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Abstract

This work examines risk bounds for nonparametric distributional regression esti-
mators. For convex-constrained distributional regression, general upper bounds are
established for the continuous ranked probability score (CRPS) and the worst-case
mean squared error (MSE) across the domain. These theoretical results are applied
to isotonic and trend filtering distributional regression, yielding convergence rates
consistent with those for mean estimation. Furthermore, a general upper bound is
derived for distributional regression under non-convex constraints, with a specific
application to neural network-based estimators. Comprehensive experiments on
both simulated and real data validate the theoretical contributions, demonstrating
their practical effectiveness.

1 Introduction

While regression methods are widely popular across statistics and machine learning, it is well
recognized that the conditional mean alone often fails to capture the full relationship between a
response variable and a set of covariates. As noted by Shaked and Shanthikumar [57]], “the ultimate
goal of regression analysis is to obtain information about the conditional distribution of a response
given a set of explanatory variables.” A common framework is quantile regression, which estimates
conditional quantiles to provide a more detailed view of the response distribution [35]. A more direct
approach is distributional regression, which estimates the conditional distribution of the response
given the covariates.

Distributional regression has found applications in diverse areas, including electricity spot price
analysis [33]], understanding income determinants [34], modeling weather data [63]], and improving
precipitation forecasts [28) 155]].

The estimation of distributions of random variables under structural constraints is a fundamental
problem in many statistical and machine learning tasks, including nonparametric regression, density
estimation, and probabilistic forecasting [126} 162, 23]]. Consider the sequence distributional model,
in which we observe independent random variables y1, ..., y, € R, each drawn from an unknown
distribution FY, ..., F¥, respectively. The objective of this paper is to estimate the vector F'*(t) =
(Fy(t),...,Fx(t)" fort € R. Here, F(t) = P(y; < t) represents the cumulative distribution
function (CDF) at a specified ¢ for each observation y;.
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In this paper, we will explore different structural constraints to estimate F*(¢). These constraints not
only ensure interpretable and robust estimators but also prevent overfitting, making them essential in
domains such as signal processing, medical diagnostics, and probabilistic weather forecasting. For
example, in survival analysis, monotonicity reflects the cumulative nature of survival probabilities,
while in genomics, smoothness helps capture gradual trends in gene expression data [3} 162]. To
rigorously evaluate the quality of the estimators, we employ the continuous ranked probability
Score (CRPS), a widely used metric for assessing the accuracy of probabilistic forecasts [22]. By
quantifying the distance between the estimated and true CDFs, CRPS provides an interpretable and
robust framework for comparing estimators under various structural constraints.

1.1 Summary of Results

‘We now provide a brief summary of the contributions in this paper.

Unified Framework for Estimation: We study a unified framework for estimating F*(¢) by
minimizing a quadratic loss over a convex set K; C R. The convex set K; C R enforces structural
constraints on the parameter F*(¢). For the resulting estimator, we provide rigorous theoretical
guarantees, including non-asymptotic bounds on both the mean squared error (MSE) and the CRPS.

Applications to Monotonicity and Bounded Variation: We demonstrate the applicability of our
framework to convex constraints arising in monotonicity [9} |2, [12] and bounded total variation
[42.162, 23]]. These examples illustrate the flexibility and practical utility of the proposed approach
for structured parameter estimation.

General Theory for Distributional Regression: We establish a general theory for distributional
regression with constraints encoded by arbitrary sets. The main result provides a uniform bound on the
empirical {5 error of F™*(t) across t, with the upper bound explicitly dependent on the approximation
error and the complexity of the sets K.

Convergence Rates for Neural Networks: Exploiting the general results for arbitrary sets, we
derive convergence rates for distributional regression using dense neural networks. This extends the
framework of Kohler and Langer [37] to the context of distributional regression.

1.2 Other Related Work

Distributional regression involves modeling the cumulative distribution function (CDF) of a random
variable, whereas quantile regression focuses on estimating the inverse CDF. Koenker et al. [36]]
provides a comprehensive review of the distinctions between these two approaches. For instance, if the
outcome variable is income and the covariate is a binary variable representing educational attainment,
distributional regression would model the probability that income falls below a certain threshold
for each educational group. In contrast, quantile regression would estimate income differences
between individuals ranked at the same quantile within the two groups. For further discussion
on these differences, see also Peracchi [S0]. The approach we adopt in this paper is based on
modeling the mean of the random variables of the form Lyyi<ty which represent the indicator of
the events {y; < ¢} foré = 1,...,n. This idea was first introduced in [20] and has since been
explored in various contexts, including Firpo and Sunao [19], Rothe [52], Rothe and Wied [53],
and Chernozhukov et al. [15]. More recently, distributional regression has been studied in diverse
settings, such as isotonic regression [28]], random forests [[L0], and neural networks [58] [31]. In
particular, Henzi [27] develop consistent estimators of conditional CDFs under increasing concave
and convex stochastic orders, providing a flexible framework that accommodates heterogeneous
variance structures and distributional crossings—situations where traditional stochastic dominance
assumptions may fail. These works highlight the versatility and applicability of distributional
regression across a range of methodologies and problem domains. Finally, other nonparametric
approaches to distributional regression include Dunson et al. [[17] and Hall et al. [24].

