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Abstract001

Although LLM-based conversational agents002
demonstrate strong fluency and coherence, they003
continue to exhibit behavioral errors, such as004
inconsistencies and factual inaccuracies. De-005
tecting and mitigating these errors is critical006
for developing trustworthy systems. However,007
current response correction methods rely heav-008
ily on large language models (LLMs), which009
require information about the nature of an er-010
ror or hints about its occurrence for accurate011
detection. This limits their ability to iden-012
tify errors not defined in their instructions or013
covered by external tools, such as those aris-014
ing from updates to the response-generation015
model or shifts in user behavior. In this work,016
we introduce Automated Error Discovery, a017
framework for detecting and defining behav-018
ioral errors in conversational AI, and propose019
SEEED (Soft-clustering Extended Encoder-020
Based Error Detection), an encoder-based al-021
ternative to LLMs for error detection. We en-022
hance the Soft Nearest Neighbor Loss by am-023
plifying distance weighting for negative sam-024
ples and introduce Label-Based Sample Rank-025
ing to select highly contrastive examples for026
better representation learning. SEEED outper-027
forms adapted baselines across multiple error-028
annotated dialogue datasets, improving the ac-029
curacy for detecting novel behavioral errors by030
up to 8 points and demonstrating strong gener-031
alization to unknown intent detection.1032

1 Introduction033

Behavioral errors in conversational agents refer to034

system responses that deviate from the expecta-035

tions of natural dialogue, such as those exhibiting036

inconsistencies or a lack of basic social compe-037

tence (Wang et al., 2024; Kumar et al., 2023; Kirk038

et al., 2023). Preventing these errors is essential039

for maintaining user trust in such systems (Hsu040

1We provide our code on GitHub (last accessed May 5,
2025).

I really like Indie music!
Do you have a favorite
artist?

I’m a huge fan
of indie music
too! The Beatles
are my absolute
favorite!

Response 
Candidate

Your response is factually
inconsistent. The Beatles are more
commonly known as a rock band.
A well-known indie band is The
Smiths. I suggest revising your
response accordingly. 

Feedback

I’m a huge fan of indie 
music too! The Smiths 
are my absolute favorite!

External Tools
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Figure 1: LLM-based response correction pipeline: (1)
The response-generation model produces an initial re-
sponse based on user input. (2) The feedback LLM,
or in self-correcting systems the response-generation
model itself, evaluates the candidate for errors, often
using external tools. Recent work shows that LLMs
require information about the nature of an error or hints
about its occurrence for accurate detection. (3) The
response-generation model refines its output according
to the feedback.

and Lin, 2023; Luger and Sellen, 2016). For this 041

purpose, current response correction mechanisms 042

typically use large language models (LLMs) to de- 043

tect these errors and generate feedback, guiding the 044

response-generation model to refine its output ac- 045

cordingly (Miao et al., 2024; Madaan et al., 2023; 046

Shinn et al., 2023; Gou et al., 2024; Shridhar et al., 047

2024; Xu et al., 2024; Peng et al., 2023). Figure 1 048

illustrates this process. 049

While effective at generating feedback, LLMs 050

require information about the nature of an error 051

or hints about its occurrence for accurate detec- 052

tion (Mendonça et al., 2024; Tyen et al., 2024; 053

Finch et al., 2023b), reducing their ability to iden- 054

1



tify errors not defined in their instructions or cov-055

ered by external tools. This limitation becomes056

especially problematic when user behavior shifts057

or response-generation models are updated to meet058

evolving requirements (Madotto et al., 2021; Liu059

and Mazumder, 2021; Wang et al., 2019; Hancock060

et al., 2019), as these changes may lead to the emer-061

gence of new error types.062

In this work, we introduce Automated Error Dis-063

covery as a framework for detecting and defining064

behavioral errors in conversational AI, and propose065

SEEED (Soft-clustering Enhanced Encoder-Based066

Error Detection) as an alternative to LLM-based067

error detection. Our contributions are as follows:068

• We introduce Automated Error Discovery as069

a new task that involves (1) detecting known070

and novel error types, and (2) generating defi-071

nitions for newly discovered error types.072

• We propose SEEED, a novel approach073

that combines an open-source LLM with074

lightweight encoders for error detection. In075

contrast to prior work, SEEED employs soft076

clustering in the classification step, enabling077

more contextually coherent groupings.078

• We introduce Label-Based Sample Ranking, a079

novel sampling strategy for contrastive learn-080

ing that selects highly contrastive examples081

based on their behavioral errors for improved082

representation learning.083

• We enhance the Soft Nearest Neighbor084

Loss (Frosst et al., 2019) by introducing a085

margin parameter to amplify the effect of dis-086

tance weighting for negative samples.087

SEEED outperforms adapted baselines, includ-088

ing GPT-4o (Ouyang et al., 2022) and Phi-089

4 (Abouelenin et al., 2025), by up to 8 points in090

identifying novel error types on the FEDI (Petrak091

et al., 2024), Soda-Eval (Mendonça et al., 2024),092

and ABCEval (Finch et al., 2023a) datasets. Ad-093

ditionally, it demonstrates strong generalization to094

intent detection, achieving up to a 17-point im-095

provement in accuracy for identifying unknown096

intents over state-of-the-art methods.097

2 Related Work098

In recent years, research in conversational AI has099

focused on reducing behavioral errors in agent100

responses, primarily through supervised learning101

from error and feedback signals collected by human 102

expert annotators (Dubey et al., 2024; Lee et al., 103

2024; Xu et al., 2023; Finch et al., 2023a; Havrilla 104

et al., 2023; Rafailov et al., 2023; Ung et al., 2022; 105

Ouyang et al., 2022; Bai et al., 2022). To facilitate 106

data collection, semi-automated methods have been 107

developed to analyze existing dialogue data (Petrak 108

et al., 2023; See and Manning, 2021; Higashinaka 109

et al., 2015). However, these approaches lack pre- 110

cision and still necessitate substantial manual ef- 111

fort. As a result, recent studies have explored using 112

LLMs to generate and annotate dialogue data with 113

behavioral errors (Mendonça et al., 2024; Petrak 114

et al., 2024), but the quality of the resulting datasets 115

remains debated (Yang et al., 2023; Ji et al., 2023; 116

Zhang et al., 2023), as LLMs require explicit guid- 117

ance to detect such errors (Tyen et al., 2024; Stechly 118

et al., 2024; Finch et al., 2023b). This limitation 119

also restricts the effectiveness of LLM-based re- 120

sponse correction mechanisms (Miao et al., 2024; 121

Madaan et al., 2023; Shinn et al., 2023) in handling 122

behavioral errors during deployment, even when 123

supplemented by external tools, such as web search 124

for claim verification (Gou et al., 2024; Shridhar 125

et al., 2024; Xu et al., 2024; Peng et al., 2023). It 126

hinders their applicability in scenarios where new 127

types of behavioral errors emerge due to shifting 128

user behavior or updates to the response-generation 129

model (Luo et al., 2023; Mi et al., 2020; Roller 130

et al., 2020). 131

In this work, we introduce Automated Error Dis- 132

covery as a framework for detecting and defining 133

behavioral errors in conversational AI. In addition, 134

we propose SEEED, an encoder-based approach 135

for error detection that provides an alternative to 136

LLMs for this task. 137

3 Automated Error Discovery 138

We define Automated Error Discovery as a special- 139

ization of Generalized Category Discovery (Vaze 140

et al., 2022), extended to include the generation of 141

definitions for newly discovered behavioral error 142

types. Generalized Category Discovery assumes 143

that during training, only a subset of the complete 144

class distribution is accessible. The goal is to train 145

a model capable of extrapolating from the learned 146

patterns to discriminate between data from both 147

seen and unseen classes during inference. 148

We distinguish two sub-tasks, Error Detection 149

and Error Definition Generation, and define the fol- 150

lowing formal setup: 151
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just came back from
summer vacation. I did a
lot of surfing!

?

Su
m

m
ar

y
En

co
de

r

I just came back from
summer vacation. I've
been to Rome. It's such a
lovely city!

Awesome, that sounds
fun! Where did you go?

I went to the Pacific
Ocean! It was so
beautiful! I love the
beach in Hawaii, but I've
never been to the ocean.
It's beautiful!

Hard Negatives 

Soft Negatives 
Hard Positives 
Soft Positives 

LL
M

Both participants have
returned from summer
vacation. Person 1 visited
Rome and found it lovely.
Person 2 went surfing in the
Pacific Ocean and found it
beautiful. They say to love the
beach in Hawaii but also
states they've never been to
the ocean, which is
contradictory.

C
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xt
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Inference

Training

LL
M

External 
Knowledge 

This error occurs when a
response contradicts
commonsense. It signifies a
failure to maintain
coherence with the context
of the dialogue and disrupts
the logical flow and
expectations of the
interaction. It indicates a
lack of world knowledge.

Commonsense Contradiction

Summary Generation

Curated 
Summaries

Error Detection

Error Definition
Generation

misclassified; different ground truth  
labels; near the decision boundary of 
misclassified; different ground truth  
labels; near the centroid of 

SEEED

Figure 2: Schematic overview of SEEED, comprising three distinct components: Summary Generation, Error
Detection, and Error Definition Generation (e denotes the identified behavioral error). Our training procedure is
illustrated with a focus on the concept of Label-Based Sample Ranking.

• E = EK∪EU is the set of all behavioral error152

types. EK = {(ei, di)}mi=1 is the set of known153

error types, with ei as the error identifier and154

di as its definition. EU denotes the set of155

unknown error types. EK ∩ EU = ∅.156

• C = CK ∪CU denotes the set of all dialogue157

contexts T , with CK as the set of all T associ-158

ated with a behavioral error e from EK . CU is159

the set of dialogues associated with unknown160

behavioral errors. CK ∩ CU = ∅.161

• We define a dialogue context T as a sequence162

of user-agent utterances (turns). Depending163

on the use case, T may be associated with ad-164

ditional features, such as external knowledge165

documents in knowledge-grounded dialogues.166

We refer to these additional features as WT .2167

Error Detection Given an error detection func-168

tion H : Rd 7→ N and a dialogue context T ∈ C,169

the task is to determine the behavioral error e ∈ E170

associated with the last agent utterance in T :171

e = H(T,WT ), where e ∈ E and T ∈ C (1)172

H must not access any data in EU during training.173

Error Definition Generation When e /∈ EK ,174

the task is to generate a definition d conditioned175

on the identified set of related dialogue contexts176

Ce ⊆ CU .3177

2In this work, W is relevant only as external knowledge in
the knowledge-grounded subset of FEDI (Petrak et al., 2024)

3In practical implementations, this new data can be used to
enhance H. To avoid the emergence of an overly granular set
of behavioral errors, we suggest applying a threshold to |Ce|.

4 SEEED – Soft-Clustering Extended 178

Encoder-Based Error Detection 179

Figure 2 presents a schematic overview of SEEED. 180

Since detecting behavioral errors requires under- 181

standing contextual dependencies, such as refer- 182

ences to earlier utterances (Petrak et al., 2024; Men- 183

donça et al., 2024; Finch et al., 2023a), we first 184

prompt an LLM to generate a summary of the di- 185

alogue context. Next, both the dialogue context 186

and its summary are processed through separate 187

Transformer-based encoders and then combined us- 188

ing a linear neural layer to produce an aggregated 189

representation. Finally, we apply a soft-clustering 190

algorithm to identify the corresponding behavioral 191

error type. If the identified error type is not among 192

the known types, we prompt an LLM to generate 193

its definition. 194

In contrast to hard-clustering algorithms like k- 195

Means, which have been predominantly used in 196

prior work on related tasks (Liang et al., 2024; 197

An et al., 2024; Vaze et al., 2022), soft-clustering 198

algorithms allow data points to belong to multiple 199

clusters, facilitating more contextually coherent 200

groupings. 201

4.1 Summary Generation 202

We prompt Llama-3.1 8B-Instruct (Dubey et al., 203

2024) to summarize the dialogue context, and in- 204

struct the model to focus on information indica- 205

tive of behavioral errors in the last agent utter- 206

ance. We use few-shot prompting and include direc- 207

tives to circumvent pre-trained safety mechanisms, 208

enabling analysis of dialogues that may contain 209

harmful language. For the knowledge-grounded 210
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dialogues in FEDI (Petrak et al., 2024), we addi-211

tionally incorporate relevant external knowledge212

documents into the prompt. Figure 2 shows an213

example summary. We provide the full prompt in214

Appendix A.215

We do not provide error type definitions for sum-216

mary generation to prevent the detection model217

from learning shortcut patterns associated with218

known behavioral errors, as this could compromise219

its ability to identify novel error types.220

4.2 Error Detection221

For error detection, we first produce an aggregated222

representation of the dialogue context and its sum-223

mary, and then apply NNK-Means (Shekkizhar and224

Ortega, 2022) to identify the corresponding error225

type. This expands Equation 1 as follows:226

e = H(T,WT , oT ), where oT is the summary
(2)227

NNK-Means (Shekkizhar and Ortega, 2022) is228

a soft-clustering algorithm that uses non-negative229

kernel regression to model local geometric relation-230

ships and assign weighted cluster memberships.231

Training Objective For fine-tuning the encoders,232

we employ a joint loss function that combines233

multi-class cross-entropy, Lce, with the Soft Near-234

est Neighbor Loss (Frosst et al., 2019), Lsnl:235

L = αLce + Lsnl (3)236

α regulates the contribution of Lce. This for-237

mulation encourages the discrimination between238

known behavioral error types while enhancing239

the robustness of the learned representation space,240

thereby facilitating generalization to unseen data.241

SNL contributes to this by smoothing decision242

boundaries through distance-based weighting of243

neighboring samples:244

Lsnl = − 1

N

N∑
i=1

log


∑N

j=1,j ̸=i,
yi=yj

exp
(
−Sij

τ

)
∑N

k=1,
k ̸=i

exp
(
−Sik

τ

)
+ ϵ


(4)245

N denotes the batch size. τ denotes the tem-246

perature and ϵ is a small constant included to pre-247

vent arithmetic errors. S ∈ RN×N represents the248

similarity matrix. We compute each element as249

follows: Sij =
xi·xj

∥xi∥∥xj∥ −m · I(yi ̸= yj), where250

I(yi ̸= yj) is 1 if error types yi and yj differ, and 0251

otherwise. We introduce m as a positive scalar mar-252

gin to amplify the distance weighting for negative253

pairs. To further enhance effectiveness, we utilize 254

Label-Based Sample Ranking to augment the batch 255

with one positive and negative counterpart, x+ and 256

x−, for each sample x, selected from the pool of 257

training data. These additional samples are used 258

exclusively to compute Lsnl. 259

Label-Based Sample Ranking We introduce 260

Label-Based Sample Ranking (LBSR) as a novel 261

sampling strategy to amplify the effect of distance- 262

based weighting in SNL (Frosst et al., 2019). We 263

build upon the concept of Local Inconsistency Sam- 264

pling (LIS), as proposed by An et al. (2024). LIS 265

assumes that samples of the same class should 266

be proximate in representation space (Jiang et al., 267

2023) and that samples near the decision boundary 268

are more susceptible to misclassification, rendering 269

them particularly valuable as positive counterparts 270

in contrastive learning. To identify such samples, 271

LIS measures prediction inconsistency and entropy 272

based on the t-distribution of cluster assignments 273

derived from k-Means clustering. 274

In LBSR, we employ NNK-Means (Shekkizhar 275

and Ortega, 2022) for clustering and leverage la- 276

bel information available during training to classify 277

each sample as either a positive or negative instance 278

relative to its ground truth error type e ∈ EK . 279

Specifically, we define positive samples for e as 280

those for which e is the ground truth label, and 281

negative samples as those assigned to e despite 282

having a different ground truth label. We further 283

distinguish between the following categories: 284

• Soft Positives Samples assigned to e with e 285

as the ground truth label. 286

• Hard Positives Samples assigned to a differ- 287

ent type but with e as the ground truth label. 288

• Soft Negatives Samples with a different 289

ground truth label, assigned to e, and near 290

its decision boundary (high inconsistency). 291

• Hard Negatives Samples with a different 292

ground truth label, assigned to e, and near 293

its centroid (low inconsistency). 294

Figure 2 provides an illustration. We utilize the 295

algorithms proposed by An et al. (2024) to com- 296

pute inconsistency and entropy, then normalize and 297

average them to derive a single relevance score. 298

Algorithm 1 outlines our implementation and high- 299

lights the key differences from LIS in violet. 300
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Algorithm 1 Label-Based Sample Ranking

