
Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

Masanobu Horie
1

Naoto Mitsume
2

Abstract

Utilizing machine learning to address partial dif-
ferential equations (PDEs) presents significant
challenges due to the diversity of spatial do-
mains and their corresponding state configura-
tions, which complicates the task of encompass-
ing all potential scenarios through data-driven
methodologies alone. Moreover, there are legit-
imate concerns regarding the generalization and
reliability of such approaches, as they often over-
look inherent physical constraints. In response
to these challenges, this study introduces a novel
machine-learning architecture that is highly gen-
eralizable and adheres to conservation laws and
physical symmetries, thereby ensuring greater re-
liability. The foundation of this architecture is
graph neural networks (GNNs), which are adept
at accommodating a variety of shapes and forms.
Additionally, we explore the parallels between
GNNs and traditional numerical solvers, facilitat-
ing a seamless integration of conservative princi-
ples and symmetries into machine learning mod-
els. Our findings from experiments demonstrate
that the model’s inclusion of physical laws sig-
nificantly enhances its generalizability, i.e., no
significant accuracy degradation for unseen spa-
tial domains while other models degrade. The
code is available at https://github.com/
yellowshippo/fluxgnn-icml2024.

1. Introduction

Predicting physical phenomena, often described by partial
differential equations (PDEs), has become a focal point in
research due to its relevance across various fields such as
product design, disaster prevention, and environmental sci-
ences. The integration of machine learning in this domain
has been the subject of active investigation recently. This is

1RICOS Co. Ltd., Tokyo, Japan 2Graduate School of Science
and Technology, University of Tsukuba, Ibaraki, Japan. Corre-
spondence to: Masanobu Horie <horie@ricos.co.jp>.

Proceedings of the 41 st
International Conference on Machine

Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Figure 1. Overview of a typical graph neural network (GNN), finite
volume method (FVM), and proposed model, FluxGNN. Our
method combines GNN and FVM, realizing high expressibility
from GNN and generalizability from FVM.

largely because machine learning has the potential to expe-
dite prediction processes by effectively leveraging existing
datasets (Ladickỳ et al., 2015; Kochkov et al., 2021; Pichi
et al., 2024). Moreover, when trained with actual measured
data, these models can achieve enhanced prediction accuracy
(Lam et al., 2023). Additionally, such models are increas-
ingly being utilized for optimization and solving inverse
problems through gradient-based optimization techniques
(Chang & Cheng, 2020; Miao & Chen, 2023), facilitated
by the efficiency of modern deep learning frameworks in
automatic differentiation.

Despite these advancements, challenges in generalizabil-
ity and reliability persist in machine learning applications

1

https://github.com/yellowshippo/fluxgnn-icml2024
https://github.com/yellowshippo/fluxgnn-icml2024

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

within physics. The diversity of spatial analysis domains
and the myriad of potential states within these domains pose
significant difficulties in encompassing all scenarios using
solely data-driven approaches. Out-of-domain generaliza-
tion is challenging in machine learning, leading to reduced
generalizability in data-driven models (Bonfanti et al., 2023).
These models often struggle as surrogate models for classi-
cal solvers. Moreover, machine learning methods frequently
contravene critical physical laws such as conservation and
symmetry, resulting in problematic decision-making pro-
cesses and less reliable predictions. For instance, in pre-
dicting the movement of greenhouse gases on Earth, it is
imperative to account for the conservation law of gases,
which dictates that the total amount of gas should remain
constant barring any generation or absorption.

Incorporating physical laws into machine learning models is
a potent strategy to overcome challenges related to general-
izability and reliability (Ling et al., 2016; Wang et al., 2021;
Huang et al., 2022; Li et al., 2023). Physical systems exhibit
symmetries; they remain invariant under transformations
such as rotation and scaling. Leveraging these symmetries
can enhance a model’s generalizability, as an unseen in-
put may be regarded as a familiar one when transformed.
Moreover, embedding physical laws as inductive biases in a
model can improve the reliability of its predictions, ensuring
adherence to these laws.

In this study, we introduce the concept of flux-passing graph
neural networks (FluxGNNs), which are designed to inte-
grate conservation laws and physical symmetries pertaining
to similarity transformations—including translation, rota-
tion, reflection, and scaling—as inductive biases. This ap-
proach is grounded in the parallels between graph neural
networks (GNNs), which are adaptable to arbitrary graphs,
and the finite volume method (FVM), a classical numerical
analysis method that inherently respects conservation and
symmetries (Figure 1). This integration results in a model
that not only generalizes effectively across spatial domains
but also rigorously upholds conservation laws and symme-
tries regarding similarity transformations. The FluxGNNs
represent a natural extension of the FVM, essentially encom-
passing a pure FVM framework enhanced with automatic
differentiation capabilities, thanks to its implementation
in a deep learning framework. Additionally, we delineate
the mathematical conditions for typical GNNs to serve as
conservative models.

Our method is designed to seamlessly integrate with existing
machine learning techniques. It can accommodate methods
such as scaling invariance (Wang et al., 2021), temporal
bundling (Brandstetter et al., 2022), and boundary encoder
and neural nonlinear solver (Horie & Mitsume, 2022), re-
quiring minimal or no modifications to ensure adherence
to conservation laws and symmetries. Additionally, our ap-

proach capitalizes on the geometric attributes of the input
discretized shapes, such as meshes, by utilizing elements
such as surface areas and normal vectors. This integration
strengthens the connection between scaling symmetry and
fundamental concepts of numerical analysis such as the
Courant number. Our experimental results indicate that the
proposed method shows high generalizability and improves
the speed–accuracy tradeoff of prediction.

The main contributions of our study are summarized below.

• We mathematically reveal the conditions for typical
GNNs to achieve conservations, resulting in the con-
struction of locally conservative GNNs that can be
applied to arbitrary graphs.

• We construct FluxGNNs based on the locally conser-
vative GNNs. The proposed method can be applied
to arbitrary analysis domains and satisfy conservation
laws rigorously, in addition to achieving similarity-
equivariance while focusing on a close relationship
with a classical numerical analysis method.

• We provide methods to incorporate existing machine
learning approaches into our model and demonstrate
that they can satisfy conservation laws and symmetries
under our modifications, if any.

• Finally, we demonstrate that the proposed method
shows high generalizability for unseen spatial domains
because of the included physical laws.

2. Background and Related Work

2.1. Classical PDE Solvers and FVM

We focus on a class of PDEs called conservation form in a
n-dimensional domain ⌦ 2 Rn expressed as

@

@t
u = �r · F (u) + S, (1)

where U 3 u : [0,1) ⇥ ⌦ ! Rd, F : U ! U , and
S represent an unknown d-dimensional vector field to be
solved, a known operator that may be nonlinear and contain
spatial differential operators, and a known source term, re-
spectively. This formulation indicates that u is conservative
if S = 0 (LeVeque, 1992), and therefore, it is called the
conservation form. Although this form looks specific, var-
ious PDEs such as the convection–diffusion equation and
Navier–Stokes equations can be expressed as conservation
forms. For example, in the case of the diffusion equation
with diffusion coefficient D, Fdi↵usion(u) := Dru, where
u represents a scalar field (d = 1 in this case).

FVM1 spatially discretizes the equation using meshes,
1Although many variants exist for FVM, we introduce a funda-

2

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

which are discretized representations of the analysis do-
mains. By applying spatial integration over the i-th cell
(with volume Vi) in a mesh and Stokes’ theorem, Equa-
tion (1) becomes

@

@t

Z

Vi

udV = �

Z

@Vi

F (u) · ndS +

Z

⌦
SdV, (2)

where @Vi and n : @Vi ! Rn represent the boundary of the
i-th cell and the unit normal vector field pointing outside of
the cell, respectively.

Using linear interpolation, Equation (2) can be approxi-
mated as

@

@t
Viui = �

X

j2Ni

Sijnij · [F (u)]ij + SiVi, (3)

where Ni, ui, Si, Sij , nij , and [F (u)]ij represent the set
of neighboring cells to the i-th cell, value of u at the cen-
troid of the i-th cell, value of S at the centroid of the i-th
cell, area of the face (i, j), normal vector of the face (i, j)
pointing outside of the i-th cell, and value of F (u) at the
face (i, j), referred to as numerical flux, respectively. Extant
studies have developed various computational methods for
the numerical flux because the values at the faces need to be
estimated using the ones at the cell centers. The conserva-
tion law is expressed as

R
⌦ udV ⇡

P
i Viui = Constant.

FVM holds local conservation, which is a significant prop-
erty for solving conservation forms, i.e., the balance be-
tween the influx from the j-th cell to the i-th cell neighbor-
ing through the face (i, j), ij := Sijnij · [F (u)]ij , and
the opposite, ji, expressed as

 ji = Sjinji · [F (u)]ji = �Sijnij · [F (u)]ij = � ij ,
(4)

using the relationships Sij = Sji, [F (u)]ij = [F (u)]ji,
and nij = �nji. Because ij + ji = 0, interchanging
the physical quantity u through face (i, j) does not change
the total integral of u, and therefore, the global conservation
laws hold if Si = 0 (8i 2 V). This property inspired us to
develop the proposed method that has local conservation.

2.2. Machine Learning Models for Conservation Laws

Driven by the critical need for conservation, extensive re-
search has focused on exploring approaches to realize con-
servation using machine learning. For example, Matsubara
et al. (2020) included structure-preserving numerical meth-
ods into their models to obtain conservations in Hamiltonian
systems. Further, Richter-Powell et al. (2022) leveraged
physics-informed neural networks to parametrize the vector

mental formulation. For more details on FVM, refer to, e.g., Jasak
(1996); Darwish & Moukalled (2016).

potential, thereby generating a divergence-free, i.e., con-
servative, vector field. Hansen et al. (2024) focused on
FVM and demonstrated its effectiveness in one-dimensional
datasets. These approaches provided insights to achieve
conservation and focused on regular or fixed domains; how-
ever, they did not investigate irregular domains and spatial
extrapolation, which are the main focuses of this study.

