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Abstract

While there is much empirical and theoretical
analysis of causal confusion and reward gam-
ing behaviors in reinforcement learning and be-
havioral cloning approaches, we provide the
first systematic study of causal confusion in
the context of learning reward functions from
preferences. We identify a set of three bench-
mark domains where we observe causal confu-
sion when learning reward functions from of-
fline datasets of pairwise trajectory preferences:
a simple reacher domain, an assistive feeding
domain, and an itch-scratching domain. To
gain insight into this observed causal confusion,
we perform a sensitivity analysis on the effect
of different factors—the reward model capac-
ity and feature dimensionality—on the robust-
ness of rewards learned from preferences. We
find evidence that learning rewards from pref-
erences is highly sensitive and non-robust to
spurious features and increasing model capac-
ity. Videos, code, and supplemental results are
available at https://sites.google.com/
view/causal-reward-confusion.

1. Introduction
Preference-based reward learning (Wirth et al., 2017; Sadigh
et al., 2017; Christiano et al., 2017; Brown et al., 2020a) is
a well-studied technique for learning from pairwise prefer-
ences or rankings. and holds the potential of allowing AI
systems to learn specifications for tasks without requiring
a human to write down an explicit reward function and to
adapt the AI system’s behavior to individual preferences
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Figure 1. We propose and study three benchmark environments in
which performing reward function learning from pairwise trajec-
tory preferences leads to causal confusion over the true reward.

and needs However, recent anecdotal evidence suggests that
these methods are prone to learning rewards that overfit to
spurious correlations in the data, especially when learning
from limited numbers of preferences (Christiano et al., 2017;
Ibarz et al., 2018; Javed et al., 2021). While the effects of
reward misspecification have recently been studied in the
context of reinforcement learning agents that optimize a
proxy reward function (Pan et al., 2022) and behavioral
cloning approaches that directly mimic an expert (De Haan
et al., 2019; Zhang et al., 2020; Swamy et al., 2022), there
has not been a systematic study of causal confusion when
learning reward functions.

As an example of the type of causal confusion we study
in this paper, consider the assistive feeding task in Fig-
ure 1b. Note that successful robot executions will cause the
spoon to make contact with the patient’s mouth, applying
small amounts of force, whereas failed executions may not
make any contact. We find that a preference-based learn-
ing approach will often miss the correct causal relationship
between “contact” and “feeding”, leading the robot to opti-
mize a policy that seeks any kind of contact with the patient,
including contact with the patient’s torso or head.

We provide the following contributions: (1) We identify a
set of 3 robot preference learning benchmarks that exhibit
causal confusion when learning reward functions from pref-
erences. (2) We perform the first systematic study of causal
confusion in preference-based reward learning by varying
the feature-space dimensionality and the capacity of the
reward function model. (3) We identify spurious features
and model capacity as the main sources of causal confusion
when learning rewards from pairwise trajectory preferences.

https://sites.google.com/view/causal-reward-confusion
https://sites.google.com/view/causal-reward-confusion
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2. Reward Learning from Preferences
We model the environment as a finite horizon MDP (Put-
erman, 2014), with state space S, action space A, horizon
T , and reward function r : S × A → R. We assume that
the reward function is unobserved and must be learned. The
reward function is learned from preferences over trajectories
where, using the popular Bradley-Terry model (Bradley &
Terry, 1952), the probability a trajectory, τB , is preferred
over another trajectory, τA, is given by

P (τA ≺ τB) =
exp(r(τB))

exp(r(τA)) + exp(r(τB))
, (1)

where r(τ) =
∑

(s,a)∈τ r(s, a) and where we define a
trajectory, τ , by a sequence of state-action pairs: τ =
(s0, a0, . . . , sT , aT ).