Require: X ∈ R|CK |×d, Y ∈ Z|EK |, top_k ∈ Z
1: Init hard_pos[i] = [], soft_pos[i] = [],
2: negs[i] = [] for each i in set(Y)
3:

4: nnk = NNKMeans(|set(Y)|).fit(X, Y)
5: preds, centers = nnk.predict(X)
6: rel_score, inconsistency =
7: scoring(X, preds, centers, top_k)
8:

9: for i = 0 to |X| do
10: pred, y = (preds[i], Y[i])
11: rel, inc = (rel_score[i],
12: inconsistency[i])
13: if pred == y then
14: soft_pos[y] += [(i, rel, inc)]
15: else
16: hard_pos[y] += [(i, rel, inc)]
17: negs[pred] += [(i, rel, inc)]
18:

19: # sort hard positives desc by relevance
20: hard_pos = sort(hard_pos,
21: key=lambda z:z[1], ’desc’)
22:

23: # sort negs desc by their inconcsistency score
24: negs = {e: sort(v, key=lambda z:z[2],
25: ’desc’) for e, v in negs.items()}
26: # split them into soft and hard negs; sort them
27: # desc by their relevance score
28: soft_negs = {e: sort(v[:len(v)//2],
29: key=lambda z:z[1], ’desc’) for e, v
30: in negs.items()}
31: hard_negs = {e: sort(v[len(v)//2:],
32: key=lambda z:z[1], ’desc’) for e, v
33: in negs.items()}
34:

35: return soft_pos, hard_pos, soft_neg,
36: hard_neg

We denote X as the aggregated representations301

of all dialogue contexts in CK and their sum-302

maries, and Y as the sequence of corresponding303

ground truth behavioral errors from EK . preds304

and centers denote the predicted behavioral errors305

and assigned cluster centers. scoring calculates306

the entropy and inconsistency values by consider-307

ing the top_k nearest neighbors, and returns the308

relevance scores and inconsistency values.309

We sort the samples in negs in descend-310

ing order of inconsistency, assigning the first311

half to soft_negatives and the second half to312

hard_negatives for the corresponding behavioral 313

error type. Finally, we sort hard_pos, soft_pos, 314

hard_neg, and soft_neg according to their rele- 315

vance scores in descending order. 316

During training, given a sample x ∈ CK of 317

e ∈ EK , we randomly decide to dequeue x− from 318

hard_neg[e] or soft_neg[e]. If both are ex- 319

hausted, we sample x− from a different error type. 320

Similarly, we dequeue x+ from hard_pos[e] or 321

sample it from soft_pos[e]. If hard_pos[e] is 322

exhausted, we sample x+ from soft_pos[e]. In 323

our implementation, we ensure x+ ̸= x. 324

4.3 Error Definition Generation 325

We employ Llama-3.1 8B-Instruct (Dubey et al., 326

2024) to generate definitions for newly discovered 327

behavioral errors. We prompt the model to produce 328

definitions that characterize the problem present 329

in the associated dialogue contexts. To enrich the 330

prompt with additional context, we include the cor- 331

responding dialogue summaries. Similarly to dia- 332

logue summary generation, we incorporate direc- 333

tives to circumvent pre-trained safety mechanisms 334

to enable the analysis of dialogues with inappro- 335

priate language. Additionally, we include three 336

randomly sampled definitions of known behavioral 337

errors from the target dataset to encourage align- 338

ment.4 Figure 2 shows an example output. We 339

provide the full prompt in Appendix A. 340

5 Experiments 341

We evaluate Error Detection and Error Definition 342

Generation separately. For Error Detection, we 343

vary the ratio of known to novel error types (open- 344

ness) from 25% to 75% and perform ablation stud- 345

ies for a detailed assessment of SEEED. For Er- 346

ror Definition Generation, we perform a manual 347

analysis to evaluate the alignment of generated def- 348

initions with ground truth definitions. To assess 349

the generalizability of SEEED, we conduct intent 350

detection experiments across the same range of 351

openness used in the Error Detection experiments. 352

LLM Baselines For LLM-based error detection, 353

we use GPT-4o (Ouyang et al., 2022) and Phi- 354

4 (Abouelenin et al., 2025) as baselines, repre- 355

senting recent state-of-the-art models. Following 356

Mendonça et al. (2024), we prompt both models to 357

detect behavioral errors and provide rationales for 358

their decisions. For in-context learning, we include 359

4Preliminary experiments indicated that this yields better
alignment with the existing error types in the dataset.
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Openness Method FEDI-Error ABCEval Soda-Eval

H-Score Acc-K Acc-N ARI NMI H-Score Acc-K Acc-N ARI NMI H-Score Acc-K Acc-N ARI NMI

25%

Random 0.11 0.12 0.11 — — 0.10 0.11 0.09 — — 0.13 0.17 0.10 — —

GPT-4o (in-context) 0.14 0.19 0.11 — — 0.32 0.47 0.25 — — 0.0 0.33 0.0 — —
Phi-4 (in-context) 0.09 0.12 (⇓.07) 0.07 (⇓.04) — — 0.12 0.14 (⇓.33) 0.11 (⇓.14) — — 0.03 0.12 (⇓.21) 0.02 (⇑.02) — —
Phi-4 (finetuned) 0.15 0.19 0.13 (⇑.02) — — 0.24 0.29 (⇓.18) 0.21 (⇓.04) — — 0.16 0.30 (⇓.03) 0.11 (⇑.11) — —

KNN-Contrastive 0.33 0.30 (⇑.11) 0.37 (⇑.26) 0.06 0.10 0.38 0.55 (⇑.08) 0.30 (⇑.05) 0.07 0.46 0.27 0.41 (⇑.08) 0.20 (⇑.20) 0.08 0.16
SynCID 0.27 0.40 (⇑.21) 0.20 (⇑.09) 0.06 0.11 0.53 0.45 (⇓.02) 0.68 (⇑.43) 0.03 0.41 0.31 0.38 (⇑.05) 0.26 (⇑.26) 0.11 0.14
LOOP 0.26 0.37 (⇑.18) 0.19 (⇑.08) 0.09 0.10 0.51 0.43 (⇓.04) 0.63 (⇑.38) 0.01 0.37 0.33 0.36 (⇑.03) 0.31 (⇑.31) 0.07 0.13

SEEED 0.38 0.41 (⇑.22) 0.34 (⇑.23) 0.19 0.19 0.53 0.46 (⇓.01) 0.68 (⇑.43) 0.21 0.45 0.40 0.41 (⇑.08) 0.39†(⇑.39) 0.15 0.17

50%

Random 0.11 0.13 0.10 — — 0.08 0.12 0.06 — — 0.10 0.11 0.10 — —

GPT-4o (in-context) 0.17 0.18 0.17 — — 0.37 0.28 0.42 — — 0.23 0.28 0.19 — —
Phi-4 (in-context) 0.07 0.09 (⇓.09) 0.06 (⇓.11) — — 0.02 0.11 (⇓.17) 0.09 (⇓.33) — — 0.10 0.16 (⇓.12) 0.07 (⇓.12) — —
Phi-4 (finetuned) 0.14 0.21 (⇑.03) 0.11 (⇓.06) — — 0.24 0.31 (⇓.03) 0.19 (⇓.23) — — 0.18 0.29 (⇑.01) 0.13 (⇓.06) — —

KNN-Contrastive 0.26 0.33 (⇑.15) 0.21 (⇑.04) 0.07 0.09 0.54 0.64 (⇑.36) 0.47 (⇑.05) 0.10 0.48 0.28 0.38 (⇑.10) 0.23 (⇑.04) 0.06 0.13
SynCID 0.26 0.34 (⇑.16) 0.21 (⇑.04) 0.04 0.09 0.59 0.55 (⇑.27) 0.64 (⇑.22) 0.11 0.47 0.27 0.40 (⇑.12) 0.21 (⇑.02) 0.09 0.11
LOOP 0.22 0.39 (⇑.21) 0.16 (⇓.01) 0.07 0.07 0.45 0.48 (⇑.20) 0.43 (⇑.01) 0.03 0.41 0.24 0.55 (⇑.27) 0.16 (⇓.03) 0.11 0.16

SEEED 0.33 0.48†(⇑.30) 0.22 (⇑.05) 0.13 0.15 0.64 0.67†(⇑.39) 0.62 (⇑.20) 0.29 0.51 0.37 0.49 (⇑.21) 0.30†(⇑.11) 0.19 0.19

75%

Random 0.12 0.12 0.12 — — 0.12 0.13 0.11 — — 0.11 0.14 0.09 — —

GPT-4o (in-context) 0.16 0.15 0.17 — — 0.39 0.32 0.49 — — 0.24 0.19 0.31 — —
Phi-4 (in-context) 0.08 0.11 (⇓.04) 0.06 (⇓.11) — — 0.09 0.13 (⇓.19) 0.08 (⇓.41) — — 0.06 0.15 (⇓.04) 0.09 (⇓.22) — —
Phi-4 (finetuned) 0.12 0.22 (⇑.07) 0.08 (⇓.09) — — 0.17 0.28 (⇓.04) 0.12 (⇓.37) — — 0.11 0.26 (⇑.07) 0.15 (⇓.16) — —

KNN-Contrastive 0.22 0.37 (⇑.22) 0.16 (⇓.01) 0.06 0.07 0.47 0.60 (⇑.28) 0.44 (⇓.05) 0.11 0.46 0.27 0.42 (⇑.23) 0.19 (⇓.12) 0.04 0.09
SynCID 0.23 0.36 (⇑.21) 0.17 0.06 0.01 0.54 0.59 (⇑.27) 0.50 (⇑.01) 0.07 0.44 0.25 0.22 (⇑.03) 0.28 (⇓.03) 0.02 0.06
LOOP 0.25 0.43 (⇑.28) 0.18 (⇑.01) 0.05 0.01 0.48 0.69 (⇑.37) 0.37 (⇓.12) 0.07 0.44 0.22 0.31 (⇑.12) 0.17 (⇓.14) 0.07 0.08

SEEED 0.37 0.64†(⇑.49) 0.26†(⇑.09) 0.16 0.17 0.60 0.75†(⇑.43) 0.50 (⇑.01) 0.21 0.47 0.42 0.61†(⇑.42) 0.32†(⇑.01) 0.12 0.14

Table 1: Results of our error detection experiments, averaged over three independent runs. The random baseline
assigns equal probability to all error types, sampling from a uniform distribution. The deltas indicate differences
from the GPT-4o results. † marks statistically significant improvements in Acc-K or Acc-N over the top-performing
baseline, as determined by a t-test with p-value ≤ 0.05. To ensure comparability, novel behavioral errors were
randomly sampled once per run and degree of openness (see Appendix C for details).

all ground truth error definitions in the prompt, but360

only provide examples for known types. For fine-361

tuning Phi-4, we restrict training to known error362

types. We provide more details in Appendix B.363

Encoder-Based Baselines We adapt Syn-364

CID (Liang et al., 2024) and LOOP (An et al.,365

2024), two state-of-the-art methods for intent366

detection, for error detection. Both require367

multi-stage training and contrastive learning with368

k-Nearest Neighbors, as originally proposed369

by Zhou et al. (2022), which we refer to as370

KNN-Contrastive in our experiments. Appendix B371

provides more details.372

Datasets We evaluate on the error-annotated sub-373

set of FEDI (Petrak et al., 2024), FEDI-Error,374

Soda-Eval (Mendonça et al., 2024), and ABCE-375

val (Finch et al., 2023a). FEDI-Error and Soda-376

Eval consist of synthetically generated data. While377

FEDI-Error focuses on task-oriented and document-378

grounded dialogues intentionally generated to ex-379

hibit behavioral errors, Soda-Eval comprises error-380

annotated open-domain dialogues automatically ex-381

tracted from SODA (Kim et al., 2023). ABCE-382

val contains human-bot open-domain dialogues for383

evaluating dialogue system behavior. For intent384

detection, we use CLINC (Larson et al., 2019),385

BANKING (Casanueva et al., 2020), and Stack-386

Overflow (Xu et al., 2015). We provide more de-387

tails, including dataset statistics and error type dis- 388

tributions, in Appendix C. 389

Evaluation Metrics We evaluate performance 390

using the H-Score (Saito and Saenko, 2021), the 391

harmonic mean of accuracy on classes included and 392

excluded during training (e.g., known and novel 393

error types), denoted as Acc-K and Acc-N, respec- 394

tively. For cluster quality, we use the ARI (Hubert 395

and Arabie, 1985) and NMI (Strehl and Ghosh, 396

2002) scores.5 ARI measures agreement between 397

cluster assignments, while NMI captures cluster 398

entropy. A low ARI score indicates random assign- 399

ments, and a low NMI score suggests the algorithm 400

failed to capture meaningful patterns in the data. 401

Implementation Following SynCID (Liang 402

et al., 2024) and LOOP (An et al., 2024), we use 403

the pre-trained bert-base-uncased model (Devlin 404

et al., 2019) for both the summary and context en- 405

coders, and set m = 0.3. We provide experiments 406

with different values for m in Appendix D. In 407

Appendix B, we provide additional implementation 408

details, including hyperparameters, infrastructure, 409

input, and output formats.6 410

5For ARI and NMI, we use the implementation provided
in Sciki-learn (last accessed May 3, 2025).

6For bert-base-uncased, Phi-4-mini-instruct and Llama-3.1
8B-Instruct, we utilize the models provided in the Hugging
Face Model Hub (last accessed May 3, 2025).

6

https://scikit-learn.org/dev/modules/generated/sklearn.metrics.adjusted_rand_score.html
https://scikit-learn.org/1.6/modules/generated/sklearn.metrics.normalized_mutual_info_score.html
https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/microsoft/Phi-4-mini-instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct


Method CLINC BANKING StackOverflow

H-Score Acc-K Acc-N ARI NMI H-Score Acc-K Acc-N ARI NMI H-Score Acc-K Acc-N ARI NMI

KNN-Contrastive 0.64 0.88 0.50 0.61 0.86 0.51 0.85 0.36 0.51 0.80 0.56 0.82 0.43 0.47 0.64
SynCID 0.77 0.93 (⇑.05) 0.65 (⇑.15) 0.71 0.90 0.64 0.86 (⇑.01) 0.51 (⇑.15) 0.59 0.84 0.70 0.80 (⇓.02) 0.63 (⇑.20) 0.53 0.70
LOOP 0.81 0.93 (⇑.05) 0.72 (⇑.22) 0.76 0.92 0.63 0.89 (⇑.04) 0.49 (⇑.13) 0.62 0.86 0.76 0.91 (⇑.09) 0.66 (⇑.23) 0.67 0.78

SEEED 0.84 0.95 (⇑.07) 0.76†(⇑.26) 0.75 0.91 0.79 0.93 (⇑.08) 0.69†(⇑.33) 0.69 0.86 0.87 0.93 (⇑.12) 0.83†(⇑.40) 0.75 0.82

Table 2: Results of our intent detection experiments, averaged over three independent runs and all levels of openness
(see Appendix D.5 for detailed results). The deltas show differences from KNN-Contrastive. † marks statistically
significant improvements in Acc-K or Acc-N over the top-performing baseline, as determined by a t-test with
p-value ≤ 0.05. Unknown intents were randomly sampled once per run and level of openness.

