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TION WITH SMOOTH FORMATION ADAPTATION
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Figure 1: ReDiG enables decentralized multi-robot navigation with smooth formation adaptation
by integrating decentralized graph learning for coordination, diffusion models for smooth trajectory
generation, and online reinforcement learning for formation synchronization.

ABSTRACT

Coordinated navigation is a fundamental capability for multi-robot teams to traverse
complex unstructured environments. During navigation, robots are often required
to maintain mission-specific formations, such as wedge formations for enhanced
visibility and area coverage. However, rigid formations can hinder navigation in
challenging scenarios like narrow corridors, which demand formation adaptation.
Reinforcement learning (RL) is commonly used for coordinated multi-robot navi-
gation due to its ability to learn through interaction with the environment. However,
its step-wise decision-making process often results in jerky motion. In contrast,
diffusion models generate smoother trajectories through probabilistic denoising,
but rely heavily on high-quality demonstrations. Collecting such demonstrations is
challenging in multi-robot systems due to the coordination and synchronization
required among individual robots. To address these issues, we introduce a novel
method named Reinforced Diffusion on Graphs (ReDiG) to enable decentralized
coordinated multi-robot navigation with smooth formation adaptation. Under a
unified learning paradigm, ReDiG integrates: (1) graph learning for decentralized
coordination to enable formation adaptation, (2) diffusion models for generating
smooth individual robot trajectories, and (3) online RL to refine noisy demonstra-
tions through leveraging feedback from environment interaction, which enables
robot synchronization and guides effective diffusion training. We evaluate ReDiG
through extensive experiments in both indoor and outdoor environments using phys-
ical robot teams and robotics simulations. Experimental results show that ReDiG
enables smooth formation adaptation and achieves state-of-the-art performance in
coordinated multi-robot navigation within complex environments. More details are
available on the project website: https://anonymous23885.github.io/ReDiG.
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1 INTRODUCTION

Multi-robot systems have gained significant attention in recent years due to their advantages, such
as redundancy Gao et al. (2023), operational efficiency Rekleitis et al. (2008), and scalability
Balch & Hybinette (2000), which make them well-suited for a wide range of real-world large-
scale applications, including search and rescue Queralta et al. (2020); Yang & Parasuraman (2020);
Baxter et al. (2007), transportation Amanatiadis et al. (2015); Koung et al. (2021); Farivarnejad
et al. (2021), and space exploration Han et al. (2020); Indelman (2018); Martinez Rocamora Jr et al.
(2023). Coordinated multi-robot navigation is an essential capability, which enables teams of robots
to traverse environments in a synchronized manner. During coordinated navigation, robot teams
are typically required to maintain task-specific formations, such as a wedge formation, to enhance
visibility and area coverage. To support this, multi-robot coordination is critical, which enables robots
to share information with their teammates, particularly in a decentralized manner. However, rigid
formations can hinder progress and impede navigation in complex environments, such as narrow
corridors. To overcome this, multi-robot synchronization is essential, allowing robots to align their
actions in both time and space to maintain and adapt formations. Furthermore, such constrained
scenarios often require frequent motion adjustments for formation adaptation, which can lead to
non-smooth and inefficient traversal, which results in an additional challenge that must be addressed.

Due to the importance of coordinated multi-robot navigation, a wide range of methods have been
developed. Traditional formation control methods, including leader-follower Wu et al. (2022) and
virtual region methods Abujabal et al. (2023), often rely on preset rigid formation shapes. However,
such formations lack the flexibility to adapt to complex environments. Learning-based methods,
such as reinforcement learning (RL) Hu et al. (2023), address this limitation by optimizing robot
actions through interaction with the environment. However, due to the stepwise nature of RL decision-
making, robots stop or adjust their motion frequently in pursuit of higher rewards, resulting in jerky
trajectories. Generative models such as diffusion models have recently shown promise in offline
RL Zhu et al. (2024) by leveraging reward signals from fixed datasets and iteratively denoising
demonstrations to generate smooth trajectories for robot navigation. However, collecting expert
demonstrations in multi-robot systems is challenging due to the need for precise coordination and
synchronization among individual robots. To overcome this, recent studies explore diffusion models
in online RL, refining actions through gradient ascent in an off-policy setting Yang et al. (2023).
However, none of the existing online diffusion methods have been applied to multi-robot systems.

To address the above limitations in the current state of the art, we introduce the first online diffusion-
based multi-robot learning approach called Reinforced Diffusion on Graph (ReDiG), to enable a new
multi-robot capability of decentralized coordinated multi-robot navigation with smooth formation
adaptation. Specifically, ReDiG represents a robot team as a graph, where each node represents a
robot along with its attributes such as position, velocity, goal, and obstacle proximity, and each edge
encodes the spatial relationship between robot pairs. ReDiG integrates three learning components
into a unified approach to enable coordinated multi-robot navigation with formation adaptation: First,
a decentralized graph neural network computes team-level embeddings from the graph representation,
which captures the team context for effective coordination. Second, a diffusion model on each robot
learns a navigation policy that generates smooth trajectories conditioned on the team embedding.
Third, an online RL module synchronizes individual robot actions through iterative interaction with
the environment, enabling formation adaptation in dynamic and constrained scenarios.

Our primary contribution is the introduction of the ReDiG approach to enable coordinated multi-robot
navigation with smooth formation adaptation. The specific novelties include:

• From the perspective of robot capability, we develop one of the first learning-based solutions
for decentralized coordinated multi-robot navigation with formation adaptation. ReDiG not
only enables a new capability of coordinated navigation with formation adaptation, but also
improves motion trajectory smoothness for individual robots, particularly when traversing
narrow corridors that require frequent adjustments.

• From the perspective of algorithmic novelty, we introduce ReDiG as the first online diffusion-
based multi-robot learning paradigm, which unifies decentralized graph learning for team-
level coordination, diffusion models for smooth individual trajectory generation, and online
reinforcement learning to iteratively refine noisy demonstration, ensuring coordinated and
synchronized multi-robot adaptive formation control across the robot team.
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2 RELATED WORK

Coordinated Multi-Robot Navigation. Traditional coordinated navigation with formation control
often relies on manually designed strategies, such as the leader-follower Reily et al. (2020); Wu et al.
(2022), and Virtual region methods Abujabal et al. (2023); Alonso-Mora et al. (2019) However, these
formations are often rigid and fail to traverse constrained space. Learning-based methods introduce
greater flexibility: Graph Neural Networks (GNNs) improve team coordination in a decentralized
manner Goarin & Loianno (2024); Gao et al. (2024), and Reinforcement Learning (RL) utilizes reward
signals to enable robot teams to learn coordinated behaviors that are difficult to manually design
Blumenkamp et al. (2022); Hu et al. (2023). However, in multi-robot navigation with synchronization,
RL often suffers from step-wise decision-making, which causes robots to stop or adjust their motion
frequently to maximize immediate rewards, leading to jerky trajectories and reduced smoothness.

Diffusion Models for Robot Policy Learning. Diffusion models have recently been applied in
robotics to generate smooth trajectories through iterative denoising. For single-robot planning,
diffusion models are used to sample motion plans conditioned on environmental context Fang et al.
(2024); Xian & Gkanatsios (2023). For multi-robot planning, Motion Diffuser Jiang et al. (2023)
enables trajectory prediction for multi-robot through cost function, Resilient Distributed Diffusion
Li et al. (2020a) enables resilient distributed control under adversarial conditions based on the
centerpoint concept, MMD Shaoul et al. (2024) generates collision-free multi-robot trajectories based
on single-robot data. However, applying diffusion models to multi-robot systems remains challenging
due to the need for large-scale, well-synchronized expert demonstrations, which are difficult to obtain.

Diffusion for Offline RL. Diffusion models have been recently integrated with offline RL to
improve policy through generative sampling guided by RL signals. Diffusion-QL Wang et al. (2022)
biases diffusion sampling toward high-value actions using Q-learning. SRDP Ada et al. (2024)
enhances out-of-distribution (OOD) generalization by reconstructing state representations. Diffuser
Janner et al. (2022) applies reward signals at the trajectory level, while Simple Hierarchical Chen
et al. (2024) extends this to multi-task settings using hierarchical diffusion policies. MTDiff He
et al. (2023) further supports multi-task planning through transformer-based conditioning. MADiff
Zhu et al. (2024) is the first offline diffusion-based multi-agent framework. However, for complex
behaviors that demand coordination and synchronization, which are rarely available in offline datasets,
offline RL struggles to learn behaviors that are absent from expert demonstrations.

