(x), . . . , fL(x) denote the predicted class of each of the learned binary
hypotheses, where fj(x) ∈ {+1,−1} ∀ j ∈ {1, . . . , L}. This encoding F(x), where F(x) =
[f1(x), . . . , fL(x)], is then associated with a class (i.e., a row of coding matrixM), typically using a
decoding scheme based on a similarity measure such as Hamming distance. A common approach is to
compute the Hamming distances dH(·, ·) between F(x) and each codewordM(i, ·) ∀i ∈ {1, . . . , k}
and predict the output class ŷ as the class with the minimum distance:

dH(M(i, ·),F(x)) :=
L∑

j=1

(
1−M(i, j)× fj(x)

2

)
ŷ = argmin

i
dH(M(i, ·),F(x)).

Importantly, the final classification performance of the above ECOC procedure depends on both the
accuracy of the trained binary classifiers and the error-correcting capability of the codebookM. In
particular this capability increases with the Hamming distances between rows; i.e. a codebook with
high pairwise Hamming distances across its rows has a higher error-correction capability.

Definition 1. Hamming distance of a codebook (denoted as κM) is defined as the minimum hamming
distance between any two distinct pair of codewords (or rows) inM.
κM = min

(i,j)∈{1,...k}2|i<j
dH(M(i, ·),M(j, ·))
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Proposition 1 (Error-Correction Capability). A codebookM with hamming distance κM, can always
correct at-least ⌊κM−1

2 ⌋ errors.

Proof of proposition 1 and all subsequent technical results are provided in supplementary information
(SI).

3 Problem Formulation
For a k-class classification problem we want to find an optimal codebook of length L. Thus, we want
to find the value of k × L entries of a codebook, where each (i, j) entry (denoted as xij) can take
values in {+1,−1} such that the resulting codebook has high multi-class classification accuracy. To
achieve high classification accuracy, we take the following design criteria [8, 16] into consideration:

1. The error-correcting property increases with the Hamming distance between rows; therefore
it is desirable to have a high Hamming distance between any pair of rows. We ensure this by
maximizing - the Hamming distance of the codebook (or the minimum of the row pairwise
Hamming distances). For a binary codebook of size k × L, an analytical upper bound on this
objective is given by the well-known Plotkin’s bound [37]:

⌊
Lk

2(k−1)

⌋
.

2. The Hamming distance between any two pair of columns of the codebook must be at least 1
to avoid same columns and at most k − 1 to avoid complementary columns. A good column
separation is desirable in order to avoid correlations between the resulting hypotheses (or binary
classifiers). Due to these reasons, we constrain the Hamming distances between any distinct pair
of columns between ρ1 and ρ2, where ρ1 ≥ 1 and ρ2 ≤ k − 1.

3. Finally we consider the balanced column criterion. This criterion allows to control the amount
of imbalance in the resulting binary classification problem, i.e. the number of data-points in
each of the two classes. This automatically ensures that no column has all entries as +1 or
−1. Importantly, while balanced columns help in improving the error-correcting capability,
imbalanced columns often result in easier binary classification problems, especially when
working with linear classifiers, thus promoting higher multi-class accuracy [2, 9, 41]. In SI, we
further discuss the nuances of shaping this trade-off in design of the codebook.

For notational convenience we denote the set of row indices as N , the set of column indices T , set of
all pair of rows (or corresponding classes) PN ; and the set of all pair of columns PT . Mathematically:

N :=
{
1, . . . , k

}
, PN :=

{
(i, î) ∈ {1, . . . , k} × {1, . . . , k} | i < î

}
,

T :=
{
1, . . . , L

}
, PT :=

{
(j, ĵ) ∈ {1, . . . , L} × {1, . . . , L} | j < ĵ

}
.

We can now formulate the element-wise codebook design problem based on the above design criteria
as the following Integer program (IP1):

IP1 :max
x

min {d1,2H (x), d1,3H (x), . . . , dk−1,k
H (x)} (1a)

s.t. di,̂iH (x) =
1

2

(
L−

L∑
j=1

xij × xîj

)
∀ (i, î) ∈ PN (1b)

ρ1 ≤
1

2

(
k −

k∑
i=1

xij × xiĵ

)
≤ ρ2 ∀ (j, ĵ) ∈ PT (1c)

− γ ≤
k∑

i=1

nixij ≤ γ ∀ j ∈ T (1d)

xij ∈ {+1,−1} ∀ (i, j) ∈ N × T (1e)