5.1 Error Detection411

Encoder-Based Baselines The results in Table 1412

show that SEEED consistently improves perfor-413

mance across all datasets. We observe that exten-414

sive dialogue contexts are more prone to misclas-415

sification, suggesting that many of the included416

utterances may be irrelevant or detrimental to iden-417

tifying the error exhibited in the last agent utterance.418

Ambiguous error types also pose a significant chal-419

lenge. For example, in FEDI (Petrak et al., 2024),420

both Ignore Expectation and Ignore Request de-421

scribe situations where the agent fails to fulfill the422

user request. We find that augmenting dialogue423

contexts with synthetically generated descriptions424

mitigates these issues, particularly enhancing the425

detection of novel error types. However, the effec-426

tiveness depends on the quality of the generated427

descriptions. While SEEED generates summaries428

relevant to error detection, SynCID (Liang et al.,429

2024) derives new descriptions from the context,430

often introducing hallucinations into the data.431

We provide further analysis in Appendix D, in-432

cluding ablation experiments with SynCID and433

LOOP, as well as experiments combining LOOP434

with LBSR, demonstrating that LBSR can further435

enhance the performance of LOOP.436

LLM Baselines As shown in Table 1, LLMs ex-437

hibit limitations in detecting behavioral errors. Us-438

ing in-context learning, Phi-4 frequently performs439

below the random baseline. Fine-tuning improves440

the detection of known behavioral errors, occa-441

sionally surpassing GPT-4o, for example, in the442

75% openness experiments on FEDI-Error (Petrak443

et al., 2024) and Soda-Eval (Mendonça et al., 2024).444

However, the impact of fine-tuning on detecting445

novel behavioral errors is marginal. The model fre-446

quently outputs No Error Found, indicating limited447

generalizability. Ambiguous error type definitions448

further degrade performance, e.g., GPT-4o often449

confuses Commonsense Contradiction with Unin-450

terpretable in ABCEval (Finch et al., 2023a) due451

to overlapping definitions. We provide additional 452

analysis in Appendix D. 453

Ablation Experiments Table 3 presents the re- 454

sults of our ablation study on the FEDI-Error 455

dataset (Petrak et al., 2024). The first row shows 456

the performance of SEEED without any ablations, 457

while each subsequent row reports results with 458

the respective component removed to assess its 459

contribution. The experiments excluding NNK- 460

Means (Shekkizhar and Ortega, 2022) use k-Means 461

for clustering (including LBSR). The experiments 462

without LBSR randomly sample the positive coun- 463

terparts from the training data (same error type), 464

and the experiments excluding SNL (Frosst et al., 465

2019) were restricted to the cross-entropy objective. 466

Method FEDI-Error

H-Score Acc-K Acc-N ARI NMI

SEEED 0.36 0.49 0.31 0.18 0.18
w/o NNK-Means 0.34 0.41 (⇓.08) 0.29 (⇓.02) 0.17 0.19

LBSR w/o negs. 0.27 0.28 (⇓.13) 0.27 (⇓.02) 0.15 0.13
w/o LBSR 0.26 0.27 (⇓.01) 0.26 (⇓.01) 0.12 0.10

SNL w/o margin 0.24 0.26 (⇓.01) 0.22 (⇓.04) 0.09 0.10
w/o SNL 0.21 0.24 (⇓.02) 0.19 (⇓.03) 0.06 0.06

w/o summaries 0.18 0.21 (⇓.03) 0.16 (⇓.03) 0.02 0.04

Table 3: Results of our ablation experiments, averaged
over three independent runs and all levels of openness.
The deltas show differences from the preceding row.

467

Excluding NNK-Means results in substantial per- 468

formance degradation, highlighting the advantages 469

of soft-clustering for this task. LBSR augments 470

the effectiveness of SNL, especially when the nega- 471

tive counterparts were included. Omitting the mar- 472

gin parameter further reduces the efficacy of SNL. 473

Excluding the dialogue summaries, effectively re- 474

ducing SEEED to cross-entropy optimization from 475

dialogue contexts, reduces the performance even 476

further. 477

Error Definition Generation Table 4 presents 478

excerpts from our manual analysis of Error Def- 479

7



inition Generation, demonstrating the ability of480

Llama-3.1 8B-Instruct (Dubey et al., 2024) to pro-481

duce fluent and informative error type definitions482

based on our prompt design. We provide the full483

results for this experiment in Appendix D.

Dataset Ground Truth Generated Acc-N

FEDI-Error Attribute Error When

the system fails to cor-

rectly extract or under-

stand the necessary slots

or attributes from the

user’s utterance, this is

called an attribute error.

Attribute Error When

the system fails to accu-

rately extract or under-

stand necessary informa-

tion from a user utter-

ance that is necessary for

task completion.

0.27

ABCEval Ignore Responses that

are completely off-topic,

fail to address the asked

question, or are other-

wise completely inappro-

priate in the context are

considered to be ignor-

ing the other speaker.

Off-Topic Response
The response deviates

from the topic, fails to

answer the posed ques-

tion, or is contextually

inappropriate, indicating

a disregard for the other

speaker.

0.61

Soda-Eval Antisocial Contains un-

safe or inappropriate be-

haviour.

Disrespectful Character-

ized by the use of offen-

sive language, deroga-

tory terms, and aggres-

sive tone, which can

cause emotional distress.

0.33

Table 4: Excerpts of definitions generated for novel be-
havioral errors in the 25%-openness experiments, along
with their corresponding prediction accuracy (Acc-N).

484
For generation, we consider ten dialogue con-485

texts and their summaries, each associated by486

SEEED with the corresponding ground truth er-487

ror types.7 We find that including summaries has488

a positive impact, as they provide contextual infor-489

mation that highlights the error exhibited in the last490

agent utterance. For instance, in Soda-Eval (Men-491

donça et al., 2024), the generated definitions better492

capture the nature of the error and offer more de-493

tails compared to the original definitions.494

Intent Detection Table 2 presents the results of495

our intent detection experiments. SEEED signif-496

icantly improves performance, particularly in de-497

tecting unknown intents. For example, compared498

to LOOP (An et al., 2024), it improves the accuracy499

of detecting unknown intents by up to 17 points on500

StackOverflow (Xu et al., 2015) and the accuracy501

of detecting known intents by up to 4 points on502

BANKING (Casanueva et al., 2020). Figure 3 also503

shows that SEEED produces more compact and504

well-separated clusters, similar to LOOP, and gen-505

7Due to its small size, this threshold could not be applied
to ABCEval (Finch et al., 2023a).

SEEED LOOP

SynCID KNN-Contrastive

Scala
Wordpress

Bash
Ajax

SVN
Cocoa

Spring
Hibernate

OSX
Magneto

c

Figure 3: t-SNE visualization of the representation
space for the ten most common intents in the Stack-
Overflow dataset from the 25% openness experiments.
Scala and Bash (dotted lines) are two of the intents con-
sidered unknown in these experiments.

eralizes well to unseen intents, such as Scala and 506

Bash. Meanwhile, SynCID (Liang et al., 2024) and 507

KKN-Contrastive (Zhou et al., 2022) demonstrate 508

comparatively poorer inter-class separability, indi- 509

cating potential confusion between distinct intent 510

types. 511

The datasets used focus on intent detection at 512

the utterance level, without incorporating dialogue 513

contexts or external knowledge sources. This sim- 514

plification supports higher detection accuracy and 515

improved cluster quality. 516

6 Conclusion 517

In this work, we introduce Automated Error Dis- 518

covery, a framework for detecting and defining 519

behavioral errors in conversational AI, and propose 520

SEEED as an encoder-based alternative to LLMs 521

for error detection. SEEED outperforms adapted 522

baselines, including GPT-4o, across all levels of 523

openness and achieves state-of-the-art performance 524

in unknown intent detection. Our experiments high- 525

light the impact of our enhancements to the Soft 526

Nearest Neighbor Loss and the efficacy of Label- 527

Based Sample Ranking. We also show the effective- 528

ness of LLMs in generating definitions for novel 529

behavioral errors identified by SEEED. Our results 530

indicate that SEEED is a scalable approach with the 531

potential to enhance response correction pipelines 532

through improved error detection capabilities. 533
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7 Limitations534

Our Approach For fine-tuning SEEED, LBSR535

is crucial. If NNK-Means (Shekkizhar and Ortega,536

2022) fails to identify soft positives for a given537

error type and hard positives are exhausted, LBSR538

cannot generate positive counterparts. However,539

we did not observe this issue in our experiments,540

considering it a theoretical limitation that is not541

addressed by LIS (An et al., 2024) either.542

For summary generation, we use Llama-3.1543

8B-Instruct (Dubey et al., 2024), despite its pre-544

trained safety mechanisms. To reduce interference545

when handling harmful or inappropriate language,546

we include explicit prompt instructions. We did547

not observe any limitations in our experiments,548

though these instructions may not generalize to549

other LLMs.550

Datasets Used The FEDI (Petrak et al., 2024)551

and Soda-Eval (Mendonça et al., 2024) datasets552

exhibit inherent qualitative variability due to their553

synthetic nature. Both are unique for their size554

and diversity of behavioral error types. In con-555

trast, ABCEval (Finch et al., 2023a) is consider-556

ably smaller but remains highly representative of557

real-world scenarios due to its distinctive charac-558

teristics.559

Error Detection Experiments Our experimen-560

tal setup strictly follows prior peer-reviewed work.561

However, it remains a simplified simulation of real-562

world conditions due to assumptions made for re-563

producibility: (1) We assume that dialogue contexts564

always end with an erroneous agent utterance. (2)565

The encoder-based approaches assume the total566

number of error types to be known during the final567

clustering step, whereas in real-world applications,568

this number must be estimated. (3) The prompts569

used for LLM-based approaches include the def-570

initions of novel behavioral errors, omitting only571

in-context examples. This may be considered an572

advantage over encoder-based approaches. (4) For573

knowledge-grounded dialogues, we assume ground574

truth knowledge documents to be given.575

Our results indicate relatively poor performance576

of LLMs in error detection, aligning with prior577

work (Tyen et al., 2024; Finch et al., 2023b; Men-578

donça et al., 2024). For Phi-4 (Abouelenin et al.,579

2025), we followed best practices from the Hug-580

ging Face documentation without further parameter581

or prompt tuning. Performance may improve with582

alternative configurations.583

References 584

Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkin- 585
son, Hany Awadalla, Nguyen Bach, Jianmin Bao, 586
Alon Benhaim, Martin Cai, Vishrav Chaudhary, Con- 587
gcong Chen, Dong Chen, Dongdong Chen, Junkun 588
Chen, Weizhu Chen, Yen-Chun Chen, Yi-ling Chen, 589
Qi Dai, Xiyang Dai, Ruchao Fan, Mei Gao, Min Gao, 590
Amit Garg, Abhishek Goswami, Junheng Hao, Amr 591
Hendy, Yuxuan Hu, Xin Jin, Mahmoud Khademi, 592
Dongwoo Kim, Young Jin Kim, Gina Lee, Jinyu 593
Li, Yunsheng Li, Chen Liang, Xihui Lin, Zeqi Lin, 594
Mengchen Liu, Yang Liu, Gilsinia Lopez, Chong 595
Luo, Piyush Madan, Vadim Mazalov, Arindam Mi- 596
tra, Ali Mousavi, Anh Nguyen, Jing Pan, Daniel 597
Perez-Becker, Jacob Platin, Thomas Portet, Kai Qiu, 598
Bo Ren, Liliang Ren, Sambuddha Roy, Ning Shang, 599
Yelong Shen, Saksham Singhal, Subhojit Som, Xia 600
Song, Tetyana Sych, Praneetha Vaddamanu, Shuo- 601
hang Wang, Yiming Wang, Zhenghao Wang, Haibin 602
Wu, Haoran Xu, Weijian Xu, Yifan Yang, Ziyi Yang, 603
Donghan Yu, Ishmam Zabir, Jianwen Zhang, Li Lyna 604
Zhang, Yunan Zhang, and Xiren Zhou. 2025. Phi-4- 605
mini technical report: Compact yet powerful multi- 606
modal language models via mixture-of-loras. CoRR, 607
abs/2503.01743. 608

Wenbin An, Wenkai Shi, Feng Tian, Haonan Lin, QianY- 609
ing Wang, Yaqiang Wu, Mingxiang Cai, Luyan Wang, 610
Yan Chen, Haiping Zhu, and Ping Chen. 2024. Gener- 611
alized category discovery with large language models 612
in the loop. In Findings of the Association for Com- 613
putational Linguistics: ACL 2024, pages 8653–8665, 614
Bangkok, Thailand. Association for Computational 615
Linguistics. 616

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda 617
Askell, Anna Chen, Nova DasSarma, Dawn Drain, 618
Stanislav Fort, Deep Ganguli, Tom Henighan, 619
Nicholas Joseph, Saurav Kadavath, Jackson Kernion, 620
Tom Conerly, Sheer El Showk, Nelson Elhage, Zac 621
Hatfield-Dodds, Danny Hernandez, Tristan Hume, 622
Scott Johnston, Shauna Kravec, Liane Lovitt, Neel 623
Nanda, Catherine Olsson, Dario Amodei, Tom B. 624
Brown, Jack Clark, Sam McCandlish, Chris Olah, 625
Benjamin Mann, and Jared Kaplan. 2022. Train- 626
ing a helpful and harmless assistant with rein- 627
forcement learning from human feedback. CoRR, 628
abs/2204.05862. 629

Iñigo Casanueva, Tadas Temcinas, Daniela Gerz, 630
Matthew Henderson, and Ivan Vulic. 2020. Efficient 631
intent detection with dual sentence encoders. CoRR, 632
abs/2003.04807. 633

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 634
Kristina Toutanova. 2019. BERT: Pre-training of 635
deep bidirectional transformers for language under- 636
standing. In Proceedings of the 2019 Conference of 637
the North American Chapter of the Association for 638
Computational Linguistics: Human Language Tech- 639
nologies, Volume 1 (Long and Short Papers), pages 640
4171–4186, Minneapolis, Minnesota. Association for 641
Computational Linguistics. 642

9

https://doi.org/10.48550/ARXIV.2503.01743
https://doi.org/10.48550/ARXIV.2503.01743
https://doi.org/10.48550/ARXIV.2503.01743
https://doi.org/10.48550/ARXIV.2503.01743
https://doi.org/10.48550/ARXIV.2503.01743
https://doi.org/10.18653/v1/2024.findings-acl.512
https://doi.org/10.18653/v1/2024.findings-acl.512
https://doi.org/10.18653/v1/2024.findings-acl.512
https://doi.org/10.18653/v1/2024.findings-acl.512
https://doi.org/10.18653/v1/2024.findings-acl.512
https://doi.org/10.48550/ARXIV.2204.05862
https://doi.org/10.48550/ARXIV.2204.05862
https://doi.org/10.48550/ARXIV.2204.05862
https://doi.org/10.48550/ARXIV.2204.05862
https://doi.org/10.48550/ARXIV.2204.05862
https://arxiv.org/abs/2003.04807
https://arxiv.org/abs/2003.04807
https://arxiv.org/abs/2003.04807
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423


Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,643
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,644
Akhil Mathur, Alan Schelten, Amy Yang, Angela645
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,646
Archi Mitra, Archie Sravankumar, Artem Korenev,647
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien648
Rodriguez, Austen Gregerson, Ava Spataru, Bap-649
tiste Rozière, Bethany Biron, Binh Tang, Bobbie650
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe651
Bi, Chris Marra, Chris McConnell, Christian Keller,652
Christophe Touret, Chunyang Wu, Corinne Wong,653
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-654
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,655
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,656
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,657
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,658
Emily Dinan, Eric Michael Smith, Filip Radenovic,659
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-660
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,661
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-662
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,663
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan664
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan665
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,666
Jeet Shah, Jelmer van der Linde, Jennifer Billock,667
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,668
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,669
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph670
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,671
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate672
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and673
et al. 2024. The llama 3 herd of models. CoRR,674
abs/2407.21783.675

Sarah E. Finch, James D. Finch, and Jinho D. Choi.676
2023a. Don‘t forget your ABC‘s: Evaluating the677
state-of-the-art in chat-oriented dialogue systems. In678
Proceedings of the 61st Annual Meeting of the As-679
sociation for Computational Linguistics (Volume 1:680
Long Papers), pages 15044–15071, Toronto, Canada.681
Association for Computational Linguistics.682

Sarah E. Finch, Ellie S. Paek, and Jinho D. Choi. 2023b.683
Leveraging large language models for automated di-684
alogue analysis. In Proceedings of the 24th Annual685
Meeting of the Special Interest Group on Discourse686
and Dialogue, pages 202–215, Prague, Czechia. As-687
sociation for Computational Linguistics.688

Nicholas Frosst, Nicolas Papernot, and Geoffrey E. Hin-689
ton. 2019. Analyzing and improving representations690
with the soft nearest neighbor loss. In Proceedings of691
the 36th International Conference on Machine Learn-692
ing, ICML 2019, 9-15 June 2019, Long Beach, Cali-693
fornia, USA, volume 97 of Proceedings of Machine694
Learning Research, pages 2012–2020. PMLR.695

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,696
Yujiu Yang, Nan Duan, and Weizhu Chen. 2024.697
CRITIC: large language models can self-correct with698
tool-interactive critiquing. In The Twelfth Inter-699
national Conference on Learning Representations,700
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-701
Review.net.702

Braden Hancock, Antoine Bordes, Pierre-Emmanuel 703
Mazare, and Jason Weston. 2019. Learning from 704
dialogue after deployment: Feed yourself, chatbot! 705
In Proceedings of the 57th Annual Meeting of the As- 706
sociation for Computational Linguistics, pages 3667– 707
3684, Florence, Italy. Association for Computational 708
Linguistics. 709

Alexander Havrilla, Maksym Zhuravinskyi, Duy Phung, 710
Aman Tiwari, Jonathan Tow, Stella Biderman, 711
Quentin Anthony, and Louis Castricato. 2023. trlX: 712
A framework for large scale reinforcement learning 713
from human feedback. In Proceedings of the 2023 714
Conference on Empirical Methods in Natural Lan- 715
guage Processing, pages 8578–8595, Singapore. As- 716
sociation for Computational Linguistics. 717

Ryuichiro Higashinaka, Masahiro Mizukami, Kotaro 718
Funakoshi, Masahiro Araki, Hiroshi Tsukahara, and 719
Yuka Kobayashi. 2015. Fatal or not? finding errors 720
that lead to dialogue breakdowns in chat-oriented 721
dialogue systems. In Proceedings of the 2015 Con- 722
ference on Empirical Methods in Natural Language 723
Processing, pages 2243–2248, Lisbon, Portugal. As- 724
sociation for Computational Linguistics. 725

Chin-Lung Hsu and Judy Chuan-Chuan Lin. 2023. Un- 726
derstanding the user satisfaction and loyalty of cus- 727
tomer service chatbots. Journal of Retailing and 728
Consumer Services. 729

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan 730
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 731
Weizhu Chen. 2022. Lora: Low-rank adaptation of 732
large language models. In The Tenth International 733
Conference on Learning Representations, ICLR 2022, 734
Virtual Event, April 25-29, 2022. OpenReview.net. 735

Lawrence J. Hubert and Phipps Arabie. 1985. Compar- 736
ing partitions. Journal of Classification, 2:193–218. 737

John D. Hunter. 2007. Matplotlib: A 2d graphics envi- 738
ronment. Comput. Sci. Eng., 9(3):90–95. 739

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan 740
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea 741
Madotto, and Pascale Fung. 2023. Survey of halluci- 742
nation in natural language generation. ACM Comput. 743
Surv., 55(12). 744

Zhen Jiang, Yongzhao Zhan, Qirong Mao, and Yang Du. 745
2023. Semi-supervised clustering under a "compact- 746
cluster" assumption. IEEE Trans. Knowl. Data Eng., 747
35(5):5244–5256. 748

Hyunwoo Kim, Jack Hessel, Liwei Jiang, Peter West, 749
Ximing Lu, Youngjae Yu, Pei Zhou, Ronan Bras, 750
Malihe Alikhani, Gunhee Kim, Maarten Sap, and 751
Yejin Choi. 2023. SODA: Million-scale dialogue dis- 752
tillation with social commonsense contextualization. 753
In Proceedings of the 2023 Conference on Empiri- 754
cal Methods in Natural Language Processing, pages 755
12930–12949, Singapore. Association for Computa- 756
tional Linguistics. 757

10

https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.18653/v1/2023.acl-long.839
https://doi.org/10.18653/v1/2023.acl-long.839
https://doi.org/10.18653/v1/2023.acl-long.839
https://doi.org/10.18653/v1/2023.sigdial-1.20
https://doi.org/10.18653/v1/2023.sigdial-1.20
https://doi.org/10.18653/v1/2023.sigdial-1.20
http://proceedings.mlr.press/v97/frosst19a.html
http://proceedings.mlr.press/v97/frosst19a.html
http://proceedings.mlr.press/v97/frosst19a.html
https://openreview.net/forum?id=Sx038qxjek
https://openreview.net/forum?id=Sx038qxjek
https://openreview.net/forum?id=Sx038qxjek
https://doi.org/10.18653/v1/P19-1358
https://doi.org/10.18653/v1/P19-1358
https://doi.org/10.18653/v1/P19-1358
https://doi.org/10.18653/v1/2023.emnlp-main.530
https://doi.org/10.18653/v1/2023.emnlp-main.530
https://doi.org/10.18653/v1/2023.emnlp-main.530
https://doi.org/10.18653/v1/2023.emnlp-main.530
https://doi.org/10.18653/v1/2023.emnlp-main.530
https://doi.org/10.18653/v1/D15-1268
https://doi.org/10.18653/v1/D15-1268
https://doi.org/10.18653/v1/D15-1268
https://doi.org/10.18653/v1/D15-1268
https://doi.org/10.18653/v1/D15-1268
https://api.semanticscholar.org/CorpusID:253933151
https://api.semanticscholar.org/CorpusID:253933151
https://api.semanticscholar.org/CorpusID:253933151
https://api.semanticscholar.org/CorpusID:253933151
https://api.semanticscholar.org/CorpusID:253933151
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://api.semanticscholar.org/CorpusID:189915041
https://api.semanticscholar.org/CorpusID:189915041
https://api.semanticscholar.org/CorpusID:189915041
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1109/TKDE.2022.3145347
https://doi.org/10.1109/TKDE.2022.3145347
https://doi.org/10.1109/TKDE.2022.3145347
https://doi.org/10.18653/v1/2023.emnlp-main.799
https://doi.org/10.18653/v1/2023.emnlp-main.799
https://doi.org/10.18653/v1/2023.emnlp-main.799


Hannah Rose Kirk, Andrew M. Bean, Bertie Vidgen,758
Paul Röttger, and Scott A. Hale. 2023. The past,759
present and better future of feedback learning in large760
language models for subjective human preferences761
and values. In Proceedings of the 2023 Conference762
on Empirical Methods in Natural Language Process-763
ing, pages 2409–2430, Singapore. Association for764
Computational Linguistics.765

Sachin Kumar, Vidhisha Balachandran, Lucille Njoo,766
Antonios Anastasopoulos, and Yulia Tsvetkov. 2023.767
Language generation models can cause harm: So768
what can we do about it? an actionable survey. In769
Proceedings of the 17th Conference of the European770
Chapter of the Association for Computational Lin-771
guistics, pages 3299–3321, Dubrovnik, Croatia. As-772
sociation for Computational Linguistics.773

Stefan Larson, Anish Mahendran, Joseph J. Peper,774
Christopher Clarke, Andrew Lee, Parker Hill,775
Jonathan K. Kummerfeld, Kevin Leach, Michael A.776
Laurenzano, Lingjia Tang, and Jason Mars. 2019. An777
evaluation dataset for intent classification and out-of-778
scope prediction. In Proceedings of the 2019 Confer-779
ence on Empirical Methods in Natural Language Pro-780
cessing and the 9th International Joint Conference781
on Natural Language Processing (EMNLP-IJCNLP),782
pages 1311–1316, Hong Kong, China. Association783
for Computational Linguistics.784

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas785
Mesnard, Johan Ferret, Kellie Lu, Colton Bishop,786
Ethan Hall, Victor Carbune, Abhinav Rastogi, and787
Sushant Prakash. 2024. RLAIF vs. RLHF: scaling788
reinforcement learning from human feedback with789
AI feedback. In Forty-first International Conference790
on Machine Learning, ICML 2024, Vienna, Austria,791
July 21-27, 2024. OpenReview.net.792

Quentin Lhoest, Albert Villanova del Moral, Yacine793
Jernite, Abhishek Thakur, Patrick von Platen, Suraj794
Patil, Julien Chaumond, Mariama Drame, Julien Plu,795
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-796
jan Chhablani, Bhavitvya Malik, Simon Brandeis,797
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas798
Patry, Angelina McMillan-Major, Philipp Schmid,799
Sylvain Gugger, Clément Delangue, Théo Matus-800
sière, Lysandre Debut, Stas Bekman, Pierric Cis-801
tac, Thibault Goehringer, Victor Mustar, François802
Lagunas, Alexander Rush, and Thomas Wolf. 2021.803
Datasets: A community library for natural language804
processing. In Proceedings of the 2021 Conference805
on Empirical Methods in Natural Language Process-806
ing: System Demonstrations, pages 175–184, Online807
and Punta Cana, Dominican Republic. Association808
for Computational Linguistics.809

Jinggui Liang, Lizi Liao, Hao Fei, and Jing Jiang. 2024.810
Synergizing large language models and pre-trained811
smaller models for conversational intent discovery.812
In Findings of the Association for Computational Lin-813
guistics: ACL 2024, pages 14133–14147, Bangkok,814
Thailand. Association for Computational Linguistics.815

Bing Liu and Sahisnu Mazumder. 2021. Lifelong and 816
continual learning dialogue systems: Learning dur- 817
ing conversation. In Thirty-Fifth AAAI Conference 818
on Artificial Intelligence, AAAI 2021, Thirty-Third 819
Conference on Innovative Applications of Artificial 820
Intelligence, IAAI 2021, The Eleventh Symposium 821
on Educational Advances in Artificial Intelligence, 822
EAAI 2021, Virtual Event, February 2-9, 2021, pages 823
15058–15063. AAAI Press. 824

Ewa Luger and Abigail Sellen. 2016. "like having a 825
really bad pa": The gulf between user expectation and 826
experience of conversational agents. Proceedings 827
of the 2016 CHI Conference on Human Factors in 828
Computing Systems. 829

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, 830
and Yue Zhang. 2023. An empirical study of catas- 831
trophic forgetting in large language models during 832
continual fine-tuning. CoRR, abs/2308.08747. 833

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler 834
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, 835
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, 836
Shashank Gupta, Bodhisattwa Prasad Majumder, 837
Katherine Hermann, Sean Welleck, Amir Yazdan- 838
bakhsh, and Peter Clark. 2023. Self-refine: Itera- 839
tive refinement with self-feedback. In Advances in 840
Neural Information Processing Systems 36: Annual 841
Conference on Neural Information Processing Sys- 842
tems 2023, NeurIPS 2023, New Orleans, LA, USA, 843
December 10 - 16, 2023. 844

Andrea Madotto, Zhaojiang Lin, Zhenpeng Zhou, Se- 845
ungwhan Moon, Paul Crook, Bing Liu, Zhou Yu, Eu- 846
njoon Cho, Pascale Fung, and Zhiguang Wang. 2021. 847
Continual learning in task-oriented dialogue systems. 848
In Proceedings of the 2021 Conference on Empiri- 849
cal Methods in Natural Language Processing, pages 850
7452–7467, Online and Punta Cana, Dominican Re- 851
public. Association for Computational Linguistics. 852

John Mendonça, Isabel Trancoso, and Alon Lavie. 2024. 853
Soda-eval: Open-domain dialogue evaluation in the 854
age of LLMs. In Findings of the Association for Com- 855
putational Linguistics: EMNLP 2024, pages 11687– 856
11708, Miami, Florida, USA. Association for Com- 857
putational Linguistics. 858

Fei Mi, Liangwei Chen, Mengjie Zhao, Minlie Huang, 859
and Boi Faltings. 2020. Continual learning for natu- 860
ral language generation in task-oriented dialog sys- 861
tems. In Findings of the Association for Computa- 862
tional Linguistics: EMNLP 2020, pages 3461–3474, 863
Online. Association for Computational Linguistics. 864

Ning Miao, Yee Whye Teh, and Tom Rainforth. 2024. 865
Selfcheck: Using LLMs to zero-shot check their own 866
step-by-step reasoning. In The Twelfth International 867
Conference on Learning Representations. 868

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 869
Carroll L. Wainwright, Pamela Mishkin, Chong 870
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, 871
John Schulman, Jacob Hilton, Fraser Kelton, Luke 872

