
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

GRIP: In-Parameter Graph Reasoning through Fine-Tuning Large Language
Models

Anonymous Authors1

Abstract
Large Language Models (LLMs) have demon-
strated remarkable capabilities in modeling se-
quential textual data and generalizing across di-
verse tasks. However, adapting LLMs to effec-
tively handle structural data, such as graphs, re-
mains a challenging problem. Some approaches
adopt complex strategies to convert graphs into
text sequences, resulting in significant token over-
head and rendering them impractical for large-
scale graphs. Others introduce additional mod-
ules to encode graphs into fixed-size token rep-
resentations for LLMs. However, these methods
typically require large-scale fine-tuning and com-
plex alignment procedures, yet often yield sub-
optimal results due to poor modality alignment.
Inspired by in-parameter knowledge injection for
test-time adaptation of LLMs, we propose GRIP,
a novel framework that equips LLMs with the
ability to internalize complex relational informa-
tion from graphs through carefully designed fine-
tuning tasks. This knowledge is efficiently stored
within lightweight LoRA parameters, enabling
the fine-tuned LLM to perform a wide range of
graph-related tasks without requiring access to
the original graph at inference time. Extensive
experiments across multiple benchmarks validate
the effectiveness and efficiency of our approach.

1. Introduction
In recent years, Large Language Models (LLMs) such as
ChatGPT (OpenAI & et al., 2024) and DeepSeek (Liu et al.,
2024) have revolutionized the field of artificial intelligence.
Pre-trained on large-scale corpora of human knowledge us-
ing next-token prediction, these models have demonstrated
remarkable generalization capabilities across a variety of

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

downstream tasks, including math problem solving (Cobbe
et al., 2021), coding (Guo et al., 2024), tool use (Shen et al.,
2023), and knowledge-intensive applications (Lewis et al.,
2020; Lála et al., 2023). However, to fully leverage the
strong reasoning abilities of LLMs, tasks must first be for-
mulated and expressed in human-readable textual formats.
This conversion process is often complex and, in some cases,
infeasible—particularly for tasks involving intricate data
structures such as graphs.

There have been extensive efforts to adapt LLMs for graph-
related tasks. Existing methods can be broadly classified
into two categories. The first class of approaches applies
LLMs to graph data by converting graphs into text se-
quences (Wang et al., 2023; Ye et al., 2024; Lin et al.,
2024). However, representing graphs as sequences is it-
self nontrivial and often results in excessive token over-
head or degraded inference performance (Ye et al., 2024),
rendering this approach impractical for large-scale graphs.
Moreover, a recent study has demonstrated the inherent lim-
itation of sequential LLMs in solving graph tasks under
node permutation (Wu et al., 2024). We provide a more
detailed discussion in Appendix A.2. The second class of
approaches integrates specialized modules, such as Graph
Neural Networks (GNNs), to process graph data and aligns
the resulting graph embeddings with LLMs through fine-
tuning (Kong et al., 2025; Tang et al., 2024; Chen et al.,
2024). However, these methods typically demand carefully
crafted model design and fine-tuning tasks to achieve
effective alignment between language and graph modali-
ties, introducing substantial complexity into the adaptation
process. Additional discussion on related works can be
found in Appendix A.1.

Inspired by recent advances in parameterized knowledge
injection for LLM test-time adaptation (Wang et al., 2024;
Mao et al., 2024; Su et al., 2025), we investigate the po-
tential of directly embedding graph information into LLM
parameters using Parameter-Efficient Fine-Tuning (PEFT)
techniques, such as LoRA (Hu et al., 2021). Specifi-
cally, we proposed a method called Graph Reasoning In-
Parameterization (GRIP), as shown in Figure 1. In GRIP,
we design specialized fine-tuning tasks that guide LLMs to
memorize graph contexts and effectively utilize this memo-
rized knowledge for solving downstream tasks. Through the

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

GRIP: In-Parameter Graph Reasoning through Fine-Tuning Large Language Models

fine-tuning process, the LLM internalizes the structural in-
formation of the given graph and encodes it directly into the
LoRA parameters. At inference time, the model can perform
various tasks related to the injected graph without requir-
ing access to the original data. This approach removes the
need for specialized graph modules or graph-to-sequence
conversions during inference. Extensive experiments val-
idate the effectiveness of our method and demonstrate its
strong potential to enhance test-time adaptation of LLMs
for structured graph data.

2. Methods
2.1. Preliminaries

Denote a text input by x = (x1, x2, . . . , xL) with length
L. The language modeling task can be formalized as
LLM (x; θ) = −

∑L
i=1 logP(xi | x1:i−1; θ). Low-Rank

Adaptation (LoRA) is a widely used technique for efficiently
fine-tuning LLMs. Instead of directly fine-tuning the orig-
inal LLM parameter W ∈ Rd×d, where d is the hidden
dimension of an LLM layer, LoRA learns two matrices
A ∈ Rd×r and B ∈ Rr×d, where r ≪ d. The update to
the original weight is given by ∆W = A ·B, and the final
fine-tuned parameter becomes Ŵ = W +∆W .

In this work, we primarily focus on Text-Attributed
Graphs (TAGs). A TAG can be represented as G =
(V,E,XV , XE), where V and E are the sets of nodes and
edges, respectively. Each edge e ∈ E is represented by
a triplet e = (s, r, t), where s is the source node, r is the
relation, and t is the target node. Each node v ∈ V and
each edge e ∈ E is associated with a textual description
xv ∈ XV or xe ∈ XE , respectively.