To learn a reward function from preferences, we assume
access to a set of pair-wise preference labels, P , over tra-
jectories, τ1, . . . , τN , where (i, j) ∈ P implies that τi ≺ τj .
We then optimize a reward function rθ : S × A → R,
parameterized by θ that maximizes the likelihood:

L(θ) =
∏

(i,j)∈P

exp(rθ(τj))

exp(rθ(τi)) + exp(rθ(τj))
. (2)

3. Environments for Preference Learning
We identify a set of robot learning benchmarks that exhibit
causal confusion when learning reward functions from pref-
erences. In Reacher (Brockman et al., 2016) (Figure 1a) the
goal is to move an end effector to a desired goal location.
In Feeding (Erickson et al., 2020) (Figure 1b) the goal is to
feed the human using a spoon carrying pieces of food. Fi-
nally, in Itch Scratching (Erickson et al., 2020) (Figure 1c)
the goal is to repeatedly scratch a desired itch location on
the human’s arm.

Each domain has a predefined “true” reward function r. This
enables us to create synthetic demonstrations and preference
labels. Note that while we use the ground-truth reward func-
tion for obtaining preference labels (r(τ1) < r(τ2) =⇒
τ1 ≺ τ2), we assume no access to this reward function dur-
ing policy learning, but rather seek to learn a policy that
obeys a users preferences by first learning a model rθ of
the true reward function from preference labels P and then
running RL on the learned reward function. We can then
evaluate the learned policy on the true reward function r.

To facilitate reproducibility and encourage future research
on causal reward confusion, we have open-sourced our code
and training datasets. This combination of domains and
training data forms the first set of benchmarks for studying
causal confusion when learning reward functions. Links
to download and install source code for the domains and
links to download the preference training data used in our

experiments are available at https://sites.google.
com/view/causal-reward-confusion.

4. Evidence of Causal Confusion
To demonstrate that each of these domains exhibits causal
confusion, we show that learning a reward function from
preferences followed by policy optimization using the
learned reward leads to behavior that performs poorly under
the true reward function (unobserved, but used to provide
synthetic preferences).

Synthetic Preference Generation To enhance scalability
and reproducibility, we generate a large number of trajectory
preferences by using a pretrained RL policy (trained using
the true reward provided with each environment) and then
injecting noise into the policy. See Appendix C for details.

Causal Confusion Results In Table 1, we show both the
learned reward’s pairwise classification accuracy on the
train, validation, and test sets as well as the subsequent per-
formance of the resulting learned policies. Surprisingly, we
find that despite having high test accuracy on distinguish-
ing between better or worse trajectories, the learned reward
functions do not lead to correct behavior in the learned pol-
icy (as indicated by the low cumulative reward values), even
when given large amounts of pairwise preferences and when
the preferences can be perfectly inferred from the input
features (ie., they are fully-observable). In addition to this,
we observe that the learned reward function consistently
assigns higher rewards to the policy trained from preference
learning rather than the policy trained on the ground truth
reward; these results provide strong empirical evidence of
causal confusion. Figure 5 displays examples of the learned
policies. See the supplementary website for videos of these
and other examples.

5. Factors that May Lead to Causal Confusion
Our results in the previous section demonstrate strong evi-
dence of causal confusion during reward learning. In partic-
ular, we found that preference-based reward learning fails
even when using an expressive neural network to learn the
reward and even when given large numbers of pairwise
preferences—for comparison, prior work showed successful
reward learning for Atari games and MuJoCo locomotion
tasks using less than 300 pairwise preferences (Brown et al.,
2019). In the remainder of this paper, we systematically
vary different aspects of preference-based reward learning
to gain insight into the following questions: How does (1)
the choice of observation feature space and (2) the model
capacity of the reward-learning network affect causal con-
fusion? See Appendix F for an analysis of training data’s
effects on causal confusion.

https://sites.google.com/view/causal-reward-confusion
https://sites.google.com/view/causal-reward-confusion
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Table 1. Empirical evidence of causal confusion. We compare policies optimized with a reward learned from preferences (PREF) against
policies optimized with the true reward (GT). The preferences are fully-observable in all three tasks; the input features contain enough
information to perfectly explain the preferences. SMALL, MEDIUM, and LARGE correspond to training dataset sizes of 40, 120, and
324 diverse trajectories, respectively. Both PREF and GT are optimized with 1M RL iterations and averaged over 3 seeds. Despite high
pairwise classification accuracy, the policy performance achieved by PREF under the true reward is very low compared with GT. However,
the reward learned from preferences consistently prefers the PREF policy over the GT policy.