11

https://doi.org/10.18653/v1/2023.emnlp-main.148
https://doi.org/10.18653/v1/2023.emnlp-main.148
https://doi.org/10.18653/v1/2023.emnlp-main.148
https://doi.org/10.18653/v1/2023.emnlp-main.148
https://doi.org/10.18653/v1/2023.emnlp-main.148
https://doi.org/10.18653/v1/2023.emnlp-main.148
https://doi.org/10.18653/v1/2023.emnlp-main.148
https://doi.org/10.18653/v1/2023.eacl-main.241
https://doi.org/10.18653/v1/2023.eacl-main.241
https://doi.org/10.18653/v1/2023.eacl-main.241
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/D19-1131
https://openreview.net/forum?id=uydQ2W41KO
https://openreview.net/forum?id=uydQ2W41KO
https://openreview.net/forum?id=uydQ2W41KO
https://openreview.net/forum?id=uydQ2W41KO
https://openreview.net/forum?id=uydQ2W41KO
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2024.findings-acl.840
https://doi.org/10.18653/v1/2024.findings-acl.840
https://doi.org/10.18653/v1/2024.findings-acl.840
https://doi.org/10.1609/AAAI.V35I17.17768
https://doi.org/10.1609/AAAI.V35I17.17768
https://doi.org/10.1609/AAAI.V35I17.17768
https://doi.org/10.1609/AAAI.V35I17.17768
https://doi.org/10.1609/AAAI.V35I17.17768
https://api.semanticscholar.org/CorpusID:1036498
https://api.semanticscholar.org/CorpusID:1036498
https://api.semanticscholar.org/CorpusID:1036498
https://api.semanticscholar.org/CorpusID:1036498
https://api.semanticscholar.org/CorpusID:1036498
https://doi.org/10.48550/ARXIV.2308.08747
https://doi.org/10.48550/ARXIV.2308.08747
https://doi.org/10.48550/ARXIV.2308.08747
https://doi.org/10.48550/ARXIV.2308.08747
https://doi.org/10.48550/ARXIV.2308.08747
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
https://doi.org/10.18653/v1/2021.emnlp-main.590
https://doi.org/10.18653/v1/2024.findings-emnlp.684
https://doi.org/10.18653/v1/2024.findings-emnlp.684
https://doi.org/10.18653/v1/2024.findings-emnlp.684
https://doi.org/10.18653/v1/2020.findings-emnlp.310
https://doi.org/10.18653/v1/2020.findings-emnlp.310
https://doi.org/10.18653/v1/2020.findings-emnlp.310
https://doi.org/10.18653/v1/2020.findings-emnlp.310
https://doi.org/10.18653/v1/2020.findings-emnlp.310
https://openreview.net/forum?id=pTHfApDakA
https://openreview.net/forum?id=pTHfApDakA
https://openreview.net/forum?id=pTHfApDakA


Miller, Maddie Simens, Amanda Askell, Peter Welin-873
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.874
2022. Training language models to follow instruc-875
tions with human feedback. In Advances in Neural876
Information Processing Systems 35: Annual Confer-877
ence on Neural Information Processing Systems 2022,878
NeurIPS 2022, New Orleans, LA, USA, November 28879
- December 9, 2022.880

Adam Paszke, Sam Gross, Francisco Massa, Adam881
Lerer, James Bradbury, Gregory Chanan, Trevor882
Killeen, Zeming Lin, Natalia Gimelshein, Luca883
Antiga, Alban Desmaison, Andreas Köpf, Edward Z.884
Yang, Zachary DeVito, Martin Raison, Alykhan Te-885
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,886
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An887
imperative style, high-performance deep learning li-888
brary. In Advances in Neural Information Processing889
Systems 32: Annual Conference on Neural Informa-890
tion Processing Systems 2019, NeurIPS 2019, De-891
cember 8-14, 2019, Vancouver, BC, Canada, pages892
8024–8035.893

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-894
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,895
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-896
cent Dubourg, Jake VanderPlas, Alexandre Passos,897
David Cournapeau, Matthieu Brucher, Matthieu Per-898
rot, and Edouard Duchesnay. 2011. Scikit-learn:899
Machine learning in python. J. Mach. Learn. Res.,900
12:2825–2830.901

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng,902
Yujia Xie, Yu Hu, Qiuyuan Huang, Lars Liden, Zhou903
Yu, Weizhu Chen, and Jianfeng Gao. 2023. Check904
your facts and try again: Improving large language905
models with external knowledge and automated feed-906
back. Preprint, arXiv:2302.12813.907

Dominic Petrak, Nafise Moosavi, Ye Tian, Nikolai908
Rozanov, and Iryna Gurevych. 2023. Learning from909
free-text human feedback – collect new datasets or910
extend existing ones? In Proceedings of the 2023911
Conference on Empirical Methods in Natural Lan-912
guage Processing, pages 16259–16279, Singapore.913
Association for Computational Linguistics.914

Dominic Petrak, Thy Thy Tran, and Iryna Gurevych.915
2024. Learning from implicit user feedback, emo-916
tions and demographic information in task-oriented917
and document-grounded dialogues. In Findings918
of the Association for Computational Linguistics:919
EMNLP 2024, pages 4573–4603, Miami, Florida,920
USA. Association for Computational Linguistics.921

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-922
pher D. Manning, Stefano Ermon, and Chelsea Finn.923
2023. Direct preference optimization: Your language924
model is secretly a reward model. In Advances in925
Neural Information Processing Systems 36: Annual926
Conference on Neural Information Processing Sys-927
tems 2023, NeurIPS 2023, New Orleans, LA, USA,928
December 10 - 16, 2023.929

Stephen Roller, Y-Lan Boureau, Jason Weston, Antoine930
Bordes, Emily Dinan, Angela Fan, David Gunning,931

Da Ju, Margaret Li, Spencer Poff, Pratik Ringshia, 932
Kurt Shuster, Eric Michael Smith, Arthur Szlam, Jack 933
Urbanek, and Mary Williamson. 2020. Open-domain 934
conversational agents: Current progress, open prob- 935
lems, and future directions. CoRR, abs/2006.12442. 936

Kuniaki Saito and Kate Saenko. 2021. Ovanet: One-vs- 937
all network for universal domain adaptation. In 2021 938
IEEE/CVF International Conference on Computer 939
Vision, ICCV 2021, Montreal, QC, Canada, October 940
10-17, 2021, pages 8980–8989. IEEE. 941

Abigail See and Christopher Manning. 2021. Under- 942
standing and predicting user dissatisfaction in a neu- 943
ral generative chatbot. In Proceedings of the 22nd 944
Annual Meeting of the Special Interest Group on Dis- 945
course and Dialogue, pages 1–12, Singapore and 946
Online. Association for Computational Linguistics. 947

Sarath Shekkizhar and Antonio Ortega. 2022. Nnk- 948
means: Data summarization using dictionary learning 949
with non-negative kernel regression. In 30th Euro- 950
pean Signal Processing Conference, EUSIPCO 2022, 951
Belgrade, Serbia, August 29 - Sept. 2, 2022, pages 952
2161–2165. IEEE. 953

Noah Shinn, Federico Cassano, Ashwin Gopinath, 954
Karthik Narasimhan, and Shunyu Yao. 2023. Re- 955
flexion: language agents with verbal reinforcement 956
learning. In Advances in Neural Information Process- 957
ing Systems, volume 36, pages 8634–8652. Curran 958
Associates, Inc. 959

Kumar Shridhar, Koustuv Sinha, Andrew Cohen, Tianlu 960
Wang, Ping Yu, Ramakanth Pasunuru, Mrinmaya 961
Sachan, Jason Weston, and Asli Celikyilmaz. 2024. 962
The ART of LLM refinement: Ask, refine, and trust. 963
In Proceedings of the 2024 Conference of the North 964
American Chapter of the Association for Computa- 965
tional Linguistics: Human Language Technologies 966
(Volume 1: Long Papers), pages 5872–5883, Mexico 967
City, Mexico. Association for Computational Lin- 968
guistics. 969

Kaya Stechly, Karthik Valmeekam, and Subbarao Kamb- 970
hampati. 2024. On the self-verification limitations 971
of large language models on reasoning and planning 972
tasks. CoRR, abs/2402.08115. 973

Alexander Strehl and Joydeep Ghosh. 2002. Cluster 974
ensembles — A knowledge reuse framework for 975
combining multiple partitions. J. Mach. Learn. Res., 976
3:583–617. 977

Gladys Tyen, Hassan Mansoor, Victor Carbune, Peter 978
Chen, and Tony Mak. 2024. LLMs cannot find rea- 979
soning errors, but can correct them given the error 980
location. In Findings of the Association for Compu- 981
tational Linguistics: ACL 2024, pages 13894–13908, 982
Bangkok, Thailand. Association for Computational 983
Linguistics. 984

Megan Ung, Jing Xu, and Y-Lan Boureau. 2022. SaFeR- 985
Dialogues: Taking feedback gracefully after conver- 986
sational safety failures. In Proceedings of the 60th 987
Annual Meeting of the Association for Computational 988

12

http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.5555/1953048.2078195
https://arxiv.org/abs/2302.12813
https://arxiv.org/abs/2302.12813
https://arxiv.org/abs/2302.12813
https://arxiv.org/abs/2302.12813
https://arxiv.org/abs/2302.12813
https://arxiv.org/abs/2302.12813
https://arxiv.org/abs/2302.12813
https://doi.org/10.18653/v1/2023.emnlp-main.1011
https://doi.org/10.18653/v1/2023.emnlp-main.1011
https://doi.org/10.18653/v1/2023.emnlp-main.1011
https://doi.org/10.18653/v1/2023.emnlp-main.1011
https://doi.org/10.18653/v1/2023.emnlp-main.1011
https://doi.org/10.18653/v1/2024.findings-emnlp.264
https://doi.org/10.18653/v1/2024.findings-emnlp.264
https://doi.org/10.18653/v1/2024.findings-emnlp.264
https://doi.org/10.18653/v1/2024.findings-emnlp.264
https://doi.org/10.18653/v1/2024.findings-emnlp.264
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
https://arxiv.org/abs/2006.12442
https://arxiv.org/abs/2006.12442
https://arxiv.org/abs/2006.12442
https://arxiv.org/abs/2006.12442
https://arxiv.org/abs/2006.12442
https://doi.org/10.1109/ICCV48922.2021.00887
https://doi.org/10.1109/ICCV48922.2021.00887
https://doi.org/10.1109/ICCV48922.2021.00887
https://doi.org/10.18653/v1/2021.sigdial-1.1
https://doi.org/10.18653/v1/2021.sigdial-1.1
https://doi.org/10.18653/v1/2021.sigdial-1.1
https://doi.org/10.18653/v1/2021.sigdial-1.1
https://doi.org/10.18653/v1/2021.sigdial-1.1
https://ieeexplore.ieee.org/document/9909928
https://ieeexplore.ieee.org/document/9909928
https://ieeexplore.ieee.org/document/9909928
https://ieeexplore.ieee.org/document/9909928
https://ieeexplore.ieee.org/document/9909928
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://doi.org/10.18653/v1/2024.naacl-long.327
https://doi.org/10.48550/ARXIV.2402.08115
https://doi.org/10.48550/ARXIV.2402.08115
https://doi.org/10.48550/ARXIV.2402.08115
https://doi.org/10.48550/ARXIV.2402.08115
https://doi.org/10.48550/ARXIV.2402.08115
https://jmlr.org/papers/v3/strehl02a.html
https://jmlr.org/papers/v3/strehl02a.html
https://jmlr.org/papers/v3/strehl02a.html
https://jmlr.org/papers/v3/strehl02a.html
https://jmlr.org/papers/v3/strehl02a.html
https://doi.org/10.18653/v1/2024.findings-acl.826
https://doi.org/10.18653/v1/2024.findings-acl.826
https://doi.org/10.18653/v1/2024.findings-acl.826
https://doi.org/10.18653/v1/2024.findings-acl.826
https://doi.org/10.18653/v1/2024.findings-acl.826
https://doi.org/10.18653/v1/2022.acl-long.447
https://doi.org/10.18653/v1/2022.acl-long.447
https://doi.org/10.18653/v1/2022.acl-long.447
https://doi.org/10.18653/v1/2022.acl-long.447
https://doi.org/10.18653/v1/2022.acl-long.447


Linguistics (Volume 1: Long Papers), pages 6462–989
6481, Dublin, Ireland. Association for Computational990
Linguistics.991

Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew992
Zisserman. 2022. Generalized category discovery.993
In IEEE/CVF Conference on Computer Vision and994
Pattern Recognition, CVPR 2022, New Orleans, LA,995
USA, June 18-24, 2022, pages 7482–7491. IEEE.996

Weikang Wang, Jiajun Zhang, Qian Li, Mei-Yuh Hwang,997
Chengqing Zong, and Zhifei Li. 2019. Incremental998
learning from scratch for task-oriented dialogue sys-999
tems. In Proceedings of the 57th Annual Meeting of1000
the Association for Computational Linguistics, pages1001
3710–3720, Florence, Italy. Association for Compu-1002
tational Linguistics.1003

Yuxia Wang, Minghan Wang, Muhammad Arslan Man-1004
zoor, Fei Liu, Georgi Nenkov Georgiev, Rocktim Jy-1005
oti Das, and Preslav Nakov. 2024. Factuality of large1006
language models: A survey. In Proceedings of the1007
2024 Conference on Empirical Methods in Natural1008
Language Processing, pages 19519–19529, Miami,1009
Florida, USA. Association for Computational Lin-1010
guistics.1011

Michael L. Waskom. 2021. seaborn: statistical data1012
visualization. J. Open Source Softw., 6(60):3021.1013

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien1014
Chaumond, Clement Delangue, Anthony Moi, Pier-1015
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-1016
icz, Joe Davison, Sam Shleifer, Patrick von Platen,1017
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,1018
Teven Le Scao, Sylvain Gugger, Mariama Drame,1019
Quentin Lhoest, and Alexander Rush. 2020. Trans-1020
formers: State-of-the-art natural language processing.1021
In Proceedings of the 2020 Conference on Empirical1022
Methods in Natural Language Processing: System1023
Demonstrations, pages 38–45, Online. Association1024
for Computational Linguistics.1025

Jiaming Xu, Peng Wang, Guanhua Tian, Bo Xu, Jun1026
Zhao, Fangyuan Wang, and Hongwei Hao. 2015.1027
Short text clustering via convolutional neural net-1028
works. In Proceedings of the 1st Workshop on Vec-1029
tor Space Modeling for Natural Language Process-1030
ing, pages 62–69, Denver, Colorado. Association for1031
Computational Linguistics.1032

Jing Xu, Megan Ung, Mojtaba Komeili, Kushal Arora,1033
Y-Lan Boureau, and Jason Weston. 2023. Learning1034
new skills after deployment: Improving open-domain1035
internet-driven dialogue with human feedback. In1036
Proceedings of the 61st Annual Meeting of the As-1037
sociation for Computational Linguistics (Volume 1:1038
Long Papers), pages 13557–13572, Toronto, Canada.1039
Association for Computational Linguistics.1040

Wenda Xu, Daniel Deutsch, Mara Finkelstein, Juraj1041
Juraska, Biao Zhang, Zhongtao Liu, William Yang1042
Wang, Lei Li, and Markus Freitag. 2024. LLMRefine:1043
Pinpointing and refining large language models via1044
fine-grained actionable feedback. In Findings of the1045

Association for Computational Linguistics: NAACL 1046
2024, pages 1429–1445, Mexico City, Mexico. Asso- 1047
ciation for Computational Linguistics. 1048

Dongjie Yang, Ruifeng Yuan, Yuantao Fan, Yifei Yang, 1049
Zili Wang, Shusen Wang, and Hai Zhao. 2023. Re- 1050
fGPT: Dialogue generation of GPT, by GPT, and for 1051
GPT. In Findings of the Association for Computa- 1052
tional Linguistics: EMNLP 2023, pages 2511–2535, 1053
Singapore. Association for Computational Linguis- 1054
tics. 1055

Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Gh- 1056
odsi, Sue Ann Hong, Andy Konwinski, Siddharth 1057
Murching, Tomas Nykodym, Paul Ogilvie, Mani 1058
Parkhe, Fen Xie, and Corey Zumar. 2018. Accel- 1059
erating the machine learning lifecycle with mlflow. 1060
IEEE Data Eng. Bull., 41(4):39–45. 1061

Hanlei Zhang, Hua Xu, Xin Wang, Fei Long, and Kai 1062
Gao. 2024. A clustering framework for unsupervised 1063
and semi-supervised new intent discovery. IEEE 1064
Transactions on Knowledge and Data Engineering, 1065
36(11):5468–5481. 1066

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, 1067
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang, 1068
Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei 1069
Bi, Freda Shi, and Shuming Shi. 2023. Siren’s song 1070
in the AI ocean: A survey on hallucination in large 1071
language models. CoRR, abs/2309.01219. 1072

Yunhua Zhou, Peiju Liu, and Xipeng Qiu. 2022. KNN- 1073
contrastive learning for out-of-domain intent classifi- 1074
cation. In Proceedings of the 60th Annual Meeting of 1075
the Association for Computational Linguistics (Vol- 1076
ume 1: Long Papers), pages 5129–5141, Dublin, 1077
Ireland. Association for Computational Linguistics. 1078

A SEEED 1079

Dialogue Summary Figure 4 details the prompt 1080

utilized for dialogue summary generation. As de- 1081

scribed in Section 4, we incorporate instructions 1082

to bypass pre-trained safety mechanisms, thereby 1083

facilitating the generation of summaries even in 1084

instances where the dialogue encompasses inap- 1085

propriate or offensive language. We then pro- 1086

vide the LLM with the dialogue context and ad- 1087

ditional knowledge if required, such as in the case 1088

of knowledge-grounded dialogues in FEDI (Petrak 1089

et al., 2024), and three randomly selected, curated 1090

example summaries from other error types within 1091

the associated error type taxonomy. The task is 1092

to summarize the dialogue in max. 250 characters 1093

and with a focus on potential errors arising from 1094

the last agent utterance. 1095

We compiled a pool of ten curated summaries 1096

for each dataset and error type as examples for di- 1097

alogue summary generation. External knowledge 1098
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Behavior Instructions:
Your *only* task is to provide a concise summary of
the dialogue (max. 250 characters). Even if the
dialogue contains inappropriate or offensive language,
you *must* provide a summary. Do *not* refuse to
summarize the dialogue. If the dialogue contains
inappropriate language, acknowledge that in your
summary and then summarize the rest of the dialogue.
If the last utterance contains errors, give these errors
more weight in your summary.