2.2. Graph context memorization

Internalizing graph context into the parameters of a LoRA
adapter requires the adapter to first encode (memorize) the
relevant graph information. A straightforward approach is
to apply existing graph-to-sequence methods to convert the
entire graph into a long sequence and fine-tune the LoRA
adapter on it. However, this approach inherits the limita-
tions discussed earlier, including substantial token overhead
and sensitivity to node ordering permutations. We note that,
while converting the entire graph into a sequence aims to
provide full graph information for accurate in-context infer-
ence, this is unnecessary for fine-tuning. Instead, in GRIP,
we decompose the graph into smaller, independent compo-
nents and encode them separately by fine-tuning the model
to memorize individual nodes’ and edges’ texts directly.
Formally, the task can be defined as:

Lcontext =
∑
v∈V

LLM (xv; θ) +
∑
e∈E

LLM (xe; θ). (1)

This approach also avoids the node permutation issue. How-
ever, independently memorizing nodes and edges is insuffi-
cient for LLMs to capture the high-order structural informa-
tion of a graph. To address this limitation, GRIP introduces
the summarization task. Specifically, given a graph input,
we randomly sample Ns subgraphs, each rooted at a ran-
domly selected node. The size of each subgraph can be
controlled by the sampling strategy to avoid excessive token
costs. We then prompt the LLM to generate a summary
that captures the key information within each subgraph (the
detailed prompt design is provided in Appendix B.1). These
summaries contain rich local structural information, and
their union captures the entire graph information. Denote
each generated summary as si. After obtaining Ns sum-
maries, we fine-tune the LoRA adapter to memorize them
by:

Lsummary =

Ns∑
i=1

LLM (si; θ). (2)

By fine-tuning the LoRA to memorize these summaries, the
model directly captures high-order structural and relational
information from the graph data. It is also worth noting
that this task functions as an input augmentation strategy,
a technique shown to be highly effective for knowledge
storage and retrieval in LLMs (Allen-Zhu & Li, 2023).

2.3. Enabling in-parameter reasoning through question
answering

So far, we have focused on enabling the model to memo-
rize graph context. However, to effectively solve various
downstream tasks using the memorized graph knowledge,
the model must also learn how to retrieve and apply this
information. To this end, we design two types of question
answering (QA) tasks: context QA and reasoning QA. Next,
we describe each QA task in detail.

Context QA task. The context QA task is designed to
instruct the model how to retrieve memorized knowledge.
To achieve this, we first randomly sample Nc edges from
the graph. For each edge e = (s, r, t), we randomly mask
one of s, r, or t and ask the model to predict the missing
component given the remaining two. For example, “What is
the relationship between s and t?” or “Which node has the
relationship of r to node t?” The detailed question templates
are shown in Appendix B.2. By training the model to answer
such questions, we encourage the model to strengthen its
memorization and retrieval of the encoded graph.

Reasoning QA task. The reasoning QA task focuses on
enhancing the LLM’s ability to perform reasoning over the
entire graph. To achieve this, we first sample Nr subgraphs,
each rooted at a randomly selected node. We then prompt
the LLM to generate reasoning questions and corresponding
answers that can be answered by leveraging the provided

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

GRIP: In-Parameter Graph Reasoning through Fine-Tuning Large Language Models

subgraph. To diversify the types of questions, we design four
distinct prompts, encouraging the LLM to generate ques-
tions from different reasoning categories. Specifically, ques-
tions are divided into four types: local, multi-hop, global,
and binary. The detailed prompt for each type can be found
in Appendix B.1. For each subgraph, we randomly select
one question type for QA task generation.

Let the i-th question and answer be denoted by qi and ai,
respectively. The QA objective is formalized as:

LQA = −
Nc∑
i=1

logP(ai|qi; θ)−
Nr∑
j=1

logP(aj |qj ; θ). (3)

2.4. Fine-tuning and inference of GRIP

To facilitate effective fine-tuning, GRIP divide the fine-
tuning into two stages. In the first stage, we only fine-tune
the LoRA on graph context memorization. The overall loss
for the first stage is:

Lstage1 = Lcontext + Lsummary. (4)

At the second stage, we jointly fine-tune the LoRA on both
context memorization and reasoning QA:

Lstage2 = Lcontext + Lsummary + LQA (5)

Other training details can be found in Appendix B.3.

During inference, the model already encodes the graph con-
text within the LoRA parameters, allowing it to directly
solve downstream tasks without requiring the graph as ex-
plicit input. Let the downstream task be denoted by t and the
graph context by g. The inference process of GRIP is simply
a = GRIP(t), whereas standard LLM inference requires
a = LLM(concat(g, t)). Since g typically forms a long se-
quence—especially for large-scale graphs—standard LLM
inference demands a significantly larger context window
and incurs higher computational cost compared to GRIP.

3. Experiments
In this section, we conduct various experiments to validate
the effectiveness of GRIP. Specifically, we would like to
answer the following questions: Q1: Can GRIP match or
even surpass the performance of standard LLM and exist-
ing graph-based models with and without graph context?
Q2: How effective are the designed fine-tuning tasks in
GRIP? More details about the implementation and experi-
mental setting can be found in Appendix B and Appendix C,
respectively.

3.1. Setup

Dataset. We evaluate GRIP on three different graph tasks,
including scene graph (He et al., 2024b), FB15K237 (Bor-
des et al., 2013), and WN18RR (Dettmers et al., 2018). The

Table 1. Performance on the knowledge graphs (IT: input token;
OOC: out of context window); .

Model FB15K237 ↑ Avg #IT ↓ WN18RR ↑ Avg #IT ↓

OFA 70.84 1313.79 30.96 1342.34
GOFA 80.69 1313.79 32.89 1342.34

Qwen2.5-7b 62.60 210.83 33.25 115.01
Qwen2.5-7bcontext 76.10 1340.59 41.83 1353.46

GRIP-qwen2.5-7b 83.87 210.83 48.50 115.01

Llama3.1-8b 60.90 210.65 24.12 115.69
Llama3.1-8bcontext 43.13 1313.79 51.24 1342.34
GRIP-llama3.1-8b 63.07 210.65 50.54 115.69

Full-context OOC >10M OOC >4M

scene graph is a dataset where each graph corresponds to
an image. The task is to answer various questions related
to the image. FB15K237 and WN18RR are two knowledge
graphs, and the task is to complete the missing relations
between entities.