PREF. LEARNING ACC. RL POLICY PERFORMANCE
DOMAIN TRAIN VAL TEST LEARNED (PREF / GT) TRUE (PREF / GT) SUCCESS (PREF / GT)

REACH (SMALL) 0.955 0.913 0.939 -1.097 / -6.002 -13.331 / -5.560 0.040 / 0.827
REACH (MEDIUM) 0.957 0.949 0.962 -12.002 / -14.936 -11.890 / -5.560 0.053 / 0.827
REACH (LARGE) 0.954 0.956 0.966 44.988 / 3.395 -42.716 / -5.560 0.100 / 0.827

FEED (SMALL) 0.976 0.902 0.891 90.671 / 13.206 -153.012 / 128.933 0.057 / 0.990
FEED (MEDIUM) 0.979 0.968 0.960 106.415 / 68.835 -45.427 / 128.933 0.437 / 0.990
FEED (LARGE) 0.987 0.976 0.976 277.152 / 124.016 -27.432 / 128.933 0.603 / 0.990

ITCH (SMALL) 0.974 0.908 0.869 18.757 / 10.337 -56.591 / 248.397 0.000 / 0.970
ITCH (MEDIUM) 0.967 0.924 0.918 17.871 / 12.685 -68.024 / 248.397 0.003 / 0.970
ITCH (LARGE) 0.954 0.933 0.928 16.588 / 10.282 -47.190 / 248.397 0.013 / 0.970

(a) Reacher, Cumulative Reward (b) Feeding, Cumulative Reward (c) Itch Scratching, Cumulative Reward

Figure 2. Sensitivity of preference learning to raw features in the reward network’s observation. For each environment, raw features
are progressively concatenated onto the entire set of privileged features. For details on each environment’s raw features, see Appendix D.

5.1. The Choice of Observation Feature Space

We study reward learning when hand-crafted (causal) fea-
tures are combined with raw observation features. Surpris-
ingly, the concatenation of the two—despite having strictly
more information—leads to worse reward learning results
than using hand-crafted features alone. This type of causal
misidentification mirrors previous results shown in the con-
text of behavioral cloning (De Haan et al., 2019).

Hand-crafted Privileged Features: Based on the results
in Section 4, preference-learning does not work well on the
given observation spaces of our three benchmark domains.
Thus, we use a set of hand-designed “privileged” features,
as defined in Table 2, that directly correspond to the ground
truth reward. We then train a linear reward model on these
features. We find that removing the bias incentivizes more
desirable behavior. For more details, see Appendix D.

Given only causal features for the ground truth reward,
preference learning is generally able to successfully learn
weights over these features, leading to a good RL policy. We
found that Feeding achieves a mean cumulative reward of

Table 2. Privileged features. Reacher’s action norm feature is
included whenever preferences are said to be fully-observable.

ENVIRONMENT PRIVILEGED FEATURES

REACHER DISTANCE TO TARGET
ACTION NORM

FEEDING DISTANCE TO MOUTH
NUM. FOOD PARTICLES IN MOUTH
NUM. FOOD PARTICLES ON FLOOR

SCRATCHITCH DISTANCE TO ITCH TARGET
FORCE APPLIED AT TARGET

132.18 and task success rate of 99.7%, and Itch Scratching
achieves a mean cumulative reward of 205.12 and task suc-
cess rate of 90.7%. Reacher achieves a cumulative reward
of −18.53, which increases to -12.13 (−3.75 being consid-
ered good) when preferences are made fully-observable.