2.3. Machine Learning Models for Symmetries

Equivariance can be incorporated into machine learning
models to obtain models that respect symmetries. Equivari-
ance for a group G is expressed as f : X ! Y satisfying
f(g ·x) = g ·f(x) for any g 2 G and x 2 X , assuming that
G acts on X and Y . Equivariance for E(n), i.e., translation,
rotation, and reflection, or SE(n), i.e., E(n) without refle-
tion, has been investigated in various works (Thomas et al.,
2018; Fuchs et al., 2020; Satorras et al., 2021; Eijkelboom
et al., 2023) and found to be effective in machine learning
tasks related to geometry and physics. For example, Horie
et al. (2021) realized efficient E(n)-equivariant GNNs by
using a message-passing method inspired by a classical PDE
solver and applying simple E(n)-equivariant multilayer per-
ceptrons (MLPs) expressed as fE(n)(h) := MLP(khk)h,
where h and khk represent an input to the layer and its
L2-norm, respectively. Further, scale equivariance has
been examined extensively in several studies (Worrall &
Welling, 2019; Sosnovik et al., 2020; Yang et al., 2023).
For example, Wang et al. (2021) used a simple formu-
lation of scale-equivariant convolutional neural networks
(CNNs) expressed as fscaling(h) := CNN(h/�)�, where
� := max[h] �min[h] represents the scale of h. Further,
Wang et al. (2021) demonstrated that E(n)- and scale- equiv-
ariance separately improved the predictive performance of
machine learning models on fluid dynamics datasets. How-
ever, they did not construct a similarity-equivariant model,
i.e., an equivariant model considering both E(n) and scaling.
We successfully constructed and demonstrated the effective-
ness of such a model in this study.

2.4. GNNs and Graph Neural PDE Solvers

A graph G = (V, E) is defined as a tuple of the vertex
set V ⇢ Z and edge set E ⇢ Z ⇥ Z. GNNs should be
able to handle arbitrary-length data because different graphs
can have a different number of vertices and different edge
connectivities. Consider a vertex signal H : V ! Rd that
corresponds to vectors on the vertices of a graph. For a
graph with three vertices, the vertex signal can be expressed
as H := (h1,h2,h3)> where hi 2 Rd represents a signal
at the i-th vertex. A GNN F : H! H

0 can be considered
an operator converting a vertex signal to another, where H

and H
0 denote sets of vertex signals. A message-passing

neural network (MPNN) (Gilmer et al., 2017), which is a

3

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

typical formulation of GNNs, is expressed as

mij = fmessage(hi,hj ,hij),

h
out
i = fupdate

0

@hi,
X

j2Ni

mij

1

A ,
(5)

where hij and Ni represent a signal on the edge (i, j) and
a set of vertices neighboring the i-th vertex, respectively.
MPNN comprises two neural networks: a message function
fmessage expressing the interaction between vertices and an
update function fupdate describing the vertex-wise updates
of features.

In the context of spatiotemporal discretization, a typical neu-
ral PDE solver is formulated as F : H 3 H

t
7! H

t+1
2

H, where its objective to predict the time series of the ver-
tex signal Ht. Given that practical physical simulations
often involve irregular spatial data, such as point clouds
and meshes, which can naturally be represented as graphs,
GNNs emerge as a natural choice for constructing neural
PDE solvers (Chang & Cheng, 2020; Sanchez-Gonzalez
et al., 2020; Pfaff et al., 2021; Lam et al., 2023).

Notably, Brandstetter et al. (2022) have proposed effective
methods for learning and predicting time-dependent PDEs,
drawing inspiration from classical PDE solvers. Among
their techniques, temporal bundling stands out, as it involves
predicting states at multiple time steps through a single
forward computation of a model followed by the application
of 1D CNN layers in the temporal direction. This approach
results in significantly enhanced computational efficiency.

Furthermore, Horie & Mitsume (2022) have developed PDE
solvers based on E(n)-equivariant GNNs, as initially pro-
posed by Horie et al. (2021). Their work is characterized
by a rigorous treatment of boundary conditions and an effi-
cient time evolution computation method inspired by non-
linear optimization techniques. They introduced boundary
encoders, a concept in which encoders for boundary condi-
tions are combined with those for the corresponding input
vertex signals. This allows for the encoding of boundary
conditions within the same space as vertex signals. The
proposed time evolution method is expressed as

H
[i+1] := H

[i]
� ↵[i]

BB

h
H

[i]
�H

[0]
� F(H [i])�t

i
,

(6)

where ·
[i], H [0] = H(t), and ↵[i]

BB represent the state at
the i-th nonlinear optimization step, a known graph signal
at time t, and a coefficient determined using the Barzilai–
Borwein method (Barzilai & Borwein, 1988), which con-
tains global pooling operations, respectively. Most existing
graph neural PDE solvers use the encode-process-decode
architecture proposed by Battaglia et al. (2018), wherein
input features are embedded into a higher dimensional space

using the encoder, message passing is computed in the en-
coded space, and encoded features are converted into an
output space using the decoder, as done in this study.

3. Proposed Method

Here, we introduce the proposed method, FluxGNN. We
first describe an abstract and general formulation of locally
conservative GNN, then build FluxGNN on top of that, in-
corporating the essence of FVM. Proofs of all theorems and
lemmas claimed in this section can be found in Appendix C.

3.1. Locally Conservative GNN

In this study, we focus on a set of undirected graphs, i.e.,
(i, j) 2 E implies (j, i) 2 E for any i, j 2 V . This frame-
work is employed to represent the exchange of physical
quantities between vertices. The condition for a conserva-
tive MPNN is outlined as follows:
Theorem 3.1. An MPNN F : H ! H, formulated in

Equation (5) with continuous activation functions, exhibits

conservation properties for any graphs and vertex signals

(i.e.,
P

i2V hi remains constant for a given graph) if and

only if the following conditions are satisfied.

mij = �mji, 8(i, j) 2 E (7)

fupdate

hi,

X

i2Ni

mij

!
= hi +

X

i2Ni

mij . (8)

We categorize GNNs that meet the criteria outlined in Theo-
rem 3.1 as locally conservative GNNs. The manner in which
information is exchanged in these GNNs bears resemblance
to the concept of numerical flux in the FVM, specifically
concerning the preservation of local conservation principles,
as illustrated in Equation (4). The proof of this theorem
necessitates the introduction of the following lemma.
Lemma 3.2. A vertex-wise continuous update function

should be linear to achieve conservation.
2

Following this lemma, the condition for the conservative
encode-process-decode architecture can be obtained as
Theorem 3.3. An encode-process-decode architecture in

the form Fe-p-d := Fdecode�F
(N)
L �· · ·�F

(1)
L �Fencode with

locally conservative GNNs F
(i)
L , a vertex-wise continuous

encoder Fencode, and a decoder Fdecode is conservative

if and only if the encoder is linear and the decoder is the

pseudoinverse (more specifically, left inverse) of the encoder,

i.e., Fdecode � Fencode = id, where id is the identity map.

2One can construct a conservative continuous nonlin-
ear function despite the lemma, unless vertex-wise. For
example, the following F̄ is conservative. F̄(H) :=
F(H)[

P
i2V H/

P
i2V F(H)]. However, these are not locally

conservative in general, and therefore, we omit these nonlinearities
for generalization in this study.

4

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

Interestingly, while Horie & Mitsume (2022) proposed the
use of pseudoinverse decoders to satisfy boundary condi-
tions, our approach adopts them primarily to ensure con-
servation. Nevertheless, we can also utilize pseudoinverse
decoders to fulfill boundary conditions in our context. In
summary, locally conservative GNNs are characterized by
their nonlinearity being confined to the message passing
functions, without involving update ones.

3.2. FluxGNN

Based on the formulation of the FVM (Equation (3)) and
the locally conservative GNN (Equations (7) and (8)), we
construct a class of GNN layers FFlux expressed as

Vi[FFlux(H)]i := Vihi �

X

j2Ni

Sijnij · FML (hi,hj ,hij) ,

(9)

where FML and hij represent a machine learning model
constructed using neural networks and a feature at the face
(i, j) corresponding to an edge feature in MPNN, respec-
tively. Further, vertices correspond to the cells of the mesh,
as shown in Figure 1. We refer to FML as a flux function

because it is a message function for the numerical flux.

Theorem 3.4. A machine learning model defined in Equa-

tion (9) with a symmetric edge signal hij = hji is a locally

conservative GNN if and only if a flux function FML is

a permutation-invariant function for the first and second

arguments, i.e., FML(hi,hj ,hij) = FML(hj ,hi,hij)

We define models FFlux described in Equation (9) as
FluxGNNs, when the condition outlined in Theorem 3.4
is satisfied, with encoders and decoders also adhering to the
criteria specified in Theorem 3.3. FluxGNNs are designed to
model numerical fluxes using machine learning techniques,
hence the name. The attainment of the former condition can
be realized through the utilization of deep sets, as presented
in (Zaheer et al., 2017), which offer the necessary and suf-
ficient class of permutation-invariant functions. FluxGNN
exhibits, at a minimum, the same level of expressive power
as the FVM concerning information propagation in space.
This equivalence is attributed to the presence of the formu-
lation of spatial discretization in FVM (Equation (3)) within
Equation (9). Further, FluxGNN demonstrates similarity
equivariance when FML exhibits such properties. It is be-
cause other components, such as area Sij , volume Vi, and
normal vector nij , are considered geometrical quantities,
and therefore, exhibit similarity-equivariance.

3.3. Incorporation of Existing Methods

FluxGNN is designed with a level of simplicity that allows
for compatibility with numerous existing methods. In this
section, we explore how to integrate certain aspects of these

methods while maintaining conservation. All operations are
vertex-wise, and therefore, we write h instead of hi for the
i-th vertex feature (i 2 V) for simplicity.

3.3.1. SIMILARITY-EQUIVARIANT MLPS

Similarity-equivariant MLPs can be achieved by combining
the existing E(n)-equivariant layer and scale-equivariant
layer as

fsim(h) := MLP(kh/�k)h, (10)

where � > 0 is determined using local quantities, such as
spatial resolution �x and temporal resolution �t, to make
the input physical quantities dimensionless. We avoid using
global operators, such as min and max used in Wang et al.
(2021), to retain the localness of our model. Further, our
choice of � has a strong connection with central concepts
in classical PDE solvers. For example, assuming that the
input feature is in the dimension of velocity, our similarity
equivariant layer turns to

MLP

✓����
h

�x/�t

����

◆
h = MLP(C)h, (11)

where C represents the Courant number that characterizes
the stability of the simulation. This formulation is natural
because a condition with a different Courant number can
require a different treatment for efficient computations be-
cause of a different numerical stability. In the case of the
diffusion phenomena, the direct input to MLP turns to the
diffusion number, which is another essential quantity for
numerical stability. In addition, Huang et al. (2022) suggest
a similar form to our formulation, showing its universality.
That justifies our choice of the similarity-equivariant MLPs.
Using similarity-equivariant MLPs as building blocks, one
can construct flux functions as presented in Appendix D.2.