The objective of IP1 is to maximize the minimum Hamming distances between different pairs
of rows (1a). Constraint (1b) computes the Hamming distance between rows; (1c) ensures that
column separation lies in the desirable range [ρ1, ρ2]; (1d) ensures that every column results in a
valid balanced binary classification problem, where ni is the number of training samples in i-th class
of the dataset, while γ controls the degree of allowed imbalance; and finally (1e) ensures that xij

takes integer values in {+1,−1}. The max-min objective (1a) can be simplified by introducing an
auxiliary variable t, where t := min {d1,2H (x), d1,3H (x), . . . , dk−1,k

H (x)} and adding constraints
t ≤ d1,2H (x), . . . , t ≤ dk−1,k

H (x).
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Note that (1b) and (1c) contain bilinear terms and are non-convex in nature. Thus IP1 can be
categorized as a non-convex Mixed Integer Quadratic Constrained Program (MIQCP). IP1 cannot be
solved directly as (1b) and (1c) contains bilinear terms and therefore these constraints are linearized
to get a linear-relaxation of IP1. Each bi-linear term is replaced with an auxiliary variable zijpq,
where zijpq := xijxpq . Additional linear constraints known as McCormick-inequalities [34] are then
added to lower and upper bound zijpq . Further details about McCormick inequalities (including their
derivation) are provided in supplementary information (SI). For the bilinear constraint zijpq = xijxpq ,
these inequalities are given by (2a) and (2b).

Lower: zijpq ≥ −xij − xpq − 1; zijpq ≥ xij + xpq − 1 (2a)
Upper: zijpq ≤ xij − xpq + 1; zijpq ≤ −xij + xpq + 1 (2b)

Also, (2a) and (2b) respectively provide convex lower and upper envelopes to the feasible set admitted
by the bilinear constraint [1].

Lemma 1. McCormick relaxation of IP1, denoted asMC(IP1), is tight:{
(zijpq, xij , xpq) ∈ R× {+1,−1}2|zijpq = xijxpq

}
≡

{
(zijpq, xij , xpq) ∈ R× {+1,−1}2|(2a), (2b)

}
.

Thanks to lemma 1, IP1 can now be solved by solving the MILP (i.e. MC(IP1)) obtained after
replacing the bilinear terms in (1b)-(1c) with the corresponding McCormick inequalities. Note that
IP1 has L× |PN |+ k × |PT | = L×

(
k
2

)
+ k ×

(
L
2

)
number of bilinear terms. If L ≈ k, IP1 will

have O(k3) number of bilinear terms. However in practice, linear programming (LP)-relaxation of
MC(IP1) can be quite loose and hence even with the tight reformulation, IP1 cannot be used to
tractably solve the optimal codebook design problem (especially when L is large).

Therefore, instead of generating optimal codebooks by solving IP1 directly in one-shot, we next
develop a scalable greedy solution approach to generate good-quality (near optimal) codebooks for
large k and L.

4 Proposed Solution Approach
In this section we develop an iterative greedy algorithm to generate near-optimal codebooks i.e.
codebooks with low-optimality gap. To develop our approach, we utilize the following monotonicity
result of lemma 2.

Lemma 2. LetM and M̃ be two binary error-correcting code of size k×l and k×(l+ l̃) respectively,
where l̃ ≥ 0, such that all columns inM are also in M̃, i.e.M⊆ M̃. Then, the Hamming distances
(recall 1) ofM and M̃ satisfy: κM ≤ κM̃, implying that the error-correcting capability of M̃ is at
least as good asM.

This intuitive result serves as the starting point of our solution approach. In particular, from Lemma
2, we know that the error correcting capability of a codebookM of size k × l can be improved
further by increasing the number of columns, i.e. adding l̃ columns. Naturally, this improvement
not only depends on l̃, but also on how the entries of the new columns are selected. Our solution
approach progressively adds new columns to an existing codebook by solving a smaller integer
program, denoted IP2; see figure 2. This integer program maximizes the hamming distance of the
resulting codebook (i.e. its error-correcting capability), while ensuring that desired column separation
for all (i.e. new and old columns) is achieved and the resulting codebook still remains a valid binary
error-correcting code with balanced columns.