Diffusion for Online RL. Diffusion-based online RL addresses the limitation of offline RL through
directly interacting with the environment, enabling the model to explore and refine behaviors beyond
those available in expert demonstrations. DIPO Yang et al. (2023) is the first to integrate diffusion
policies into online RL and introduces a novel diffusion policy improvement method, which uses
off-policy to refine actions through gradient ascent updates to obtain higher rewards. QSM Psenka
et al. (2023) aligns the diffusion model’s score function with the gradient of a Q-function, which
enables efficient policy updates. QVPO Ding et al. (2024) introduces a Q-weighted variational loss to
ensure robust policy improvement with enhanced exploration. However, none of these diffusion-based
online RL methods have been applied to multi-robot systems, particularly those requiring multi-robot
coordination and synchronization.

3 APPROACH

3.1 PROBLEM DEFINITION

We represent a team of n robots as an undirected graph G = {V,E}. Each robot is represented as
a node within the node set V = {v1,v2, . . . ,vn}. The attributes of each robot i are represented by
vi = [pi,qi,gi], where pi = [pxi , p

y
i ] denotes its position, gi = [gxi , g

y
i ] represents its goal position,

and qi = [qxi , q
y
i ] defines its velocities along the x and y directions. The edge matrix E = {ai,j}n×n

represents the spatial adjacency between robots, where ai,j = 1, if the i-th robot and the j-th robot
are within a radius; otherwise ai,j = 0. We define the state of the i-th robot as the concatenation of
its attributes, si = [pi,qi,gi, di], where di represents the distance from the nearest obstacle to the
i-th robot. We further define the action of the i-th robot as ai = [vxi , v

y
i ], where vxi and vyi represent

the output velocities in the x and y directions, respectively.
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We address decentralized coordinated multi-robot navigation, while ensuring both smooth individual
robot motion and adaptive formation control for the entire robot team. Specifically, we aim to address:

• Decentralized Coordination enables each robot to coordinate with teammates by sharing
and integrating state information in a fully decentralized manner, ensuring coherent multi-
robot coordination without centralized control.

• Smooth Trajectory Generation enables each robot to generate smooth, collision-free
trajectories that enable stable motion and efficient goal-reaching.

• Adaptive Formation Synchronization enables robots to align their motion in both time
and space, thus maintaining mission-specific formations while dynamically adjusting their
spatial team configuration to navigate through constrained environments.

3.2 REINFORCED DIFFUSION ON GRAPHS (REDIG)

To enable decentralized coordinated multi-robot navigation with smooth formation adaptation, we
propose the novel ReDiG approach with a unified learning paradigm, using a graph neural network to
coordinate robots within the team in a decentralized way, a diffusion model to control individual robots
for smooth navigation, and online reinforcement learning for adaptive formation synchronization.
Our ReDiG approach is illustrated in Figure 1.

Given the robot team’s graph representation G and robot states si of the i-th robot, we develop a graph
neural network ϕ to encode spatial relationships among robots in the team and then compute the
embedding hi = ϕ(si,G) of the team state for each i-th robot. The graph network ϕ consists of linear
layers that first map the robot state si to the individual embedding zi of the i-th robot by zi = Wzsi,
where Wz denotes the learnable weight matrix of the linear layers. By using message passing, ϕ then
aggregates zi with the embeddings of all other teammates within a spatial radius to compute the final
team state embedding hi for the i-th robot, which is defined as hi = Whzi+

∑
j∈N (i) W

h (zj − zi),
where Wh is the learnable weight matrix. For each i-th robot, the first term captures its individual
state, while the second term encodes its relative spatial relationships with teammates, representing
the team-level context. The learnable weight matrix Wh enables each robot to determine which
information from teammates is most critical for its decision-making. The graph neural network ϕ is
agnostic to the number of robots, which is able to aggregate arbitrary embeddings from neighborhood
robots within a spatial radius, thus enabling decentralized team-level context embedding.

3.2.1 SMOOTH ACTION GENERATION FOR INDIVIDUAL ROBOTS

We design a diffusion model ψ conditioned on the team-level graph embedding hi to generate smooth
actions ai for each robot, while maintaining awareness of its teammates’ states. Formally, we model
the individual action probabilistically as a conditional distribution p(ai|hi). However, due to the
high dimensionality of the continuous action space, directly modeling or sampling from p(ai|hi)
is intractable. To address this, the diffusion model ψ is developed to approximate the conditional
distribution via a parameterized denoising process.

Smooth Trajectory Generation. The diffusion model is built upon a probabilistic diffusion process
that consists of a forward and a reverse process. In the forward process, Gaussian noise is progressively
added to the ground-truth action a0i , which can be provided through expert demonstrations. A noise
variance schedule {βk}Kk=1 with βk ∈ (0, 1) determines the variance of the noise added at each
step k. This results in a sequence of noisy actions a1i ,a

2
i , . . . ,a

k
i . Formally, the forward process is

defined as q(aki |a
k−1
i ) = N (aki ;

√
1− βkak−1

i ;βkI). In the reverse process, the diffusion model ψ
iteratively reconstructs the ground-truth action a0i . At each step k, the model learns to denoise aki
to recover ak−1

i , which progressively refines the trajectory toward the demonstrated behavior. This
reverse process is governed by three key coefficients that jointly ensure smooth transitions across
diffusion steps: λk = 1/

√
1− βk scales the denoised prediction, αk =

∏k
i=1(1− βi) progressively

reduces the influence of noise, and σk, derived from βk, regulates exploration by controlling the
amount of noise injected during sampling. To estimate the noise added during the forward process,
we train a neural network ϵθ(aki , k) parameterized by θ. Then, the inverse process is defined as
ak−1
i = λk(aki − αkϵθ(a

k
i , k)) + σkz, where z ∼ N (0, I) denotes standard Gaussian noise. The

4
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unstructured Gaussian noise introduces perturbations to the ground-truth action, which can result in
jerky motion. The denoising network ϵθ(aki , k) learns to remove these high-frequency perturbations,
guided by three coefficients in the reverse process, thereby enabling smooth trajectory generation.

Incorporating Team Context. To enable team-aware trajectory generation for individual robots,
we condition each robot’s control on the team state embedding hi. Formally, this is expressed as:
ak−1
i = λk(aki − αkϵθ(a

k
i , k|hi)) + σkz. We learn this conditioned reverse process by training the

model to predict the actual noise ϵk added at the k-th step during the forward process, progressively
recovering the ground-truth actions. The loss function is defined as follows:

min
ϵθ

Ehi,a0
i

[
∥ϵk − ϵθ(a

0
i + ϵk, k|hi)∥22

]
(1)

The denoising network ϵθ serves as the core learnable component of the diffusion model ψ, iteratively
denoising a randomly sampled noise through a sequence of reverse diffusion steps conditioned on the
team-level embedding to generate individual actions.

We theoretically analyze the upper bound of the loss defined in Eq. (1). Theorem 1 measures how
well the learned action distribution p̂θ(a0i |hi) approximates the true distribution p(a0i |hi). This upper
bound has three components: 1). Prior Mismatch measures how closely the marginal distribution
q(aKi ) matches the Gaussian prior p(aKi ) = N (0, I). A poor match degrades initial samples,
reducing trajectory feasibility. 2). Matching Error captures the cumulative noise prediction error
across all diffusion steps. Inaccurate denoising leads to poor action reconstruction, affecting trajectory
smoothness. 3). Discretization Error arises from approximating a continuous diffusion process with
a finite number of steps, which may result in suboptimal trajectories. See Appendix C for proof.
Theorem 1. Let p̂θ(a0i |hi) be the learned action distribution and p(a0i |hi) the true distribution, with
K finite diffusion steps approximating the continuous process. The upper bound of the loss of the
Conditional Diffusion Policy on Graph is bounded by the combination of prior mismatch, matching
error, and discretization error:

DKL(p̂θ(a
0
i |hi) ∥ p(a0

i |hi)) ≤

Prior mismatch︷ ︸︸ ︷
DKL(q(a

K
i ) ∥ p(aK

i ))+

Matching error︷ ︸︸ ︷
K∑

k=1

Ea0
i ,ϵ,k

[
∥ϵ− ϵθ(a

k
i , k|hi)∥22

]
+

Discretization error︷ ︸︸ ︷
O

(
K∑

k=1

(βk)2
)

3.2.2 ADAPTIVE FORMATION SYNCHRONIZATION

To maintain and adapt formations as robot teams navigate through constrained environments, it is
essential to synchronize individual robot motions in both spatial and temporal dimensions. However,
the diffusion model is trained using expert demonstrations, which are often imperfect and noisy (e.g.,
when they are provided by human experts or algorithms with access to privileged information). To
address this limitation, we design a new online actor-critic RL framework that uses the unsynchronized
actions generated by the diffusion model as initial guidance and refines the actions through reward-
driven feedback, while simultaneously promoting formation-aware synchronization across the team.