Adding Spurious Features: We next concatenate these
privileged causal features with the features from the raw
observation space and perform reward learning on this aug-
mented feature space. Figure 2 displays a sensitivity anal-
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(a) Feeding (b) Itch Scratching

Figure 3. Visualizing the spurious force feature. Figure 3a (Feed-
ing): The amount of force applied on the human is given a high
weight, which leads to the robot applying force to various parts
of the human (torso, head, etc.) rather than properly feeding. Fig-
ure 3b (Itch Scratching): The total amount of force applied by the
scratching tool is given a high weight, which results in the robot
preferring positions where large amounts of force are registered by
the tool—here, the tool is pressed against its own base.
ysis on the number of raw features. Interestingly, we find
that the ability of the agent to successfully complete its task
drops off as more raw features are introduced, suggesting
the existence of spurious correlations. Note that the reward
function still has access to the privileged features as we
progressively add raw features; however, it appears that sim-
ply ignoring the concatenated raw features when learning
the reward is difficult, even for a linear network, leading to
causal confusion and poor policy performance.

We next inspected the weights of the learned linear reward
models to understand the relative contributions of various
features. Interestingly, in both the Feeding and Itch Scratch-
ing environments, the feature that corresponds to the total
amount of force applied by the spoon or scratching tool
is consistently given a large weighting factor. This phe-
nomenon is likely a result of the fact that all successful Feed-
ing and Itch Scratching demonstrations applied some force
on the human (touching the mouth or the arm), whereas the
majority of failing demos simply dropped the food or swung
the end effector without applying any force on the human.
This proves to be a somewhat problematic proxy; as seen
in Figure 3, rather than actually feed or scratch, the robot
learns the undesirable behavior of applying a large amount
of force to the human’s head to maximize the spoon force
on human (Figure 3a) or applying a large amount of force
on its own base to maximize total tool force (Figure 3b).

Discussion: Our findings in this section demonstrate the
need for caution when using raw observational feature
spaces originally designed for RL tasks to perform reward
learning. In the three tasks we consider, the raw obser-
vation spaces introduce spurious correlations that lead to
a causally-confused learned reward and poor policy per-
formance. Using hand-selected features works well, but
designing the right set of features is difficult. On top of
that, we find evidence that increasing the number of features
available to the reward network can exacerbate causal con-
fusion, likely because it increases the probability that the
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Figure 4. Performance of preference learning as a function of
reward network capacity. Privileged Only denotes training the
reward network on just the privileged features defined in Table 2,
and Augmented denotes training the reward network on the privi-
leged features augmented with 10 raw features.

learned reward network focuses on spurious correlations.

5.2. The Effect of Reward Function Model Capacity

We next study the effect of the model capacity of the re-
ward function, rθ. Analyzing the effect of model capacity
on causal confusion is inspired by recent results in the rein-
forcement learning setting, where Pan et al. (Pan et al., 2022)
find that increased model capacity for the policy network of-
ten increases the likelihood of reward hacking behavior. In
contrast, we study the model capacity of the reward-learning
network and its effect on performance.

Increasing Model Capacity: See Appendix E for train-
ing details. We find that as the model capacity of the
reward-learning network increases, the mean task success
rate and cumulative ground truth reward the RL agent re-
ceives roughly decreases, all else being equal. Figure 4
shows agent performance in each environment as a function
of reward-learning model capacity, trained with observa-
tions consisting of either purely privileged features or a
mixture of raw and privileged features.

Discussion: As expected, the models trained on just the
privileged features perform better than those trained on the
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augmented features, but, notably, the larger models gener-
ally perform worse than the smaller models, especially in
the augmented feature space, where raw features are present.
These findings go against the common belief of increasing
model size to enable better generalization that is widely
held in other machine learning domains (He et al., 2016;
Devlin et al., 2018; Brown et al., 2020b). Our results instead
suggest that the increased expressivity appears to increase
the potential for inferring the wrong reward function, which
the RL agent is then able to hack to a greater degree.