Model and baselines. For GRIP, we use Qwen2.5-7b (Yang
et al., 2024) and Llama3.1-8b (Grattafiori et al., 2024) as
the base LLM model. For fine-tuning task generation, we
use Qwen2.5-7b for all experiments. To ensure a fair com-
parison, we include baselines from two different types. For
LLM-based methods, we choose Qwen2.5-7b and Llama3.1-
8b and run the experiments ourselves. For the graph-based
method, we include two graph foundational models that
can perform zero-shot inference, including OFA (Liu et al.,
2023) and GOFA (Kong et al., 2025). The results are directly
obtained from the original paper.

Metrics. For all three datasets, we use accuracy as the
primary evaluation metric. However, for LLM-based meth-
ods, including GRIP, the generated answers may not ex-
actly match the ground-truth labels. To ensure a fair evalua-
tion, we adopt the LLM-as-Judge approach (Li et al., 2024).
Specifically, we employ the Qwen2.5-32B model as the
judge to assess whether the answers produced by the LLMs
are semantically equivalent to the ground-truth labels.

3.2. Main Results

In this section, we present the main experimental results.
Performances on the FB15K237 and WN18RR datasets are
reported in Table 1, while the results on the scene graph
dataset are shown in Table 2. For LLM-based methods, we
evaluate two variants. In models labeled with the subscript
context, the LLM is provided with both the question and the
relevant graph context. For the knowledge graph datasets,
where the entire graph is too large to fit within the LLM’s
context window, we sample a subgraph centered around
the two target entities for relation prediction. Addition-
ally, we include a row labeled full-context to indicate the
total number of tokens required to represent the complete
knowledge graphs when converted into sequential text. For
models without the subscript, only the question is provided

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

GRIP: In-Parameter Graph Reasoning through Fine-Tuning Large Language Models

Table 2. Performance on the scene graph dataset (IT: input token).
Model Accuracy ↑ Avg #IT ↓

GOFA 34.06 3354.55

Qwen2.5-7b 4.82 22.06
Qwen2.5-7bcontext 61.12 4268.84
GRIP-qwen2.5-7b 45.55 22.06

Llama3.1-8b 8.25 23.06
Llama3.1-8bcontext 53.60 3354.55
GRIP-llama3.1-8b 46.80 23.06

as input—identical to the input used for GRIP.

To answer Q1, we first observe that GRIP consistently out-
performs baseline LLMs without context across all three
datasets. This result demonstrates the effectiveness of GRIP
in injecting graph knowledge directly into the LoRA pa-
rameters, enabling effective task solving without the need
for explicit graph context. When comparing GRIP to corre-
sponding models that utilize explicit graph context, we find
that it achieves comparable or even superior performance,
particularly on the knowledge graph datasets (indicated in
underlined scores). This is because GRIP can effectively
embed knowledge from the entire graph into the model pa-
rameters—a capability that baseline methods lack, as they
rely on subgraph sampling to fit within the model’s context
window. Consequently, GRIP can leverage information
from the entire graph to better solve downstream tasks.
Furthermore, baseline models require substantially more
input tokens to encode graph context, while GRIP achieves
comparable or better performance with significantly fewer
tokens, highlighting its strong potential, especially for rea-
soning over large-scale graphs.

However, GRIP’s performance on the scene graph dataset
is still suboptimal compared to LLMs with explicit context.
This may be due to the fact that many questions involve
reasoning over numerical object coordinates, which GRIP
does not explicitly handle in its current implementation,
limiting its ability to memorize and reason over such data.

To answer Q2, we conduct an ablation study on the
WN18RR dataset to evaluate the impact of the designed
summarization and QA tasks. Specifically, we keep all
experimental settings fixed while varying the number of
summarization tasks Ns and QA tasks Nr, and Nc. The
result is reported in Table 3. From the results, we observe
that both the summarization and QA tasks play critical roles
in enhancing performance. Without both tasks, the model
is only capable of memorizing graph context but fails to
effectively utilize the stored knowledge for downstream rea-
soning, consistent with prior observations in (Allen-Zhu &
Li, 2023). Introducing either the summarization task or the
QA tasks enables the model to begin extracting and applying
the memorized knowledge to solve tasks. When both tasks
are combined, their synergistic effect significantly improves

Table 3. Effects of summarization and QA tasks on WN18RR.
Ns Nc Nr Accuracy ↑

0 0 0 2.23

6000 0 0 21.95
6000 2000 2000 32.77

0 6000 6000 31.59
2000 6000 6000 48.12

6000 6000 6000 45.69
10000 10000 10000 48.50

the model’s ability to comprehend and reason over the graph
information embedded within the LoRA parameters. We
also provide additional ablation studies in Appendix D.

Table 4. Inference time (seconds) on test dataset with Qwen2.5-7b.
dataset Standard (with context) GRIP

FB15K237 1366.04 889.76
WN18RR 818.19 469.88

Scene Graph 655.54 302.99

Finally, we report the inference time on all test datasets using
both standard LLMs and GRIP in Table 4. As GRIP does not
require explicit access to the graph context during inference,
it achieves significantly lower inference time compared to
standard LLMs, further demonstrating its efficiency. Note
that GRIP does involve a fine-tuning phase. However, once
fine-tuned, the resulting LoRA parameters can be saved and
reused for any future inference tasks on the same graph. As
a result, the one-time fine-tuning cost becomes negligible
compared to the inference cost, particularly in scenarios
such as graphRAG or large-scale knowledge graph applica-
tions, where inference is performed repeatedly.

4. Conclusion and Limitation
In this work, we proposed GRIP, a novel approach that en-
ables pre-trained LLMs to adapt to graph-structured data
through PEFT and in-parameter knowledge injection. The
fine-tuned model can perform various downstream graph
tasks without requiring explicit graph context or specialized
graph processing modules. We evaluated the effectiveness of
GRIP through various experiments. Notably, GRIP achieves
comparable or even better performance to baseline meth-
ods that rely on explicit graph context, all while operating
without such context during inference. However, GRIP does
require fine-tuning of the LLM on carefully designed tasks,
which may introduce additional computational overhead
compared to direct inference approaches. Particularly, for
small-scale graphs, the fine-tuning cost can easily surpass
the inference cost. Additionally, the current design of the
QA task generation mechanism requires further refinement
to better support diverse types of graph data and tasks, such
as numerical information. We plan to further explore and
enhance the capabilities of GRIP in the future.