8× 4


x̃11 x̃12

x̃21 x̃22

x̃31 x̃32

...
...

x̃k1 x̃k2


Solve
IP2

8× 6

Figure 2: Adding new columns to an existing codebook

T̃ :=
{
1, . . . , l̃

}
(3)

PT̃ :=
{
(j, ĵ) ∈

{1, . . . , l̃} × {1, . . . , l̃} | j < ĵ
}

(4)

x̃ij ∈ {+1,−1} ∀ (i, j) ∈ N × T̃ (5)

Before proceeding, we introduce new notation for mathematical convenience. Analogous to T ,
(resp. PT ) let T̃ denote the set of new columns (resp. PT̃ denote the set of pair of new columns).
Furthermore, let the entries of the new columns be denoted as x̃ij . Mathematically these are defined
in (3), (4) and (5) respectively. We are ready to present IP2 which takes a valid codebookM of size
k × l and number of columns l̃ to be added as inputs.
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IP2 : max
x̃

min {d1,2H (x̃), d1,3H (x̃), . . . , dk−1,k
H (x̃)} (6a)

di,̂iH (x̃) =
1

2

(
l + l̃ −

l∑
r=1

M(i, r)×M(̂i, r) +

l̃∑
j=1

x̃ij × x̃îj

)
∀ (i, î) ∈ PN (6b)

ρ1 ≤
1

2

(
k −

k∑
i=1

x̃ij × x̃iĵ

)
≤ ρ2 ∀ (j, ĵ) ∈ PT̃ (6c)

ρ1 ≤
1

2

(
k −

k∑
i=1

M(i, j)× x̃iĵ

)
≤ ρ2 ∀ (j, ĵ) ∈ {1, . . . , l} × T̃ (6d)

− γ ≤
k∑

i=1

nix̃ij ≤ γ ∀ j ∈ T̃ (6e)

x̃i,j = {+1,−1} ∀ (i, j) ∈ N × T̃ (6f)

The objective function (6a) maximizes the the error-correcting capability. Constraint (6b) computes
the Hamming distance between pairs of rows (or classes) in the resulting codebook; (6c) ensures
desired column separation between any pair of new columns; (6d) ensured desired separation between
new columns and existing columns in inputM; (6e) ensures that new columns are balanced and (6f)
ensures that the new codebook is a binary codebook.

Notice the key difference between IP2 and IP1: since l̃≪ l, the constraints (6d), which account
for the majority of columns separation conditions in the resulting codebook are linear in x̃ as the
entries ofM are known. Further, the total number of bi-linear terms in row-separation constraints
(6b) and column separation (between new columns) constraints (6c) are much smaller in number.
These features of IP2 makes it solvable even for large k by off-the-shelf IP solvers which typically
employ branch-and-bound (B&B) procedure.

It turns out that we can pre-compute a good quality (potentially tight) upper-bound to IP2. In section
4.1, we explore two different ways to generate an upper bound to IP2. Our computational results
show that a good upper bound can accelerate the termination of the B&B procedure for IP2. Since
our greedy algorithm 4.2 relies on solving IP2 repeatedly to increase the error-correcting capability,
the overall computational gain can be significant.

4.1 Upper Bound to IP2
The integer constraint (6f), x̃ij ∈ {+1,−1} in IP2 can be equivalently re-written as x̃2

ij = 1 and
the resulting problem can be categorized as a continuous, non-convex quadratic program. We can
generate an upper bound by taking the Rank-1 semi-definite programming (SDP) relaxation of this
quadratic program (for details see SI). The tightness of this relaxation is same as taking the dual of
aforementioned quadratic program (equivalently IP2), which is also a SDP and is dual to the Rank-1
SDP relaxation. However, solving the SDP-relaxation can be expensive for large k even with modern
first-order SDP cone solvers (for eg: SCS [36]). More importantly our computational experiments
suggest that the SDP-relaxation does not provide a good quality upper-bound to IP2.

We now discuss a second procedure to generate an upper bound to IP2. To begin with, note that the
addition of l̃ columns to an existing codebookM, as done by IP2, can be equivalently viewed as
the appending codewords (denoted as ci) of length l̃ to each row i of the codebookM, see figure 3.
For binary codes there are 2l̃ possible distinct codewords of length l̃, let the set of these codewords
be denoted as C(l̃). Essentially in solving IP2, we seek to choose codewords from C(l̃), such that
the codebook resulting from appending them to the existing rows ofM maximally increases the
error-correcting capability. In particular, out of all

(
k
2

)
row pairs, IP2 tries to increase the hamming

distance between row pairs which are at the minimum in the existing codebook, as these minimum
hamming distance row pairs decide the error-correcting capability (recall proposition 1).