2 Notation

Througout, for a vector v € R™, we denote by ||v|| and ||v||; the {2 and ¢ norms, respectively. Thus,
ol = /> iy vi and |[v]l; = Y., |v;|. Furthermore, given two functions G, H : R — R,
we define CRPS(G, H) = [ _(G(t) — H(t))*dt. Also, for for p > 0 and v € R", we write



By, (v) := {u € R" : ||lv —u|| < n}. Forametric space (X, d), let K be a subset of X', and > 0
be a positive number. Let B,.(z, d) be the ball of radius r with center z € X’. We say that a subset
C' C X is an r-external covering of K if K C U,cc B (z,d). Then external covering number of
K, written as N (r, K, d), is defined as the minimum cardinality of any r-external covering of K.
Furthermore, for a function f : X — R, we define its £, norm as || f|lo := sup,cx |f(x)|. Also,
for two sequences a,, and b,,, we write a,, < by, if a,, < cb,, for a positive constant ¢, and if a,, < b,
and b,, < ay, then we write a,, < b,,. The indicator function of a set A is denoted as 1 4(¢), which
takes value 1 if t € A and 0 otherwise. Finally, the indicator of an event A is 1 4 which takes value 1
if A holds and 0 otherwise.

2.1 Outline

The paper is organized as follows: Section [3] establishes a unified framework for distributional
regression under structural constraints. In particular, Section [3.1]introduces the general methodol-
ogy. Section [3.2] derives statistical risk guarantees for the convex case. Sections [3.2.1] and [3.2.2]
provide concrete examples of convex estimators, focusing on isotonic regression and trend filtering,
respectively. Section [3.3] extends the framework to the non-convex setting. Specifically, Section
develops the general theory for non-convex estimators, and Section [3.3.2]explores an estimator
based on deep neural networks. Section ] and [5] present simulation studies and real-data experiments,
respectively, comparing the proposed methods to state-of-the-art competitors. Finally, Section []
concludes with a discussion of future research directions, and the Appendix provides additional
theoretical results and experimental findings, including two additional real-data applications.

3 Theory

3.1 General Result for Constrained Estimators

We begin this section by addressing general problems in distributional regression under structural
constraints. Using the notation introduced in Section[I] our goal is to estimate the vector of dis-
tribution functions evaluations F™*(t). To achieve this, we adopt an empirical risk minimization
framework based on the continuous ranked probability score (CRPS), a widely used tool for evaluating
distributional forecasts [43}22]]. Specifically, we consider the estimator

n

F.= arg min ZCRPS(Fial{yﬂ‘})’ M
{Fiyr_, : F(t)eK forall t =3 -

where F(t) = (Fy(t),...,F,(t))" € R", and K C R" is a set encoding the structural constraint.
Related CRPS-based formulations have been proposed in the context of isotonic distributional
regression [28]].

This formulation can be viewed as a form of M-estimation over function-valued parameters, where the

loss is defined via a proper scoring rule. Specifically, the estimator F minimizes the empirical CRPS
loss, computed relative to the observed point masses 1;,, <.;. Because CRPS is strictly proper [22],
the population version of this loss—where expectations are taken over the distribution of each y;—is
minimized at the true distribution functions F*. Hence, the estimator in (T)) can be interpreted as an
empirical risk minimizer, and is statistically and decision-theoretically justified. The constraint F'(t) €
K for all t imposes additional structure on the estimator, promoting regularity and interpretability.
We now show that the solution to the empirical CRPS minimization problem can be obtained via a
simple projection estimator. For each ¢ € R, define w(t) = (lgy,<¢},---, 1{yn§t})T € R", and
consider the projection

F(t) == argmin { lw(t) — 0>} . (2)
0K

Lemma 1. For K C R", the function-valued estimator defined by [2)), with Fy(t) := [F(t)];, solves
the empirical CRPS minimization problem in (1).

Thus, for each ¢ € R, the solution ﬁ(t) in problem is obtained by projecting the empirical
vector w(t) onto the convex set K, making the estimation process both computationally efficient and
conceptually transparent. In the more general case where the structural constraint may vary with ¢,



i.e., K; C R™, we extend the estimator to

ﬁ(t) := argmin {||w(t) — 0|} . 3)
0EK,
This projection-based formulation allows us to define flexible estimators tailored to varying structural
assumptions.

3.2 Risk bounds for convex case

In this subsection, we focus on the special case where each constraint set K; C R™ is convex and
satisfies F*(t) € K;. As described in (3], the corresponding estimator F'(t) is obtained by projecting
the empirical vector w(t) onto K, which amounts to minimizing the empirical ¢2-loss under convex
constraints.

Our next result provides an upper bound on the expected value of the CRPS error. This is a
consequence of a modified version of Theorem A.1 in Guntuboyina et al. [23]], see Theorem [5|in the
Appendix. While our result is conceptually related to Theorem A.1 in Guntuboyina et al. [23]], our
setting and proof strategy differ in several important ways; see Appendix [E]for a detailed discussion
comparing both results.

Theorem 1. Suppose that (0,...,0),(1,...,1) € Ky, and

P(y; € Q) =1, forall i, 4)
and for some fixed compact set ) C R. Then, there exists a constant C > 0 such that
1 — - Cn?
E|— CRPS(F;,F) | < —
(rEemmsdmn) < v
for every n > 1 satisfying
n?
supE sup g'(0—F*(t)| < = (6)
teR [0k [|0—F=(t)[<n L

where g ~ N (0, I,), for a universal constant L > 0.

Thus, Theorem|I] shows that bounding the expected CRPS error can be reduced to analyzing the local
Gaussian complexity, as given on the left-hand side of Equation (6).