6. Conclusion
We provide the first systematic study of factors that may
lead to causal confusion for reward learning. In particular,
we find that spurious features and increased model capacity
lead to causal confusion over the true reward function, even
when learning from thousands of pairwise preferences. We
hope that our empirical study will inspire and facilitate
future work on learning reward functions that are robust
to causal confusion, even when using high-capacity neural
network reward function approximators.

Finally, we note that our work has only studied causal confu-
sion when learning reward functions from offline preference
data. Investigating how quickly and successfully active pref-
erence learning can ameliorate the types of causal confusion
discussed in this paper is an important and interesting area
of future work.
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A. Why study offline preference-based reward learning?
We note that, for the sake of systematically studying causal confusion, our focus in this paper is on learning reward functions
from offline sets of trajectory preferences. We do this for three reasons. First, using offline trajectory preference data
facilitates reproducibility by allowing us to create benchmarks (with fixed training datasets) for studying causal confusion
in reward learning, similar to existing standard supervised learning benchmarks. Second, learning from offline data is
known to often lead to overfitting in batch or offline reinforcement learning (Levine et al., 2020), and prior work has shown
anecdotal evidence that learning a reward function from a fixed set of preferences can lead to causal confusion (Christiano
et al., 2017; Ibarz et al., 2018; Javed et al., 2021)—hence, learning from offline data naturally lends itself to a study of
causal confusion. Third, learning reward functions from offline data, as described above, removes the need for running
reinforcement learning (Christiano et al., 2017) or trajectory optimization (Sadigh et al., 2017) in the inner loop, as is required
for many active preference learning methods. This enables us to learn a reward function by optimizing the likelihood in
Equation 2 (which amounts to optimizing a standard cross-entropy loss with the predicted cumulative rewards as logits) and
then learn a corresponding policy using any off-the-shelf reinforcement learning algorithm to optimize rθ. This sequential
approach—learning a reward function followed by learning a policy—significantly improves the scalability and simplicity
of experiments, facilitating the rapid testing and evaluation needed here for a systematic study of causal confusion.

B. Implementation and Optimization Details
In practice, we use the Adam optimizer in PyTorch to learn the reward function, rθ, and then use PPO (Schulman et al.,
2017) or SAC (Haarnoja et al., 2018) for policy optimization given rθ.

C. Synthetic Preference Generation
To enhance scalability and reproducibility, we automatically generate a large amount of synthetic trajectory preferences. This
was done using a pretrained RL policy for each of these domains that was trained using the ground-truth reward function
provided with each of these environments. We then generate a large number of diverse trajectories by adding ϵ-greedy noise
during policy rollouts, where ϵ is the probability that the policy takes an action uniformly at random from its action space.
Thus, ϵ = 0 corresponds to the fully trained RL policy and ϵ = 1 corresponds to a uniformly random policy. As noted by
Brown et al. (Brown et al., 2020a), adding this type of disturbance will result in monotonically decreasing performance in
expectation.

To generate pairwise preferences over trajectories, we select all pairs of trajectories from a set of 40, 120, and 324
total trajectories (for the ’small’, ’medium’, and ’large’ dataset sizes, respectively) generated with ϵ-greedy rollouts for
ϵ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. We use held-out sets of trajectories for validation and testing. We then use the ground-truth
reward functions provided by each environment to provide ground-truth preference labels. Using the dataset of preferences,
we train a neural network reward function approximator with two hidden layers (128 units and 64 units, respectively) and
Leaky ReLU activations, after which we perform 1,000,000 timesteps of reinforcement learning with PPO (Schulman et al.,
2017) (for Feeding and Itch Scratching) and SAC (Haarnoja et al., 2018) (for Reacher) using the learned reward function
in place of the ground-truth reward function. Hyperparameters–weight decay, learning rate–are tuned separately for each
environment using the validation set. We optimize the reward function approximator using stochastic gradient descent with
weight decay and early-stopping on the validation loss (with a patience of 10 epochs).