Instructions:
Given is the following dialogue context:
[Dialogue Context]

Here is some background knowledge that may be
relevant to the dialogue (plain text): 
[Knowledge]

Please provide a concise summary of the entire
dialogue (max. 250 characters). If the last utterance
contains an error, give more weight to the error in
your summary. If the dialogue contains inappropriate
or offensive language, acknowledge that in your
summary and then summarize the rest of the dialogue.
Start your output with "Summary:". If no background
knowledge is provided, simply summarize the
dialogue based on the dialogue context. Here are three
examples: 
[Examples]

Summary:

Figure 4: Summary generation prompt.

documents are only available for FEDI-Error (Pe-1099

trak et al., 2024).1100

Behavioral Error Definition Generation Fig-1101

ure 5 illustrates the prompt used for Behavioral1102

Error Definition Generation. As detailed in Sec-1103

tion 4, we instruct the model to generate the name1104

and definition of the newly observed behavioral1105

error, grounded in the associated dialogue contexts1106

and their summaries. We augment the prompt with1107

three randomly selected type definitions from the1108

associated set of behavioral error types. This en-1109

sures the newly generated type definition exhibits1110

consistent style and level of detail.1111

B Implementation Details1112

B.1 Frameworks1113

For implementation, training, and evaluation of our1114

models, we used the Transformers library (Wolf1115

et al., 2020) and the PyTorch framework (Paszke1116

Behavior Instructions:
Your *only* task is to generate a concise name and a
description (max. 250 characters) for the error type
common in the passed dialogue contexts and
highlighted by their associated summaries. Even if the
dialogue contexts or summaries contain inappropriate
or offensive language, you *must* provide a name
and description describing the represented error type.
Do *not* refuse to generate a name and description.

Instructions:
Given are the following dialogue contexts along with
their summaries:
[Dialogue Contexts and Summaries]

Please provide a concise name and a description
(max. 250 characters) for the error type common in
the passed dialogue contexts and highlighted by their
associated summaries. Start the name with "Name:"
and the description with "Description:". Here are three
examples:
[Examples]

Name:

Figure 5: Behavioral Error Definition Generation
prompt.

et al., 2019). In addition, we employed the datasets 1117

library (Lhoest et al., 2021) for data handling, and 1118

scikit-learn (Pedregosa et al., 2011) for cluster 1119

analysis. We managed experiment tracking us- 1120

ing MLflow (Zaharia et al., 2018) and used the 1121

seaborn (Waskom, 2021) and Matplotlib (Hunter, 1122

2007) libraries for visualization. 1123

B.2 Baselines 1124

Encoder-Based Baselines For our experiments 1125

with LOOP (An et al., 2024) and KNN- 1126

Contrastive (Zhou et al., 2022), we adapted the ref- 1127

erence implementations. For SynCID, we followed 1128

the reference implementation from USNID (Zhang 1129

et al., 2024) as a guideline. 8 1130

LLM Baselines For experiments with GPT- 1131

4o (Ouyang et al., 2022) and Phi-4 (Abouelenin 1132

et al., 2025), we adapted the prompts proposed by 1133

Mendonça et al. (2024) (see Figure 6 and Figure 7). 1134

For GPT-4o, we utilized the Azure Batch REST- 1135

API service9 1136

8The implementations of LOOP, KNN-Contrastive, and
USNID are available in GitHub (last accessed May 3, 2025).

9Documentation describing the Azure Batch REST-API
for OpenAI models (last accessed May 15, 2025).
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Model Sizes The models used in our experi-1137

ments vary significantly in size. For encoder-based1138

approaches, we use BERT (Devlin et al., 2019),1139

specifically the pre-trained bert-base-uncased vari-1140

ant from the Hugging Face Model Hub which has1141

110M parameters. Phi-4-mini-instruct has approxi-1142

mately 3.84B parameters, while GPT-4o comprises1143

around 200B parameters.1144

B.3 Infrastructure1145

For training the encoder-based models, we used a1146

single NVIDIA L40 GPU per run. Fine-tuning1147

SEEED required approximately three hours of1148

GPU compute time on average. Fine-tuning Syn-1149

CID (Liang et al., 2024) took about eight hours,1150

excluding the time spent generating the required1151

synthetic data in a preliminary step. LOOP (An1152

et al., 2024) was the most computationally expen-1153

sive, averaging 72 hours due to the LLM inference1154

step in its second training stage. For fine-tuning1155

Phi-4 (Abouelenin et al., 2025), we used a single1156

NVIDIA H100 PCIe GPU per run, with training1157

taking an average of eight hours.1158

It is important to note that a full evaluation was1159

conducted after each training epoch.1160

B.4 Hyperparameters1161

Encoder-Based Approaches We trained the1162

encoder-based models using a learning rate of1163

1e−5. For SynCID (Liang et al., 2024), LOOP (An1164

et al., 2024), and KNN-Contrastive (Zhou et al.,1165

2022), we followed the hyperparameter configu-1166

rations specified in their respective publications.1167

Both SynCID and LOOP use a two-stage training1168

procedure, consisting of 100 epochs in the first1169

stage and 50 in the second. SEEED was trained for1170

a total of50 epochs. For the Soft Nearest Neighbor1171

Loss (Frosst et al., 2019), we set the margin param-1172

eter to m = 0.3. The batch size was fixed at 16 for1173

all experiments.1174

For NNK-Means (Shekkizhar and Ortega, 2022),1175

we followed the hyperparameter configuration out-1176

lined in the original publication.1177

LLM-Based Baselines For Phi-4 (Abouelenin1178

et al., 2025), we used a batch size of eight1179

and adopted the hyperparameter configuration de-1180

scribed in the fine-tuning script provided in the1181

Hugging Face model repository.10 Specifically, we1182

used LoRA (Hu et al., 2022) with a rank of r = 161183

10Example script for fine-tuning Phi-4 (last accessed May
12, 2025).

and a dropout rate of 0.05. For GPT-4o (Ouyang 1184

et al., 2022), we disabled the safety mechanism on 1185

the server side. 1186

B.5 Input and Output Sequences 1187

Encoder-Based Approaches We used a con- 1188

sistent input and output sequence format across 1189

all encoder-based approaches, including Syn- 1190

CID (Liang et al., 2024), LOOP (An et al., 2024), 1191

KNN-Contrastive (Zhou et al., 2022), and SEEED. 1192

Each sequence began with the [CLS] token and 1193

ended with the [SEP] token. The [SEP] token was 1194

also used to segment individual utterances within a 1195

dialogue. 1196

LLM-Based Baselines For experiments with 1197

Phi-4 (Abouelenin et al., 2025) and GPT- 1198

4o (Ouyang et al., 2022), we adapted the prompt 1199

format proposed by Mendonça et al. (2024).

Behavior Instructions:
You are an expert dialogue evaluator. Identify all
errors or issues present in the last utterance, and only
in the last utterance. That is, do not identify issues that
may occur in the dialogue history. 

Instructions:
Consider the following dyadic dialogue context:
[Dialogue Context] 

The second partner is about to say the following: 
[Error Utterance]

[Knowledge] 

Does it represent an error? We distinguish the
following error types:
[Error Types, Definitions and Examples]

Please provide an overall evaluation of the response
from 1 (poor) to 5 (excellent), together with a
reasoning (max. 100 words). 

Present your final decision of the Top-3 error types in
list format (less than three is also fine). Put the error
type name in square brackets and add your rating after
a comma, like so: 1. Decision: [Ignore Question],
Rating: 5. Finally, provide your reasoning starting
with "Reasoning:". Here is an example output:

[Example]

1. Decision:

Figure 6: GPT-4o prompt.

1200
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Figure 7 illustrates the prompt structure used1201

in the GPT-4o experiments. We provided exam-1202

ples for known behavioral error types. For novel1203

types, we only provided the definitions. This en-1204

sured that the predicted behavioral errors could be1205

mapped to integers via exact match, allowing us to1206

measure Acc-N and Acc-K and ensure a fair eval-1207

uation. Knowledge was exclusively incorporated1208

for the document-grounded dialogues in the FEDI1209

dataset (Petrak et al., 2024).1210

Behavior Instructions:
You are an expert dialogue evaluator. Your task is to
identify the communication error or issue present in
the last utterance.

Instructions:
Consider the following dyadic dialogue context:
[Dialogue Context] 

The second partner is about to say the following:
[Error Utterance]

[Knowledge]

Does it represent an error? We distinguish the
following error types:
[Error Types and Definitions]

Provide your final decision in square brackets like so:
Decision: [Ignore Question]. Finally, provide the
reasoning for your decision starting with "Reasoning:"
(max. 100 words). 

Decision:

Figure 7: Phi-4 prompt.

Figure 7 illustrates the prompt structure used in1211

the Phi-4 experiments. The format closely resem-1212

bles that of GPT-4o, except that we exclude exam-1213

ples for behavioral error types and do not require1214

a rating. Mendonça et al. (2024) did not specify1215

their prompt format for Phi-4, so we adapted the1216

GPT-4o prompt based on the available information.1217

To ensure a fair comparison with the encoder-based1218

approaches, we restricted the list of error types to1219

known types during training.1220

C Experimental Setup1221

C.1 Dataset Statistics1222

Table 5 presents the dataset statistics for the error-1223

annotated subset of FEDI (Petrak et al., 2024).1224

FEDI Error

Error Type Train Valid Test Total

Ignore Question 1,868 246 242 2,356

Ignore Request 1,054 117 137 1,308

Ignore Expectation 1,215 152 159 1,526

Attribute Error 854 109 96 1,059

Factually Incorrect 737 98 88 923

Topic Trans. Error 365 54 43 462

Conversationality 55 4 5 64

Lack of Sociality 266 25 42 333

Unclear Intention 322 35 45 402

6,736 840 857 8,433

Table 5: Dataset statistics FEDI-Error.

The dataset adheres to an 80/10/10 partitioning, 1225

albeit with a heterogeneous representation of be- 1226

havioral errors.

ABCEval

Error Type Train Valid Test Total

Lack of Empathy 52 6 7 65

Commonsense
Contradiction

57 7 8 72

Incorrect Fact 27 3 4 34

Self Contradiction 14 2 2 18

Partner
Contradiction

8 1 1 10

Redundant 11 1 2 14

Ignore 68 8 9 85

Irrelevant 74 9 10 93

Uninterpretable 1 1 1 3

312 38 44 394

Table 6: Dataset statistics ABCEval.

1227

Table 6 shows the dataset statistics for ABCE- 1228

val (Finch et al., 2023a). The dataset is character- 1229

ized by its limited size and heterogeneous distribu- 1230

tion, rendering it less ideal for fine-tuning. Never- 1231

theless, in our opinion this configuration reflects 1232

the inherent challenges of real-world application 1233

scenarios, justifying its utilization. Furthermore, it 1234

was collected during human-bot interaction, sug- 1235

gesting a higher level of quality compared to syn- 1236

thetic data (Yang et al., 2023; Zhang et al., 2023). 1237

The dataset partitioning for ABCEval was per- 1238

formed following the distribution employed in 1239

FEDI (Petrak et al., 2024). The original dataset 1240

did not provide explicit splits, as it was primarily 1241

constructed for the evaluation of LLMs. It also 1242

contained another behavioral error type, Antisocial, 1243

which we excluded as it was associated with only 1244

two samples. 1245
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Soda-Eval

Error Type Train Valid Test Total

Engagement 3,582 1,015 516 5,113

Coherence 3,570 1,024 576 5,170

Repetition 1,589 494 215 2,298

Assumption 1,382 381 194 1,957

Commonsense 1,355 358 176 1,889

Non Textual 316 100 51 467

Fluency 309 83 40 432

Antisocial 202 57 35 294

Gender Pronoun 643 183 97 923

12,948 3,695 1,900 18,543

Table 7: Dataset statistics Soda-Eval.

Table 7 shows the dataset statistics for Soda-1246

Eval (Mendonça et al., 2024). We reused the1247

dataset as provided by the authors in the Hugging1248

Face Dataset Hub.11 The dataset is significantly1249

larger than the error-annotated subset of FEDI (Pe-1250

trak et al., 2024), but its distribution across error1251

types demonstrates analogous heterogeneity.

Dataset Train Valid Test

CLINC 15,000 3,000 4,500
BANKING 10,000 1,540 1,540
StackOverflow 15,269 856 851

Table 8: Dataset statistics intent detection datasets.

1252
Table 8 presents the statistics of the intent1253

detection datasets utilized in our experiments.1254

CLINC (Larson et al., 2019) was developed to eval-1255

uate the performance of intent detection systems in1256

out-of-domain scenarios. It encompasses 150 dis-1257

tinct intents across ten domains: Banking, Travel,1258

Home, Work, Utility, Small Talk, Meta, Auto &1259

Commute, Kitchen & Dining, and Credit Cards.1260

BANKING (Casanueva et al., 2020) was designed1261

for intent detection in the banking sector, compris-1262

ing online banking customer service queries. It1263

includes 77 unique intents. StackOverflow (Xu1264

et al., 2015) was constructed for short text clas-1265

sification and clustering tasks. It provides labels1266

for 20 predefined tags, such as WordPress, Oracle,1267

SVN, Apache, Hibernate, and others. This dataset1268

is commonly applied to intent detection tasks.1269

C.2 Novel Behavioral Error Type1270

Configurations1271

Table 9 shows the novel behavioral error type con-1272

figurations from our error detection experiments1273

11Soda-Eval in the Hugging Face Dataset Hub (last ac-
cessed April 02, 2025).

(Table 1). We randomly sampled them once per 1274

dataset, run, and level of openness.