As a direct consequence of Theorem [T} we can derive the same upper bound as in (3] for a rear-
rangement (see e.g. Lorentz [39], Bennett and Sharpley [[6]) of a truncated version of F;, which is
non-decreasing by construction. This result is formalized in the following theorem.

Corollary 1. Suppose that (0,...,0),(1,...,1) € K; forallt € R, and that F}(-) is continuous
for all i. Giveni € {1,...,n}, let F;"(t) = max{0,F;(t)}. Let yu) < ... < y(n) be the

order statistics of y. Define a;; = ﬁi"’(y(j)) for j = 1,...,n — 1 and sort the vector a;. as
0 ft<yu
n—1

ij, = ... > aij,_,,and let F; be defined as Fi(t) = > aij Lo (t) i ya) <t <y
=1
1 I ym) <t

where vg = Y(,) and v; = Y(n) — Z;Zl(y(jkﬂ) — Yy forl = 1,...,n — 1. Then, with the

1< ~ Cn?
notation from Theorem we have that E - Z CRPS(F;, F:)) < Tn
i=1

The function E(t) defined above is non-decreasing and is constructed by modifying the original
estimator E(t) through a rearrangement of its values. Specifically, this is achieved by applying
a change of variable to E (t), followed by the Hardy-Littlewood decreasing rearrangement. This
classical construction [23] preserves the level set measures and minimizes the L? distance among
all decreasing equimeasurable functions. An example of E(t) and E(t) is given in Figurein the
Appendix. We now present the final result from this section.



Theorem 2. Suppose that Ky C K for all t. For any n > 0 it holds that

no /4
P <su£ Z (Fz(t) _ Fi*(t))2 > 2172) < %/W \/10gN(E, (K— K) ﬂBn(O)u H : H)d&-i- %m’
teR G 0
N

for a positive constant C.

Theoremprovides a high-probability concentration bound for the MSE in estimating F'*(¢), holding
uniformly over all t € R. This sets it apart from standard sub-Gaussian bounds, which typically yield
control at a fixed evaluation point ¢, see for example [, [14]]. To ensure that the bound in Theorem@]
is small, it suffices to upper bound the local entropy of K — K, where K is an upper set that contains
the sets K.

3.2.1 Isotonic Regression

In this subsection, we present the first application of our general theory from Section [3| focusing
on distributional isotonic regression—a topic that has garnered significant attention in the literature
[[L6L 18] 29} [32]]. The most relevant works to our results are Mosching and Diimbgen [44], which
examined distributional isotonic regression under smoothness constraints, and Henzi et al. [28]],
which proposed an interpolation method equivalent to the formulation in (3) with K, enforcing a
monotonicity constraint.

Setting
K=K :={0cR": 0, <0 <...<0,}, ®)

we now consider the case of isotonic distributional regression assuming that F'*(t) € K, which is
equivalent to P(Y; < t) < ... < P(Y, <t). With the constraint sets as in , the resulting estimator
in (3 can be found with the pool adjacent violators algorithm from Robertson [51]].

Corollary 2. Consider the estimators {ﬁt}teR defined in (3|) with K, defined as (E?l) IfF*(t) e K
and (H) holds for some fixed compact set §Q, then

1 — ~
E| - PS(E;,, F) | < cn=2%/3
(nZCR S(F;, z)) < Cn~?/3, )

i=1

for some positive constant C > 0. Moreover, (@ holds replacing F with the corresponding F as
defined in Corollary provided that each function F* is continuous. Finally,

N RPN N 2 1 logn
SUPZ - (Fz(t) - F (t)) =Op <n2/3 + i ) ) (10)
i=1

where (I0) holds without requiring (@) nor continuity of the F;’s.

The result in Corollary [2] establishes that distributional isotonic regression achieves an estimation
rate of n~2/3 for both the expected average CRPS and the worst-case MSE, as shown in . This
result improves upon Theorem 3 in Henzi et al. [28]] in the univariate case, which only demonstrated
convergence in probability for isotonic distributional regression. However, we emphasize that Henzi
et al. [28] study the more general setting of multivariate covariates, while our analysis is restricted to
the univariate case (d = 1).

To further contextualize our theoretical guarantees, we compare them with Theorem 3.3 in Mdsching
and Diimbgen [44]], which establishes uniform consistency for estimating the conditional distribution
function. Considering the fixed design case in their formulation and assuming without loss of
generality that in their notation X; < ... < X,; € R, the goal is to estimate an unknown family
of distributions (F;),cr, where for each fixed ¢ € R, the map x — F,(t) is assumed to be non-
decreasing and a-Hoélder continuous with constant C' > 0 that is the same across t. Additionally, the
design is assumed to be asymptotically dense—i.e., the covariate values X; < - - - < X,, sufficiently
cover the domain. Translating their setup into our notation, their target Fiy, (t) := P(Y; <t | X;)
corresponds to F}*(t) := P(y; < t) in our sequence model. Their assumption that « — F;(¢) is non-
decreasing for each ¢ aligns with our isotonic regression framework, where we impose monotonicity
of the sequence Fy(t) < --- < F}(t). However, in contrast to their setting, we do not require any
smoothness assumptions such as Holder continuity on the sequence { F;*(¢) }?_;, nor do we require



the covariates to be dense. Despite that, our method achieves a faster convergence rate of order n=2/3

for both the average CRPS risk and the worst-case MSE, compared to their rate n—2%/(22+1) (up
to logarithmic factors) for the worst-case MSE, with a € (0, 1], established under their stronger
regularity assumptions. A summary of these comparisons is provided in Table [2]in Appendix [E]

We also show in Appendix [A|that faster rates are achievable under additional structural assumptions
on F*(t). Specifically, if F*(¢) has few strict increases—e.g., if it is piecewise constant with a small
number of jumps—then the estimator can attain nearly parametric risk rates up to logarithmic factors.