Synchronization for Formation Adaptation. To enable multi-robot synchronization for adaptive
formation control, we design a reward function inspired by the spring-damper model Deng et al.
(2025a); Gabellieri et al. (2021). The spring component maintains a balance between keeping pairs
of robots close enough to navigate through constrained environments (e.g., narrow corridors) and
maintaining sufficient distance to avoid collisions, thus providing the flexibility necessary for adaptive
formation control. The spring effect is modeled as |di,j − pi,j |, where di,j represents the expected
distance in the original rigid formation and pi,j is the actual distance between the i-th and j-th robots,
computed as ∥pi − pj∥2. The damper component mitigates oscillations and prevents overshooting
by regulating the relative velocities between robot pairs, which is defined as qi,j = ∥qi − qj∥2. By
integrating both components, we formulate the spring-damper model as a reward function, defined
as Radp =

∑
vi,vj∈V −ω|di,j − pi,j | − (1− ω)qi,j , where ω is a hyperparameter that balances the

contributions of the spring and damper components. The final reward R = Radp +Rcollision, where
Rcollision denotes the obstacle avoidance reward for each individual robot Chen et al. (2017).

Individual Action Refinement. To refine the actions generated by the diffusion model ψ, we
treat it as the actor network. A deep Q network Q(hi,ai) is designed to serve as a critic network

5
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to evaluate the actor. Using gradient ascent, these gradients are then applied to refine the actions
generated by the diffusion model. The diffusion model ψ subsequently treats the refined actions as
updated ground-truth actions for further learning.

Formally, the critic network Q(hi,ai) consists of an encoder followed by a MLP to generate the
Q-value of a state-action pair (hi,ai). The target value (i.e., TD target) of the critic network is
computed using the Bellman equation by combining the immediate reward with a discounted estimate
of future value, defined as yi = R(si,ai) + γQ(h′

i,a
′
i), where γ is the discount factor, and h′

i, a
′
i

denote the state embedding and action at the next time step for robot i. To train the critic network,
we define the critic loss as E

[
(Q(hi,ai)− yi)

2], which minimizes the squared error between the
predicted value and the target value. To stabilize training, we introduce two identical critic networks
Q1(hi,ai) and Q2(hi,ai), and modify the loss function as follows:

E
[
(Q1(hi,ai)− yi)

2
+ (Q2(hi,ai)− yi)

2] (2)

The use of two identical critic networks mitigates overestimation bias by encouraging consistent
value estimates and reducing variance in target value predictions, which leads to stable learning.

We provide a theoretical analysis in Theorem 2 for the upper bound of the critic loss defined in
Eq.(2), by deriving the approximation error between the learned value function Q̂M and the true
value function Q∗. This upper bound consists of two components: 1). Statistical error captures the
limits of finite-sample estimation, amplified by replay buffer coverage mismatch. 2). Algorithmic
error captures the approximation gap due to finite training iterations M . See Appendix C for proof.

Theorem 2. Let Q̂M be the learned value function after M training steps and Q∗ be the true value
function. Let C be the constant denoting how well the replay buffer sampling covers the embedding-
action space, S be the constant denoting the worst-case single-step Bellman regression error, and
Rmax be the maximum reward bound. The upper bound of the loss of the critic networks is bounded
by the combination of statistical error and algorithmic error:

∥Q̂M −Q∗∥ ≤

Statistical error︷ ︸︸ ︷
2γC

(1−γ)2S +

Algorithmic error︷ ︸︸ ︷
4γM+1

(1−γ)2Rmax

With the convergence guarantee from Theorem 2, the critic provides reliable Q-value estimates
for actions generated by the diffusion model, which is also theoretically guaranteed to converge
from Theorem 1. We can then refine actions to achieve higher values by computing the gradient of
the minimum estimated value from Q1 and Q2 with respect to the action as ∇ai

Q(hi,ai), where
Q = min(Q1, Q2). This gradient indicates the direction of the action ai refinement, which increases
its estimated value. The refined action is defined as ai = ai + η∇ai

Q(hi,ai), where η is the step
size controlling how large to modify the action.

3.2.3 UNIFIED TRAINING AND DECENTRALIZED EXECUTION

Unified Training of Graph, Diffusion, and RL Networks. ReDiG includes three learning com-
ponents, including a decentralized graph neural network ϕ for multi-robot coordination, a diffusion
model ψ for smooth individual trajectory generation, and an online RL to refine robot actions and
enable adaptive formation control. To train all these components in a unified learning paradigm,
ReDiG computes the gradients from both the diffusion loss in Eq. (1) and the critic loss in Eq. (2).
Then, the gradients are backpropagated to update the graph network weight matrix Wz and Wh,
the denoising network ϵθ in the diffusion model ψ, and the critic network Q1 and Q2. The unified
training algorithm for ReDiG with a detailed explanation is presented in the Appendix D.

Decentralized Execution. ReDiG performs fully decentralized execution in multi-robot systems
under a closed-loop control scheme. Each robot maintains its own 2D occupancy map of the
environment and exchanges state information only with nearby teammates within a communication
radius through wireless communication (e.g., Wi-Fi). At every timestep, each robot independently
applies the trained graph neural network ϕ, with shared weights Wz and Wh, to process information
from its neighbors and compute its local embedding hi. Finally, based on this local embedding hi,
each robot runs its own instance of the trained diffusion policy ψ to generate and execute velocity
commands ai, thereby continuously adapting to its local observations in a closed-loop manner.

6
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Table 1: Quantitative comparison of ReDiG and prior methods from Gazebo simulations in ROS2.
Method Circle Formation Wedge Formation Line Formation

SR (%) TT (sec) δ < 0.5 δ < 0.1 δ < 0.03 SR (%) TT (sec) δ < 0.5 δ < 0.1 δ < 0.03 SR (%) TT (sec) δ < 0.5 δ < 0.1 δ < 0.03

L&F 60.00 15.80 75.11 70.10 66.04 60.00 17.12 81.44 66.70 62.86 60.00 13.35 63.76 55.59 55.59
DGNN 100.00 34.70 60.41 58.91 58.91 100.00 63.70 47.85 42.33 41.92 100.00 36.80 27.90 20.16 20.16
AFOR 100.00 30.50 92.89 90.40 88.66 100.00 51.50 91.39 90.35 87.96 100.00 183.50 88.60 85.13 72.90
ReDiG (ours) 100.00 13.10 84.51 81.52 78.97 100.00 12.46 82.43 81.21 80.37 100.00 10.03 91.17 87.68 80.91

Figure 2: Qualitative results from Gazebo simulations on formation adaptation using Limo robots.

4 EXPERIMENTS

Experimental Setups. We comprehensively evaluate our ReDiG approach in three experimental
settings: (1) a standard Gazebo simulation using ROS2, (2) a high-fidelity Unity-based 3D multi-
robot simulator in ROS1, and (3) a physical robot team running ROS2. Each setup involves different
differential-drive robot platforms (e.g., Limo and Warthog robots), and formation shapes (e.g.,
circle, wedge, and line). To follow the identical trajectories, we convert the linear velocity ai into
corresponding wheel velocities. All scenarios feature narrow corridors, the robot teams are required
to navigate through confined spaces while dynamically adjusting their formation and preserving its
overall structure. In simulation, robot positions and environmental obstacles are obtained directly
from the Gazebo and Unity simulation. For physical experiments, each robot performs state estimation
and environment mapping using a SLAM method (Zou et al. (2021)). See Appendix F.1 for method
implementation and training details. Video demonstrations are available on our project website.

To demonstrate the effectiveness of ReDiG, we compare it with three prior methods for coordinated
multi-robot navigation, including: (1) Leader and Follower method (L&F) Reily et al. (2020),
where one robot is designated as the “leader” to guide the team, while the remaining robots act as
“followers” that maintain the formation by tracking the leader’s motion; (2) Decentralized GNN
(DGNN) Blumenkamp et al. (2022), which employs an online RL framework to generate velocity
commands for each robot, but does not account for formation control; and (3) Adaptive Formation
with Oscillation Reduction (AFOR) Deng et al. (2025a), an online RL method that incorporates
a spring-damper model to enable adaptive formation control, but does not account for trajectory
smoothness and efficiency. See Appendix F.4 for details on baselines.

To quantitatively evaluate and compare ReDiG with other methods, we employ three metrics, includ-
ing: (1) Success Rate (SR) measures the proportion of robots in the team that successfully reach their
goal without collisions, (2) Travel Time (TT) represents the total navigation time used by the entire
team to reach their goals. (3) Contextual Formation Integrity (CFI) measures the real-time adherence
of the robots to their designated formation, based on a threshold δ that determines how strictly the
formation shape must be preserved. See Appendix F.5 for details on CFI and its calculation.

Results in Multi-Robot Simulations. The qualitative results from the Gazebo simulation are
presented in Figure 2. The L&F method, which relies on a predefined rigid formation, fails to
navigate narrow corridors, as the outer robots collide with the walls. DGNN does not incorporate
formation control, resulting in robots passing through the corridor sequentially without coordination.
Both AFOR and our proposed ReDiG approach integrate a spring-damper model to enable formation
adaptation. However, AFOR is built upon RL with step-wise action decisions, which result in
jerky trajectories. In contrast, ReDiG generates significantly smoother trajectories by leveraging a
diffusion-based policy. Since visualizations alone may not fully capture the impact of jerkiness, we
further provide a quantitative analysis of motion trajectory smoothness in the discussion.
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Figure 3: Visualization of ReDiG denoising for a wedge-formation team (left to right). Each colored
arrow shows the velocity vector at a diffusion step of each robot. Dashed gray lines indicate obstacles.