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

GRIP: In-Parameter Graph Reasoning through Fine-Tuning Large Language Models

References
Allen-Zhu, Z. and Li, Y. Physics of language models: Part

3.1, knowledge storage and extraction. arXiv preprint
arXiv:2309.14316, 2023.

Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and
Yakhnenko, O. Translating embeddings for modeling
multi-relational data. Advances in neural information
processing systems, 26, 2013.

Chen, R., Zhao, T., Jaiswal, A. K., Shah, N., and Wang, Z.
Llaga: Large language and graph assistant. In Interna-
tional Conference on Machine Learning, pp. 7809–7823.
PMLR, 2024.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Dettmers, T., Pasquale, M., Pontus, S., and Riedel, S. Con-
volutional 2d knowledge graph embeddings. In Proceed-
ings of the 32th AAAI Conference on Artificial Intelli-
gence, pp. 1811–1818, February 2018. URL https:
//arxiv.org/abs/1707.01476.

Feng, J., Liu, H., Kong, L., Zhu, M., Chen, Y., and Zhang,
M. Taglas: An atlas of text-attributed graph datasets in the
era of large graph and language models. arXiv preprint
arXiv:2406.14683, 2024.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,
A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Vaughan, A., et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Guo, D., Zhu, Q., Yang, D., Xie, Z., Dong, K.,
Zhang, W., Chen, G., Bi, X., Wu, Y., Li, Y., et al.
Deepseek-coder: When the large language model meets
programming–the rise of code intelligence. arXiv preprint
arXiv:2401.14196, 2024.

He, X., Bresson, X., Laurent, T., Perold, A., LeCun, Y., and
Hooi, B. Harnessing explanations: Llm-to-lm interpreter
for enhanced text-attributed graph representation learning.
In The Twelfth International Conference on Learning
Representations, 2024a.

He, X., Tian, Y., Sun, Y., Chawla, N., Laurent, T., LeCun,
Y., Bresson, X., and Hooi, B. G-retriever: Retrieval-
augmented generation for textual graph understanding
and question answering. Advances in Neural Information
Processing Systems, 37:132876–132907, 2024b.

He, Y., Sui, Y., He, X., and Hooi, B. Unigraph: Learning a
unified cross-domain foundation model for text-attributed
graphs. arXiv preprint arXiv:2402.13630, 2024c.

Hu, E. J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang,
L., Chen, W., et al. Lora: Low-rank adaptation of large
language models. In International Conference on Learn-
ing Representations, 2021.

Kong, L., Feng, J., Liu, H., Huang, C., Huang, J., Chen, Y.,
and Zhang, M. GOFA: A generative one-for-all model
for joint graph language modeling. In The Thirteenth
International Conference on Learning Representations,
2025. URL https://openreview.net/forum?
id=mIjblC9hfm.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the ACM SIGOPS
29th Symposium on Operating Systems Principles, 2023.

Lála, J., O’Donoghue, O., Shtedritski, A., Cox, S., Ro-
driques, S. G., and White, A. D. Paperqa: Retrieval-
augmented generative agent for scientific research. arXiv
preprint arXiv:2312.07559, 2023.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Küttler, H., Lewis, M., Yih, W.-t., Rocktäschel,
T., et al. Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in neural information pro-
cessing systems, 33:9459–9474, 2020.

Li, H., Dong, Q., Chen, J., Su, H., Zhou, Y., Ai, Q., Ye,
Z., and Liu, Y. Llms-as-judges: A comprehensive survey
on llm-based evaluation methods, 2024. URL https:
//arxiv.org/abs/2412.05579.

Li, J., Li, D., Savarese, S., and Hoi, S. Blip-2: Bootstrapping
language-image pre-training with frozen image encoders
and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023.

Li, J., Wu, R., Zhu, Y., Zhang, H., Chen, L., and Zheng,
Z. Are large language models in-context graph learn-
ers?, 2025. URL https://arxiv.org/abs/2502.
13562.

Lin, T., Yan, P., Song, K., Jiang, Z., Kang, Y., Lin, J.,
Yuan, W., Cao, J., Sun, C., and Liu, X. Langgfm: A large
language model alone can be a powerful graph foundation
model. arXiv preprint arXiv:2410.14961, 2024.

Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao,
C., Deng, C., Zhang, C., Ruan, C., et al. Deepseek-v3
technical report. arXiv preprint arXiv:2412.19437, 2024.

Liu, H., Feng, J., Kong, L., Liang, N., Tao, D., Chen, Y., and
Zhang, M. One for all: Towards training one graph model
for all classification tasks. In The Twelfth International
Conference on Learning Representations, 2023.

5

https://arxiv.org/abs/1707.01476
https://arxiv.org/abs/1707.01476
https://openreview.net/forum?id=mIjblC9hfm
https://openreview.net/forum?id=mIjblC9hfm
https://arxiv.org/abs/2412.05579
https://arxiv.org/abs/2412.05579
https://arxiv.org/abs/2502.13562
https://arxiv.org/abs/2502.13562


275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

GRIP: In-Parameter Graph Reasoning through Fine-Tuning Large Language Models

Mao, Y., Li, J., Meng, F., Xiong, J., Zheng, Z., and Zhang,
M. Lift: Improving long context understanding through
long input fine-tuning. arXiv preprint arXiv:2412.13626,
2024.

OpenAI and et al. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances in
Neural Information Processing Systems, pp. 8024–8035,
2019.

Shen, Y., Song, K., Tan, X., Li, D., Lu, W., and Zhuang,
Y. Hugginggpt: Solving ai tasks with chatgpt and its
friends in hugging face. Advances in Neural Information
Processing Systems, 36:38154–38180, 2023.

Su, W., Tang, Y., Ai, Q., Yan, J., Wang, C., Wang, H., Ye,
Z., Zhou, Y., and Liu, Y. Parametric retrieval augmented
generation. arXiv preprint arXiv:2501.15915, 2025.