3.2.2 Trend Filtering

In this subsection, we apply the theory from Section [3| to distributional regression under a total
variation constraint. Total variation-based methods were independently introduced by Rudin et al.
[54], Mammen and Van De Geer [42], and Tibshirani et al. [61]. These methods have been extensively
studied in various contexts within the statistics literature, including univariate settings 6238} 23,141}
46|, grid graphs [30} [11]], and general graphs [65} 48].

Before establishing our proposed total variation estimators, we introduce some additional notation.
For a vector f € R™, define D) (0) = 6, DM (0) = (6 — 61,...,0, —6,_1)" and D) (6), for
r > 2, is recursively defined as D" () = DM (D=1 (9)), where D(")(9) € R"~". With this
notation, for » > 1, the rth order total variation of a vector € is given as

TVO(9) = 0" D (9)]]1. (11)

The concept of the rth total variation can be understood as follows. Consider § as the evaluations
of an r times differentiable function f : [0, 1] — R on the grid (1/n,2/n,...,n/n). In this case, a

Riemann approximation of the integral f[o I | £(")(t)|dt corresponds precisely to TV(")(6), where

f() denotes the rth derivative of f. Therefore, for natural instances of 6, it is reasonable to expect
that TV (9) = O(1). The above discussion motivates us to define the sets

K = {9 eR" : TV (9) < Vt}, (12)

for some V; > 0, and consider the corresponding estimator in (3). This estimator is referred to
as trend filtering following standard terminology in the literature (see, for example, [65 62, 161]]),
where methods based on bounded total variation of order r are collectively known as trend filtering
estimators. The intuition here is that if F*(¢) € K then the probabilities F}(¢), ..., F;:(t) change
smoothly over ¢ in the sense that F™*(¢) has bounded rth total variation. We also highlight that the set
K defined in Equation [I2]is convex; see Appendix for a formal proof. The resulting set in (I2)
allows us to define the trend filtering distributional regression estimator subject of our next corollary
which follows from the results in Section[3.11

Refined risk bounds under additional sparsity assumptions are presented in Appendix [A] where we
show that trend filtering estimators can achieve near-parametric rates when the signal is both smooth
and piecewise sparse. These results extend recent adaptive risk bounds in trend filtering; see, for
example, Guntuboyina et al. [23]].

Corollary 3. Consider the estimator in (3) with K, as in ({[2)) for an integer r satisfying r > 1. If
F*(t) € Ky, ({) holds for some fixed compact set , and sup, V; <V, then

1 ¢ =
E|= PS(F;, Fy) | <
(nZCR S( )) C

=1

(13)

V27+1 1
+ ogn]

n27+1 n

for a positive constant C. Moreover, the upper bound in (I3) also holds for the corresponding sorted
estimators F as defined in Corollary if in addition each Sfunction F} is continuous. Finally,

Supz ( *())2:O]p (V?;:rl +lorgln>’ (14)

n2r+1

where (I4) holds without requiring (@), nor continuity of the F;’s.



Corollary [3| establishes that the constrained version of trend filtering for distributional regression
achieves the rate V'1/(27+1)y=2r/(2r+1) ‘jenoring logarithmic factors, for both the CRPS and the
worst-case MSE. This result aligns with the convergence rate of trend filtering in one-dimensional
regression, where the same rate is attained when the regression function has rth-order total variation
(42,162 23]. A summary of these comparisons is provided in Table2]in Appendix [E] Additionally,
per Corollary [7]in Appendix [B] the penalized version of trend filtering for distributional regression
achieves the same rate in terms of the worst-case MSE, further reinforcing its consistency with
classical trend filtering results.

3.3 Risk Bounds for the General Case
3.3.1 General Result

This subsection aims to present our main result on constrained distributional regression in scenarios

where the constraint sets K; are arbitrary, not necessarily convex, and potentially misspecified for
F*(1).

Theorem 3. Let F (t) be the estimator defined in (@) forallt € R but with K; not necessarily convex

and with F*(t) not necessarily in Ky. Suppose that sup sup ||F(t)||lcc < B for some constant
teERF(t)eK,
B > 1, and Ky C K for all t and some set K. Let G(t) be defined as G(t) € argmin || F(t) —
F(t)eK,
F*(t)|loo- Then, forn > 1, with K (n) = (K — K) N B,(0), we have that

P(mmﬁw»—wun>n+am¢ﬂF%w—Gunm)
teR teR

c& 1 2%/ Cylogn  Cy/n
<OSoh [ VNG e+ S L
j=1

sup [|G(t) = F*(t)|oo
teR

2
for some positive constant C' > 0, and where J = {M—‘ .

log 2

The intuition behind Theorem [3]is that 7) captures the estimation error, which depends on the local
covering complexity of the sets K (7). The second term, sup,cp /n||F™*(t) — G(t)||oo, corresponds
to the approximation error, measuring how well the true F*(t) can be approximated within the
model class K;. While such a decomposition into estimation and approximation error is standard in
nonparametric theory, our result provides a uniform guarantee over all ¢ € R, in contrast to classical
bounds that control error only at a fixed evaluation point, as in [47]. This distinction is particularly
relevant for distributional regression problems, where the goal is to control the entire CDF path. The
proof of Theorem 3] provided in Appendix[G.8§] relies on a peeling argument and extends techniques
originally developed for the convex case.