We visualize the denoising process of our ReDiG approach for a robot team in wedge formation, as
shown in Figure 3. Each arrow represents a velocity vector generated at different denoising steps.
Starting from pure Gaussian noise, the action of each individual robot is progressively denoised into
smooth, coordinated motion. This demonstrates ReDiG’s ability to iteratively reconstruct meaningful
actions that enable both smooth navigation and formation adaptation.

The quantitative results are shown in Table 1. The L&F method achieves a 60% success rate due to
its inability to adapt formations. DGNN, which lacks formation awareness, performs worst in the CFI
metric. AFOR shows the longest travel time, especially in the line formation, due to the step-wise
nature of multi-robot RL, which results in inefficient progress caused by jerky actions. Our proposed
method addresses these limitations and achieves above 82% CFI with the shortest travel time across
all three formation shapes. ReDiG has slightly lower CFI scores compared to AFOR, which is a
reasonable trade-off for the significant gain in efficiency. These results highlight the effectiveness of
ReDiG in enabling smooth and efficient formation adaptation in complex environments.

Figure 4: Qualitative results from Unity3D simulations using a team of differential-drive Warthog
robots that follow circle, wedge, and line formations while navigating unstructured narrow corridors.

Figure 5: Qualitative results from real-world indoor and outdoor environments using varying numbers
of Limo robots running ROS2 and communicating via Wi-Fi broadcasting.

Beyond Gazebo, we evaluate our approach in a Unity3D-based simulator integrated with ROS1 for
multi-robot perception and control. These outdoor environments include extended narrow pathways
between buildings and uneven flooded terrain, requiring long, curved trajectories with adaptive
formation control. As shown in Figure 4, ReDiG enables Warthog teams to adapt their formation
to environmental constraints, navigating smoothly and reaching goals without collisions. In circle
formation scenarios, the team traverses narrow corridors by continuously reshaping the formation for
tighter spaces. These results highlight ReDiG’s effectiveness in achieving smooth, adaptive formation
control in complex environments. See Appendix G for additional qualitative results.

Validation on Physical Robot Teams. We validate ReDiG through case studies using physical
differential-drive Limo robots, each equipped with an onboard Intel NCU i7 processor for real-time
execution. The robots run ROS2 and coordinate via Wi-Fi-based broadcasting for decentralized
communication. Experiments were conducted in both indoor and outdoor environments. As shown in
Figure 5, our method enables teams of varying sizes to smoothly adapt formation while navigating
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narrow indoor spaces. The outdoor experiments include narrow passages bordered by bollards,
scattered trees, and roadblocks. Notably, in wedge formation scenarios, ReDiG effectively guided
the team through uneven forest terrain where wheel slippage introduced movement uncertainty. The
results further demonstrate the effectiveness of our approach in enabling coordinated navigation with
formation adaptation, as well as its adaptability to unfamiliar environments.

5 DISCUSSION

Figure 6: Comparison of inter-robot mes-
sage importance over training.

Importance of Inter-Robot Message Passing for Coor-
dination. To understand how graph learning facilitates
team coordination, we conduct a message importance anal-
ysis. The graph network uses learnable weight Wh to
compute team embeddings hi through message passing.
We quantify the importance of messages exchanged be-
tween robots by calculating the Euclidean norm of the
message vectors ||Wh(zj − zi)||2. Figure 6 visualizes
message importance between robot pairs during training.
Early in training, robot 4 distributes attention uniformly
across teammates, lacking awareness of team structure, which eventually leads to a collision with the
wall. By the end of training, robots 3 and 4, as the outermost in the formation and key to controlling
team size, assign the highest importance to each other’s messages. This verifies the effectiveness of
graph learning in enabling team coordination and formation adaptation.

Figure 7: Ablation to diffusion and spring-damper model.

Ablation Study on Motion Trajec-
tory Smoothness. We conduct an
ablation study to evaluate the role of
the diffusion and the spring–damper
model in enhancing motion trajectory
smoothness. We use the jerk metric
Gasparetto & Zanotto (2007) to eval-
uate smoothness, which measures the
rate of change of acceleration over time. For each robot i, the jerk is defined as ji(t) = d3pi(t)

dt3 .
Figure 7 shows the jerk profiles over time for a team of five robots. The first subfigure shows the
case without diffusion and without the spring-damper model, where the jerk is the highest. The
second corresponds to using the spring-damper model without diffusion, the damping effect reduces
jerk, but noticeable fluctuations remain. The third combines both diffusion and the spring-damper
model, where iterative refinement of robot actions achieves the lowest jerk. These results highlight
the effectiveness of the diffusion model in producing smooth individual robot trajectories.

Scalable Time Complexity. ReDiG is computationally efficient during training and supports real-time
performance in decentralized execution. The time complexity isO(n2) for training andO(n+Td) for
execution, where n is the number of robots and Td is the number of diffusion steps. See Appendix E
for details. The analytical time complexity indicates that our approach naturally generalizes to larger
teams and remains scalable as the number of robots increases. Training remains efficient because
computations are parallelized across batches, while during decentralized execution, each robot only
performs local computations from a bounded set of neighbors, which ensures scalable execution. In
practice, a team of 5 robots achieves an execution runtime of 7.81 ms per step in simulation (128 Hz),
and 66.7 ms per step in physical multi-robot systems (15 Hz). See Appendix F.7 for details.

6 CONCLUSION

In this paper, we propose ReDiG to enable decentralized coordinated multi-robot navigation with
smooth formation adaptation. ReDiG is built upon a unified learning paradigm, including graph
learning for decentralized coordination to enable formation adaptation, diffusion models for gen-
erating smooth trajectories for individual robots, and online reinforcement learning to refine noisy
demonstrations, which enables robot synchronization and guides effective diffusion training. Results
from extensive experiments show that ReDiG enables smooth formation adaptation and achieves
state-of-the-art performance in coordinated multi-robot navigation.
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B LIMITATIONS

ReDiG has several limitations that open up promising directions for future research.

First, the current approach requires retraining when switching between different formation types (e.g.,
wedge, line, circle). While this allows for formation-specific optimization, it limits the flexibility of
the system when dynamic formation transitions are needed. In future work, we plan to incorporate
formation-type conditioning into the policy and design an additional team-level decision-making
module that selects the most suitable formation based on the current environment. This would allow
the model to generalize across multiple formations without retraining.

Second, ReDiG does not rely on team-level expert demonstrations (e.g., adaptive formation control).
Instead of generating random trajectories for individual robots, we initialize training with trajectories
derived from path-planning algorithms such as A* or RRT. This strategy facilitates faster convergence,
but it also introduces a dependency on predefined single-robot planning methods. We plan to reduce
this requirement by exploring self-supervised or curriculum learning strategies that can learn effective
behavior from scratch through environment interaction.

Third, ReDiG’s current implementation is evaluated with a team of ground robots operating on a
2D surface. While this provides a controlled and reproducible testbed for ground vehicles, it does
not capture the full complexity of real-world scenarios involving uneven terrain, varying elevation,
or multi-layered environments, nor does it account for other types of robots operating in full 3D
spaces. As a next step, we plan to extend our approach to 3D environments and teams of mixed
ground and aerial robots by incorporating terrain-aware and altitude-adaptive control to better handle
unstructured outdoor settings.

C PROOF OF THEOREMS

We present a diffusion-based online reinforcement learning paradigm to improve the diffusion models.
The diffusion model serves as the actor network, generating actions that are stored in a replay buffer.
A deep Q-network functions as the critic, evaluating these actions and providing value estimates. The
critic uses gradient ascent to refine the diffusion-generated actions toward higher Q-values, and these
improved actions are then used as training targets for the diffusion model. This creates an iterative
improvement cycle where the diffusion model learns to generate increasingly better actions.

We present upper bounds for both components, including a diffusion model convergence guarantee
that ensures reliable action generation given refined training targets, while the critic convergence
bound ensures accurate value estimation of actions. With these convergence guarantees established,
we can apply gradient ascent to refine these actions.

We summarize the mathematical notations used throughout the paper in Table 2. These notations will
also be used to show mathematical proofs here.