Tan, Y., He, S., Liao, H., Zhao, J., and Liu, K. Dy-
namic parametric retrieval augmented generation for
test-time knowledge enhancement, 2025. URL https:
//arxiv.org/abs/2503.23895.

Tang, J., Yang, Y., Wei, W., Shi, L., Su, L., Cheng, S.,
Yin, D., and Huang, C. Graphgpt: Graph instruction
tuning for large language models. In Proceedings of the
47th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 491–500,
2024.

Wang, H., Feng, S., He, T., Tan, Z., Han, X., and Tsvetkov,
Y. Can language models solve graph problems in natural
language? Advances in Neural Information Processing
Systems, 36:30840–30861, 2023.

Wang, Y., Ma, D., and Cai, D. With greater text comes
greater necessity: Inference-time training helps long text
generation. arXiv preprint arXiv:2401.11504, 2024.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M.,
Lhoest, Q., and Rush, A. M. Huggingface’s transformers:
State-of-the-art natural language processing, 2020. URL
https://arxiv.org/abs/1910.03771.

Wu, X., Shen, Y., Shan, C., Song, K., Wang, S., Zhang, B.,
Feng, J., Cheng, H., Chen, W., Xiong, Y., et al. Can graph
learning improve planning in llm-based agents? In The

Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

Yang, A., Yang, B., Hui, B., Zheng, B., Yu, B., Zhou, C.,
Li, C., Li, C., Liu, D., Huang, F., Dong, G., Wei, H., Lin,
H., Tang, J., Wang, J., Yang, J., Tu, J., Zhang, J., Ma, J.,
Xu, J., Zhou, J., Bai, J., He, J., Lin, J., Dang, K., Lu, K.,
Chen, K., Yang, K., Li, M., Xue, M., Ni, N., Zhang, P.,
Wang, P., Peng, R., Men, R., Gao, R., Lin, R., Wang, S.,
Bai, S., Tan, S., Zhu, T., Li, T., Liu, T., Ge, W., Deng,
X., Zhou, X., Ren, X., Zhang, X., Wei, X., Ren, X., Fan,
Y., Yao, Y., Zhang, Y., Wan, Y., Chu, Y., Liu, Y., Cui, Z.,
Zhang, Z., and Fan, Z. Qwen2 technical report. arXiv
preprint arXiv:2407.10671, 2024.

Ye, R., Zhang, C., Wang, R., Xu, S., and Zhang, Y. Lan-
guage is all a graph needs. In EACL (Findings), 2024.

Zhang, M., Sun, M., Wang, P., Fan, S., Mo, Y., Xu, X.,
Liu, H., Yang, C., and Shi, C. Graphtranslator: Aligning
graph model to large language model for open-ended
tasks. arXiv preprint arXiv:2402.07197, 2024.

Zhu, X., Xue, H., Zhao, Z., Xu, W., Huang, J., Guo, M.,
Wang, Q., Zhou, K., and Zhang, Y. Llm as gnn: Graph
vocabulary learning for text-attributed graph foundation
models, 2025. URL https://arxiv.org/abs/
2503.03313.

6

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2503.23895
https://arxiv.org/abs/2503.23895
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/2503.03313
https://arxiv.org/abs/2503.03313


330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

GRIP: In-Parameter Graph Reasoning through Fine-Tuning Large Language Models

A. Additional Discussions
A.1. Related Works

The success of the foundational language models inspired many works to adapt them to the graph domains and design a
foundational model on the graph domain. Typically, existing methods can be divided into two categories: GNN-LLM-based
and pure LLM-based.

GNN-LLM based methods. This line of work typically focuses on designing specialized modules for graph data processing,
leveraging the capabilities of LLMs to enhance the model’s generalization ability. These methods can be broadly categorized
into two groups: LLM-as-Enhancer and LLM-as-Predictor. LLM-as-Enhancer approaches utilize LLMs to unify the input
space, enabling cross-domain inference across various types of graph data. For example, OFA (Liu et al., 2023) employs
LLMs to standardize input features from different datasets, transforming multiple graph classification tasks into a unified
binary classification format. TAPE (He et al., 2024a) uses LLMs to generate question-answer pairs and explanations
as enriched node features to improve learning. LLM-as-Predictor methods, on the other hand, aim to align embeddings
learned from graph models with the representation space of LLMs. For instance, GraphGPT (Tang et al., 2024) fine-tunes a
projection module to align embeddings between a pretrained GNN and an LLM. LLaGA (Chen et al., 2024) introduces a
creative template-based approach that represents subgraphs using pooled node embeddings for LLM input. Inspired by
Q-former (Li et al., 2023), GraphTranslator (Zhang et al., 2024) aligns node and text tokens by connecting pretrained GNN
and LLM representations. UniGraph (He et al., 2024c) pretrains a GNN using masked word prediction and then learns
a projection function to map graph embeddings into the language space, enabling zero-shot inference. However, these
methods often require a carefully designed alignment module and task formulations to achieve successful alignment and
struggle to generalize to domains that differ significantly from the training data.

LLM-based methods. Many researchers have also explored the potential of directly using LLMs for graph reasoning. For
example, NLGraph (Wang et al., 2023) represents graphs as sequences and evaluates this approach on various structural
tasks. InstructGLM (Ye et al., 2024) further investigates alternative strategies for describing graph data in textual form.
LangGFM (Lin et al., 2024) directly fine-tunes LLMs on graph sequences and achieves impressive results across several graph
benchmarks. Similarly, (Li et al., 2025) interpret the GNN process as a form of Retrieval-Augmented Generation (RAG) and
designs specific patterns to represent input graphs as text sequences that simulate GNN computations. PromptGFM (Zhu
et al., 2025) also follows this idea by directly simulating the message-passing process of GNNs using LLMs. However,
these methods inherently rely on converting graphs into sequences—a nontrivial and often challenging task. A common
strategy is to represent the graph using its edge list as input to the LLM. Yet, for graphs with high node degrees or long
node feature representations, this approach leads to substantial token overhead, since node information must be redundantly
repeated for each connected edge. Moreover, recent work (Wu et al., 2024) has highlighted that LLMs are fundamentally
limited in performing graph reasoning tasks due to their sensitivity to the ordering of nodes and edges; such permutations
can significantly impact downstream performance.