3.3.2 Dense ReLU Networks

We now turn to the application of Theorem [3]to the problem of distributional regression using dense
neural networks. The results in this section add to the literature on statistical theory for rectified
linear unit (ReLU) networks as in Bauer and Kohler [4], Schmidt-Hieber [S6], Kohler and Langer
[37], Padilla et al. [49], Ma and Safikhani [40], Zhang et al. [67], Padilla et al. [47].

Before presenting our main result, we first introduce some notation. Suppose we are given i.i.d. data
{(zs,y:)}_, € [0,1]% x R and let

G*(z,1) := Ply; < tlwi = x) = fi(2) (15)
for functions f; : [0,1]% — TR for all t. We set the conditional cdf F}*(t) = G* (x4, ).

To define the constraint set K;, we follow Kohler and Langer [37]] and assume all hidden layers have
the same width. Let F (L, v) denote the set of neural networks with depth L, width v, and ReLU
activation, restricting the functions in F (L, v) to satisfy || f||oc < 1. The structure of these networks
is described in Appendix@ Then, for all t € R, we define

Ki=K:={0ecR":0, = f(z;), i=1,...,n, forsome f € F(L,v)}. (16)



We next summarize the main assumptions underlying the analysis, stated formally in Appendix [C]
Specifically, for each threshold ¢, we assume that the true conditional distribution function G*(-, t)
belongs to a hierarchical composition model class # (I, P) as defined in Kohler and Langer [37]. Here,
[ denotes the number of hierarchical composition levels, and P C (0, 00) x N specifies allowable
pairs (p, M) corresponding to the smoothness p and input dimension M of each component function.
These assumptions, ensure that the neural network class F (L, v) can approximate G*(-, t) at the
rate ¢, = max, an)ep n=2p/(2p+M) which determines the convergence behavior established in the
result below.

We now present our main result concerning distributional regression with ReLU neural networks.

Corollary 4. Let ﬁ( t) be the estimator from with the set K, as in for allt € R with
F*(t) not necessarily m Kt Suppose that Assumption l 1| described in Appendix E holds. Let

Gn = maxXp )P N <2P+M> Under the choices of L and v specified in equations 51 or (E) in
Appendix the estimator sansﬁes

sup Z ( Fr(t ))2 = Op (105” + ¢>nlog4n) : (17)

Corollary 4] demonstrates that dense ReLU neural network estimators for distributional regression
uniformly achieve the rate ¢,,, up to logarithmic factors, in terms of the worst-case MSE for estimating
the true parameters {F*(t) };+cg, provided these parameters belong to a hierarchical composition
class. Importantly, while this rate matches that of Kohler and Langer [37]] for mean regression under
sub-Gaussian error assumptions, our result strengthens the guarantee by holding uniformly over all
thresholds ¢ € R, rather than for a fixed target. A summary of this comparison is provided in Table
in Appendix [E| This extension is essential for distributional learning tasks where uniform control is
required, such as CRPS-based risk bounds.

4 Simulated data analysis

We evaluate the performance of the proposed methods against state-of-the-art approaches across
diverse simulation settings that reflect various practical challenges and structural assumptions. Specif-
ically, six distinct scenarios are considered to evaluate different aspects of the distributional regression
problem. The implementation of all experiments is available at https://github. com/cmadridp/
UnifDR. We refer to our proposed approach as UnifDR which adapts different methods based on the
scenario. In the first two scenarios, UnifDR applies the isotonic regression method from Section[3.2.1}
in the next two, it uses the trend filtering approach from Section [3.2.2} and in the final two scenarios,
it employs the Dense ReLU Networks method described in Section

Scenario 1 (S1). We generate data y; ~ Normal(u;,1) where p; =1 —i/nfori=1,...,n.
Scenario 2 (S2). We consider y; ~ Unif(a;, b;), where a; = (n —¢)/n and b; = a; + 1.

Scenario 3 (S3). The true CDFs are modeled as F*(t) = 1 — exp(—t/p;), pt; = 1 + 0.5sin(27i/n).
Scenario 4 (S4). Consider F}*(t) = Gamma(shape = 0.7, scale = p;), where j1; = 6 - 1i<y, /43 +
2 1injaci<ng2y T8 Linjaci<sn/ay +4 - Liisan/ay-

Scenario 5 (S5). Let x; ~ Unif(]0, 1]°). The true CDFs are given by F*(t) = ®((t — h(x;))/0.5),
where h(x;) = —3z\" + 2log(1 + () + 2 + 52 + (2{”)2, with 27 denoting the j th
coordinate of x;. The function ® represents the standard normal cumulative distribution function.
Scenario 6 (S6). Let x; ~ Unif([0, 1]10) and y; ~ x%(h(x;)). Here, h(x;) =
log (‘ —05- Z?Zl sin(rz!”) — 0.5 Z] 29 4 0.5cos(z!! 0))‘ ) , with 1) denoting the j
th coordinate of x;.