14

https://iclr.cc/public/CodeOfEthics


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 2: Mathematical notations (in order of appearance within the main paper)

Variable Definition
V Node set
E Edge matrix
pi Position
qi Velocity
gi Goal
di Obstacle proximity
si State
ai Action
zi Individual state embedding
Wz Learnable weight matrix for individual state embedding
hi Team state embedding
Wh Learnable weight matrix for team state embedding
a0i Ground-truth action
k Diffusion steps
βk Variance of noise
αk Retention factor
σk Noise scale
λk Weighting coefficient
di,j Expected distance between i-th and j-th robot
pi,j Actual distance between i-th and j-th robot
qi,j Relative velocities between i-th and j-th robot
R Reward
ω Hyperparameter for spring-damper model
yi Target value
γ Discount factor
η Step size for action refinement
M Replay buffer
δ Threshold for CFI metric
Function Definition
p(ai|hi) Reverse denoising distribution conditioned on graph embedding
q(aki |a

k−1
i ) Forward noising distribution

ϵθ(a
k
i , k) Diffusion function

p̂θ(a
0
i |hi) Learned action distribution

p(a0i |hi) True action distribution
q(aKi ) Marginal distribution
Q(hi,ai) Deep Q function

C.1 PROOF OF THEOREM 1

We first present the proof of the upper bound for the diffusion model on graphs for coordinated
multi-robot navigation. Our objective is to bound the loss defined in Eq.(1), which quantifies how
well the learned conditional distribution p̂θ(a0i |hi) approximates the true distribution p(a0i |hi), where
a0i denotes the clean action for robot i, and hi is the graph embedding that encodes the team context.

The forward process progressively adds Gaussian noise to the clean action a0i over K steps, which is
defined as:

q(aki |ak−1
i ) = N (aki ;

√
1− βkak−1

i , βkI),

where {βk}Kk=1 is a noise variance schedule with βk ∈ (0, 1). By composing the forward steps, we
obtain the marginal distribution, which is defined as:

q(aki |a0i ) = N (aki ;
√
αka0i , (1− αk)I),

where αk =
∏k

j=1(1− βj) is the cumulative noise coefficient.
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The reverse process reconstructs clean actions from noisy inputs using a neural network ϵθ(aki , k|hi)
that predicts the noise added at step k, which is defined as:

ak−1
i = λk

(
aki − αkϵθ(a

k
i , k|hi)

)
+ σkz, (3)

where z ∼ N (0, I), and λk = 1/
√
1− βk and σk are derived from βk. This process defines an

implicit distribution p̂θ(a0i |hi) by sampling aKi ∼ N (0, I) and applying K reverse steps to generate
a0i .

We treat this diffusion process as a latent-variable model with latent variables a1:Ki . Using the forward
process q(a1:Ki |a0i ) as the variational posterior, we apply the evidence lower bound (ELBO) from
variational inference, which is defined as:

log p(a0i |hi) ≥ Eq

[
log pθ(a

0:K
i |hi)− log q(a1:Ki |a0i )

]
. (4)

This leads to an upper bound on the KL divergence between the learned and true conditional
distributions, which is defined as:

DKL(p̂θ(a
0
i |hi) ∥ p(a0i |hi)) ≤ −Eq

[
log pθ(a

0:K
i |hi)− log q(a1:Ki |a0i )

]
. (5)

Prior Mismatch. The ELBO can be decomposed into a sum of KL divergences between the reverse
model pθ(ak−1

i |aki ,hi) and the true reverse posterior q(ak−1
i |aki ,a0i ), which is defined as:

K∑
k=1

Eq(ak
i |a0

i )

[
DKL

(
q(ak−1

i |aki ,a0i ) ∥ pθ(ak−1
i |aki ,hi)

)]
+DKL

(
q(aKi ) ∥ p(aKi )

)
. (6)

The last term represents the KL divergence between the marginal of the final noisy state and the
Gaussian prior. When q(aKi ) poorly matches the prior p(aKi ) = N (0, I), the initial samples used in
the reverse process may be unrealistic, resulting in infeasible actions.

Matching Error. The true reverse posterior q(ak−1
i |aki ,a0i ) is Gaussian with mean:

µ̃k
i =

√
αk−1βk

1− αk
a0i +

√
1− βk(1− αk−1)

1− αk
aki . (7)

The model distribution pθ(ak−1
i |aki ,hi) is also Gaussian, with mean:

µθ(a
k
i , k|hi) = λk

(
aki − αkϵθ(a

k
i , k|hi)

)
. (8)

We express the noisy input aki using its forward reparameterization:

aki =
√
αka0i +

√
1− αk ϵ, (9)

where ϵ ∼ N (0, I) is the true noise. Substituting this into both means, we find that aligning the
coefficients of ϵ leads to the condition:

ϵθ(a
k
i , k|hi) ≈ ϵ. (10)

Hence, minimizing the squared error between the predicted and true noise:

Ea0
i ,ϵ,k

[∥∥ϵ− ϵθ(a
k
i , k|hi)

∥∥2
2

]
, (11)

is equivalent to minimizing the KL divergence between the reverse distributions at each step. This en-
sures that the model-predicted mean µθ(a

k
i , k|hi) closely approximates the true mean µ̃k

i , producing
accurate and smooth action reconstructions.

Discretization Error. The reverse process can also be interpreted as a discretization of a continuous-
time reverse stochastic differential equation (SDE). While the theoretical formulation assumes an
infinite number of infinitesimal denoising steps, practical implementations must approximate this
process using a finite number of discrete transitions. This numerical approximation introduces
discretization error. Under standard regularity assumptions, such as Lipschitz continuity of the score
function and bounded second moments, the discretization error is bounded, which is defined as:

O

(
K∑

k=1

(βk)2

)
. (12)
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In multi-robot navigation, this error may lead to deviations from smooth or coordinated behaviors
present in expert demonstrations, particularly when using a small number of steps or a poorly chosen
noise schedule.

Combining all components, we obtain the following upper bound of the loss defined in Eq.(1) between
the learned and true conditional distributions:

DKL

(
p̂θ(a

0
i |hi) ∥ p(a0i |hi)

)
≤

Prior mismatch︷ ︸︸ ︷
DKL

(
q(aKi ) ∥ p(aKi )

)

+

Matching error︷ ︸︸ ︷
K∑

k=1

Ea0
i ,ϵ,k

[∥∥ϵ− ϵθ(a
k
i , k|hi)

∥∥2
2

]
+

Discretization error︷ ︸︸ ︷
O

(
K∑

k=1

(βk)2

)
(13)

This analysis supports the design of our diffusion model and helps identify which source of error
may be affecting trajectory quality. For example, if the prior mismatch is large, the initial sampling
distribution may need to be improved. If the matching error is high, the model architecture or training
process may require adjustment. If the discretization error is significant, increasing the number of
diffusion steps may help.

C.2 PROOF OF THEOREM 2

We then present the proof in Theorem 2 for the upper bound of the critic loss defined in Eq.(2).

Let γ ∈ (0, 1) and assume |R(si, ai)| ≤ Rmax for all state-action pairs. For any bounded Q, we
define the Bellman evaluation operator T as follows:

(TQ)(hi,ai) = R(si, ai) + γ E(h′
i,a

′
i)∼µ

[
Q(h′

i,a
′
i)
]

where µ represents the data distribution in the replay buffer, and its unique fixed point Q∗ satisfying
Q∗ = TQ∗. We further define the linear operator as follows:

(Pf)(hi,ai) := E(h′
i,a

′
i)∼µ|hi,ai

[
f(h′

i,a
′
i)
]

(14)

where f is any bounded function, P is the one-step transition operator under the replay distribution
µ, and Pf denotes the function obtained by taking the conditional expectation of f at the next step.

Let {Q̂m}Mm=0 be the sequence of the estimates from critics after M training iterations, where Q̂m

is the value function produced after the m-th training iteration. We define the one-step Bellman
regression residual em at iteration m as follows:

em := Q̂m − TQ̂m−1 (15)

Then, the maximum residual across the first M iteration is defined as:

S := max
1≤m≤M

∥em∥ (16)

where ∥ · ∥ denotes the L1 norm under the replay buffer distribution.

We assume the norm ∥·∥ is compatible with one-step propagation, meaning that applying the transition
operator P to any bounded function does not increase its norm by more than a fixed constant C, that
is,

∥Pf∥ ≤ C ∥f∥, (17)
Equivalently, the operator norm of P (as a linear map on bounded functions) satisfies ∥P∥op ≤ C.
We allow the transition operator to vary with iteration and write P (k) for the one-step operator used
at iteration k.

For iteration index m ≥ 1 and 0 ≤ j ≤ m− 1, we define the family of j-step composition operators
as:

Pm,j :=
{
P (m−1)P (m−2) · · ·P (m−j)

}
We denote by ∥ · ∥op the operator norm induced by ∥ · ∥.
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Since the one-step transition operator is non-expansive in the chosen norm (e.g., ∥P∥op ≤ 1 under
the sup-norm), multi-step propagations remain bounded and the discounted series converges. We
therefore assume that the cumulative effect of multi-step propagation is bounded as follows:

(1− γ)2
∞∑

m=1

γm−1
m−1∑
j=0

sup
A∈Pm,j

∥A∥op ≤ C (18)

where each A ∈ Pm,j is a j-step composition of one-step transition operators from iterations m− j
to m− 1, and sup denotes the supremum (least upper bound), i.e., the maximum operator norm over
all such A.