For a given codebookM, we define the set of minimum distance row-pairs (denoted EM) as:
EM =

{
(i, j) ∈ {1, . . . , k} × {1, . . . , k}| i < j and dH(M(i, ·),M(j, ·)) = κM

}
(7)

For example, the minimum hamming distance between any two distinct pair of rows in the codebook
shown in Figure 3 is 4, and there are multiple row pairs for which the Hamming distance is 4. In
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CodebookM


c1
c2
c3
...
ck


where ci ∈ C(l̃). For l̃ = 2,

C(2) :=
{

[+1,-1] , [+1,+1] ,

[-1,+1] , [-1,-1]
}

1

2

3

4

56

7

8

9

10

Error-correcting Graph GM ofM
Figure 3: CodebookM (left) and its corresponding error-correcting graph GM (right). Since GM has
a clique of size 5 (shown in bold edges), therefore chromatic number ξ(GM) ≥ 5, thus GM cannot
be colored with four colors (or codewords in C(2)). Therefore adding codewords of size 2 will not
result in improving the hamming distance ofM.

general, for a codebook M of size k × L, we can represent the set EM as an undirected graph
(denoted GM) with k-vertices, where vertex i corresponds to row i inM ∀ i ∈ {1, . . . , k}. For
every (i, j) in EM, an edge is present between vertices i and j in GM. We refer to graph GM as the
error-correcting graph ofM. Mathematically,

GM = (V, EM), where V = {1, . . . , k}

Figure 3 illustrates a codebookM and its corresponding error-correcting graph GM. This viewpoint
enables us to make two important observations:

1. Increasing the hamming distance of row-pairs in EM by at least 1 through addition of
columns (or equivalently by appending codewords ci) to M, effectively increases the
minimum hamming distance of the entire codebook by at least 1.

2. Any pair of distinct codewords in the set C(l̃) differ by at least 1 and at most l̃, i.e. :
1 ≤ dH(ci, cj) ≤ l̃ ∀ ci, cj ∈ C(l̃), i ̸= j.

These observations lead to the following claim in proposition 2:

Proposition 2. For a codebookM, if there exists an assignment of codeword ci ∈ C(l̃) to each vertex
of graph GM such that no two connected vertices receive the same codeword, then the hamming
distance of the codebook κM can be increased by at least 1 by adding codewords from C(l̃) to the
rows ofM.

In fact the condition specified by proposition 2, can be easily verified by solving an instance of
the graph-coloring problem on GM, where each codeword ci ∈ C(l̃) can be viewed as a unique
color. Before proceeding further, we recall some useful definitions related to graph coloring. A
proper-vertex coloring is an assignment of colors to the vertices of a graph so that no two adjacent
vertices have the same color.
Definition 2 (Chromatic number). The chromatic number of a graph G, denoted as ξ(G) is the
minimum number of colors required for a proper vertex coloring of the graph G.

Theorem 1. For any binary code M̃ resulting from adding l̃ columns to an existing binary codeM,
the following holds regarding the hamming distance (recall 1) κM̃ of the code M̃:

• If the chromatic number of the graph GM, ξ(GM) is greater than the size of the set of
possible codewords C(l̃), i.e. ξ(GM) > |C(l̃)|, then κM̃ = κM.

• In particular, for l̃ ∈ {1, 2}* :

κM̃ ≤


κM + l̃, if ξ(GM) = 2

κM + l̃ − 1, if 3 ≤ ξ(GM) ≤ 4

κM. if ξ(GM) ≥ 5

Corollary 2. An upper bound to IP2 is provided by theorem 1 or IP2 is infeasible.

Since for a givenM, theorem 1 provides a valid upper-bound to the hamming distance (or equivalently
the error-correcting capability) of all codebooks resulting from adding l̃ columns toM, therefore it

*Extension to cases where l̃ ≥ 3 is provided in SI.

6



Algorithm 1 Greedy

1: Generate first column C1 randomly.
2: M← C1 and start counter: i = 1
3: while i < L do
4: Compute ξ(GM).
5: Compute upper bound to IP2 using ξ(GM) and l̃.
6: Solve IP2 with latestM, l̃ and upper-bound.
7: UpdateM with the solution of IP2
8: i = i+ l̃
9: end while

10: return M

k Time (in secs.)
50 0.063

100 0.148
150 0.099
200 0.165
250 1.039
300 0.234
350 0.134
400 1.921
450 0.813
500 0.852

Table 1: Avg. time taken to com-
pute the chromatic number ξ(GM)
for different k.

automatically also provides an upper-bound to IP2. Further, the color-assignment can be used to
generate a (partial) feasible solution to IP2. Technical details of feasible solution generation are
provided in SI.