D. The Choice of Observation Feature Space, Experimental Details
When training, we empirically found that the model tends to learn a large bias, and that removing the bias helps incentivize
RL to learn more desirable behavior. Thus, we remove biases from the final layers of subsequent models.

We train the reward-learning model on 2000 pairwise preferences of randomly-selected whole trajectories from the ϵ-greedy
rollouts that are at least 60 ‘ranks apart’ when ranked using the ground truth reward (defined as ∆pair = 60). We employ
early-stopping with a patience of 10 epochs and maximum of 100 epochs, and apply l1-regularization with λ = 0.1. PPO is
then used to learn a policy from the learned reward for Feeding and Itch Scratching, whereas SAC is used for Reacher.

Raw features in Feeding consist of spoon and head position, robot joint angles, and amount of force applied on human, for a
total raw observation dimensionality of 25. Raw features in Reacher are end effector and target position, arm angles, and
angular velocities, for a total dimensionality of 11. Itch Scratching’s raw features consist of tool and target position, robot
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(a) Feeding (b) Itch Scratching

Figure 5. Undesirable behavior resulting from causal confusion. Figure 5a: The robot learns to spill the food particles (highlighted in
red) in front of the human. Figure 5b: The robot learns to hover its end-effector around without scratching the itch target.

and human joint angles, and force applied by tool, for a total dimensionality of 30.

E. The Effect of Reward Function Model Capacity, Experimental Details
Similar to the above feature-space sensitivity analysis, we learn a reward function from 2000 ground-truth pairwise preference
labels over randomly selected trajectory pairs with a ∆pair of 60. The model is optimized using stochastic gradient descent
with weight decay (λ = 0.01) and regularized with l1-regularization (λ1 = 0.01). We use early-stopping with a patience of
10 epochs and an upper limit of 100 epochs.

In order to measure the effect of reward network model capacity, we train the following models with increasing order
of complexity: linear model, one-layer fully-connected neural network with a hidden dimension of 64, 128; two-layer
fully-connected networks with hidden dimensions of (64, 64), (128, 64), (128, 128), (256, 128) and (256, 256). For each
model architecture, we train the reward network on pairwise preferences, run the RL optimization for 3 seeds, and evaluate
the cumulative ground truth reward and task success on 100 rollouts from a validation seed.

F. The Effect of Data Collection
Further, we explore the process through which we generate training data and the differences in agent performance that can
result. Specifically, we study (1) how to generate trajectories for demonstrations, and (2) how to select or sample pairwise
preferences from these generated trajectories.

Trajectory Generation: To study the effect of training data on causal confusion for preference-based reward learning, we
examine two trajectory generation methods:

1. RL+noise. We first train an RL policy on a given ground truth reward, then generate demonstrations by adding ϵ-greedy
noise to rollouts from the trained policy. Demonstrations are labeled using the ground truth reward.

2. T-REX. Following Brown et al. (Brown et al., 2019), we also create a diverse set of training trajectories by (1)
periodically checkpointing an RL policy trained on the ground-truth reward to generate synthetic demonstrations with
varying levels of performance and (2) using human-teleoperation to pedagogically provide a set of trajectories with a
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wide range of demonstration qualities.

Pairwise Preference Selection: Given a set of ranked trajectories, we study two ways of creating pairwise preferences:

1. Random ∆pair-sampling. We randomly sample pairs of trajectories with replacement and discard pairs that are within
∆pair ranks of each other. We do this until we have the desired number of pairwise preferences. We hypothesize that
enforcing a ∆pair difference within pairs ensures that the differences between the two trajectories are more salient and
thus easier for the reward network to learn.