3.3.2. TEMPORAL BUNDLING

Due to the constraints imposed by encoders and decoders
on conservation, it is necessary to modify the temporal
bundling method. In scenarios where we predict K steps
simultaneously using a single forward computation of a
FluxGNN, the approach involves dividing the weight ma-
trices of the encoder and decoder into K distinct seg-
ments. Each of these segments is specifically applied to
encode or decode features. Subsequently, we concatenate
these processed features in the feature direction, as fol-
lows: Concat

⇥
W

(1)
h,W (2)

h, . . . ,W (K)
h
⇤
. Once the

decoding process is completed using the pseudoinverse
decoder, the next step involves the application of multi-
ple linear 1D-CNN layers. One such layer, exemplifying
this approach, can be represented in the following form:
h

(t)
out := (1�w)h(t�1) +wh

(t), where w represents a train-
able parameter and h

(t) denotes the outputs of decoders at

5

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

Figure 2. Overview of the FluxGNN model for the convection–
diffusion equation with an encoder Fencode, locally conservative
GNN FL, and decoder Fdecode. The model outputs a time series,
and the loss is computed using all steps of the model’s output.

time t, to facilitate the temporal smoothness. This form dif-
fers from that proposed in Brandstetter et al. (2022) because
we need this operation to be linear for conservation.

3.3.3. NEURAL NONLINEAR SOLVER AND BOUNDARY
ENCODER

The neural nonlinear solver (Equation (6)) can be applied to
FluxGNN without modification because it does not break
conservation laws and symmetries. Although it contains
global operations to compute ↵[i]

BB, the model remains lo-
cally conservative because it exists outside of MLPs. Fur-
ther, boundary encoders do not need modifications because
they are encoders, which are linear in our formulation.

4. Experiments

We showcase the outcomes of our experiments, demon-
strating that our proposed method achieves conserva-
tion and similarity-equivariance with notable accuracy
and computational efficiency. We have implemented
all our models using PyTorch 1.9.1 (Paszke et al.,
2019). The code is available at https://github.com/
yellowshippo/fluxgnn-icml2024. For a compre-
hensive overview and detailed insights into the experiments,
please refer to Appendices E and F.

4.1. Convection–Diffusion Equation

In the current set of experiments, we demonstrate the ex-
pressive capabilities of the core FluxGNN model using the
convection–diffusion equation, a fundamental model for
the transport of conservative quantities. The equation for a
conservative scalar field u is expressed as

@

@t
u = �r · (cu�Dru) , (12)

where c and D � 0 represent a known velocity field and
known diffusion coefficient, respectively.

For our datasets, we generated 100 trajectories for training,
10 for validation, and 10 for testing. These were derived
using the exact solution of the equation, with random vari-
ations in uniform velocity u from 0.0 to 0.2, and in the

0.0 0.2 0.4 0.6 0.8 1.0

x

�0.6

�0.4

�0.2

0.0

0.2

0.4

0.6

u

Iniital

Ground truth

FVM

FluxGNN (Ours)

Figure 3. Comparison of the initial condition, ground truth, predic-
tion of FVM, and prediction of FluxGNN taken from a sample in
the test dataset at time t = 1.0.

amplitude and phase of the sinusoidal initial condition. We
set the diffusion coefficient D = 10�4, corresponding to
convection-dominant problems, which are generally more
challenging than diffusive ones. The spatial and temporal
resolution parameters were set to �x = 0.1 and �t = 0.1,
respectively, and the analysis domain length was one unit.

We constructed a straightforward FluxGNN model with au-
toregressive time series modeling, as illustrated in Figure
Figure 2. The model generates time series data from given
initial conditions and velocities. It was trained on a CPU
(Intel Xeon CPU E5-2695 v2 @ 2.40 GHz) for 3 hours,
using MSE loss and an Adam optimizer (Kingma & Ba,
2014). As a baseline, we established an FVM solver making
all trainable functions identity ones, enabling most imple-
mentations to be shared between the solver and FluxGNN.
This setup highlights the enhancements brought by machine
learning. The accuracy of our FVM implementation was
verified across multiple problems (Appendix D.1).

Figure 3 and Table 1 present the results of the exper-
iments in comparison with the ground truth and the
FVM solver. The conservation error is defined byR
t2(0,Tmax]

⇥R
⌦(H(t)�H(t = 0))dV

⇤
dt, where Tmax =

1.0. Our model exhibited higher accuracy than the FVM
at the same spatiotemporal resolution. Notably, the FVM
tends to exhibit increased diffusivity due to numerical diffu-
sion from the low spatial resolution. Moreover, FluxGNN
maintained a conservation property almost equivalent to
that of the FVM, indicating that the neural networks incor-
porated in the model do not disrupt the conservation law.
Consequently, we conclude that our machine learning model
possesses superior expressive power and can leverage exist-
ing data to achieve higher accuracy compared to classical
methods.

6

https://github.com/yellowshippo/fluxgnn-icml2024
https://github.com/yellowshippo/fluxgnn-icml2024

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

Figure 4. Visual comparison of the velocity field between the ground truth, MP-PDE, PENN, and FluxGNN.

Table 1. MSE loss (± standard error of the mean) on the test dataset
of the convection–diffusion equation.

Method Loss�
⇥10�5

� Conservation error�
⇥10�8

�

FVM 1408.47 ± 32.75 1.63 ± 0.19
FluxGNN (Ours) 3.08 ± 0.08 1.75 ± 0.32

4.2. Navier–Stokes Equations with Mixture

To evaluate the practical applicability of our model, we
conducted tests on a more complex problem, integrating
existing methods into FluxGNN. This scenario leads to
intricate interactions between velocity u, pressure p, and
density ⇢. These interactions are expressed as follows

@

@t
(⇢u) =�r ·

⇥
⇢u⌦ u� µ(r⌦ u + (r⌦ u)>)

⇤

�rp⇢gy � g · yr⇢, (13)
@

@t
↵ = �r · [u↵�D↵r↵] , (14)

where µ and ↵ represent the dynamic viscosity, volume
fraction of the low-density fluid, respectively. ↵ satisfies
the relationship ⇢ = ↵⇢low + (1� ↵)⇢high (⇢low and ⇢high

denote scalar values of low and high density, respectively).
Furthermore, D↵, g, y, and p⇢gy = p� ⇢g ·y represent the
diffusion coefficient for ↵, gravity acceleration, height in
the direction of the gravity, and pressure without the effect
of gravitational potential, respectively.

We generated 200 trajectories for training, 8 for validation,
and 8 for the test dataset. These trajectories encompassed
various shapes and initial conditions, and they were gener-
ated using OpenFOAM,3 a widely recognized classical PDE

3https://www.openfoam.com/

solver. We generated five different shapes for training, two
for validation, and two for testing, with variations in the
dimensions characterizing each shape. To ensure realism,
we employed random numerical analysis to create the initial
conditions for each shape. The primary objective of the
machine learning task was to predict ground truth trajec-
tories projected onto domains with lower spatiotemporal
resolution. To achieve this, we set the time step �t = 0.2
with the maximum time reaching 1.6 for training and 3.2
for evaluation, allowing us to assess the model’s ability for
temporal extrapolation. In addition to these datasets, we gen-
erated two supplementary datasets, each comprising eight
trajectories. These datasets were created by applying rota-
tion and scaling operations to the test dataset, respectively
(named rotation and scaling datasets). Further, to test the
model’s generalizability, we generated a dataset featuring
three shapes that were taller than the test samples (named
taller dataset) to validate the model’s generalizability.

We developed FluxGNN models following the autoregres-
sive approach detailed in Section 4.1, but with the incorpora-
tion of components from existing research. These included
similarity-equivariant MLPs, temporal bundling, neural non-
linear solvers, and boundary encoders. The model inputs
were aligned with those used in classical numerical analysis,
including mesh geometry, initial conditions, boundary con-
ditions, and material properties. The model outputs were
time series data for velocity (u), pressure (p⇢gy), and vol-
ume fraction (↵) fields. We employed RMSE loss for each
physical quantity, weighted by their respective standard de-
viations, to balance the loss magnitudes across different
physical quantities.

For comparison, we selected MP-PDE (Brandstetter et al.,
2022) and PENN (Horie & Mitsume, 2022) as baseline

7

https://www.openfoam.com/

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

10�1 100 101 102

Computation time [s]

10�1

100

L
os

s

FluxGNN (Ours): test

PENN: test

MP-PDE: test

FluxGNN (Ours): taller

PENN: taller

MP-PDE: taller

Figure 5. Speed–accuracy tradeoff obtained through hyperparame-
ter studies for MP-PDE, PENN, and FluxGNN (proposed method),
with error bars corresponding to the standard error of the mean.
Light and dark colors correspond to the evaluation of the test and
taller datasets, respectively. Lines represent Pareto fronts, with ar-
rows denoting shifts of the fronts caused by changes in the dataset
considered for the evaluation. The results of FVM are excluded
because they are far from the Pareto front and are shown in Fig-
ure 15.

models, representing state-of-the-art machine learning ap-
proaches that accommodate irregular domains and boundary
conditions. That comparison highlighted our model’s su-
periority because we incorporated these methods into ours.
Additionally, we included our FVM implementation to ex-
amine the enhanced expressibility achieved through ma-
chine learning, similar to the approach in Section 4.1. All
machine learning models were trained on GPUs (NVIDIA
A100 80GB PCIe) over a period of three days.

Figure 4 and Table 2 present both qualitative and quantita-
tive comparisons for each method. All machine learning
models demonstrate excellent performance, indicating the
success of the training process. Furthermore, all models
exhibit the ability to predict time series longer than those
observed during training. The proposed method demon-
strates a high level of conservation, even when incorporat-
ing components from existing machine learning methods.
In contrast, other baseline machine learning models do not
exhibit the same level of conservation, highlighting the need
for special treatment to adhere to conservation laws. When
considering the rotation dataset, PENN performs admirably
due to its E(n)-equivariance. However, the MP-PDE model
begins to degrade under these conditions. On the other hand,
PENN displays divergent behavior when applied to the scal-
ing dataset, primarily because of the significant changes in
input values, leading to extrapolation. In contrast, FluxGNN
exhibits nearly identical performance before and after scal-
ing, showcasing its scale equivariance. Nevertheless, we
observe a slight performance variation attributed to numeri-
cal errors accumulated during autoregressive computation.

Our method performs well on the taller dataset despite no

0 1 2 3 4 5 6 7 8
Time

10�3

10�2

10�1

100

101

102

103

T
ot

al
lo

ss

FluxGNN (Ours)

PENN

MP-PDE

FVM

Figure 6. Time evolution of total loss for FVM, MP-PDE, PENN,
and the proposed method, FluxGNN. The vertical axis is in log
scale.