Let ∆m := Q̂m −Q∗. Since Q∗ = TQ∗ and TQ = R+ γPQ, we have the one-step bound:

|∆m| =
∣∣em + (TQ̂m−1 − TQ∗)

∣∣ = ∣∣em + γP (Q̂m−1 −Q∗)
∣∣

≤ |em|+ γ P |∆m−1| (19)

where the inequality uses positivity of P (if f≥0 then Pf≥0).

Unrolling equation 19 for any M ≥ 1, we have:

|∆M | ≤
M∑

m=1

γm−1P m−1 |eM−m+1| + γMP M |∆0| (20)

where P j denotes the j-fold composition of the one-step transition operator.

After applying the norm ∥ · ∥ to the path expansion in equation 20 and using the one-step coverage
assumption, we obtain:

∥∆M∥ ≤
M∑

m=1

γm−1 ∥P m−1|eM−m+1|∥ + γM ∥P M |∆0|∥ (21)

To further bound these terms, we note that repeated applications of P can be represented by the
operator family Pm,j . Using this notation, we have:

∥∆M∥ ≤ 2

M∑
m=1

γm−1

m−1∑
j=0

sup
A∈Pm,j

∥A∥op

S + 2γM

M−1∑
j=0

sup
A∈PM,j

∥A∥op

 ∥∆0∥ (22)

where S = max1≤m≤M ∥em∥ is the largest one-step residual.

Statistical Error. By the multi-step propagation bound in Eq. (18) , we have:

∞∑
m=1

γm−1

m−1∑
j=0

sup
A∈Pm,j

∥A∥op

 ≤ C

(1− γ)2
(23)

Since the finite sum up to M is bounded by the infinite sum, and each residual ∥em∥ is at most S by
definition, while the factor 2 comes from the pairing step in Eq. (22), multiplying by 2S yields:

2

M∑
m=1

γm−1

m−1∑
j=0

sup
A∈Pm,j

∥A∥op

S ≤ 2 γ C

(1− γ)2
S (24)

where the factor γ is absorbed into the definition of the constant C.

Algorithmic Error. Since the true value function Q∗ satisfies the Bellman equation, and rewards
are bounded by |R(si, ai)| ≤ Rmax, the total return is bounded by the geometric series as follows:

|Q∗(hi,ai)| ≤
∞∑
t=0

γtRmax =
Rmax

1− γ

18
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Hence, for any norm consistent with pointwise bounds (e.g., L1 or L∞), we have:

∥Q∗∥ ≤ Rmax

1− γ
(25)

Therefore, the initialization gap is bounded as:

∥∆0∥ ≤ ∥Q̂0∥+ ∥Q∗∥ ≤ 2Rmax

1− γ
(26)

For the finite-iteration error, using bounded operator norms and a conservative geometric bound, we
obtain:

2 γM

M−1∑
j=0

sup
A∈PM,j

∥A∥op

 ∥∆0∥ ≤ 4 γM+1

(1− γ)2
Rmax (27)

This term decays exponentially as M → ∞, ensuring convergence.

By combining both statistical error in Eq. (24) and algorithmic error in Eq. (27), we obtain the
complete error bound, which is defined as follows:∥∥Q̂M −Q∗∥∥ ≤ 2 γ C

(1− γ)2
S︸ ︷︷ ︸

statistical error

+
4 γM+1

(1− γ)2
Rmax︸ ︷︷ ︸

algorithmic error

(28)

Algorithm 1: Unified Training for Reinforced Diffusion on Graph (ReDiG)
Input :Team graph representation G, individual robot state s, replay buffer M
Output :Trained graph neural network ϕ, diffusion model ψ, and critic networks Q1, Q2

1 Initialize all learnable components in ReDiG, including Wz , Wh, ϵθ , Q1, Q2;
2 Generate individual ground-truth actions using path-planning policies, and store (si,ai, Ri, s

′
i) in M;

3 while Not converged do
4 Use the decentralized graph neural network to generate team embeddings hi = ϕ(G);
5 Use diffusion to generate actions {ai}n = {ψ(hi)}n;
6 Compute the gradient of diffusion loss ∇ak

i
ϵθ(a

k
i , k|hi) according to Eq. (1);

7 Update denoising network ϵθ in the diffusion model ψ according to the gradient ∇ak
i
ϵθ(a

k
i , k|hi);

8 Apply {ai}n in the environment and store the transition (si,ai, Ri, s
′
i) to M;

9 Sample batch (si,ai, Ri, s
′
i) from M;

10 Compute the gradient of the critic loss ∇aiQ(hi,ai) according to Eq. (2);
11 Refine the action ai = ai + η∇aiQ(hi,ai);
12 Update GNN Wz and Wh according to the gradient ∇ak

i
ϵθ(a

k
i , k|hi) and ∇aiQ(hi,ai);

13 Update Q1 and Q2 according to the gradient ∇aiQ(hi,ai)
14 end
15 return Wz , Wh,ϵθ , Q1, Q2

D UNIFIED TRAINING ALGORITHM FOR REDIG

Formally, ReDiG full training algorithm is presented in Algorithm 1. In line 2, we use an individual
search-based path planning algorithm (e.g., A∗, RRT) to generate individual robot trajectories
that focus solely on goal-reaching, without accounting for coordinated navigation or synchronized
formation adaptation. These trajectories serve as initial ground-truth supervision for training the
diffusion model and are stored in the replay buffer M. In line 4, we compute the team embedding
given the decentralized graph neural network ϕ with the input of the team graph representation. Given
the team embedding, we compute the actions of individual robots according to the diffusion model ψ
in line 5. In lines 6-7, the denoising network ϵθ in the diffusion model ψ is updated by minimizing the
diffusion loss defined in Eq. (1) given the computed gradient. In line 8, we collect all actions {ai}n
generated by all the robots and apply the actions in the environments, and the resulting transitions are
stored in the replay buffer M. Then, we uniformly sample a batch from the replay buffer in line 9
and compute the gradient of the critic loss according to Eq. (2) in line 10. In lines 11-13, we refine
the actions, update the graph neural network, and critic networks given the computed gradients.
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E TIME COMPLEXITY ANALYSIS

E.1 TIME COMPLEXITY ANALYSIS AND SCALABILITY OF REDIG

Training time complexity is dominated by O(n2), where n is the number of robots. The decentralized
graph network generates state embeddings has an O(Lgn

2) complexity, where Lg is the number
of GNN layers, n2 is the number of edges computed for communications. The denoising network
training has anO(TdBdLd) complexity, where Td is the number of denoising steps,Bd is the sampled
batch size, and Ld is the number of denoising network layers. The critic network training has an
O(BcLcn) complexity, where Bc is the sampled batch size, Lc is the number of critic network
layers. The action refinement using gradient ascent has an O(GaBan) complexity, where Ga is
the number of gradient steps, Ba is the sampled batch size, and each gradient step requires critic
evaluation with O(n) complexity. Combining all terms, the overall complexity for training is
O(I(n2 + TdBdLd +BcLcn+GaBan)), where I is the number of training iterations. Execution
time complexity is dominated by O(n). The complexities of embeddings generation from graph
and actions generation from diffusion policy are O(Lgn) and O(TdLd), the overall execution time
complexity is O(n+ Td).

The above time complexity provides a direct analytical measure of the scalability of our approach.
Training involves quadratic interactions O(n2) due to pairwise message passing in the graph encoder,
but this cost is amortized through batch parallelization, making it tractable even for large teams.
During decentralized execution, the complexity reduces to O(n+ Td), where the linear term reflects
local neighbor aggregation and the constant term corresponds to the diffusion process. This sepa-
ration of costs highlights that the per-robot computation remains bounded, and with decentralized
parallelization, the effective execution complexity is dominated by the diffusion steps rather than the
team size. Thus, the complexity analysis demonstrates that ReDiG is scalable and readily generalizes
to larger robot teams.

E.2 TIME COMPLEXITY ANALYSIS OF BASELINE METHODS

We also analyze the time complexity of baseline methods for comparison. While ReDiG exhibits a
similar training complexity to these baselines, it achieves a lower execution complexity, enabling
more efficient and scalable real-time performance.

Leader-Follower. Time complexity is dominated by O(n2), where n is the number of robots. The
leader’s path planning has a complexity of O(P ), where P depends on the path planning algorithm
used (e.g., A* or RRT). For A*, the complexity is typically O(bd), where b is the branching factor
and d is the depth of the optimal solution. For RRT, it is typically O(k log k), where k is the number
of sampled nodes. Each follower computes its position relative to the leader and potentially other
followers to maintain formation, resulting in O(n− 1) complexity per follower. For n− 1 followers,
the total coordination complexity is O((n− 1)2) = O(n2). Therefore, the overall time complexity is
O(P + n2).