Parameterized continual learning for LLMs. Recently, the concept of continual learning for LLMs has gained significant
attention due to the growing need to adapt LLMs to the latest knowledge and knowledge-intensive tasks during test time.
Among various approaches, parameterized continual learning has emerged as a promising direction, offering efficient
inference by directly injecting new knowledge into model parameters or PEFT adapters. For example, Parametric RAG (Su
et al., 2025) fine-tunes a unique LoRA adapter for each document, allowing the system to retrieve and apply the corresponding
adapter at inference time based on the user query, rather than retrieving raw text chunks. DyPRAG (Tan et al., 2025) further
advances this idea by training a meta-network to dynamically predict LoRA weights from input documents. LIFT (Mao et al.,
2024) and Temp-Lora (Wang et al., 2024) explore the potential of fine-tuning long-context inputs into PEFT parameters,
achieving remarkable results. However, to the best of our knowledge, no existing work has extended these ideas to the graph
domain.

A.2. The limitation of graph-to-sequence methods

Let the average number of tokens for node and edge features be denoted by tn and te, respectively, and let the average
node degree of the graph be d. The minimum total number of tokens required to represent a graph with n nodes is then
ntn + ndte. To enable an LLM to directly solve graph tasks, a crucial step is to represent the graph data as a text sequence.
Typically, there are two standard methods for achieving this: (1) edge with index and (2) edge list. In the following, we
describe these two methods in detail and analyze both their token costs and their impact on downstream performance.

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

GRIP: In-Parameter Graph Reasoning through Fine-Tuning Large Language Models

Table 5. Ablation study on graph-to-sequence methods with scene graph.

Method Theoretical avg. token cost Practical avg. token cost Accuracy

edge with index ntn + ndte 1726.85 53.86
edge list 2ndtn + ndte 4268.84 61.12

Edge with index. For the edge with index method, the graph representation starts by describing all nodes as a sequence,
assigning each node a unique ID. For example, each node is represented as: ”NODE ID: node feature.” Next, each edge is
converted into a text sequence of the form ”SRC NODE ID, edge feature, TGT NODE ID”, where SRC NODE ID and
TGT NODE ID are the IDs of the source and target nodes, respectively. The final sequence representation of the graph is
formed by concatenating all node and edge descriptions. Since node IDs are typically simple tokens and their cost can be
ignored, the total number of tokens required using the edge with index method is ntn + ndte, which matches the minimum
token count. However, as each edge now only contains node IDs rather than full node features, the LLM must retrieve the
corresponding node features by resolving the IDs within the sequence, introducing additional complexity to the reasoning
process, especially for large graphs.

Edge list. Another approach is to directly provide the LLM with the full edge list. In this case, each edge is represented as
”source node feature, edge feature, target node feature”, and there is no need to separately describe all nodes. This method
appears more advantageous than the previous one, as the LLM can now directly access the contextual information of each
edge without resolving node IDs. However, since the feature representation of each node is repeated for every connected
edge, the node information is redundantly included as many times as the node’s degree. Consequently, the total number
of tokens required to represent the graph becomes 2ndtn + ndte, which is significantly larger than ntn + ndte when the
average degree d is large (as is common in protein-protein interaction or social networks) or when the node feature size tn is
large (as often seen in citation networks).

In Table 5, we compare the performance of the LLM using two different graph representation methods on the scene graph
dataset with Qwen2.5-7b (Yang et al., 2024). Although the edge with index method results in a significantly smaller average
number of tokens compared to the edge list method, it also degrades downstream performance. For a fair comparison, all
LLM baseline results reported in this paper are based on the edge list method. Notes that there are also other advanced
methods for converting a graph to a sequence, like the one introduced in PromptGFM (Zhu et al., 2025) or Graph as RAG (Li
et al., 2025). However, they usually introduce even much larger token costs than the edge list, and we will not compare
them in this work. Meanwhile, there is room for different datasets to further optimize the sequential graph representation.
For example, in the node list, we can describe the full feature of each node. In the edge list, we obtain another abstract or
keyword for each node. However, this strategy only works for some specific datasets and may not be able to generalize.

B. Implementation Details
In this section, we provide our implementation details of GRIP. The overview of the GRIP is shown in Figure 1. The source
code is provided in https://anonymous.4open.science/r/graph_lora-EBF0/.

B.1. Prompts Design

In this section, we describe various prompts we used for task generation in GRIP.

B.1.1. SUMMARIZATION TASK

As described in the main paper, the goal of the summarization task is to summarize the information in a given sampled
subgraph. Further, to facilitate input augmentation, we want the generated summarizations to have different formats and
styles. Therefore, given one sampled subgraph, the prompt will ask the LLM to generate two summaries, and the two
versions should be as different as possible. Specifically, the prompt we used for the summarization task generation is as
follows:

8

https://anonymous.4open.science/r/graph_lora-EBF0/


440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

GRIP: In-Parameter Graph Reasoning through Fine-Tuning Large Language Models

Input graph

Context memorization

Node list:

Edge list:

Summarization

LLM
summary

GRIP 
Training 
Phase

Context QA

? ? ?

Reasoning QA

LLM QA

LLM

LoRA

GRIP Inference Phase

LLM

LoRA

Q: What is the food that lies inside the box that 
the woman holds?

A: Pizza. 

LLM Inference Phase

LLM

Q: Given                       , 
what is the food that lies 
inside the box that the 
woman holds?

A: Pizza. 

Figure 1. Overview of GRIP. During the fine-tuning phase, we design a variety of tasks to inject graph context into the LoRA parameters
and explicitly instruct the model to utilize this context for solving downstream tasks. In the inference phase, GRIP can directly answer
user queries without requiring explicit graph context. In contrast, standard LLM-based inference over graphs relies on providing explicit
graph context, which introduce significant token overhead, especially for large-scale graphs.