Openness Dataset Iteration 1 Iteration 2 Iteration 3

25%
FEDI-Error Factually Incorrect,

Ignore Request
Lack of Sociality, Ig-
nore Question

Conversationality,
Attribute Error

ABCEval Uninterpretable,
Commonsense
Contradiction

Incorrect Fact, Self
Contradiction

Partner Contradic-
tion, Ignore

Soda-Eval Antisocial, Engage-
ment

Non Textual, Gen-
der Pronoun

Assumption, Flu-
ency

50%
FEDI-Error Factually Incorrect,

Lack of Sociality,
Conversationality,
Unclear Intention

Ignore Request, Ig-
nore Question, Lack
of Sociality, Unclear
Intention

Ignore Question,
Lack of Sociality,
Conversationality,
Ignore Expectation

ABCEval Incorrect Fact, Un-
interpretable, Irrele-
vant, Commonsense
Contradiction

Ignore, Partner Con-
tradiction, Incorrect
Fact, Commonsense
Contradiction

Commonsense Con-
tradiction, Ignore,
Incorrect Fact, Irrel-
evant

Soda-Eval Coherence, Non
Textual, Common-
sense, Fluency

Fluency, Non Tex-
tual, Commonsense,
Repetition

Coherence, As-
sumption, Gender
Pronoun, Repetition

75%
FEDI-Error Topic Transition Er-

ror, Attribute Er-
ror, Unclear Inten-
tion, Ignore Ques-
tion, Lack of Social-
ity, Factually Incor-
rect

Unclear Intention,
Ignore Request,
Topic Transition Er-
ror, Ignore Question,
Lack of Sociality,
Attribute Error

Lack of Sociality,
Ignore Expectation,
Topic Transition Er-
ror, Attribute Error,
Ignore Question, Ig-
nore Request

ABCEval Partner Contradic-
tion, Commonsense
Contradiction, Lack
of Empathy, Irrele-
vant, Ignore, Unin-
terpretable

Ignore, Lack of
Empathy, Irrelevant,
Self-Contradiction,
Redundant, Partner
Contradiction

Ignore, Partner
Contradiction,
Self Contradiction,
Commonsense
Contradiction, Re-
dundant, Irrelevant

Soda-Eval Assumption, Com-
monsense, Fluency,
Repetition, Coher-
ence, Non Textual

Fluency, Assump-
tion, Non Textual,
Antisocial, Com-
monsense, Gender
Pronoun

Assumption, Coher-
ence, Non Textual,
Commonsense, An-
tisocial, Gender Pro-
noun

Table 9: Novel behavioral error type configurations.

1275

D Additional Analysis 1276

D.1 Error Detection — Detailed Analysis 1277

Encoder-Based Approaches Extensive dialogue 1278

contexts are more prone to misclassification, sug- 1279

gesting that many of the included utterances may 1280

be irrelevant or detrimental to identifying the er- 1281

ror exhibited in the last agent utterance. Based on 1282

preliminary experiments and supported by our ab- 1283

lation study (Table 3), we found that incorporating 1284

dialogue summaries has a positive impact on perfor- 1285

mance, mitigating this issue to some extent, though 1286

not fully resolving it. Another challenge arises 1287

from ambiguous error types, which hinder the clear 1288

assignment of dialogue contexts to specific cate- 1289

gories. Additionally, we found that severe class 1290

imbalance in the distribution of behavioral error 1291

types negatively affects classification performance, 1292

regardless of the level of openness. This issue is 1293

particularly evident in FEDI (Petrak et al., 2024) 1294

(e.g., for Conversationality) and ABCEval (Finch 1295

et al., 2023b) (e.g., for Uninterpretable). We elab- 1296

orate on this in the following paragraph, which 1297

analyzes LLM performance in more detail. 1298
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LLM-Based Approaches Considering the rea-1299

sonings generated by GPT-4o (Ouyang et al., 2022)1300

and Phi-4 (Abouelenin et al., 2025) revealed that1301

target behavioral error types are frequently con-1302

fused. For instance, in the FEDI dataset (Petrak1303

et al., 2024) Ignore Expectation and Ignore Request1304

errors are frequently misclassified as Ignore Re-1305

quest and Topic Transition Error, respectively. Ig-1306

nore Expectation and Ignore Request describe sim-1307

ilar situations, wherein the system response fails to1308

satisfy the user request. Ignore expectation consid-1309

ers the situation from the perspective of the task de-1310

scription, while Ignore Request addresses potential1311

technical limitations in the response-generation sys-1312

tem, obvious from the generated response. While1313

Phi-4 is likely to return incorrect results in such1314

cases, GPT-4o often ranks the correct error type1315

within its top three predictions.1316

In contrast to FEDI, ABCEval (Finch et al.,1317

2023a) proposes more general error types. For1318

instance, we observe that Redundant is very fre-1319

quently predicted incorrectly. It addresses situa-1320

tions in which any part of the response is repeti-1321

tive. Accordingly, Phi-4 also associates situations1322

with this error type where the system utterance1323

has the same tonality or emotionality, or where1324

words are repeated. Similarly, GPT-4o frequently1325

confuses Commonsense Contradiction with Un-1326

interpretable, because of overlapping definitions.1327

Both error types address illogical and difficult-to-1328

interpret statements.1329

For Soda-Eval (Mendonça et al., 2024), we as-1330

sume that the brevity of error descriptions presents1331

a significant challenge. For example, Engagement,1332

which is defined as Lacks a behavior or emotion ex-1333

pected from the situation, does not provide an oper-1334

ational definition for the term behavior, resulting in1335

frequent misclassifications. Similarly, Coherence1336

is frequently misclassified in situations involving1337

implicit knowledge. For example, a system that1338

recommends medical consultation in response to1339

a user stating they feel unwell, without an explicit1340

request for advice, is often labeled as a Coherence1341

error. Given the prevalence of such situations in the1342

ground truth data, we assume that this issue stems1343

from limited human supervision in the annotation1344

process, as Soda-Eval, like FEDI, is a synthetically1345

generated dataset. However, using the prompts1346

adapted from Mendonça et al. (2024), both GPT-4o1347

and Phi-4 address these anomalies in their provided1348

reasoning by suggesting the absence of errors in1349

certain utterances.1350

D.2 Margin Parameter Experiments 1351

We conducted a series of closed-world experiments 1352

using SEEED to identify the most effective value 1353

for the margin parameter m in the Soft Nearest 1354

Neighbor Loss (Frosst et al., 2019). The experi- 1355

ments utilized dialogue contexts and correspond- 1356

ing summaries as input data. For the purpose of 1357

isolating the effects of the loss function, SEEED 1358

was reduced to its core joint loss component, with 1359

LBSR and NNK-Means (Shekkizhar and Ortega, 1360

2022) disabled. Table 10 shows the results.

Margin FEDI-Error ABCEval Soda-Eval

Acc-K ARI NMI Acc-K ARI NMI Acc-K ARI NMI

0.0 0.27 0.04 0.07 0.57 0.07 0.47 0.39 0.13 0.20
0.3 0.29 0.06 0.10 0.57 0.08 0.48 0.43 0.14 0.21
0.5 0.27 0.04 0.09 0.52 0.06 0.45 0.40 0.13 0.20
0.7 0.27 0.05 0.09 0.50 0.05 0.42 0.41 0.12 0.18
1.0 0.28 0.05 0.08 0.56 0.06 0.45 0.42 0.14 0.20

Table 10: Results of our margin parameter experiments,
each averaged over three independent runs.

1361
Our results indicate that a margin value of m = 1362

0.3 yields the most promising overall performance, 1363

particularly for detecting known error types and 1364

enhancing cluster quality. Notably, performance 1365

differences emerge early in the training process. 1366

For instance, on FEDI-Error (Petrak et al., 2024), 1367

we observe that with m = 0.3, Acc-K, ARI, and 1368

NMI attain significantly higher average values from 1369

epoch seven onward. In contrast, the trajectory 1370

of the loss function remains largely unaffected by 1371

variations in the margin parameter. 1372

While we acknowledge that the impact of m 1373

may vary across experimental configurations, our 1374

findings suggest that m = 0.3 represents a strong 1375

empirical baseline. 1376

D.3 Ablation Experiments with SynCID and 1377

LOOP 1378

Table 11 presents the results of our ablation ex- 1379

periments with SynCID (Liang et al., 2024) and 1380

LOOP (An et al., 2024). Both employ a multi- 1381

stage training procedure. The first stage focuses on 1382

learning patterns associated with known behavioral 1383

error types, while the second stage aims to improve 1384

the robustness of the representation space through 1385

contrastive learning. To this end, each method 1386

introduces a novel data sampling strategy: kNN- 1387

based filtering in SynCID and local inconsistency 1388

sampling (LIS) in LOOP. The results demonstrate 1389

that these components contribute substantially to 1390

the overall performance of each method. 1391
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Openness Method FEDI-Error ABCEval Soda-Eval

H-Score Acc-K Acc-N ARI NMI H-Score Acc-K Acc-N ARI NMI H-Score Acc-K Acc-N ARI NMI

25%

SynCID 0.27 0.40 0.20 0.06 0.11 0.53 0.45 0.68 0.03 0.41 0.31 0.38 0.26 0.11 0.14
w/o Stage 2 0.27 0.40 0.20 0.06 0.11 0.50 0.44 (⇓.01) 0.64 (⇓.04) 0.04 0.42 0.31 0.35 (⇓.03) 0.27 (⇑.01) 0.10 0.14

LOOP (LIS) 0.26 0.37 0.19 0.09 0.10 0.51 0.43 0.63 0.01 0.37 0.33 0.36 0.31 0.07 0.13
w/o Stage 2 0.25 0.34 (⇓.03) 0.20 (⇑.01) 0.06 0.08 0.46 0.38 (⇓.05) 0.60 (⇓.03) 0.01 0.38 0.28 0.35 (⇓.01) 0.24 (⇓.07) 0.05 0.11

LOOP (LBSR) 0.28 0.36 (⇓.01) 0.23 (⇑.04) 0.11 0.10 0.61 0.55 (⇑.12) 0.68 (⇑.05) 0.06 0.43 0.34 0.38 (⇑.02) 0.30 (⇓.01) 0.09 0.14

SEEED 0.38 0.41 0.34 0.19 0.19 0.53 0.46 0.68 0.21 0.45 0.40 0.41 0.39 0.15 0.17

50%

SynCID 0.26 0.34 0.21 0.04 0.09 0.59 0.55 0.64 0.11 0.47 0.27 0.40 0.21 0.09 0.11
w/o Stage 2 0.26 0.28 (⇓.06) 0.24 (⇑.03) 0.03 0.07 0.53 0.46 (⇓.09) 0.65 (⇓.01) 0.10 0.46 0.26 0.40 0.19 (⇓.02) 0.08 0.11

LOOP (LIS) 0.22 0.39 0.16 0.07 0.07 0.45 0.48 0.43 0.03 0.41 0.24 0.55 0.16 0.11 0.16
w/o Stage 2 0.21 0.36 (⇓.03) 0.15 (⇓.01) 0.04 0.07 0.37 0.42 (⇓.07) 0.36 (⇓.07) 0.03 0.40 0.25 0.49 (⇓.06) 0.17 (⇑.01) 0.09 0.15

LOOP (LBSR) 0.25 0.40 (⇑.01) 0.18 (⇑.02) 0.06 0.07 0.46 0.58 (⇑.10) 0.41 (⇓.02) 0.08 0.46 0.25 0.58 (⇑.03) 0.16 0.13 0.17

SEEED 0.33 0.48 0.22 0.13 0.15 0.64 0.67 0.62 0.29 0.51 0.37 0.49 0.30 0.19 0.19

75%

SynCID 0.23 0.36 0.17 0.06 0.01 0.54 0.59 0.50 0.07 0.44 0.25 0.22 0.28 0.02 0.06
w/o Stage 2 0.22 0.35 (⇓.01) 0.16 (⇑.01) 0.01 0.06 0.54 0.58 (⇓.01) 0.51 (⇑.01) 0.09 0.45 0.24 0.27 (⇑.05) 0.15 (⇓.13) 0.02 0.04

LOOP (LIS) 0.25 0.43 0.18 0.05 0.01 0.48 0.69 0.37 0.07 0.44 0.22 0.31 0.17 0.07 0.08
w/o Stage 2 0.21 0.39 (⇓.04) 0.14 (⇓.04) 0.01 0.05 0.43 0.64 (⇓.05) 0.34 (⇓.03) 0.03 0.40 0.22 0.29 (⇓.02) 0.18 (⇑.01) 0.07 0.09

LOOP (LBSR) 0.25 0.44 (⇑.01) 0.17 (⇓.01) 0.01 0.05 0.51 0.71 (⇑.02) 0.40 (⇑.03) 0.08 0.45 0.26 0.43 (⇑.12) 0.19 (⇑.02) 0.11 0.08

SEEED 0.37 0.64 0.26 0.16 0.17 0.60 0.75 0.50 0.21 0.47 0.42 0.61 0.32 0.12 0.14

Table 11: Results of our ablation experiments with SynCID and LOOP, including the results of SEEED for direct
comparison. We also compare LOOP when trained with its original stage two data sampling procedure, LIS, and
our proposed LBSR.

Removing the second training stage in either1392

SynCID or LOOP leads to a drop in average per-1393

formance, with Acc-K being more negatively af-1394

fected than Acc-N. Furthermore, the performance1395

of LOOP exhibits a greater dependency on the sec-1396

ond training stage compared to SynCID. This sug-1397

gests that the first training stage of SynCID is more1398

effective than that of LOOP. Substituting LIS in the1399

second stage of LOOP with LBSR yields further1400

performance gains.1401

D.4 Behavioral Error Type Definition1402

Generation1403

FEDI-Error Tables 12, 13, 14, and 15 present1404

the behavioral error definitions generated for the1405

FEDI-Error dataset (Petrak et al., 2024).1406

Ground Truth Generated Acc-N

Ignore Expectation
When the system’s fails

to meet the user’s expec-

tation, this is called an

ignore expectation error.

In this error type, the

system either overlooks

or disregards important

information provided by

the user, resulting in an

incomplete response. ...

Misaligned Response
A system response that

fails to accurately un-

derstand or address the

user’s needs.

0.31

Table 12: FEDI-Error behav. error type definitions (1).

For the error types Factually Incorrect, Ignore1407

Request, Lack of Sociality, Ignore Question, Con-1408

versationality, and Attribute Error, we used the1409

25% openness models for behavioral error detec-1410

tion. For Ignore Expectation, we used the 50% 1411

openness model from the third run, and for Topic 1412

Transition Error, we used the 75% openness model 1413

from the first run. To generate each type defini- 1414

tion, we included ten dialogue contexts identified 1415

by SEEED as belonging to the respective error type 1416

in the prompt. 1417

Ground Truth Generated Acc-N

Conversationality Bad

conversationality occurs

when the system fails

to maintain a coherent

and natural conversation

flow, e.g., the system

repeats its previous re-

sponses or contradicts

itself without recogniz-

ing or asking for new or

missing information. ...

Inconsistency When

the system’s responses

lack coherence, often

repeating itself or

contradicting previous

statements without

seeking or acknowl-

edging new or missing

information. This leads

to poor communication,

damaging user trust and

confidence. ...

0.40

Unclear Intention
When the system fails to

accurately comprehend

and address the user’s

intended objective, this

is referred to as an

unclear intention error.

This error often arises

due to ambiguous or

incomplete user inputs,

conflicting context, or

limitations ...