Online Reinforcement Learning with PPO. Training time complexity is dominated by O(n2),
where n is the number of robots. The GNN has an O(LmTpn

2) complexity, where Lm is the number
of layers in the GNN and Tp is the number of training iterations using Proximal Policy Optimization
(PPO). The control network training has an O(Tp(Bn

2 + IBn)) complexity, where B is the number
of PPO rollouts to interact with the environment in each iteration, and I is the number of PPO training
epochs. O(Bn2) accounts for computing the advantage function, and O(IBn) for updating the
policy. Combining all terms, the overall complexity for training is O(HLhThDn

2 + LmTpn
2 +

Tp(Bn
2 + IBn)). Execution time complexity is dominated by O(n2). The complexities of the GNN

and control networks are O(Lmn
2) and O(n), respectively.
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F EXPERIMENTAL DETAILS

F.1 ADDITIONAL IMPLEMENTATION DETAILS FOR REDIG

To implement ReDiG, we construct the robot team graph by connecting neighboring robots that are
within a 2.0-meter spatial radius. The graph learning consists of an encoder with a weight matrix Wz

of dimension 6×64, followed by a single GNN layer with a weight matrix Wh of dimension 64×64.
The diffusion model employs a denoising network ϵθ set to a dimension of 40 × 256 with Mish
activation functions. The critic includes two separate but identical value networks, Q1 and Q2, both
set to the dimension of 8× 256. In the spring-damper model of ReDiG, the hyper-parameter ω = 0.5
is used to balance the contributions of the spring and damper forces. We generate synthetic data to
train our ReDiG approach by randomly generating robot positions within a given team formation.
We employ the Adam optimizer Kingma (2014) to train all three learning components, including the
graph neural network, denoising network, and critic networks. For initial exploration, we use the
individual path planning algorithm to generate individual robot trajectories, which results in a buffer
of 5,000 trajectory instances.

F.2 HYPERPARAMETERS

Training is conducted on a machine equipped with a 16-core Intel i9 CPU, 32GB of RAM, and
an NVIDIA RTX 4090 GPU. The entire training process, involving graph networks, diffusion
denoising network, and critic value networks, is trained over 30,000 epochs. We further provide the
hyperparameters used for ReDiG in our experiments, as shown in Table 3.

Table 3: ReDiG Hyperparameters

Hyperparameter Value Hyperparameter Value
Hidden layers 3 Hidden units per layer 256
Policy/Value network activation Mish Batch size 256
Discount factor 0.99 Target smoothing 0.005
Actor learning rate 3× 10−4 Critic learning rate 3× 10−4

GNN learning rate 3× 10−4 Actor–critic grad norm 2.0
Replay buffer size 1× 106 Reward scaling factor 0.01
Diffusion steps 100 Beta schedule Cosine
Noise ratio 1.0 GNN message dimension 32
GNN communication range 2.0 GNN activation ReLU

F.3 REWARD DESIGN

We present the reward design of the spring-damper model used in ReDiG to enable adaptive formation
control as follows:

Radp =
∑

vi,vj∈V
−ω|di,j − pi,j | − (1− ω)qi,j (29)

where ω is a hyperparameter to balance the spring and damper components. This reward encoding the
spring-damper model is used together with the classic rewards defined for reaching the goal position
and obstacle avoidance for training ReDiG. For navigation, the reward function dynamically rewards
robots based on their orientation and proximity to the goal, facilitating efficient navigation within the
environment. For avoiding collisions, the reward function gives a numerical penalty to discourage
robots from colliding with an obstacle or another robot. The classic reward is computed as follows:

Rcollision
i =


qi · r⃗goal

∥r⃗goal∥ × ∥qi|| if ∥r⃗goal∥ > 0.0,

15.0 if ||pi − gi||2 < 0.1,

−1.5 if ||pi − pj ||2 < 0.2

(30)

where r⃗goal is the reward vector pointing towards the goal, representing the direction and magnitude
of the reward based on the robot’s current position relative to the goal, and the dot product qi · r⃗goal

∥r⃗goal∥
computes the alignment of the robot’s velocity vector with the direction to the goal, scaled by the
velocity magnitude to reward faster movement towards the goal.
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F.4 CHOICE OF BASELINE METHODS

We selected baselines based on both formation control capability and methodological alignment.
From the algorithmic perspective, we compared against DGNN and AFOR, both of which are online
multi-robot reinforcement learning methods trained with PPO. We also included the classical Leader-
Follower approach, given its foundational role and continued relevance in formation control. From the
capability perspective, DGNN does not support formation adaptation, whereas AFOR incorporates a
spring-damper model to enable adaptive formation control.

F.5 EXAMPLES OF COMPUTING THE CFI EVALUATION METRIC

To evaluate adaptive formation adaptation, we introduce Contextual Formation Integrity (CFI) metric
in our paper, which is mathematically defined as:

w
(
1− δ−1 min (|r − (ξ + δ)| , |r − (ξ − δ)|)

)
+ (1− w)τ

where the first term assesses the team’s efficiency in utilizing the corridor gap, where r is the robot
team’s maximum radius, ξ denotes a threshold which is the corridor width with a safety margin,
and δ is an uncertainty with smaller values imposing stricter formation requirements. CFI’s second
term τ ∈ [0, 1] evaluates the integrity of the team shape. CFI combines these two terms to evaluate
how effectively a robot team uses the corridor space and maintains its formation, with the balance
determined by the coefficient w. The metric CFI ∈ [0, 1], where higher values indicate better
performance. In our experiments, we set w = 0.5 to treat the gap usage and the formation integrity
equally important. Additionally, we set δ to twice the width of the robot used in the corresponding
experiments. For a number of n robots, the τ in CFI is computed as follows:

• Circle formation: τ = 1− 1
n

∑n
i=1

θi
(n−2)×180

n

, where θi represents the interior angle of the

triangle with the i-th robot as the vertex, and (n−2)×180
n is the interior angle of the polygon,

approximating a circle when the team has n robots.

• Wedge Formation: τ = 1 − 2|Ll−Lr|
Ll+Lr

− |2Lm−Lb|
Lb

, where Ll, Lr, Lm, Lb represent the
lengths of the left, right, middle, and base sides of the isosceles triangle formed by the
robots.

• Line Formation: τ = 1− 1
n−1

∑n−1
i=1

Li,i+1

L , where Li,i+1 represents the distance between
neighboring robots, and L denotes the full width of the robot team. The term τ measures
the relative deviation from the ideal line formation.

F.6 AUTONOMY STACK ARCHITECTURE

We design autonomy stacks for three different platforms, including Gazebo simulation, Unity simu-
lation, and physical robots, as illustrated in Figure 8. In all cases, each robot is assigned a unique
namespace to support decentralized execution, which ensures that every robot runs its own autonomy
stack, independently processing its local state and executing actions.

In Gazebo simulation, we use Ubuntu 22.04 with ROS2 Humble. The simulator provides a 2D
occupancy map together with ground-truth robot states, including positions, velocities, and obstacle
proximity. Goal positions are specified for each robot under its namespace. At every timestep, ReDiG
generates velocity commands in the form of linear values, which are then executed by Limo robots
through the /cmd vel topic, where the linear command is translated into both linear and angular
velocities for differential drive control.

Unity simulations are run on Ubuntu 20.04 with ROS1 Noetic. The Unity engine supplies the 2D
occupancy map, robot poses, and obstacle proximity. After ReDiG computes velocity commands,
Warthog robots execute them through the /cmd vel topic under their respective namespaces. This
stack provides a high-fidelity testing environment that replicates large-scale outdoor settings with
accurate robot dynamics.

For physical robots, we use Ubuntu 22.04 with ROS2 Humble. Robot states are estimated through
SLAM-based methods. Each Limo robot receives its state and goal under a dedicated namespace.
ReDiG outputs single-step velocity commands that are executed in a decentralized manner through
the /cmd vel topic.
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Figure 8: Autonomy stacks for robotics simulations and physical robots.

F.7 RUNTIME AND CONTROL FREQUENCY

ReDiG generates only the current velocity vector at each timestep for each individual robot, with
one full diffusion pass corresponding to a single control action. This design eliminates the need to
generate full trajectories, significantly reducing latency. In simulation, we employ a workstation
equipped with an NVIDIA RTX 4090 GPU and run the full diffusion process with 100 denoising
steps, achieving a control frequency of approximately 128.6 Hz during rollouts.

We also observe that using early stopping (e.g., 60 steps) can increase the frequency to around 223.0
Hz without compromising performance. For real-world deployment, both the diffusion model and
the GNN are executed onboard each LIMO robot using an Intel NCU i7 processor. With early
stopping, higher control frequencies can be achieved when required, ensuring real-time operation
under hardware constraints.