To implement our proposed approach UnifDR we proceed as follows. The isotonic method introduced
in Section [3.2.1] is implemented in R using the pool adjacent violators algorithm (PAVA) from
Robertson [51]. For this approach there are no direct competitors in the distributional regression
problem. The Trend Filtering estimator in Section [3.2.2]is implemented using the trendfilter
function from the glmgen package in R, and we compare it with additive smoothing splines (AddSS)
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Figure 1: Box plots of CRPS results in A5. The left plot corresponds to S3 and S4, while the right
plot displays the results for SS.

Table 1: Evaluation metrics for UnifDR (Trend Filtering approach) and its competitor AddSS on the
2015 Chicago crime dataset.

METHOD CRPS (MEAN + STD) MSD (MEAN =+ STD)

UNIFDR 0.0976+0.0017 0.2509+0.0025
ADDSS 0.12234+0.0078 0.2850£0.0391

via the smooth.spline function in R. For the Dense ReLU Networks method in Section [3.3.2]
we use a fully connected feedforward architecture with an input layer, two hidden layers (64 units
each), and an output layer. The network is implemented in Python and trained using the Adam
optimizer with a learning rate of 0.001. In this case, we compare the proposed UnifDR method
with five benchmark methods. First, we consider Classification and Regression Trees (CART) [8]],
implemented in R via the rpart package, with the complexity parameter used for tuning. Second,
we evaluate Multivariate Adaptive Regression Splines (MARS) [21], available in the earth package,
where the penalty parameter serves as the tuning parameter. Third, we assess Random Forests (RF)
[7], implemented in R via the randomForest package, using 500 trees and tuning the minimum
terminal node size. Additionally, we consider two recent methods. Distributional Random Forests
(DRF) [10] is implemented via the drf package in Python. DRF employs tree-based ensemble with
tuning parameters including the splitting rule and the number of trees. Lastly, Engression (EnG)
[58] is implemented using the engression package in Python. EnG utilizes hierarchical structured
neural networks, and we adopt the same training hyperparameters as our deep learning approach
to ensure optimization consistency. EnG also requires a sampling procedure, with the number of
samples set to 1000 for accurate distribution estimation.

Performance Evaluation: For each scenario, datasets with sample sizes n € {400, 800, 1600} are
generated, with each experiment repeated 100 times using Monte Carlo simulations. Evaluations are
conducted at 100 evenly spaced points ¢ from three fixed intervals: A1 = [—1,0.4], Ay = [-2,2], and
A5 = [0.8,10]. Each dataset is randomly split into 75% training and 25% test sets. Competing models
undergo 5-fold cross-validation on the training data for hyperparameter tuning, with performance
assessed on the test set. For the isotonic regression method, test set predictions are obtained via
naive nearest neighbor interpolation. The accuracy of the estimated CDFs F;(t) relative to the true
CDFs F;(t) is evaluated using the following performance metrics, averaged over 100 Monte Carlo

repetitions. CRPS: CRPS evaluates the overall fit of Fj(t) to E(t) across all evaluation points
in R, see Section 2] Since the evaluations in experiments are performed over a finite set of 100

values in A, CRPS is approximated via a Riemann sum: CRPS = ﬁ Y icTest 17(1)0 Y oien (ﬁz (t) —

2
FZ*(t)) , where |Test| = 7 is the size of the test set. Maximum Squared Difference (MSD): MSD

captures the worst-case discrepancy between E(t) and F}(t), and is approximated as: MSD =
~ 2
maxieA |Tlst\ D icTest (FZ(t) - F (t)) :

The results below focus on the CRPS metric for Scenarios S3, S4, and S5, where the CDFs are
evaluated at the points in As. Additional results, including MSD performance and CRPS evaluations
at Ay and A3 across all scenarios, as well as the A{-based CRPS for Scenarios S1, S2, and S6, are
provided in Appendix [F| Figure (1| presents the performance of UnifDR in S3 and S4, where we
compare the Trend Filtering approach with AddSS. The same figure also includes results for S5,
where UnifDR utilizes the Dense ReLU Networks method against five state-of-the-art competitors:
CART, MARS, RF, DRF, and EnG. In all scenarios, UnifDR consistently outperforms competing



methods, with its performance superiority becoming more pronounced as the sample size increases.
This dominance is further confirmed by the extended evaluations in Appendix || reinforcing the
robustness of UnifDR across various conditions.

5 Real data application

In this section, we evaluate the performance of the proposed UnifDR method using both the Trend
Filtering and Dense ReLU network procedures on real-world datasets.

5.1 Chicago crime data

We analyze the 2015 Chicago crime dataset, available at https://data.gov/open-gov/, which
records reported crimes in Chicago throughout the year. Following Tansey et al. [60]], the spatial
domain is discretized into a 100 x 100 grid, where each grid cell aggregates crime counts within
its spatial boundary. The response variable is defined as the log-transformed total crime counts
per grid cell. Grid cells with zero observed crimes are excluded, yielding a final dataset of 3,844
grid cells. The UnifDR’ Trend Filtering procedure does not use covariates. Instead, the spatial
grid is treated as an ordered sequence, assuming a smooth spatial trend. The grid cells are ordered
lexicographically. The dataset is randomly partitioned into 100 train (75%)—test (25%) splits, and
evaluation is conducted at evenly spaced points A in the interval [-1,6]. Performance is assessed
using the Continuous Ranked Probability Score (CRPS) and Maximum Squared Difference (MSD)

metrics, comparing estimated CDFs E(t) against empirical indicators w;(t), where t € A. AddSS is
used as a benchmark for the Trend Filtering approach on the same dataset. Table[I| presents CRPS
and MSD metrics, demonstrating UnifDR superior performance. Furthermore, Figure |4|in Appendix

provides a visualization of ﬁ(t) at t = 3 for both competing methods. The same data set is
analyzed using UnifDR with the Dense ReLU network framework, with further details in Appendix