You are given several text snippets as context. Generate two distinct summaries that rephrase all information while
exploring potential relationships across the snippets. Avoid directly copying the provided context and try to use a
completely different way, tone, writing style, and logic to summarize the original context. Some techniques can be
used, including reordering, exchanging active and passive sentences, or synonym replacement. Ensure summaries are
concise, accurate, fluent, and complete, without missing any factual or numeric details. Be creative and make sure the
two summaries are as DIFFERENT as possible from all aspects described above.
Please answer in the following format:
Summary: [summary] {tuple delimiter} Summary: [summary].
Please DON’T output quotes when outputting evidence, and separate two summaries by tuple delimiter. The following
are the pieces of context separated by;: {context}

B.1.2. REASONING QA TASK

The task generation of the reasoning QA task is similar to summarization. For each sampled subgraph, we will generate two
questions. As discussed in the main paper, we divided the reasoning QA into four different types: local, global, multi-hop,
and binary. Here we show the prompt we used for each type of QA task generation.

Local QA: You are given several text snippets from a graph as context. Generate two diverse questions and answers
focusing on retrieving a single fact using partial information (e.g., infer the entity from an attribute like color, appearance,
or infer an attribute from the entity). The answer should be concise and brief, like phrase, words. Keep answers concise
(single words or short phrases). Meanwhile, provide one brief evidence sentence per question. Be creative and avoid
repetitive patterns or ask relevant information in two questions. Please answer in the following format:
Question: [question] Answer: [answer] Evidence: [evidence] {tuple delimiter} Question: [question] Answer: [answer]
evidence: [evidence]
Please DON’T output quotes when outputting evidence and separate two questions by {tuple delimiter}. The following
are the pieces of context separated by ;: {context}

9



495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

GRIP: In-Parameter Graph Reasoning through Fine-Tuning Large Language Models

Global QA: You are given several text snippets as context. Generate two diverse questions and answers that require
reasoning over the full context. Keep answers concise (single words or short phrases). Meanwhile, provide one brief
evidence sentence per question. Be creative and avoid repetitive patterns or ask relevant information in two questions.
Please answer in the following format:
Question: [question] Answer: [answer] Evidence: [evidence] {tuple delimiter} Question: [question] Answer: [answer]
Evidence: [evidence]
Please DON’T output quotes when outputting evidence and separate two questions by {tuple delimiter}. The following
are the pieces of context separated by ;: {context}

Multi-hop QA: You are given several text snippets from a graph as context. Generate two diverse, reasoning-focused
questions and answers based on the context. Questions should involve indirect or multi-hop relationships between
entities. Each question should involve at least two pieces of context. Keep answers concise (single words or short
phrases). Meanwhile, provide one brief evidence sentence per question. Be creative and avoid repetitive patterns or ask
for relevant information in two questions. Please answer in the following format:
Question: [question] Answer: [answer] Evidence: [evidence] {tuple delimiter} Question: [question] Answer: [answer]
Evidence: [evidence]
Please DON’T output quotes when outputting evidence and separate two questions by {tuple delimiter}. The following
are the pieces of context separated by ;: {context}

Binary QA: You are given several text snippets as context. Generate two diverse questions and answers: one with the
answer “yes” and the other with “no”. The question can be asked in the following manner: is there, are there, does, can,
has, is it, et al. Meanwhile, provide one brief evidence sentence per question. Be creative and avoid repetitive patterns
or ask relevant information in two questions. Please answer in the following format:
Question: [question] Answer: [answer] Evidence: [evidence] {tuple delimiter} Question: [question] Answer: [answer]
Evidence: [evidence]
Please DON’T output quotes when outputting evidence, and separate two questions by {tuple delimiter}. The following
are the pieces of context separated by ;: {context}

B.2. Implementation setting

We implement GRIP based on PyTorch (Paszke et al., 2019), the Hugging Face Transformers library (Wolf et al., 2020), and
LIFT (Mao et al., 2024).

For the LoRA adapter, we apply LoRA by default to the MLP modules of each LLM layer. The impact of applying LoRA to
different model components is further analyzed in Appendix D.

For subgraph sampling in both the summarization and reasoning QA task generation, we first randomly select a root node
from the entire graph. We then iteratively expand the subgraph by sampling neighbors at each hop. Specifically, at each hop,
we sample up to three neighbors per node and perform this process for three hops. This procedure results in a subgraph
containing at most 10 nodes.

For efficient task generation, we leverage the vLLM inference framework (Kwon et al., 2023). Specifically, we use the
Qwen2.5-7B model (Yang et al., 2024) without quantization as the task generator.

To standardize the various tasks in GRIP, we adopt an instruction-tuning template for both context memorization and
QA tasks. Each fine-tuning sample is formatted using the apply chat template function from the Hugging Face
Transformers library.

In the following, we describe the detailed construction of samples for each task.

Context memorization. For context memorization tasks, the user prompt asks the model to recite the information in the
graph. Specifically, the user prompt and corresponding answer template for node and edge is as follows:

10



550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

GRIP: In-Parameter Graph Reasoning through Fine-Tuning Large Language Models

Node Prompt: Given the context graph, recite the information of the node in the graph accurately.
Node Answer: There is a node {node}.

Edge Prompt: Given the context graph, recite the information of the edge in the graph accurately.
Edge Answer: the node {src} is {rel} the node {tgt}.

Summarization task. The user prompt for summarization is similar to the context memorization, where we ask the model
to summarize the information in the graph. The detailed user prompt and corresponding answer template is as follows:

Prompt: Based on the context graph, summarize the information in the graph accurately.
Answer: {summary}

Context QA task. For context QA task, given a sampled edge triplet (s, r, t), we will generate a prompt to ask the model to
predict one element based on the rest of two. Namely, let Src, Rel, Tgt to represent s, r, and t, we have:

Src Prompt: In this context graph, which node has the relation {rel} to node {tgt}?
Src Answer: {src}

Rel Prompt: Based on the context graph, what is the relation between the node {src} and the node {tgt}?
Rel Answer: {rel}

Tgt Prompt: Given this context graph, which node has the relation {rel} from the node {src}?
Tgt Answer: {tgt}

Reasoning QA tasks. For the reasoning QA task, the user prompt and answer is just the generated question and the answer.