0 1 2 3 4 5 6 7 8
Time

10�19

10�16

10�13

10�10

10�7

10�4

10�1

C
on

se
rv

at
io

n
er

ro
r

FluxGNN (Ours)

PENN

MP-PDE

FVM

Figure 7. Time evolution of conservation error for FVM, MP-PDE,
PENN, and the proposed method, FluxGNN. The vertical axis is
in log scale.

scaling, which implies that conservation is essential for
realizing generalizability because PENN degrades its perfor-
mance even with E(n)-equivariance and shows the spurious
emergence of velocity on the top of the taller sample. Fur-
ther, our model leverages the expressive power of neural
networks because FVM tends to be divergent and never
reaches convergence on the taller dataset for all tested set-
tings. Therefore, we claim that FluxGNN incorporates meth-
ods of the classical PDE solver and machine learning at a
high level, realizing high generalizability and expressibility.

Figure 5 presents the speed–accuracy tradeoff obtained us-
ing machine learning models with various hyperparameters
on one core of the same CPU as Section 4.1. All mod-
els have no clear advantage on the test dataset. However,
FluxGNN has a clear advantage compared to the baseline
models when evaluated on the taller dataset. Moreover, the
Pareto front of our model does not shift significantly in the
direction of the loss, which means that FluxGNN general-
izes for spatial extrapolation without losing accuracy.

We performed prediction using each method for even further
temporal rollout. Figure 6 presents the time evolution of
total loss. FluxGNN exhibits the lowest loss until time

8

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

Table 2. RMSE loss and conservation error (± standard error of the mean) on the evaluation datasets of the Navier–Stokes equation with
mixture. Each metric is normalized using standard deviation.

Method Dataset Loss u
�
⇥10�1

�
Loss p

�
⇥10�1

�
Loss ↵

�
⇥10�1

�
Conservation error ↵

�
⇥10�5

�

FVM test 19.501± 0.149 37.706± 0.194 2.896± 0.030 0.01± 0.00
MP-PDE test 1.532± 0.010 0.941± 0.008 1.021± 0.010 1001.95± 120.43
PENN test 0.619± 0.005 0.598± 0.005 0.358± 0.005 1356.62± 283.00
FluxGNN (Ours) test 1.202± 0.008 1.143± 0.008 0.349± 0.005 0.06± 0.03

FVM rotation 18.363± 0.128 22.366± 0.123 2.930± 0.030 0.01± 0.00
MP-PDE rotation 11.523± 0.075 10.883± 0.078 9.528± 0.072 5307.85± 1009.04
PENN rotation 0.622± 0.004 0.592± 0.005 0.355± 0.005 1302.98± 153.02
FluxGNN (Ours) rotation 1.207± 0.007 1.175± 0.008 0.351± 0.005 0.01± 0.00

FVM scaling 19.411± 0.149 38.106± 0.193 2.918± 0.030 0.01± 0.00
MP-PDE scaling 5.072± 0.034 4.211± 0.040 5.604± 0.046 6401.93± 1806.50
PENN scaling NaN±NaN NaN±NaN NaN±NaN NaN±NaN
FluxGNN (Ours) scaling 1.219± 0.009 1.228± 0.008 0.356± 0.005 0.05± 0.01

FVM taller NaN±NaN NaN±NaN NaN±NaN NaN±NaN
MP-PDE taller 8.377± 0.081 2.472± 0.024 2.823± 0.033 16770.80± 3293.59
PENN taller 1.476± 0.016 1.887± 0.014 0.357± 0.006 4799.89± 1574.43
FluxGNN (Ours) taller 1.184± 0.009 0.966± 0.008 0.337± 0.006 0.02± 0.00

t ⇡ 7.0. After that, it starts to show a higher loss than MP-
PDE due to numerical instability. Figure 7 indicates that the
proposed method demonstrates a high level of conservation.
Even after instability stands out, the conservation error of
our method is lower than other machine learning methods
by orders of magnitude. The results imply the potential of
FluxGNN for a more extended temporal rollout. We did
not include the pushforward trick proposed by Brandstetter
et al. (2022), which realizes a more stable prediction for
time series prediction. Incorporating that trick into our
method may address this point. In addition, incorporating
flux and slope limiters, known as effective methods for
stability in a computational physics domain, may also help.
The visualization of longer rollout predictions is shown in
Appendix F.5.

Appendix F.6 elaborates on an ablation study of the
FluxGNN model. That suggests that all components in-
cluded in the model contribute to spatial out-of-domain
generalizability.

5. Conclusion

We presented FluxGNNs, which combines the expressibil-
ity of GNNs and the generalizability of FVM. Our method
shows high generalizability for spatial domain extrapolation,
where other machine learning models exhibit performance
degradation. This study focused on PDEs corresponding to
flow and transport phenomena; however, it can be applied to
a broader class of problems, e.g., optimal transport and traf-
fic flow on graphs because the locally conservative GNNs
proposed in this study have a generic structure.

Although our model shows high expressibility and gener-
alizability, we did not demonstrate performance analysis

comparing well-optimized classical solvers, which is a lim-
itation of the work. However, we demonstrated a clear
improvement compared to FVM, which shared most of
the implementation with our model. Therefore, one pos-
sible next step would be implementing FluxGNN on top of
the well-optimized solvers, which may drastically improve
speed and accuracy, as demonstrated in the experiments.

Another limitation is that the method needs to be more stable
for long-term prediction. This point may be addressed by
incorporating flux and slope limiters, known as effective
methods for stability in a computational physics domain.
We leave it as a future work because our focus of the present
work is to construct a reliable method towards spatially
out-of-domain generalization.

Acknowledgment

This work was supported by JST PRESTO Grant Number
JPMJPR21O9, JST FOREST Grant Number JPMJFR215S,
JSPS KAKENHI Grant Numbers 23H04532, 23K24857,
and 23KK0182, and ATLA “Innovative Science and Tech-
nology Initiative for Security” Grant Number JPJ004596.
The authors gratefully acknowledge the reviewers of the con-
ference for their helpful comments and fruitful discussions.
We would like to thank Editage for editing and reviewing
this manuscript for English language.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

9

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

References

Barzilai, J. and Borwein, J. M. Two-point step size gradient
methods. IMA Journal of Numerical Analysis, 8(1):141–
148, 1988.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., et al. Rela-
tional inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261, 2018.

Bonfanti, A., Santana, R., Ellero, M., and Gholami, B.
On the hyperparameters influencing a PINN’s gener-
alization beyond the training domain. arXiv preprint

arXiv:2302.07557, 2023.

Brandstetter, J., Worrall, D. E., and Welling, M. Message
passing neural PDE solvers. In International Conference

on Learning Representations, 2022. URL https://
openreview.net/forum?id=vSix3HPYKSU.

Chang, K.-H. and Cheng, C.-Y. Learning to simulate and
design for structural engineering. In International Con-

ference on Machine Learning, pp. 1426–1436. PMLR,
2020.

Darwish, M. and Moukalled, F. The finite volume method in

computational fluid dynamics: an advanced introduction

with OpenFOAM® and Matlab®. Springer, 2016.

Eijkelboom, F., Hesselink, R., and Bekkers, E. J. E (n)
equivariant message passing simplicial networks. In In-

ternational Conference on Machine Learning, pp. 9071–
9081. PMLR, 2023.

Fuchs, F., Worrall, D., Fischer, V., and Welling, M. SE(3)-
transformers: 3D roto-translation equivariant attention
networks. Advances in Neural Information Processing

Systems, 33, 2020.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International Conference on Machine Learning,
pp. 1263–1272. JMLR. org, 2017.

Hansen, D., Maddix, D. C., Alizadeh, S., Gupta, G.,
and Mahoney, M. W. Learning physical models that
can respect conservation laws. Physica D: Nonlinear

Phenomena, 457:133952, 2024. ISSN 0167-2789.
doi: https://doi.org/10.1016/j.physd.2023.133952.
URL https://www.sciencedirect.com/
science/article/pii/S0167278923003068.

Horie, M. and Mitsume, N. Physics-embedded neural net-
works: Graph neural PDE solvers with mixed boundary
conditions. In Oh, A. H., Agarwal, A., Belgrave, D.,

and Cho, K. (eds.), Advances in Neural Information Pro-

cessing Systems, 2022. URL https://openreview.
net/forum?id=B3TOg-YCtzo.

Horie, M., Morita, N., Hishinuma, T., Ihara, Y., and
Mitsume, N. Isometric transformation invariant and
equivariant graph convolutional networks. In In-

ternational Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=FX0vR39SJ5q.

Huang, W., Han, J., Rong, Y., Xu, T., Sun, F., and Huang, J.
Equivariant graph mechanics networks with constraints.
In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=SHbhHHfePhP.

Jasak, H. Error analysis and estimation for the finite volume
method with applications to fluid flows. 1996.

Kannappan, P. Functional equations and inequalities with

applications. Springer Science & Business Media, 2009.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner,
M. P., and Hoyer, S. Machine learning–accelerated com-
putational fluid dynamics. Proceedings of the National

Academy of Sciences, 118(21):e2101784118, 2021.

Ladickỳ, L., Jeong, S., Solenthaler, B., Pollefeys, M., and
Gross, M. Data-driven fluid simulations using regression
forests. ACM Transactions on Graphics (TOG), 34(6):
1–9, 2015.

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger,
P., Fortunato, M., Alet, F., Ravuri, S., Ewalds, T., Eaton-
Rosen, Z., Hu, W., et al. Learning skillful medium-range
global weather forecasting. Science, pp. eadi2336, 2023.

Lax, P. and Wendroff, B. Systems of conserva-
tion laws. Communications on Pure and Ap-

plied Mathematics, 13(2):217–237, 1960. doi:
https://doi.org/10.1002/cpa.3160130205. URL
https://onlinelibrary.wiley.com/doi/
abs/10.1002/cpa.3160130205.

LeVeque, R. J. Numerical methods for conservation laws,
volume 214. Springer, 1992.

Li, Q., Wang, T., Roychowdhury, V., and Jawed, M. K.
Rapidly encoding generalizable dynamics in a euclidean
symmetric neural network. Extreme Mechanics Letters,
58:101925, 2023.

Ling, J., Kurzawski, A., and Templeton, J. Reynolds aver-
aged turbulence modelling using deep neural networks

10

https://openreview.net/forum?id=vSix3HPYKSU
https://openreview.net/forum?id=vSix3HPYKSU
https://www.sciencedirect.com/science/article/pii/S0167278923003068
https://www.sciencedirect.com/science/article/pii/S0167278923003068
https://openreview.net/forum?id=B3TOg-YCtzo
https://openreview.net/forum?id=B3TOg-YCtzo
https://openreview.net/forum?id=FX0vR39SJ5q
https://openreview.net/forum?id=FX0vR39SJ5q
https://openreview.net/forum?id=SHbhHHfePhP
https://openreview.net/forum?id=SHbhHHfePhP
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160130205
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160130205

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

with embedded invariance. Journal of Fluid Mechanics,
807:155–166, 2016.