G EXTENDED EXPERIMENTAL RESULTS

We present comprehensive qualitative experimental results to demonstrate the applicability and
generalizability of ReDiG. Evaluations are conducted across diverse environments, including Gazebo
with ROS2, a high-fidelity 3D Unity simulator with ROS1, and physical multi-robot teams with ROS2
in both indoor and outdoor settings.

Figure 9 shows the robotic platforms used in our experiments, where we employ ClearPath Warthog
robots in simulation and Agilex Limo robots in real-world experiments. Since ReDiG directly
generates linear velocity commands for each individual robot, it can be readily applied to any
velocity-controlled ground robot, regardless of platform or deployment environment.

Figure 10 shows Warthog robots in the Unity simulator, where they are used to validate ReDiG’s
effectiveness in unstructured, high-fidelity environments. Figure 11 and Figure 12 show real-world
experiments with varying numbers of Limo robots in indoor and outdoor environments, respectively,
demonstrating ReDiG’s adaptability to diverse operating conditions and team sizes.
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(a) Agilex Limo Robots (b) ClearPath Warthog Robots

Figure 9: Robotic platforms used in our experiments. Figure 9(a) shows differential-drive ground
robots Agilex Limo robots that are used in our real-world experiment. Figure 9(b) Clearpath Warthog
robots are large, rugged, all-terrain differential-drive UGVs that are used in our Unity simulations.

(a) A team of five robots in a circle formation navigates through multiple narrow passages.

(b) A team of five robots in a wedge formation traverses a progressively narrowing corridor between buildings.

(c) A team of five Warthog robots with a line formation navigates through a narrow corridor on uneven terrain.

Figure 10: Qualitative results on ReDiG for decentralized coordinated multi-robot navigation using
a high-fidelity Unity3D simulations in ROS1. The experiments utilize differential-drive Warthog
robots that maintain circle, wedge and line formations while traversing an unstructured outdoor field
environment.
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(a) A team of five physical robots with a circular formation navigates through a narrow doorway in a hallway.

(b) A team of five robots with a wedge formation navigates through a narrow exit.

(c) A team of four robots in a line formation navigates through a narrow door.

Figure 11: Qualitative results on smooth formation adaptation are demonstrated across diverse indoor
environments, with varying formation shapes and different team sizes. Using multiple differential-
drive Limo robots, the teams successfully maintain circle, wedge, and line formations under a range
of indoor scenarios.

(a) A team of five physical robots with a circular formation navigates through a narrow passage between two
concrete security bollards.

(b) A team of five robots with a wedge formation navigates through a forest-like environment characterized by
narrow corridors, scattered trees, and surrounding obstacles.

(c) A team of four robots in a line formation navigates through a narrow pathway, where robots access is
restricted by two sticks marking the boundaries.

Figure 12: Qualitative results of ReDiG demonstrate decentralized coordinated navigation with
smooth adaptive formation control, using different numbers of differential-drive Limo robots that
maintain different formations across various unstructured outdoor environments.
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H EXTENDED RELATED WORK

Coordinated Multi-Robot Navigation. Traditional coordinated navigation with formation control
often relies on manually designed strategies, such as the leader-follower structure Reily et al. (2020);
Wu et al. (2022); Xiao & Chen (2019), where follower agents are programmed to maintain formation
by tracking a designated leader. Virtual region methods Roy et al. (2018); Abujabal et al. (2023);
Roy et al. (2019); Alonso-Mora et al. (2019) allow teams to adjust their formation within predefined
spatial constraints. However, these formations are often rigid and lack the ability to adapt based
on environments. For learning methods, Graph Neural Networks (GNNs) have been introduced to
improve team coordination and communication in a decentralized manner Goarin & Loianno (2024);
Zhang et al. (2023); Li et al. (2020b); Gao et al. (2024). Online RL has been widely applied in multi-
agent systems Blumenkamp et al. (2022); Hu et al. (2023); Han et al. (2020); Hacene & Mendil (2021),
which enables robot teams to learn complex, coordinated behaviors that are difficult to manually
design. Recently, adaptive formation control has been explored by integrating online reinforcement
learning with a spring–damper model, which enables balanced coordination between robot pairs Deng
et al. (2025a;b). Despite these advantages, for coordinated navigation with formation control that
requires synchronization between robots, RL often suffers from step-wise decision-making, which
can lead robots to frequently stop or adjust their motion to maximize immediate rewards, resulting in
jerky trajectories and reduced motion smoothness.

Diffusion Models for Robot Policy Learning. Diffusion models have gained significant attention
in robotics for generating smooth trajectories through iterative denoising. For single-robot planning,
diffusion models are used to sample motion plans conditioned on task objectives Carvalho et al.
(1916); Ma et al. (2024) and environmental context Fang et al. (2024); Xian & Gkanatsios (2023); Chi
et al. (2023); Kapelyukh et al. (2023). Hierarchical diffusion models have been proposed to handle
long-horizon planning problems Li et al. (2023); Chen et al. (2024). Recent works extend diffusion
models to multi-robot systems to enable coordinated trajectory generation. Motion Diffuser Jiang
et al. (2023) enables trajectory prediction for multi-robot through cost function, Resilient Distributed
Diffusion Li et al. (2020a) enables resilient distributed control under adversarial conditions based on
the centerpoint concept, MMD Shaoul et al. (2024) generates collision-free multi-robot trajectories
based on single-robot data. RDT Liu et al. (2024) enables bimanual manipulation from text commands
by using language-conditioned diffusion, GSC Mishra et al. (2023) samples from the skill model to
generate long-horizon plans . 3D diffusion policy Ze et al. (2024) integrates 3D visual representations
(e.g. point clouds) into diffusion policies, improving generalization in real robot tasks. VPDD
uses discrete diffusion to pretrain on large video data, then fine-tunes robot policies from fewer
demonstrations He et al. (2024). However, applying diffusion models to multi-robot systems remains
challenging due to the need for large-scale, well-synchronized expert demonstrations, which are
difficult to obtain.

Diffusion for Offline RL. Diffusion models have been integrated with RL to improve policy
through generative sampling guided by RL signals. In the offline RL setting, Diffusion-QL Wang
et al. (2022) biases diffusion sampling toward high-value actions using Q-learning. CEP Lu et al.
(2023) defines contrastive energy scores to steer denoising. SRDP Ada et al. (2024) enhances out-of-
distribution (OOD) generalization by reconstructing state representations. CPQL Chen et al. (2023b)
introduces consistency modeling for stable policy learning. Diffuser Janner et al. (2022) applies
reward signals at the trajectory level, while Simple Hierarchical Chen et al. (2024) extends this to
multi-task settings using hierarchical diffusion policies. MetaDiffuser Ni et al. (2023) demonstrates
that incorporating conditional diffusion models into task inference significantly outperforms previous
meta-RL methods. AdaptDiffuser Liang et al. (2023) enhances diffusion models with evolutionary
planning to improve offline RL performance and generalization to unseen tasks. LCD Zheng et al.
(2022) employs a truncated diffusion process with a hierarchical structure, enabling efficient long-
horizon multi-task control while reducing the computational cost of training and generation. DoF
Li et al. (2025) introduces a diffusion factorization framework for offline multi-agent reinforcement
learning, enforcing the Individual-Global-Identically-Distributed principle to improve scalability and
cooperation. MTDiff He et al. (2023) further supports multi-task planning through transformer-based
conditioning. MADiff Zhu et al. (2024) is the first offline diffusion-based multi-agent framework.
However, for complex behaviors that demand coordination and synchronization, which are rarely

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

available in offline datasets, offline RL struggles to learn behaviors that are absent from expert
demonstrations.

Diffusion for Online RL. Diffusion-based online RL addresses the limitation of offline RL by
directly interacting with the environment, enabling the model to explore and refine behaviors beyond
those available in expert demonstrations. DIPO Yang et al. (2023) is the first to integrate diffusion
policies into online RL and introduces a novel diffusion policy improvement method, which uses
off-policy to refine actions through gradient ascent updates to obtain higher rewards. CPQL Chen
et al. (2023a) conducts experiments showing that one-step consistency models can naturally serve
as online RL policies, achieving a strong balance between exploration and exploitation. QSM
Psenka et al. (2023) aligns the diffusion model’s score function with the gradient of a Q-function,
effectively connecting the denoising process to action-value learning. This allows policy updates to be
performed by differentiating only through the denoising model, yielding multi-modal and explorative
behaviors in continuous domains. QVPO Ding et al. (2024) introduces a Q-weighted variational loss
to ensure robust policy improvement by tightly approximating the policy objective. This formulation
adapts diffusion policies to online RL, leverages their multimodality for enhanced exploration, and
incorporates entropy regularization and efficient action selection to reduce variance and improve
sample efficiency. However, none of these diffusion-based online RL methods have been applied to
multi-robot systems, particularly those requiring multi-robot coordination and synchronization.
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