Misaligned Goal
A misaligned goal

occurs when the system

misinterprets the user’s

objective, often due to

unclear or conflicting

user input. This error

can stem from the

user’s input being

ambiguous, incomplete,

or inconsistent with the

context. ...

0.33

Table 13: FEDI-Error behav. error type definitions (2).

The generated definitions generally show strong 1418

alignment with the original error definitions. How- 1419
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ever, some instances tend to reflect specific situa-1420

tional patterns observed in the corresponding di-1421

alogues, e.g., in the case of Ignore Question and1422

Ignore Request.1423

Ground Truth Generated Acc-N

Topic Transition Error
If the system’s response

abruptly shifts to a dif-

ferent or previously dis-

cussed topic without a

logical connection or ad-

equate context, this is

called a topic transition

error. This error disrupts

the flow and coherence

of the conversation, caus-

ing confusion and frus-

tration for the human par-

ticipant. ...

Abrupt Topic Shift An

abrupt topic shift er-

ror occurs when a sys-

tem’s response suddenly

changes to a new topic

without a clear connec-

tion to the current con-

text. This can disrupt the

conversation flow and

cause confusion, lead-

ing to frustration and de-

creased trust in the sys-

tem’s responses.

0.28

Ignore Request When

the system fails to take

action on a user’s re-

quest, this is called an ig-

nore request error. This

error can occur due to

various reasons, such as

misinterpretation of the

request, technical limita-

tions, or system glitches.

...

Disregarded Request
The system does not di-

rectly address the user’s

request. This can hap-

pen due to misunder-

standings or system is-

sues, leading to user frus-

tration and communica-

tion breakdown.

0.33

Factually Incorrect If

the response provided by

the system contains in-

formation that is factu-

ally wrong or inaccurate,

this is referred to as a fac-

tually incorrect error. ...

Misinformation When

the system provides in-

correct information, this

is called misinforma-

tion. This can happen

when the system’s world

knowledge is outdated,

incomplete, or simply

wrong. ...

0.20

Lack of Sociality When

the system’s responses

overlook social conven-

tions and fail to include

basic greetings or ex-

hibit toxic and disre-

spectful behavior or lan-

guage, this is referred to

as a lack of sociality er-

ror. ...

Insensitive Interaction
This error occurs when

a system’s responses dis-

regard social norms, ex-

hibit impoliteness, or

employ toxic and conde-

scending language. ...

0.24

Table 14: FEDI-Error behav. error type definitions (3).

ABCEval Table 16, 17, and 21 illustrate the1424

effectiveness of our approach in generating be-1425

havioral error type definitions for the ABCEval1426

dataset (Finch et al., 2023a).1427

Ground Truth Generated Acc-N

Ignore Question When

the system fails to ad-

dress the user’s question,

this is called an ignore

question error. Instead

of providing a relevant

response or clarification,

the system disregards the

user’s input and contin-

ues with its predefined

dialogue flow or fails to

provide any meaningful

response. ...

Unaddressed Request
The system neglects the

user’s question, failing

to provide a relevant re-

sponse. This can lead

to frustration and ulti-

mately interrupt the con-

versation.

0.21

Attribute Error When

the system fails to cor-

rectly extract or under-

stand the necessary slots

or attributes from the

user’s utterance, this is

called an attribute error.

...

Attribute Error When

the system fails to accu-

rately extract or under-

stand necessary informa-

tion from a user utter-

ance that is necessary for

task completion.

0.27

Table 15: FEDI-Error behav. error type definitions (4).

For the error types Uninterpretable, Common- 1428

sense Contradiction, Incorrect Fact, Self Contradic- 1429

tion, Partner Contradiction, and Ignore, we used 1430

the 25% openness models for error detection (see 1431

Table 9). 1432

Ground Truth Generated Acc-N

Uninterpretable A re-

sponse is uninterpretable

if it is difficult to under-

stand the intended mean-

ing of part or all of the

response in the context

of the dialogue.

Ambiguous A response

is ambiguous if parts of

it are unclear in the dia-

logue context.

1.0

Ignore Responses that

are completely off-topic,

fail to address the asked

question, or are other-

wise completely inappro-

priate in the context are

considered to be ignor-

ing the other speaker.

Off-Topic Response
The response deviates

from the topic, fails to

answer the posed ques-

tion, or is contextually

inappropriate, indicating

a disregard for the other

speaker.

0.61

Commonsense Contra-
diction To identify con-

tradictions of common-

sense, judge whether a

vast majority of peo-

ple would agree that the

response doesn’t make

sense because the re-

sponse: ...

Inconsistent Reasoning
A response that contains

significant logical flaws

or contradictions, goes

against the general un-

derstanding of most peo-

ple, or makes assump-

tions without a solid ba-

sis.

0.63

Table 16: ABCEval behav. error type definitions (1).
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For Irrelevant and Lack of Empathy, we em-1433

ployed the 75% openness model from run one, and1434

for Redundant, we used the 75% openness model1435

from run two. Due to the small size of the dataset,1436

it was not always possible to include ten dialogue1437

contexts in the prompt for Behavioral Error Type1438

Definition generation.1439

Ground Truth Generated Acc-N

Incorrect Fact Incorrect

facts occur when the re-

sponse includes informa-

tion that is either: (1)

false, (2) unproven, (3)

highly controversial, (4)

highly implausible, (5)

clearly misleading. If

an organization, person,

place, etc. ...

Misinformation Misin-

formation occurs when

a turn contains informa-

tion that is not verifi-

able. A turn could be

considered misinformed

if it inaccurately repre-

sents historical facts, or-

ganizations, persons, or

places.

0.50

Self Contradiction
Self contradictions

occur when the system

says something that

is a contradiction of

what they have said

previously or it is

extremely implausible

based on ...

Self Contradiction
Speaker 2 provides infor-

mation that contradicts

previous statements or

is implausible given

the context. This can

happen within a single

turn or across multiple

turns.

0.50

Partner Contradiction
Partner contradictions

occur when the system:

(1) shares an assumption

about the user that ...

Misunderstanding
When the system

makes assumptions

about the user that are

impossible to infer from

the conversation, asks

repetitive questions or

exhibits memory lapses

about previsous user

statements.

1.0

Lack of Empathy A re-

sponse displays a lack of

empathy when: (1) it in-

dicates a misunderstand-

ing of how the user feels

based on what Speaker

1 just said, (2) the tone,

emotion, or sentiment of

the response is clearly in-

appropriate for what the

user just said, (3) ...

Insensitive Response In-

sensitive responses oc-

cur when a speaker

fails to acknowledge the

user’s emotions, often

due to a misinterpre-

tation of their feelings

or an inappropriate tone.

This can be seen in re-

sponses that seem dis-

missive or unemotional.

0.43

Table 17: ABCEval behav. error type definitions (2).

For instance, the test split contains only one ex-1440

ample each for Partner Contradiction and Unin-1441

terpretable. Nonetheless, we find the quality of1442

the generated type definitions to be comparable to1443

those produced for the FEDI-Error dataset (Petrak1444

et al., 2024).1445

Ground Truth Generated Acc-N

Redundant A response

is repetitive if: (1) it

repeats something from

earlier in the dialogue,

(2) it includes asking

a question whose an-

swer has been already

shared. If any part of

the response is repeti-

tive, then it should be la-

beled as repetitive. Note

that sometimes repeti-

tion is useful, such as

for emphasis, acknowl-

edgement, clarification,

or elaboration, and ..

Unnecessary Repeat A

response is redundant if

it repeats information al-

ready shared or asks a

question with a known

answer. This can oc-

cur in various forms,

such as direct repetition,

rephrased questions, or

unnecessary elaboration.

However, repetition can

be justified in cases

where it serves a purpose

like emphasis, acknowl-

edgment, or additional

explanation.

0.50

Irrelevant If a response

fails to continue the cur-

rent discussion or jumps

to a new and off-topic

discussion, it is consid-

ered to be irrelevant. Re-

sponses that are irrele-

vant feel abrupt and in-

terrupt the discussion, ...

Disconnected Response
A response is considered

disconnected if it fails

to build upon the previ-

ous turn, instead intro-

ducing a new topic or

question. This type of

response can disrupt the

conversation flow.

0.40

Table 18: ABCEval behav. error type definitions (3).

Soda-Eval Tables 19, 20, and 21 illustrate the 1446

generated error type definitions for the Soda-Eval 1447

dataset (Mendonça et al., 2024). 1448

Ground Truth Generated Acc-N

Coherence Contradicts

or ignores prior informa-

tion in the dialogue.

Inconsistency Fails to

maintain a logical con-

nection with previous

statements.

0.18

Commonsense Lacks

common knowledge and

logic.

Missing World Knowl-
edge Fails to demon-

strate basic understand-

ing of the world. In the

context of a set of dyadic

dialogues, this error type

might manifest as con-

versations where one par-

ticipant expects the other

to possess knowledge or

behave in a way that is

not grounded in reality.

0.14

Assumption Infers infor-

mation not available in

the dialogue context.

Misattribution A re-

sponse that incorrectly

assigns information or

characteristics to a dia-

logue participant, entity,

or context that is not ex-

plicitly stated or implied

within the dialogue.

0.24

Table 19: Soda-Eval behav. error type definitions (1).
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For engagement, antisocial, non textual, gender1449

pronoun, assumption, and fluency, we employed1450

the 25% openness models for clustering (see Ta-1451

ble 9). For coherence and commonsense, we uti-1452

lized the 50% openness model from the first run,1453

and for repetition, the 50% openness model from1454

the second run. For the generation of each error1455

type, we included ten dialogue contexts associated1456

by our approach with the respective error type into1457

the prompt. The error type definitions originally1458

defined by Mendonça et al. (2024) are concise and1459

lack detail. This differs from the error type defini-1460

tions generated by our approach, which exhibit a1461

closer alignment with the situational contexts rep-1462

resented in the dialogues.1463

Ground Truth Generated Acc-N

Antisocial Contains un-

safe or inappropriate be-

haviour.

Disrespectful Character-

ized by the use of offen-

sive language, deroga-

tory terms, and aggres-

sive tone, which can

cause emotional distress.

0.33

Fluency Contains typos

or other grammatical er-

rors.

Clarity The response

from speaker 2 contains

spelling/grammar errors.

0.30

Gender Pronoun Goes

against normative pro-

noun.

Gender Pronoun Mis-
match The use of pro-

nouns that do not consis-

tently align with the gen-

der identity of the indi-

viduals being referred to

result in a mismatch be-

tween the pronouns used

and the gender norms ex-

pected in the dialogue.

0.29

Non Textual Includes

narrative elements or ref-

erences unexpected in-

side a turn of a dyadic

interaction.

Narrative Elements
The responses contain

narrative elements or

references that are not

coherent within a round

of dyadic interaction and

may disrupt the expected

flow of the dialogue.

0.29

Repetition Repeats prior

information in the dia-

logue.

Redundancy This error

occurs when a speaker

unnecessarily repeats in-

formation that has al-

ready been stated in the

dialogue, failing to pro-

vide new or relevant

information, or simply

rephrasing what has al-

ready been said.

0.15

Table 20: Soda-Eval behav. error type definitions (2).

Ground Truth Generated Acc-N

Engagement Lacks a be-

haviour or emotion ex-

pected from the situa-

tion.

Emotional Dissonance
The response lacks a be-

haviour or emotion that

is typically associated

with the situation, lead-

ing to an incongruous

tone or atmosphere.

0.39

Table 21: Soda-Eval behav. error type definitions (3).

D.5 Intent Detection Results 1464

Table 22 presents the complete results of our intent 1465

detection experiments. Overall, SEEED demon- 1466

strates promising performance, particularly in de- 1467

tecting unknown intents. For instance, it im- 1468

proves Acc-N up to +0.28 points in the CLINC 1469

dataset (Larson et al., 2019) and by up to +0.53 1470

points in the StackOverflow dataset (Xu et al., 1471

2015), compared to KNN-Contrastive (Zhou et al., 1472

2022). 1473

22



Openness Method CLINC BANKING StackOverflow

H-Score Acc-K Acc-N ARI NMI H-Score Acc-K Acc-N ARI NMI H-Score Acc-K Acc-N ARI NMI

25%

KNN-Contrastive 0.67 0.91 0.53 0.75 0.91 0.50 0.90 0.34 0.68 0.87 0.45 0.84 0.31 0.56 0.73
SynCID 0.80 0.95 (⇑.04) 0.69 (⇑.16) 0.83 0.94 0.64 0.87 (⇓.03) 0.50 (⇑.16) 0.70 0.89 0.72 0.86 (⇑.02) 0.62 (⇑.31) 0.66 0.78
LOOP 0.85 0.93 (⇑.02) 0.78 (⇑.25) 0.85 0.95 0.63 0.90 0.48 (⇑.14) 0.73 0.90 0.73 0.89 (⇑.05) 0.62 (⇑.31) 0.73 0.82

SEEED 0.82 0.93 (⇑.02) 0.74 (⇑.21) 0.79 0.93 0.79 0.92 (⇑.02) 0.70†(⇑.36) 0.77 0.90 0.87 0.90 (⇑.06) 0.84†(⇑.53) 0.77 0.83

50%

KNN-Contrastive 0.62 0.87 0.48 0.60 0.86 0.58 0.80 0.45 0.53 0.81 0.65 0.82 0.54 0.51 0.67
SynCID 0.77 0.95 (⇑.08) 0.64 (⇑.16) 0.71 0.90 0.66 0.85 (⇑.05) 0.54 (⇑.09) 0.60 0.84 0.72 0.76 (⇓.06) 0.69 (⇑.15) 0.52 0.71
LOOP 0.80 0.95 (⇑.08) 0.69 (⇑.21) 0.75 0.92 0.63 0.90 (⇑.10) 0.48 (⇑.03) 0.63 0.86 0.80 0.92 (⇑.10) 0.71 (⇑.17) 0.71 0.80

SEEED 0.83 0.94 (⇑.07) 0.75†(⇑.27) 0.74 0.91 0.79 0.94 (⇑.14) 0.68†(⇑.23) 0.69 0.87 0.89 0.90 (⇑.08) 0.87†(⇑.33) 0.78 0.84

75%

KNN-Contrastive 0.63 0.85 0.50 0.49 0.82 0.44 0.85 0.29 0.33 0.72 0.57 0.81 0.43 0.34 0.52
SynCID 0.73 0.89 (⇑.04) 0.62 (⇑.12) 0.60 0.86 0.63 0.85 0.50 (⇑.21) 0.47 0.78 0.66 0.78 (⇓.03) 0.57 (⇑.14) 0.40 0.60
LOOP 0.79 0.92 (⇑.07) 0.68 (⇑.18) 0.68 0.90 0.64 0.87 (⇑.02) 0.51 (⇑.22) 0.50 0.81 0.76 0.92 (⇑.11) 0.64 (⇑.21) 0.57 0.72

SEEED 0.87 0.97†(⇑.12) 0.78†(⇑.28) 0.72 0.90 0.79 0.93 (⇑.08) 0.69†(⇑.40) 0.60 0.82 0.86 0.97 (⇑.16) 0.77†(⇑.34) 0.71 0.78

Table 22: The complete results of our intent discovery experiments, averaged across three runs. The deltas denote
the differences to KNN-Contrastive which we consider as the baseline for these experiments. † denotes statistical
significance compared to all baseline approaches, as determined by a t-test with p-value ≤ 0.05. The H-Score
aggregates Acc-K and Acc-N and was therefore excluded from statistical significance tests. To ensure comparability,
unknown intents were randomly sampled once per run and level of openness.
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