Matsubara, T., Ishikawa, A., and Yaguchi, T. Deep energy-
based modeling of discrete-time physics. Advances

in Neural Information Processing Systems, 33:13100–
13111, 2020.

Miao, Z. and Chen, Y. Vc-pinn: Variable coefficient physics-
informed neural network for forward and inverse prob-
lems of pdes with variable coefficient. Physica D: Non-

linear Phenomena, 456:133945, 2023.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Wallach, H.,
Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E.,
and Garnett, R. (eds.), Advances in Neural Information

Processing Systems, pp. 8024–8035. Curran Associates,
Inc., 2019.

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and
Battaglia, P. Learning mesh-based simulation with graph
networks. In International Conference on Learning Rep-

resentations, 2021. URL https://openreview.
net/forum?id=roNqYL0_XP.

Pichi, F., Moya, B., and Hesthaven, J. S. A graph convolu-
tional autoencoder approach to model order reduction for
parametrized pdes. Journal of Computational Physics,
pp. 112762, 2024.

Prabhune, B. C. and Suresh, K. A fast matrix-free elasto-
plastic solver for predicting residual stresses in additive
manufacturing. Computer-Aided Design, 123:102829,
2020.

Richter-Powell, J., Lipman, Y., and Chen, R. T. Neural
conservation laws: A divergence-free perspective. Ad-

vances in Neural Information Processing Systems, 35:
38075–38088, 2022.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R.,
Leskovec, J., and Battaglia, P. Learning to simulate
complex physics with graph networks. In International

conference on machine learning, pp. 8459–8468. PMLR,
2020.

Satorras, V. G., Hoogeboom, E., and Welling, M. E (n)
equivariant graph neural networks. In International con-

ference on machine learning, pp. 9323–9332. PMLR,
2021.

Sosnovik, I., Szmaja, M., and Smeulders, A. Scale-
equivariant steerable networks. In International Confer-

ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=HJgpugrKPS.

Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L.,
Kohlhoff, K., and Riley, P. Tensor field networks:
Rotation-and translation-equivariant neural networks for
3d point clouds. arXiv preprint arXiv:1802.08219, 2018.

Versteeg, H. and Malalasekera, W. Computational fluid
dynamics. The finite volume method, pp. 1–26, 1995.

Wang, R., Walters, R., and Yu, R. Incorporating symmetry
into deep dynamics models for improved generalization.
In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=wta_8Hx2KD.

Worrall, D. and Welling, M. Deep scale-spaces: Equivari-
ance over scale. Advances in Neural Information Process-

ing Systems, 32, 2019.

Yang, Y., Dasmahapatra, S., and Mahmoodi, S. Scale-
equivariant unet for histopathology image segmentation.
arXiv preprint arXiv:2304.04595, 2023.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets. Ad-

vances in Neural Information Processing Systems, 30,
2017.

11

https://openreview.net/forum?id=roNqYL0_XP
https://openreview.net/forum?id=roNqYL0_XP
https://openreview.net/forum?id=HJgpugrKPS
https://openreview.net/forum?id=HJgpugrKPS
https://openreview.net/forum?id=wta_8Hx2KD
https://openreview.net/forum?id=wta_8Hx2KD

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

A. Notation

⌦ Analysis domain

U : [0,1)⇥ ⌦! Rd Time-dependent vector field

Vi Volume of the i-th cell

Sij = Sji Area of the face (i, j)

nij = �nji Normal vector of the face (i, j), pointing outside of the i-th cell

xi Position of the centroid of the i-th cell

xij = xji Position of the centroid of the face (i, j)

V ⇢ Z Vertex set

E ⇢ Z⇥ Z Edge set

G = (V, E) Graph

Ni ⇢ V Set of neighboring vertices regarding the i vertex

H Set of graph signals

H : V ! Rd Graph signal

hi := [H]i Value of a graph signal at the i-th vertex

F : H! H
0 Operator mapping from a vertex signal to another, typically constructed using GNNs

B. Basics on Finite Volume Method

We review how to model the linear convection–diffusion equation of a scalar field expressed as

@

@t
u = �r · (cu�Dru) , (15)

because it is easy to generalize the scheme to vector or higher-order tensor fields.

Here, we consider two neighboring cells, i and j, assuming nij and xi � xj are in the same direction, and the midpoint
is at the center of the face (i, j), i.e., (xi + xj)/2 = xij , for simplicity. The setting is illustrated in Figure 8. In case the
assumption does not hold, refer to Jasak (1996); Versteeg & Malalasekera (1995); Darwish & Moukalled (2016).

B.1. Spatial discretization

Applying Equation (3) to Equation (15), we obtain

@

@t
Viui =

X

j2Ni

Sijnij · [cu�Dru]ij (16)

⇡

X

j2Ni

Sijnij · [cijuij �Dij [ru]ij] , (17)

where ·ij represents a value at the face (i, j).

To obtain uij for the convection term, one may use the central interpolation

ulinear
ij :=

kxij � xjk

kxi � xjk
ui +

kxij � xik

kxi � xjk
uj , (18)

or the upwind interpolation

uupwind
ij :=

⇢
ui if cij · nij � 0
uj else.

(19)

12

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

Figure 8. Geometry and variables used to construct FVM, focusing on the i-th and j-th cells.

There are extensive variations of the interpolation, such as the semi-Lagrangian method and Lax–Wendroff method (Lax &
Wendroff, 1960). The gradient in the direction of dij := xj � xi for the diffusion term can be computed as

h
rd̂ij

u
i

ij
⇡

uj � ui

kdijk
d̂ij , (20)

where d̂ij := dij/kdijk. Because nij = d̂ij in the present setting, we obtain

nij · [ru]ij = d̂ij ·

h
rd̂ij

u
i

ij
⇡

uj � ui

kdijk
. (21)

B.2. Boundary Condition

Boundary conditions are essential for solving PDEs because the behavior of the solution drastically differs depending on the
conditions. We consider two types of boundary conditions: 1) the Dirichlet boundary condition defining the value of the
solution on the boundary and 2) the Neumann boundary condition defining the value of the gradient of the solution on the
boundary. These boundary conditions are expressed as

u(x) = û(x), on @⌦Dirichlet (22)
n · [ru](x) = ĝ(x), on @⌦Neumann, (23)

where ·̂ represents a given value, and @⌦Dirichlet and @⌦Neumann represent Dirichlet and Neumann boundaries satisfying
@⌦Dirichlet \ @⌦Neumann = ; and @⌦Dirichlet [@⌦Neumann = @⌦, respectively. Under spatial discretization, these
conditions are

uij = ûij , 8(i, j) 2 EDirichlet (24)
nij · [ru]ij = ĝij , 8(i, j) 2 ENeumann, (25)

where EDirichlet and ENeumann denote the sets of faces corresponding to the Dirichlet and Neumann boundaries, respectively.
These expressions indicate that boundary conditions correspond to edge features in the GNN settings. Further, the j-th cell
does not exist if the i-th cell exists and (i, j) is on the boundary. Here, j represents a virtual index to characterize boundary
faces.

In the case of the convection term, the boundary conditions can be applied as

uij ûij , (i, j) 2 EDirichlet

uij uij + ĝij(xij � xi) · dij , (i, j) 2 ENeumann
(26)

13

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

The boundary conditions for the diffusion term are expressed as

nij · (ru)ij
ûij � ui

kxij � xik
, (i, j) 2 EDirichlet

nij · (ru)ij ĝij , (i, j) 2 ENeumann

(27)

where “ ” represents the variable overwriting during computation.

B.3. Temporal Discretization

We consider the temporal discretization for the general conservation form. To specify the time, we write variables explicitly
as functions of time, e.g., u(t) denoting the vector field u at time t.

As is the case with spatial discretization, there are numerous methods for temporal discretization. One of the simplest
schemes is the explicit Euler method expressed as

u(t + �t) = u(t)�r · F (u)(t)�t, (28)

where one can compute an unknown state u(t + �t) by evaluating the right-hand side using a known state u(t). The other
one is the implicit Euler method written as

u(t + �t) = u(t)�r · F (u)(t + �t)�t. (29)

The implicit method contains unknowns on both sides, requiring more expensive computations to solve the equation
compared to that required by the explicit method.

C. Proofs

C.1. Proof of Lemma 3.2

Proof. We show the linearity of update functions by contradiction. Assume that there exists a strictly nonlinear operator
FNL that is vertex-wise, continuous, and conservative. Here, one can let FNL(0) = 0 without the loss of generality because
of the shift-invariance of the input and output conservative fields. Now, consider a graph with two vertices and the vertex
signal H = (h1,h2)>. Applying the vertex-wise nonlinear operator to the signal, the converted conservation constant C̃
can be expressed as

FNL(h1) + FNL(h2) = C̃. (30)

Converting a different input (h1 + h2,0)> results in

FNL(h1 + h2) + FNL(0) = C̃. (31)

Using FNL(0) = 0, one can find that

FNL(h1) + FNL(h2) = FNL(h1 + h2), (32)

which results in the Cauchy’s functional equation. The solution of the equation is known to be linear if FNL is continuous
(at least one point) (Kannappan, 2009), which is a contradiction.

Remark C.1. If a vertex-wise continuous conservative operator F is a map to the same space, F is an identity because
F(h1) should be conservative in a graph with one vertex.

C.2. Proof of Theorem 3.1

Proof. By Remark C.1, the update function is the identity. Thus, MPNN is expressed as

h̃i = hi +
X

j2Ni

mij . (33)

14

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

The condition for conservation is
P

i2V hi =
P

i2V h̃i, which results in
X

i2V

X

j2Ni

mij = 0. (34)

From the equation, mii = 0 for all i 2 V . Considering the complete graph with two vertices, we see m12 = �m21 from
Equation (34). Now, assume that the GNN is conservative for graphs with K edges. Adding the (K + 1)-th edge (i, j)
requires mij = �mji to retain conservation. The converse can be verified easily.

C.3. Proof of Theorem 3.3

Proof. Following Lemma 3.2, encoders and decodes must be linear. We show that the decoder should be the left inverse of
the encoder. Consider a graph with one vertex with the vertex signal H = (h1)>. With that graph,

X

i2V
hi = h1 = C, (35)

where C represents a conservation constant. By applying a conservative encode-process-decode architecture Fdecode �FL �

Fencode,

Fdecode � FL � Fencode(ui) = Fdecode � FL � Fencode(C)

= Fdecode � FL(C̃)

= Fdecode(C̃), (36)

where C̃ := Fencode(C) represents the conservation constant in the encoded space. Because of conservation, Equation (36)
is equal to C. Therefore,

Fdecode(C̃) = Fdecode(Fencode(C)) = C. (37)

This relationship holds for any C. Therefore, Fdecode should be the left inverse of Fencode.