Note that the problem of computing the chromatic number of a graph (or analogously solving the
vertex-coloring problem) has been extensively studied in the literature. This includes heuristics
such as DSATUR [4] and RLF [28], exact backtracking algorithms [26] and more recent integer
programming based exact methods [18, 35, 32]. We solve our graph-coloring problem by formulating
and solving it as an integer program (IP); please refer to SI for details. In table 1, we report the
average time needed to solve the vertex-coloring problem for various error-correcting graphs GM
with different k. In almost all cases we are able to solve the graph-coloring problem extremely fast
within 1-2 seconds. This is mainly due to the highly sparse structure of GM as large number of
nodes tend to have low or even zero-degree resulting from high diversity in row pair-wise Hamming
distances.

4.2 Greedy Algorithm
We are now ready to present our Greedy Approach (Algorithm 1) for generating a codebook of size
k × L which is a near-optimal feasible solution to our original codebook design problem. Initially,
we randomly pick the first column of the codebook such that it is a valid balanced binary classifier.
Then, a second column is added by solving IP2 with l̃ = 1, this provides us with a codebook of size
k × 2 that satisfies all the design criteria. With this as our current codebook with two columns, we
then continue to append more columns by again solving IP2. This procedure is continued until we
obtain a codebook with L columns.

Practically, it is important to keep l̃ reasonably small so that the solution to IP2 in each iteration of
Algorithm 1 is obtained quickly. In the first few iterations, sinceM is small, therefore the number of
column-separation constraints between the existing and new columns (6d) is small. Thus, for large k,
i.e. k > 50, for first ⌈log2 k⌉† iterations we solve IP2 with l̃ = 1 and use l̃ ≥ 2 in the subsequent
iterations.

4.3 Flexibility in choosing the size of the codebook L
For most ECOC design approaches in literature, one needs to pre-define L to solve the codebook-
design and then train each of the binary classifiers. If the resulting multi-class performance is not
satisfactory then the process is repeated: increase L, resolve the codebook design problem and re-train
all the columns in the new codebook. Naturally, this iterative design process is quite burdensome
because of the computation effort spent on solving and training codebooks in each iteration.

In a sharp contrast, our design approach does not require pre-specifying L as columns can be
greedily added to build codebooks. In particular, we can start off with a relatively small L, train
the resulting columns and evaluate the multi-class performance. If required, we can then append
more columns to the existing codebook by solving IP2, train the new columns and re-evaluate
the multi-class performance. This procedure can be repeated until minimal or no improvement is
observed. Importantly the computation effort spent in training previous columns is not wasted and
one can stop anytime if the improvement in the multi-class classification performance is negligible.
This flexibility also makes our approach dataset dependent to a certain extent [33]. Finally, we note
that authors of [38, 39] have discussed choosing L but their work is limited to problems with small k.

†See SI for reason to choose ⌈log2 k⌉.
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We next perform computational experiments to evaluate the performance of our greedy algorithm
and subsequently evaluate the classification performance of the codebooks generated by the greedy
algorithm.

5 Experiments
We use Gurobi-v9.1 as our integer programming (IP) solver and run all our experiments on a machine
with Intel Core i7-6800K CPU, 32GB RAM and 1080Ti Nvidia GPU. We compute optimality gaps
of codebooks generated by different approaches using Plotkin’s Bound (PB). The gap is defined
as: |PB− fbest|/fbest, where fbest denotes the objective function value of the solution. Our code is
available at: https://github.com/SamarthGM/Scalable_ecoc.

k L PB fbest Gap (%)

IP1 Greedy [16] Dense
(random)

Dense
(best out of 10k) IP1 Greedy [16] Dense

(random)
Dense

(best out of 10k)
12 24 13 11 12 12 7 9 18.18 8.33 8.33 85.7 44.4
16 32 17 14 16 16 9 12 21.43 6.25 6.25 88.9 41.6
20 40 21 14 19 19 12 15 50.0 10.53 10.53 75.0 40.0
24 48 25 - 22 22 15 18 - 13.64 13.64 66.7 38.8
28 56 29 - 26 25 18 21 - 11.54 16.0 61.1 38.0
32 64 33 - 29 29 20 24 - 13.79 13.79 65.0 37.5
36 72 37 - 33 32 23 27 - 12.12 15.62 60.9 37.0
40 80 41 - 37 36 27 30 - 10.81 13.89 51.8 36.7
44 88 45 - 40 39 29 33 - 12.50 15.38 55.2 24.2
48 96 49 - 43 43 33 37 - 13.95 13.95 48.5 32.4