5.2 Other real data examples

Beyond the Chicago crime dataset, UnifDR is further evaluated on California housing prices and
daily Ozone measurements. Detailed descriptions, pre-processing steps, and results are provided in

the Appendix [F1]

6 Conclusion

This paper introduced a unified framework for nonparametric distributional regression under convex
and non-convex structural constraints. We established theoretical risk bounds for the estimation of
cumulative distribution functions (CDFs) in various settings, including isotonic regression, trend
filtering, and deep neural networks. Our analysis leveraged continuous ranked probability scores
(CRPS) and worst-case mean squared error (MSE) to quantify estimation accuracy, demonstrating
that structured constraints such as monotonicity, bounded total variation, and hierarchical function
composition lead to improved estimation accuracy. The resulting upper bounds are general and apply
to a broad class of convex and non-convex estimators. While we do not derive lower bounds at
this level of generality, the rates obtained for specific cases—such as isotonic and trend filtering
estimators—match known minimax results for mean estimation, providing evidence for the tightness
and near-optimality of our bounds in these canonical examples (see Table [2). In particular, we
establish explicit convergence guarantees for isotonic, strengthening prior findings. Moreover, the
trend filtering estimator achieves rates consistent with classical one-dimensional regression results.
For deep neural networks, we show that our estimator achieve comparable rates under hierarchical
composition constraints, aligning with existing results in structured regression. Experiments on
simulated and real datasets further validated the theoretical guarantees, with our proposed methods
consistently outperforming alternative approaches. In particular, UnifDR, the distributional regression
framework we study, demonstrated superior performance across all considered settings.

An important avenue for future research is extending our theory to dependent data settings. Many
real-world applications involve time-series data, spatial data, or network-structured data, where
dependencies among observations must be accounted for.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See Section[3and [3.3]
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section Gl
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Section [3]and [3.3|for the results with assumptions, and Appendix G| for
the corresponding proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See section[d] Section [5] and Appendix [F
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: See the supplementary material. It includes all code and implementation
details for the experiments. We also include the Real data URL to access to our examples in
Section[5]and Appendix

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See section[d] Section[5} and Appendix [
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All our experiments include box plots or tables with standard errors reported.
See Figures [I}{20] and tables

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Section[d]and Section[3l
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We follow the Code of Ethics stablished here https://neurips.cc/
public/EthicsGuidelines.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none which we feel
must be specifically highlighted here

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
No risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: paper does not involve any crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: paper does not involve research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were not used as an original or non-standard component of the core
methods in this research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Fast Rates

This appendix develops refined risk bounds for distributional regression estimators under additional
structural assumptions on the true signal. While our general theory establishes minimax-optimal rates
under convex constraints such as monotonicity or bounded total variation, certain low-complexity
signal classes allow for significantly faster convergence.

We provide two canonical examples illustrating this phenomenon. The first focuses on isotonic
regression, where we show that if the true distribution functions have only a small number of strict
increases, the estimator achieves a nearly parametric rate. The second concerns trend filtering, where
we demonstrate that sparsity in the higher-order differences of the signal—combined with a minimum
segment length condition—Ileads to similarly fast convergence.

These results extend analogous adaptive risk bounds from classical point estimation [[12} 23] to the
distributional regression setting.

A.1 Isotonic Regression

We begin by revisiting the isotonic case. In the main text, Corollary 2] established a general risk bound
of order n~2/% under minimal monotonicity assumptions. Here, we refine this analysis by showing
that much faster rates, nearly parametric, are achievable when the true distribution function F*(t)
exhibits low complexity, in the sense of having few strict increases.

To formalize this, consider the isotonic constraint set
K::{QGR":91§92§-~-§9n}, (18)
and assume F*(t) € K for all t € R. Define
k(t) := |{'L e{l,...,n—1}: F(t) < 7*+1(t)}| .

This quantity counts the number of strict increases in F'*(¢), and hence controls the complexity of the
signal.

Corollary 5. Let F} be the estimator defined in (3) with K, = K as in (I8). Assume F*(t) € K and
that ({) holds for a compact set Q). Then

1 & ~ 1+ k(t) en
— E . ; < .
. (n = CRPSUE £ )> < Coup n tog (1 + k(ﬂ)

teR

for some constant C > 0. Moreover, this bound also applies to the sorted estimator F from
Corollary[l} provided each F}* is continuous.

This result improves on the general n~2/2 bound when the number of strict increases k(t) is small. For
example, if F*(t) is piecewise constant with at most s jumps, then k(¢) < s, and the bound becomes

En

% log ( 7 +S> , nearly achieving the parametric rate when s = O(1). The proof of Corollary [5|is
provided in Appendix [G.10}

A.2 Trend Filtering

We now turn to the trend filtering setting. In the main text, Corollary 3]established a general risk bound
of order n~=2"/(27+1) under a total variation constraint of order -, matching the minimax-optimal rate
for function estimation under such constraints [42, 62].