C.4. Proof of Theorem 3.4

Proof. First, the condition for update functions (Equation (8)) can be satisfied by defining gi := Vihi. The message function
of Equation (9) is expressed as

mij = �Sijnij · FML

✓
1

Vi
gi,

1

Vj
gj ,

1

Vij
gij

◆
, (38)

where Vij = Vji represents the interpolated volume at the face (i, j). Computing mji results in

mji = �Sjinji · FML

✓
1

Vj
gj ,

1

Vi
gi,

1

Vji
gji

◆
(39)

= Sijnij · FML

✓
1

Vj
gj ,

1

Vi
gi,

1

Vij
gij

◆
(40)

The condition for conservation (Equation (7)) requires mij = �mji for all (i, j) 2 E , and therefore,

FML (hi,hj ,hij) = FML (hj ,hi,hij) . (41)

The converse can be shown similarly.

Remark C.2. With FluxGNN, G := (g1, g2, . . . , g|V|) is conservative rather than H , which means that

X

j2V
gi =

X

j2V
Vihi ⇡

Z

⌦
h dV (42)

is conservative as with FVM.

15

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

0.0 0.2 0.4 0.6 0.8 1.0

x

�1.00

�0.75

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00

u
n = 5

n = 20

n = 100

exact

Figure 9. Results of the convergence study of FVM for the convection–diffusion equation at t = 1.0.

Table 3. Results of the convergence study of FVM for the convection–diffusion equation.
ncell �x RMSE

5 0.2 0.128
10 0.1 0.077
20 0.05 0.043
50 0.02 0.018

100 0.01 0.009

D. FluxGNN Details

D.1. Validation of FVM

Our model relies considerably on FVM implementation, and therefore, validating the implemented FVM is critical for
successfully modeling FluxGNN. Here, we introduce the results of the validation.

CONVECTION–DIFFUSION EQUATION

We performed the study under the same condition as the machine learning task, i.e., periodic boundary condition with a
sinusoidal initial condition. Table 3 and Table 3 present the results of the convergence study in the convection–diffusion
equation. We confirmed that the convergence is in the second order for the spatial resolution, as expected from the
formulation of FVM.

NAVIER–STOKES EQUATIONS

We performed a convergence study of the Navier–Stokes equation for the 2D Hagen–Poiseuille flow. We generated a
rectangular shape with the length in the x and y directions of two and one, respectively. The inlet is on the side with
the minimum x coordinate. The magnitude of inflow is one, and the Reynolds number is one. Under this setting, the x
component of the velocity as a function of the y coordinate, ux(y), is given as

ux(y) = 6y(1� y). (43)

Figure 10 and Table 4 present the results, which re-confirm the second-order convergence.

NAVIER–STOKES EQUATIONS WITH MIXTURE

We conducted a test of our FVM using the Navier–Stokes equations with mixture. The experimental setup closely mirrors
that of the machine learning task, with the exception of the diffusion coefficient for ↵, denoted as D↵, which has been set to
10�4 for stability reasons. Constructing an exact solution for this class of problems is challenging, and therefore, we opted

16

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

ux

0.0

0.2

0.4

0.6

0.8

1.0

y

n = 5

n = 10

n = 20

exact

Figure 10. Results of the convergence study of FVM for the Navier–Stokes equations with the 2D Hagen—Poiseuille flow at the steady
state.

Table 4. Results of the convergence study of FVM for the Navier–Stokes equations with the 2D Hagen—Poiseuille flow.
ncell in the y direction �x RMSE

5 0.2 0.041
10 0.1 0.010
20 0.05 0.003

to compare our numerical solution with that of OpenFOAM, a well-established classical solver that employs FVM. Figure 11
presents the qualitative comparison between OpenFOAM and our FVM implementation. While our implementation tends to
exhibit slightly higher diffusivity at this resolution, both implementations display similar behavior.

D.2. Flux Function

Flux functions FML form the core of FluxGNNs. Here, we present definitions of the flux functions used for the following
experiments. The flux function for convection, Fconv, is defined as

Fconv(ũi, ũj , ũij , c̃ij) := fsim (c̃ijFint(ũi, ũj , ũij)) , (44)

where fsim, ·̃, and Fint respectively represent a similarity-equivariant MLP defined in Equation (10), feature encoded using
a linear map, and flux function for interpolation. Fint is expressed as

Fint(ũi, ũj , ũij) :=
1

4

h
fvertex
sim (ũi) + fvertex

sim (ũj) + f linear
sim (ũlinear

ij) + fvertex
upwind(ũupwind

ij)
i
, (45)

where ũij = (ũlinear
ij , ũupwind

ij) is computed using FVM schemes explained in Appendix B. The similarity-equivariant MLP
for vertex signals is shared to achieve permutation-equivariance for vertex signals. However, this does not apply to the
MLPs for edge signals.

The gradient for the diffusion term is modeled as

Fgrad(ũi, ũj , ũij) := fsim

✓
ũj � ũi

kdijk

dij

kdijk

◆
. (46)

The boundary conditions are applied using the same procedure as Appendix B; however, in the encoded space.

17

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

Figure 11. Results of the validation of our FVM for the Navier–Stokes equation with mixture. Arrows indicate the velocity fields.

E. Experiment Details: Convection–Diffusion Equation

E.1. Dataset

The equation of interest is

@

@t
u = �r · (cu�Dru) , (t, x) 2 (0, Tmax)⇥ [0, 1), (47)

with periodic boundary conditions, where D = 10�4 and kck 2 [0.0, 0.2] is obtained from the uniform distribution. We
define the initial condition as

u(t = 0, x) = uamp cos(2⇡(x + x0)), x 2 [0.0, 1.0) (48)

with uamp 2 [0.5, 1.0] and x0 2 [0.0, 1.0] obtained from the uniform distribution. A precise solution to the specified initial
condition, when subjected to periodic boundary conditions is

u(t, x) = uamp exp(�(2⇡)2Dt) cos(2⇡(x� ct + x0)). (49)

We generated the dataset by randomly varying the initial condition and convecting velocity.

E.2. FluxGNN Modeling

The FluxGNN model used for the convection–diffusion equation is expressed as explained below.

ENCODER

All encoders are linear following Theorem 3.3. Using vertex-wide linear functions {✏·}, each input feature is encoded as

u : ũi = ✏u(ui), i 2 V

Dirichlet for u : ˜̂uij = ✏u(ûij), (i, j) 2 EDirichlet

Neumann for u : ˜̂gij = ✏u(ĝij), (i, j) 2 ENeumann

c : c̃ij = ✏c(cij), (i, j) 2 E

D : D̃ij = ✏D(Dij), (i, j) 2 E

(50)

We used encoders with embedded dimensions of 64.

18

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

Figure 12. Template shapes for training, validation, and test dataset (left) and taller dataset (right). Both use two parameters, h and w.

PROCESSOR

The processing part is constructed using FVM formulation and FluxGNN as

ũ(t + �t) = ũ(t) +
X

j2Ni

Sijnij ·

h
Fconv(ũi, ũj , ũij , c̃ij)� D̃ijFgrad(ũi, ũj , ũij)

i
�t, (51)

where we apply the explicit Euler scheme for time evolution. For MLPs used in similarity-equivariant MLPs, we used the
structure

MLP(h) := tanh �Linear(2)64 64 � tanh �Linear(1)64 64(h), (52)

where Linear(·)64 64 denotes a linear layer mapping from 64 features to 64 features.

DECODER

We obtain a time series of encoded u using the autoregressive computation in the processing step. Applying the decoder �u
that satisfies �u � ✏u = id, we obtain

upred
i (t) := �u(ũi(t)), 8i 2 V, 8t 2 {�t, 2�t, . . . , Tmax}. (53)

F. Experiment Details: Navier–Stokes Equations with Mixture

F.1. Dataset

We generated shapes with varying dimensions, as shown in Figure 12. Specifically, we varied h and w across these settings:
0.2, 0.4, and 0.6, resulting in a total of nine distinct shapes. To avoid data leakage, we partitioned these shapes into three sets:
five for training, two for validation, and two for testing. Subsequently, we created four initial conditions for each shape using
random numerical analysis. These initial conditions were employed in OpenFOAM simulations, utilizing fine meshes with a
spatial resolution of �x = 1/320. Additionally, we configured the simulation with the following parameters: kinematic
viscosity ⌫ = 10�3, diffusion coefficient D↵ = 10�6, density of solvent ⇢high = 1000, density of solute ⇢low = 990,
and gravity acting in the y direction with a magnitude of 9.81. We employed the isolated boundary condition with walls,
specifically:

u(x) = 0, on @⌦
p(x) = 0, on @⌦miny

n(x) ·rp(x) = 0, on @⌦ \ @⌦miny

n(x) ·r↵(x) = 0, on @⌦

(54)

19

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

Table 5. Hyperparameter range used for FluxGNN.
Name Range

nbundle: # of steps bundled 2, 4
nfeature: # encoded features 8, 16, 32, 64
nrep: # neural nonlinear steps 2, 4, 8

where @⌦miny represents the boundary at the bottom.

After OpenFOAM simulations, we interpolated the results to coarsened meshes with �x = 1/20. This was done deliberately
to create a more demanding machine learning problem because coarsened meshes are known to introduce significant
numerical diffusion, resulting in difficulty in maintaining the density field sharp. Our primary objective with the machine
learning task is intended to examine the ability of each method to effectively maintain the sharpness of the density field
(equivalently, ↵), even when faced with pronounced numerical diffusion.

We divided the time series on coarse meshes into 100 trajectories with shifting time windows whose width and step size are
1.6 to augment the training dataset. Finally, we obtain 200, 8, and 8 trajectories for the training, validation, and test datasets.

We generated a rotation dataset by applying random rotation and a scaling dataset by applying a random scaling of
space, time, and mass scales to evaluate the generalizability of each method. Further, we generated the taller dataset,
which has taller shapes than the test dataset, as illustrated in Figure 12. We chose dimension parameters as (h, w) =
(0.5, 0.2), (0.5, 0.4), and (0.5, 0.6). We generated one trajectory for each shape in the taller dataset using the same procedure
to generate the test dataset.

F.2. FluxGNN modeling

The fundamental structure of FluxGNN remain consistent with the approach applied for the convection–diffusion equation,
with the addition of established machine learning techniques, including temporal bundling and the neural nonlinear solver.
The hyperparameter employed for the study is detailed in Table 5.