Table 2: Comparison of IP1, Greedy (ours), Gupta and Amin 2021 [16] and Dense codebooks on
small problem instances. ‘-’indicates that no solution is generated within a time limit of 1800 secs.

k L PB fbest Gap (%)

Greedy [16] Dense
(random)

Dense
(best out of 10k) Greedy [16] Dense

(random)
Dense

(best out of 10k)
50 100 51 44 44 34 38 15.9 15.9 50.0 34.2
100 200 101 88 - 75 80 14.77 - 34.7 26.3
150 300 151 134 - 117 123 12.68 - 29.0 22.7
200 400 201 181 - 160 168 11.04 - 25.6 19.6
250 500 251 226 - 205 212 11.06 - 22.4 18.4
300 600 301 270 - 249 257 11.48 - 20.9 17.1
350 700 351 314 - 295 303 11.78 - 18.9 15.8
400 800 401 360 - 340 349 11.38 - 17.9 14.9
450 900 451 401 - 384 395 12.46 - 17.4 14.2
500 1000 501 444 - 431 441 12.83 - 16.2 13.6

Table 3: Comparison of IP1, Greedy (ours), Gupta and Amin 2021 [16] and Dense codebooks on
large problem instances.

We perform our first set of IP experiments on small problem instances (k < 50) to provide a
comparison between solving IP1 directly and our Greedy approach (Algorithm 1). Details regarding
values of ρ1, ρ2, γ and their appropriate ranges are provided in SI. We benchmark against the approach
of [16] and also against randomly generated Dense codes. The procedure to generate Dense codes [2]
is discussed in SI. We summarize our results in Table 2. Notice that for very small instances such
as k = 12 and k = 16, IP1 is able to generate a good quality solution, however for slightly larger
problem instances (say k = 20) the solution quality of IP1 deteriorates rapidly (the gap is around
50%); and finally for k ≥ 24, IP1 simply fails to even generate a feasible solution. This highlights
the intractability of IP1 to generate good quality codebooks. In contrast, our Greedy approach
provides very high quality solutions. Note that for all cases, our greedy approach either matches or
outperforms the column-subset selection (CSS) approach of [16]. On very small instances i.e. k ≤ 24,
[16] provides competitive performance to our greedy approach. The reason behind this is because
[16] provides a tight IP formulation but at the cost of having exponential O(2k) number of binary
variables. Their performance deteriorates after k ≥ 24 as they have to resort to random sampling to
mitigate the computational expense of O(2k) number of binary variables. It is not surprising that due
to this exponential complexity, [16] is not tractable beyond k > 50, as discussed next. Also, Dense
codes consistently have very high gaps in comparison to our Greedy Approach.

We evaluate the performance of our Greedy approach (Algorithm 1) on large problem instances,
i.e. for k ≥ 50. These results are reported in Table 3. We observe that approach of [16] does not
even provide a feasible solution for k > 50. In contrast, our greedy approach generates good quality
solution for even k = 500 while maintaining low optimality gaps. For all cases (k > 50) our gaps
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are well below 15%. Thus our approach is significantly more tractable than of [16]. Interestingly, for
k ≥ 350 Dense codes also provide competitive performance. To the best of our knowledge, we are
the first to achieve such scalability with low optimality-gaps for the codebook design problem.

5.1 Classification Performance
We now evaluate and benchmark the classification performance of our codebooks generated using
greedy approach on different datasets. For each dataset, we generate codebooks of different sizes
using the Greedy approach and compare it with other commonly used codebooks like 1-vs-All, 1-vs-1
[41], Hadamard and Dense codes [2]. For every codebook we train L binary classifiers corresponding
to the columns of the codebook. We also benchmark against a multi-class CNN. This multi-class
CNN has the same architecture as the binary classifiers except for the size of the output layer, which
is 2 for binary classifiers and k for multi-class CNN. For all experiments, we report average of 5 runs.
Details regarding different datasets, model architectures, hyper-parameters and training are provided
in SI.