2. Systematic all-pairs selection. We select M evenly-spaced demonstrations from the set of provided demonstrations
and generate all possible

(
M
2

)
pairwise preferences. This method was originally proposed by Brown et al. (Brown et al.,

2019) and requires no additional hyperparameters.
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(a) Synthetic T-REX vs. RL+noise
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(b) Teleoperated T-REX vs. RL+noise
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(c) Sensitivity of demos to raw features

Figure 6. Analysis of trajectory generation and pairwise preference selection methods. Figure 6a: In the Reacher Environment, we
use random ∆pair-sampling with ∆pair = 60 to sample pairwise preferences from synthetic T-REX and RL+noise. Figure 6b: In the
Feeding environment, we use systematic all-pairs selection to generate preferences from 20 human-teleoperated T-REX and RL+noise
trajectories (the 120 demos case uses ∆pair-sampling with ∆pair = 60). Figure 6c: We use 10 human-teleoperated demonstrations on
(1) the raw features, (2) all the raw and privileged features, and (3) 10 raw and all the privileged features.
Experimental Setup: In each of the four configurations (2 generation methods × 2 preference selection methods), we
train a linear model, using an augmented feature space consisting of half of the raw observation features (10 in Feeding,
5 in Reacher) and all of the privileged features (3 in Feeding, 1 in Reacher) from each environment. We train the reward
learning network for 100 epochs with early stopping (patience of 10), and add weight decay with λ = 0.01 and l1-
regularization with λ1 = 0.01. In the RL+noise trajectory generation method, we generate 20 rollouts at each level of
ϵ = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]. For the human-teleoperated T-REX trajectories, we had the human demonstrator perform
8 demonstrations that ‘successfully complete the task’, 7 demonstrations that ‘fail at the task’, and 5 demonstrations that
‘half-succeed, half-fail’ (eg., demonstration would spill some food, then feed the rest in the case of the Feeding task),
for a total of 20 teleoperated demonstrations. To generate the T-REX trajectories taken from a checkpointed policy, we
take 20 rollouts at each of the following checkpoints (expressed as a proportion of the total number of training iterations):
[0.01, 0.05, 0.1, 0.2, 0.8, 1.0]. We use a fixed ∆pair = 60 for our random ∆pair-sampling configurations. Discussion:
Figure 6 displays our analysis of the aforementioned trajectory generation and preference selection methods when used
in conjunction with one another. Firstly, we observe in Figure 6a that performing preference learning on using pairwise
preferences over synthetic demonstrations generated by adding ϵ-greedy noise to a pretrained policy (RL+noise) performs on
par with, if not better than, the approach suggested by Brown et al. (Brown et al., 2019) (T-REX) which takes rollouts from
different partially trained policy checkpoints and then providing pairwise preferences over these rollouts. The implication is
that we do not find any evidence that the causal confusion for reward inference is due to the trajectory generation being too
simplistic or biased. Future work should examine whether active methods that obtain pairwise preferences by synthesizing
informative trajectory pairs from scratch (Sadigh et al., 2017) lead to better performance.

Next, we note that human-teleoperated demonstrations that attempt to give a diverse set of good, mediocre, and poor
demonstrations enable high preference learning performance in fewer demonstrations, as shown in Figure 6b. However,
when given more demonstrations and sampled with ∆pair = 60, using synthetically-generated RL+noise trajectories
approaches the performance of using human-teleoperated demonstrations. This reinforces the previous finding—at least for
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large data regimes, the trajectory generation method is not the culprit of the poor reward inference performance demonstrated
in the main results.

Lastly, we observe that human demonstrations, though preferred over synthetic demonstrations, can also lead to causal
confusion over the true reward function. In Figure 6c, the mean cumulative reward increases with the addition of privileged
features and the removal of raw features from the input observation of the reward network.