To obtain the pressure field, we applied the fractional step method as done in (Horie & Mitsume, 2022). The equations to
solve are turned into

@

@t
↵ = �r · [u↵�D↵r↵] (55)

f⇢u : = ⇢u�r ·

⇢u⌦ u

⌫

⇢

⇥
r⌦ u� (r⌦ u)>

⇤�
�t (56)

r ·r(p+
⇢gy) = �r · (g · hr⇢) +

1

�t

r · f⇢u +

@

@t
⇢

�
(57)

u
+ =

1

⇢

h
f⇢u��t(rp+

⇢gh + g · hr⇢)
i
, (58)

where ·
+ denotes variables at the next time step. We utilized a matrix-free conjugate gradient (CG) method (Prabhune

& Suresh, 2020), which corresponds to an iterative application of locally conservative diffusion operations. In the CG
method, we refrain from using trainable functions to solve the Poisson equation for pressure. This choice is made due to the
potentially large number of iterations required (e.g., 20 to 100 iterations), as the presence of trainable parameters in a deep
loop often leads to instability in the backward process.

F.3. Baselines

The visibility of a wide range of hops in the model is attributed to FluxGNN’s utilization of numerous iterations within
the forward loop. Consequently, our hyperparameter investigations encompassed baseline models with varying levels of
visible hops, in addition to exploring different configurations of hidden features. The comprehensive details of these study
parameters can be found in Tables 6 to 8.

20

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

Table 6. Hyperparameter range used for MP-PDE.
Name Range

nbundle: # of steps bundled 2, 4, 8
nfeature: # encoded features 32, 64, 128
nneighbor: # neighbors considered in one forward computation of a GNN layer 4, 8, 16

Table 7. Hyperparameter range used for PENN.
Name Range

nfeature: # encoded features 4, 8, 16, 32, 64
nrep: # neural nonlinear steps 4, 8, 16

F.4. Results

Figures 13 and 14 present additional visualizations of the results. Notably, FluxGNN exhibits robust performance, even
when confronted with unseen shapes from the taller dataset. Interestingly, PENN also demonstrates proficient performance
in predicting ↵ for these unfamiliar shapes, likely owing to the E(n)-equivariance embedded within the model.

Figure 15 provides a concise overview of the tradeoff between speed and accuracy, as ascertained through hyperparameter
studies. All data used for the plot are shown in Tables 9 to 12. In the tested domain, our model consistently achieves higher
accuracy compared to MP-PDE, primarily because it incorporates the underlying laws of physics. Meanwhile, MP-PDE
showcases commendable computational efficiency due to its less specific physics implementation, resulting in a simpler
overall model structure. PENN, on the other hand, delivers superior accuracy compared to MP-PDE models but incurs
a relatively longer runtime, as it lacks dedicated mechanisms for time-series computation. Our FluxGNN models have
high generalizability, as demonstrated in Section 4. Furthermore, they tend to achieve higher computational efficiency than
PENN, owing to the incorporation of temporal bundling, a method designed to streamline time-series computation.

Table 8. Hyperparameter range used for FVM.
Name Range

nrepu: # loops for solver of u 4, 8, 16, 32, 64, 128
nrep↵: # loops for solver of ↵ 4, 8, 16, 32, 64, 128

21

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

Figure 13. Visual comparison of pressure field between ground truth, MP-PDE, PENN, and FluxGNN.

Figure 14. Visual comparison of volume fraction field between ground truth, MP-PDE, PENN, and FluxGNN.

22

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

100 101 102

Computation time [s]

10�1

100

101

102

103

104

L
os

s

FluxGNN (Ours): test

PENN: test

MP-PDE: test

FVM: test

FluxGNN (Ours): taller

PENN: taller

MP-PDE: taller

FVM: taller

Figure 15. Speed–accuracy tradeoff of machine learning models (MP-PDE, PENN, and FluxGNN) and FVM, with error bars corresponding
to the standard error of the mean. Light and dark colors correspond to the evaluation of the test and taller datasets, respectively. Lines
represent Pareto fronts. FVM did not converge on the taller dataset with all settings tested, and therefore, there is no plot for FVM on the
dataset. All computations are done on the same CPU (Intel Xeon CPU E5-2695 v2 @ 2.40 GHz) with one core.

23

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

Table 9. Detailed results of the hyperparameter study for FVM. All computations are done on the same CPU (Intel Xeon CPU E5-2695 v2
@ 2.40 GHz) with one core.

nrepu nrep↵
Computation time

on the test dataset [s]

Loss
on the test dataset

(⇥10�1)

Computation time
on the taller dataset [s]

Loss
on the taller dataset

(⇥10�1)

4 4 5.48± 1.33 NaN±NaN 39.83± 7.38 NaN±NaN
8 4 5.81± 0.97 NaN±NaN 43.83± 6.65 NaN±NaN

16 4 6.61± 0.97 NaN±NaN 42.23± 7.37 NaN±NaN
32 4 7.71± 1.10 NaN±NaN 46.14± 7.50 NaN±NaN
64 4 8.99± 1.32 NaN±NaN 50.53± 7.37 NaN±NaN

128 4 11.06± 1.78 NaN±NaN 60.31± 7.36 NaN±NaN
4 8 7.57± 0.17 63.72± 0.33 108.40± 13.99 NaN±NaN
8 8 8.41± 0.16 66.26± 0.34 98.27± 15.83 NaN±NaN

16 8 8.69± 0.15 66.26± 0.34 100.47± 9.41 NaN±NaN
32 8 8.66± 0.18 66.26± 0.34 106.87± 9.77 NaN±NaN
64 8 8.80± 0.27 66.26± 0.34 110.52± 15.14 NaN±NaN

128 8 8.69± 0.34 66.26± 0.34 125.54± 15.92 NaN±NaN
4 16 13.58± 0.21 67.40± 0.27 179.02± 42.98 NaN±NaN
8 16 15.02± 0.34 61.77± 0.26 186.34± 44.78 NaN±NaN

16 16 14.77± 0.35 61.77± 0.26 188.38± 44.49 NaN±NaN
32 16 15.20± 0.36 61.77± 0.26 196.69± 45.23 NaN±NaN
64 16 15.16± 0.36 61.77± 0.26 213.58± 47.77 NaN±NaN

128 16 15.07± 0.35 61.77± 0.26 242.97± 51.98 NaN±NaN
4 32 27.13± 0.47 60.10± 0.25 338.46± 128.31 NaN±NaN
8 32 27.63± 0.46 63.99± 0.26 342.37± 127.92 NaN±NaN

16 32 27.51± 0.44 63.99± 0.26 350.57± 130.42 NaN±NaN
32 32 27.24± 0.48 63.99± 0.26 365.23± 135.17 NaN±NaN
64 32 28.47± 0.47 63.99± 0.26 392.99± 145.17 NaN±NaN

128 32 27.94± 0.46 63.99± 0.26 441.77± 164.01 NaN±NaN
4 64 51.99± 1.29 62.07± 0.25 810.78± 202.26 NaN±NaN
8 64 54.14± 1.49 60.69± 0.25 771.13± 183.60 NaN±NaN

16 64 53.82± 1.46 60.69± 0.25 834.60± 205.83 NaN±NaN
32 64 53.93± 1.51 60.69± 0.25 862.31± 210.42 NaN±NaN
64 64 54.43± 1.50 60.69± 0.25 923.02± 222.67 NaN±NaN

128 64 53.76± 1.54 60.69± 0.25 1088.87± 267.00 NaN±NaN
4 128 96.50± 2.89 65.58± 0.26 1830.75± 371.98 NaN±NaN
8 128 98.27± 2.73 65.58± 0.26 1721.97± 444.38 NaN±NaN

16 128 107.59± 3.66 65.58± 0.26 1749.10± 446.70 NaN±NaN
32 128 117.08± 7.49 65.58± 0.26 1825.21± 468.47 NaN±NaN
64 128 138.57± 15.99 65.58± 0.26 1915.15± 485.07 NaN±NaN

128 128 182.36± 33.54 65.58± 0.26 2147.13± 538.70 NaN±NaN

24

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

Table 10. Detailed results of the hyperparameter study for MP-PDE. All computations are done on the same CPU (Intel Xeon CPU
E5-2695 v2 @ 2.40 GHz) with one core.

nbundle nfeature nneighbor
Computation time

on the test dataset [s]

Loss
on the test dataset

(⇥10�1)

Computation time
on the taller dataset [s]

Loss
on the taller dataset

(⇥10�1)

2 32 4 0.88± 0.03 5.12± 0.03 1.74± 0.02 18.29± 0.14
2 32 8 4.06± 0.13 4.56± 0.02 9.81± 0.15 20.56± 0.09
2 32 16 10.80± 0.27 4.89± 0.02 27.00± 0.23 21.06± 0.11
2 64 4 1.91± 0.06 4.26± 0.02 3.68± 0.03 20.74± 0.09
2 64 8 8.04± 0.22 4.16± 0.02 24.31± 0.25 18.51± 0.09
2 64 16 27.75± 0.31 4.75± 0.02 56.54± 0.42 8.97± 0.05
2 128 4 4.99± 0.06 3.88± 0.02 10.64± 0.15 14.23± 0.07
2 128 8 26.11± 0.32 3.76± 0.02 54.61± 0.60 17.62± 0.10
2 128 16 62.50± 0.69 4.16± 0.02 127.80± 1.03 14.56± 0.08
4 32 4 0.47± 0.01 5.31± 0.03 0.98± 0.01 10.58± 0.06
4 32 8 2.37± 0.05 4.52± 0.02 5.28± 0.02 20.70± 0.10
4 32 16 5.87± 0.11 4.86± 0.02 14.21± 0.15 14.68± 0.08
4 64 4 0.96± 0.01 4.08± 0.02 1.96± 0.03 10.32± 0.05
4 64 8 5.13± 0.07 3.90± 0.02 12.73± 0.11 10.10± 0.05
4 64 16 14.39± 0.16 4.56± 0.02 28.64± 0.29 8.95± 0.05
4 128 4 2.56± 0.03 3.49± 0.02 5.61± 0.02 13.67± 0.09
4 128 8 13.50± 0.17 3.61± 0.02 27.88± 0.27 9.26± 0.06
4 128 16 31.97± 0.35 4.31± 0.02 65.27± 0.51 9.73± 0.05
8 32 4 0.29± 0.00 5.66± 0.03 0.61± 0.01 11.89± 0.06
8 32 8 1.43± 0.02 4.63± 0.02 2.37± 0.07 7.78± 0.04
8 32 16 3.36± 0.07 4.86± 0.02 8.23± 0.06 12.84± 0.06
8 64 4 0.56± 0.01 4.57± 0.02 1.13± 0.02 8.35± 0.05
8 64 8 2.75± 0.04 4.08± 0.02 6.76± 0.06 7.68± 0.05
8 64 16 7.35± 0.10 4.56± 0.02 15.65± 0.13 10.88± 0.05
8 128 4 1.37± 0.02 3.77± 0.02 3.02± 0.03 7.76± 0.04
8 128 8 6.98± 0.09 3.64± 0.02 14.33± 0.16 8.11± 0.04
8 128 16 16.31± 0.19 4.04± 0.02 33.84± 0.28 7.46± 0.04