MNIST & CIFAR10: In our first set of classification experiments, we evaluate the performance on
MNIST and CIFAR10 datasets (both with k = 10). Using Greedy approach we generate codebooks
of size L = 5 and 10. The classification performance of different codebooks is reported in tables
4 and 5 respectively. On MNIST, the improvement in accuracy with increase in L is small, since
MNIST is a relatively easy classification task. However, on CIFAR10, for which the underlying
classification task is much harder than MNIST, we obtain a 1.8% gain in accuracy as the size of the
codebook increases from L = 5 to L = 10. Further on CIFAR10, our compact greedy codebooks
easily outperforms standard 1-vs-1 codebook which uses L = 45 binary classifiers by around 4.5%
and also outperforms 1-vs-All codebook by more than 1%. For both datasets, Dense and Hadamard
codebooks also provides high accuracy, particularly Hadamard codebook on MNIST dataset. In
comparison to multi-class CNN, our greedy codebooks provides very similar accuracy on both
datasets, with slightly lower accuracy on MNIST but higher on CIFAR10.

Greedy (Ours) Hadamard 1-vs-All 1-vs-1 [16] Dense Multi-

L = 5 L = 10 L = 15 L = 5 L = 10 L = 15 L = 10 L = 45 L = 15 L = 15 class

97.83 ± 0.02 98.86 ± 0.05 98.87 ± 0.01 78.89 ± 0.05 98.67 ± 0.03 98.89 ± 0.02 98.55 ± 0.07 94.61 ± 0.12 98.87 ± 0.01 98.25 ± 0.04 98.92 ± 0.04

Table 4: Accuracy on MNIST dataset.

Greedy (Ours) Hadamard 1-vs-All 1-vs-1 [16] Dense Multi-

L = 5 L = 10 L = 15 L = 5 L = 10 L = 15 L = 10 L = 45 L = 15 L = 15 class

93.39 ± 0.08 95.55 ±0.06 95.57 ± 0.02 74.65 ± 0.03 95.14 ± 0.03 95.46 ± 0.02 94.40 ± 0.14 90.86 ± 0.09 95.57 ± 0.02 95.14 ± 0.03 95.36 ± 0.23

Table 5: Accuracy on CIFAR10 dataset.

CIFAR100 & Caltech-101/256: In the second set of experiments we evaluate the performance on
large class datasets: CIFAR100, Caltech-101 and Caltech-256 with k = 100, 101 & 257 respectively.
Recall that, for these large class datasets, the approach of [16] cannot even generate a feasible
codebook. Thanks to our greedy algorithm, we can easily generate and evaluate our codebooks on
these datasets. Note that the computational expense associated with the training of L binary classifiers
for each codebook can be large; however this is a general limitation of ECOC-based classifiers.
Firstly, our work addresses this limitation by generating compact codebooks with low-optimality
gaps. Secondly, we leverage the power of transfer learning to significantly reduce the training time of
binary classifiers. More generally, another motivation to leverage transfer-learning is due to the fact
that modern deep-learning models continue to get bigger in size by the day and thus transfer-learning
has become even more effective in the face of limited compute and data availability. Our next results
indeed demonstrate the additional benefit which ECOCs provide with transfer-learning to further
improve classification accuracy.

For transfer-learning we use models trained on ImageNet and replace the last fully-connected layer
of 1000 classes with a fully connected DNN with 2 output classes for binary classifiers and k classes
for multi-class classifier respectively. We then freeze the weights of all but the last fully-connected
DNN. Interestingly, authors in [42] and [45] have recently shown that adversarially trained robust
models provide better generalization in target domain over nominally trained models. Therefore for
a more comprehensive evaluation of our approach, we use features from two different ResNet50
models trained on ImageNet. The first model has been pre-trained nominally on the ImageNet dataset

†Authors in [16] report an accuracy of 76.25%, however for a fair comparison we re-train their codebooks using our training procedure,
resulting in same accuracy as greedy, since the corresponding fbest value of both codebooks (i.e. greedy and [16]) is same.
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while the second model has been trained adversarially with l2-norm perturbations. More details on
these individual models are provided in SI. The final multi-class accuracies of all the codebooks and
multi-class CNN for both nominal and robust features are provided in tables 6, 7 and 8 respectively.