B.3. Fine-tuning setting

The fine-tuning is divided into two stages. For both stages, we will set a maximum number of training epochs and also
monitor the training loss as the threshold for early stopping to determine the end of the stage. The optimizer is AdamW for
all datasets. Other hyperparameter settings that are different for different datasets are described in Appendix C

C. Experiment details
C.1. Dataset details

Table 6. Dataset statistics. (W. represent word.)

Dataset Avg. #N Avg. #E Avg. #N. W. Avg. #E. W. # G

FB15K237 14,541 310,116 20.1 8.4 1
WN18RR 40,943 93,003 23.3 11.0 1
Scene Graph 19.13 68.44 20.1 9.8 100000

In this section, we describe the details of all datasets we used for evaluation. The statistic of all datasets can be found in
Table 6. The raw data of all datasets are obtained from TAGLAS (Feng et al., 2024).

Scene Graph. Scene Graphs is a graph question-answering dataset on scene graphs. Each graph in SceneGraphs contains
objects connected by the relationship between two objects. It contains 59,978/19,997/20,025 graph samples for the
train/val/test sets. Due to the time limitation, we only evaluate all methods on the first 500 test samples.

FB15K237 FB15K237 is a knowledge graph. The dataset contains 14,541 nodes and 310,116 relations. Nodes in the dataset
are entities in the knowledge graph and edges represent the relation between two entities. It contains 237 different relation
types. There are a total of 272,115/17,535/20,466 samples for train/val/test sets, respectively. For simplicity, in evaluation,

11



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

GRIP: In-Parameter Graph Reasoning through Fine-Tuning Large Language Models

we only evaluate the first 3000 samples from the test set, and each sample is formalized as a 10-way classification task. That
is, the question will ask the model to select the correct one relation from 10 candidate relations, instead of all 237 relations.

WN18RR WN18RR is another knowledge graph extracted from WordNet. It contains 40,943 nodes and 93,003 relations,
where each node is an English word and each edge represents the relation between two words. It contains 11 different
relation types and 86,835/3,034/3,134 samples for train/val/test sets, respectively. For WN18RR, we evaluate on the whole
test set.

C.2. Training process and hyperparameters

Table 7. The hyperparameter settings for all experiments

hyperparameters Scene Graph FB15K237 WN18RR

lora r 8 24 16
lora components MLP MLP MLP

Ns 100 10000 10000
Nr 100 10000 10000
Nc 100 10000 10000

stage1 maximum epoch 100 1 1
stage2 maximum epoch 100 2 2
early stop loss threshold 0.5 0.15 0.15

gradient accumulation steps full 512 512
learning rate 1e-3 1e-3 1e-3

scheduler linear linear linear
β1 0.9 0.9 0.9
β2 0.98 0.98 0.98
ϵ 1e-4 1e-4 1e-4

maximum gradient norm 1.0 1.0 1.0

All experiments can be conducted on a single NVIDIAA100 SXM4 80GB GPU. To accelerate the training and inference
process, we use 4 GPUs in total and split all datasets into 4 subsets and process them independently on each GPU. In Table 7,
we provide hyperparameter settings for all three datasets.

D. Addtitional ablation studies
D.1. The effects of LoRA

Table 8. Ablation study on LoRA adapter position.

Accuracy ATT MLP ALL

Scene Graph 37.62 45.55 44.61

Table 9. Ablation study on LoRA adapter rank.

Accuracy r=4 r=8 r=16 r=24

FB15K237 61.67 75.63 83.87 83.93

In this section, we present an additional ablation study to investigate the impact of applying the LoRA adapter to different
components of the transformer architecture. Specifically, the LoRA adapter can be applied to both the attention module
and the feed-forward MLP module. To isolate the effect of each component, we fix all other settings and vary only the
placement of the LoRA adapter. We evaluate three configurations: (1) applying LoRA to the attention module (including the
Key, Value, and Query weight matrices), denoted as ATT; (2) applying LoRA to the feed-forward MLP module, denoted as
MLP; and (3) applying LoRA to both modules, denoted as ALL.

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

GRIP: In-Parameter Graph Reasoning through Fine-Tuning Large Language Models

Table 10. Effects of summarization and QA tasks on FB15K237.

Ns Nc Nr Accuracy ↑

0 0 0 7.53

10000 0 0 26.90
10000 4000 4000 80.97

0 10000 10000 71.70
4000 10000 10000 74.73

6000 6000 6000 70.47
10000 10000 10000 83.93

We train GRIP on the scene graph dataset, and the results are summarized in Table 8. We can see that applying LoRA only
on attention modules achieves much worse performance compared to the other two settings. The findings indicate that
applying LoRA to the MLP modules is most critical for improving downstream performance. This result is intuitive, as the
MLP modules are typically responsible for knowledge storage, while the attention modules primarily handle information
retrieval. Therefore, apply LoRA on the MLP module can be more effective for graph knowledge injection.

Next, we investigate the effect of the rank of LoRA using the FB15K237 dataset. To conduct the ablation study, we fix all
other hyperparameters and only vary the rank r. Notes that for this ablation study, we apply LoRA only on MLP modules.
The result is shown in Table 9. We can see that as the rank become larger, and the performance also increases, and eventually
becomes saturated. At this time, the bottomneck becomes the task design instead of the LoRA parameters.

D.2. Additional ablation results on the task design

To further verify the effectiveness of our proposed fine-tuning tasks in GRIP, we further conduct the ablation study with
FB15K237. The experimental setting is similar to the ablation study using the WN18RR dataset, and the result is shown in
Table 10. We can see the results are consistent with Table 3 and both the summarization tasks and QA tasks are crucial for
the downstream performance.

13