Table 11. Detailed results of the hyperparameter study for PENN. All computations are done on the same CPU (Intel Xeon CPU E5-2695
v2 @ 2.40 GHz) with one core.

nfeature nrep
Computation time

on the test dataset [s]

Loss
on the test dataset

(⇥10�1)

Computation time
on the taller dataset [s]

Loss
on the taller dataset

(⇥10�1)

4 4 5.87± 0.04 3.80± 0.02 10.54± 0.07 8.47± 0.07
4 8 10.43± 0.08 4.36± 0.02 18.75± 0.13 123.80± 1.43
4 16 11.37± 0.55 6.57± 0.03 31.15± 0.79 172376.18± 35812.77
8 4 7.67± 0.06 2.49± 0.01 14.47± 0.11 3.48± 0.02
8 8 13.72± 0.12 4.13± 0.02 26.18± 0.19 4.52± 0.02
8 16 18.91± 0.62 3.83± 0.02 47.34± 0.98 26.96± 0.34

16 4 11.76± 0.10 2.12± 0.01 22.95± 0.18 29.93± 0.87
16 8 21.07± 0.20 3.57± 0.02 41.53± 0.32 28.90± 0.63
16 16 39.59± 0.39 190.58± 2.09 78.26± 0.69 225.39± 1.59
32 4 19.36± 0.19 1.58± 0.01 39.21± 0.32 3.72± 0.02
32 8 34.52± 0.34 127.20± 0.80 69.15± 0.62 200.11± 3.77
32 16 65.37± 0.62 97.67± 0.42 130.88± 1.13 1333.77± 16.01
64 4 34.36± 0.32 6.78± 0.03 70.49± 0.60 85.39± 1.28
64 8 60.68± 0.63 775.32± 4.13 125.40± 0.80 734.80± 5.41
64 16 114.56± 1.10 150.98± 0.75 235.70± 1.71 668.38± 12.94

25

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

Table 12. Detailed results of the hyperparameter study for FluxGNN. All computations are done on the same CPU (Intel Xeon CPU
E5-2695 v2 @ 2.40 GHz) with one core.

nbundle nfeature nrep
Computation time

on the test dataset [s]

Loss
on the test dataset

(⇥10�1)

Computation time
on the taller dataset [s]

Loss
on the taller dataset

(⇥10�1)

2 8 2 2.28± 0.04 3.84± 0.02 4.38± 0.07 3.42± 0.02
2 8 4 3.06± 0.05 3.28± 0.02 5.66± 0.13 2.91± 0.02
2 8 8 4.47± 0.05 6.81± 0.04 8.31± 0.24 5.66± 0.04
2 16 2 2.52± 0.04 4.40± 0.03 4.85± 0.06 3.85± 0.03
2 16 4 3.55± 0.06 2.90± 0.01 6.65± 0.14 2.67± 0.02
2 16 8 5.62± 0.07 7.91± 0.04 10.47± 0.14 6.32± 0.04
2 32 2 3.09± 0.05 3.59± 0.02 5.87± 0.10 3.36± 0.02
2 32 4 4.60± 0.07 2.78± 0.01 8.77± 0.13 2.83± 0.02
2 32 8 7.40± 0.06 5.58± 0.03 14.66± 0.18 5.51± 0.05
2 64 2 4.14± 0.07 3.81± 0.03 8.11± 0.13 3.68± 0.03
2 64 4 6.67± 0.11 2.55± 0.01 13.15± 0.21 2.66± 0.02
2 64 8 10.42± 0.17 3.22± 0.02 22.16± 0.18 3.71± 0.02
4 8 2 2.98± 0.06 4.84± 0.02 5.82± 0.22 3.52± 0.02
4 8 4 4.21± 0.05 2.69± 0.01 7.82± 0.13 2.49± 0.01
4 8 8 7.44± 0.06 9.20± 0.04 13.93± 0.30 6.66± 0.04
4 16 2 3.46± 0.07 7.63± 0.04 6.75± 0.24 5.29± 0.05
4 16 4 5.72± 0.12 2.86± 0.01 11.18± 0.62 2.93± 0.02
4 16 8 8.69± 0.16 2.74± 0.01 17.05± 0.34 2.58± 0.01
4 32 2 4.24± 0.05 3.03± 0.01 8.31± 0.09 2.71± 0.02
4 32 4 6.80± 0.09 2.72± 0.02 13.49± 0.05 3.18± 0.03
4 32 8 12.43± 0.14 2.60± 0.01 26.06± 0.19 2.87± 0.02
4 64 2 6.37± 0.08 2.97± 0.01 12.49± 0.19 2.73± 0.02
4 64 4 10.84± 0.15 2.78± 0.02 21.44± 0.14 3.13± 0.02
4 64 8 21.03± 0.23 3.64± 0.02 46.46± 0.88 3.75± 0.02

26

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

Figure 16. Time evolution of velocity field for ground truth, FVM, MP-PDE, PENN, and FluxGNN.

F.5. Longer Temporal Rollout

Figures 16 to 18 visualize velocity, pressure, and volume fraction fields of longer temporal rollout predictions. Our
observations are as follows:

• A substantial part of the error of FluxGNN is mainly due to the pressure. It seems that pressure starts to be unstable
earlier than velocity and volume fraction, implying that instability of pressure would be key to establishing a more
stable model. MP-PDE has a lower loss than FluxGNN at t 8.0, but these outputs are not qualitatively similar to those
of ground truth.

• FluxGNN keeps the distribution of the volume fraction field (↵) similar to ground truth, while other methods show
entirely dissimilar fields. That may be due to the conservative property of our method because the volume fraction is
strictly conservative in the present setting.

27

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

Figure 17. Time evolution of pressure field for ground truth, FVM, MP-PDE, PENN, and FluxGNN.

28

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

Figure 18. Time evolution of volume fraction field for ground truth, FVM, MP-PDE, PENN, and FluxGNN.

29

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

F.6. Ablation Study

Table 13 presents the results of an ablation study. That suggests that all components included in the model contribute to
spatial out-of-domain generalizability. We compared the following models:

• Without temporal bundling

• Without neural nonlinear solver, meaning explicit temporal differentiation

• Without conservation, meaning no permutation-invariance in the flux functions

• Without scaling-equivariance

• Without E(n)-equivariance

• FluxGNN, the proposed method

The model without E(n)-equivariance performs best on the test, rotation, and scaling datasets. In particular, it performs well
on the rotation dataset, although the model has no E(n)-equivariance. That implies that the inductive bias, introduced with
an FVM-like computation procedure, works quite fine.

FluxGNN performs the best on the taller dataset. The model without E(n)-equivariance degrades on the taller dataset,
implying insufficient generalizability. Our primal goal is to construct reliable methods toward out-of-domain generalizability.
Therefore, all the suggested components are necessary to achieve our goal.

Table 13. RMSE loss and conservation error (± standard error of the mean) on the evaluation datasets of the Navier–Stokes equation with
mixture for an ablation study. Each metric is normalized using standard deviation.

Method Dataset Loss u
�
⇥10�1

�
Loss p

�
⇥10�1

�
Loss ↵

�
⇥10�1

�
Conservation error ↵

�
⇥10�5

�

w/o temporal bundling test 2.075 ± 0.015 5.209 ± 0.034 2.851 ± 0.030 0.01 ± 0.00
w/o neural nonlinear solver test 1.291 ± 0.009 1.791 ± 0.011 0.429 ± 0.005 0.91 ± 0.33
w/o conservation test 1.252 ± 0.009 1.381 ± 0.014 0.405 ± 0.006 86.89 ± 3.88
w/o scaling-equivariance test 1.835 ± 0.013 1.410 ± 0.010 0.492 ± 0.007 0.05 ± 0.01
w/o E(n)-equivariance test 0.839 ± 0.005 1.192 ± 0.007 0.282 ± 0.004 0.01 ± 0.00
FluxGNN test 1.202 ± 0.008 1.143 ± 0.008 0.349 ± 0.005 0.06 ± 0.03

w/o temporal bundling rotation 2.114 ± 0.012 3.703 ± 0.028 2.850 ± 0.030 0.01 ± 0.00
w/o neural nonlinear solver rotation 1.290 ± 0.007 1.859 ± 0.010 0.426 ± 0.005 0.01 ± 0.00
w/o conservation rotation 1.248 ± 0.007 1.966 ± 0.014 0.414 ± 0.006 86.89 ± 3.88
w/o scaling-equivariance rotation 1.834 ± 0.010 1.620 ± 0.010 0.489 ± 0.007 0.01 ± 0.00
w/o E(n)-equivariance rotation 0.852 ± 0.005 1.306 ± 0.007 0.296 ± 0.004 0.01 ± 0.00
FluxGNN rotation 1.207 ± 0.007 1.175 ± 0.008 0.351 ± 0.005 0.01 ± 0.00

w/o temporal bundling scaling 2.070 ± 0.015 5.812 ± 0.037 2.850 ± 0.030 0.01 ± 0.00
w/o neural nonlinear solver scaling 1.316 ± 0.009 1.790 ± 0.011 0.438 ± 0.005 1.80 ± 0.87
w/o conservation scaling 1.245 ± 0.009 1.415 ± 0.013 0.410 ± 0.006 86.90 ± 3.89
w/o scaling-equivariance scaling 1.922 ± 0.014 8.102 ± 0.782 27.797 ± 3.080 0.05 ± 0.02
w/o E(n)-equivariance scaling 0.839 ± 0.005 1.189 ± 0.007 0.280 ± 0.003 0.01 ± 0.00
FluxGNN scaling 1.219 ± 0.009 1.228 ± 0.008 0.356 ± 0.005 0.05 ± 0.01

w/o temporal bundling taller 1.822 ± 0.017 4.329 ± 0.029 2.212 ± 0.034 0.01 ± 0.00
w/o neural nonlinear solver taller 1.268 ± 0.010 1.202 ± 0.010 0.403 ± 0.007 0.34 ± 0.05
w/o conservation taller 1.269 ± 0.012 1.336 ± 0.012 0.473 ± 0.009 205.37 ± 90.01
w/o scaling-equivariance taller 1.604 ± 0.015 1.102 ± 0.009 0.398 ± 0.007 0.03 ± 0.00
w/o E(n)-equivariance taller 1.122 ± 0.009 1.129 ± 0.009 0.440 ± 0.008 0.01 ± 0.00
FluxGNN taller 1.184 ± 0.009 0.966 ± 0.008 0.337 ± 0.006 0.02 ± 0.00

30