Type of Greedy (Ours) Hadamard 1-vs-All Dense Multi-

feature L = 50 L = 100 L = 200 L = 50 L = 100 L = 127 L = 100 L = 200 class

Nominal 60.62 ± 0.30 61.65 ± 0.12 62.15 ± 0.10 39.32 ± 0.06 61.98± 0.02 62.04 ± 0.02 62.58 ± 0.02 61.70 ± 0.10 59.19 ± 0.20

Robust 80.85 ± 0.03 81.46 ± 0.20 81.68 ± 0.09 51.82 ± 0.02 81.51 ± 0.05 81.7 ± 0.01 80.41 ± 0.05 81.60 ± 0.07 79.59 ± 0.06

Table 6: Accuracy on CIFAR100 dataset

Type of Greedy (Ours) Hadamard 1-vs-All Dense Multi-

feature L = 50 L = 100 L = 200 L = 50 L = 100 L = 127 L = 101 L = 200 class

Nominal 84.55 ± 0.02 85.04 ± 0.10 85.33 ± 0.05 56.49 ± 0.06 85.10 ± 0.04 85.17 ± 0.07 84.06 ± 0.08 85.16 ± 0.08 84.73 ± 0.30

Robust 87.08 ± 0.10 87.52 ± 0.09 87.76 ± 0.03 58.06 ± 0.09 87.55 ± 0.03 87.73 ± 0.02 86.57 ± 0.10 87.50 ± 0.10 86.39 ± 0.12

Table 7: Accuracy on Caltech-101 dataset

Type of Greedy (Ours) Hadamard 1-vs-All Dense Multi-

feature L = 100 L = 200 L = 300 L = 100 L = 200 L = 300 L = 511 L = 257 L = 300 class

Nominal 76.84 ± 0.12 77.29 ± 0.09 77.38 ± 0.07 32.94 ± 0.03 75.73± 0.07 77.4 ± 0.06 77.41 ± 0.02 75.91 ± 0.02 77.01 ± 0.08 76.23 ± 0.18

Robust 77.06 ± 0.07 77.44 ± 0.13 77.55 ± 0.08 33.25± 0.05 75.90± 0.04 77.51 ± 0.03 77.53 ± 0.05 76.52 ± 0.04 77.45 ± 0.09 76.79 ± 0.11

Table 8: Accuracy on Caltech-256 dataset

We observe that on all the three (large class) datasets, our greedy codebooks consistently outperform
multi-class CNNs. For all cases, robust features indeed provide better accuracy over nominal features
thus validating the hypotheses of [42, 45] in the context of ECOC-based classifiers. Importantly, our
greedy codebooks provide even further improvement over multi-class CNNs in the robust feature
setting.
On CIFAR100, in the nominal setting our greedy codebook provides an improvement of around
3% over multi-class CNN and also outperforms other codebooks as well, except 1-vs-All. In the
robust setting, both greedy and Hadamard provides high accuracy and an improvement of 2% over
multi-class CNN. On Caltech-101, greedy codebook provides an improvement of around 0.6% over
multi-class CNN in nominal setting and around 1.4% in the robust feature setting. On Caltech-256
our greedy codebook provides a gain of around 1% over multi-class CNN in both nominal and robust
features setting; here the small gain in improvement with robust features over nominal features is
consistent with the findings of [42].
It is important to note that Hadamard codes provide high accuracy only for large L, thus limiting
their application to large multi-class classification problems [5].
These classification results clearly demonstrate the benefit of using ECOC-based classifiers and
further highlighting the merits of our element-wise codebook design approach. Importantly, our
IP-based Greedy algorithm provides scalability while ensuring small optimality gaps. Further, the
resulting codebooks generated, provide improved classification performance on large datasets like
CIFAR100, Caltech-101/256. To the best of our knowledge, we are first to report such performance
using ECOC-based classifiers.
Limitation: The greedy codebooks only provide a marginal improvement over Hadamard and Dense
codes in terms of classification accuracy on large-class datasets. However, note that Hadamard codes
only provide high accuracy when full Hadamard code of length L ∼ 2⌈log2(k)⌉ is used. For much
smaller L, Hadamard codes perform much worse than our greedy codebooks. Besides, as shown in
[16], Dense codes are not robust to adversarial perturbations, but the proposed approach is likely to
provide non-trivial adversarial robustness.

6 Concluding Remarks, Future Work and Societal Impact
In this paper we developed a scalable approach to solve the discrete codebook design problem for
large multi-class problem instances. Our approach generates near-optimal codebooks resulting in
higher classification accuracy. As future work, we aim to extend our design approach to other
settings, for example, when the cost of miss-classification is different across different class-pairs.
Our ECOC based approach is particularly well suited to handle such tasks as we can easily switch
from global error-correcting property to class-pair wise error-correcting property [33] with simple
modifications. Another extension of our work would be to very large multi-class problems [5] and
extreme multi-label (XML) classification problems. We do-not expect any negative societal impact
other than that of general classification systems.
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