Here, we show that significantly faster rates are achievable in the distributional regression setting
when the signal exhibits additional structure. In particular, when the rth-order differences of the
vector F*(t) are sparse and well-separated, the estimator can attain nearly parametric accuracy up to
logarithmic factors.
Define

K, = {9 eR" : TV(8) < v;*}, (19)

where V;* = TV (F*(t)).
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Corollary 6. Consider the estimator in with K; as in for an integer r satisfying r > 1.
Suppose s = HD(T)F*(t)”o and S = {j : (D(”)F*(t))j #£0¢ forallt. Let jo < j1 < ... < jst1

be such that jo = 1,js41 =n —rand j1,...,Js are the elements of S. With this notation define
Njo = Mjors = 0. Then for j € S define n; to be 1 if (D(T‘l)F*(t))j < (D(T‘l)F*(t))jH,
otherwise set n; = —1. Suppose that F*(t) satisfies the following minimum length assumption

cn

min Jiv1 — i) 2
16[51771.7‘17577_7‘14—1 ( * ) s+ 1

for some constant c satisfying 0 < ¢ < 1. Then, for sup, V;* < V*,

1 <& S (s+1) en
E(nZCRPS(E,F,.)>§O[ ~ 10g<s+1>} (20)

=1

for a positive constant C. Moreover, the upper bound in (20) also holds for the corresponding sorted

estimators F as defined in Corollaryl 1| provided that each function F; is continuous and V,* < V*
forallt.

This result shows that, under a sparse difference structure and a minimum segment length condition,
trend filtering estimators for distributional regression can achieve nearly parametric accuracy (up to
logarithmic factors). The bound in (20) mirrors the adaptive rates derived for standard trend filtering
in point estimation problems; see, for example, Guntuboyina et al. [23]]. Our extension demonstrates
that the same refined rate behavior persists in the more general context of distributional regression,
where the goal is to estimate full conditional distributions rather than scalar means.

The proof of Corollary [f]is provided in Appendix [G.TT]

B General Result for Penalized Estimators

A natural alternative to shape-constrained estimators is the use of penalized estimators, where the
penalty term promotes a desired behavior in the signal being estimated. Motivated by this approach,
we present a general result for distributional regression using penalized estimators in this subsection.
Specifically, consider estimators of the form

F(t) := argmin {1||w(t) —0)1* + )\tpent(ﬁ)} , ©2))
gerr |2

where \; > 0 is a tuning parameter and pen : R™ — R is a penalty function. We now present our
main result for the penalized estimator defined in ZI).

Theorem 4. Suppose that pen,(-) is convex for all t and it is a semi-norm. In addition, assume that
sup pen,(F*(t)) < V.Let K := {6 € R" : pen,(0) < 6V}. Then for any > 0, it holds that
€R

<sup2( Fr ))2 >2n2> < ;’;/W \/logN (e, K N B,(0), ] - de 4 EV1oen.

teR n
(22)

for some constant C' > 0, proivide that we set \; = 1?/4pen(F*(t)).

Theorem [d] demonstrates that achieving a uniform upper bound on the MSE can be accomplished by
controlling the covering number of sets of the form K N B.(0), as outlined on the right-hand side of

22).

We now turn to a statistical guarantee for the penalized version of trend filtering in distributional
regression. This result follows directly from Theorem 4] and involves a calculation analogous to the

proof of (T4).

Corollary 7. Consider the estimator in with pen, (0) := TV (0) and N, chosen as in Theorem

Then L
Supz ( *())2—0P<V2;:1 +107g1n>7 23)

n2r+i

where V' := sup pent(F (t))
teR
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C Dense ReLU Networks: assumption and definitions

In this appendix, we provide additional details for Section[3.3.2] Before outlining our assumptions
on the functions F*(¢), we introduce notation related to dense ReLU networks. To that end, we
describe a dense neural network with architecture (L, k) employing the ReLU activation function
given as p(s) = max{0, s} for any s € R. Such a network is represented as a real-valued function
f : RY — R satisfying the following properties:

Z A 1P (@) + o) (24)
for weights ch) .. chk) € R and for fi(L) ’s recursively defined by
F @) =p Z ¢ Y(z) + cgfofl) (25)
for some cgfo_l), ce fsk D eR se {2,...,L}, and fi(l)(x) =p (Zj 1 CEOJ) @) 4 CEOO)>

w1thc£00),..., EJER

Next we provide some notation necessary for define the class of signals where the F*(t¢)’s belong.
Definition 1 ((p, C')-smoothness). Let p = q + s for some g € N =71 U {0} and 0 < s < 1. We
say that a function g : R* — R is (p, C)-smooth, if for every o = (a1, ..., aq) € N%, withd € Z+,
where Z;‘l=1 a;j = q, the partial derivative 0%g/ (Oui" ... Juy") exists and

0%¢
ouft ... duy?

0%g
ouft ... duy?

(u) = ()] < Cllu—of?

forall u,v € R%

Let us now define the generalized hierarchical interaction models #H (I, P).

Definition 2 (Space of Hierarchical Composition Models, [37]). Forl = 1 and smoothness constraint
P C (0,00) x N, the space of hierarchical composition models is defined as

H(1,P):= {h :RY - R:h(a) =m (a(ﬁ(l)), .. ,a(W(M))) , where
m : RM — Ris (p, C)-smooth for some (p, M) € Pand 7 : {1,...,M} — {1,...,d}}.

Forl > 1, we set

H(,P):={h:R* = R:h(x) =m(fi(a),..., fr(a)), where
m : RM — Ris (p, C)-smooth for some (p, M) € P and f; € H(l—1,P)}.

With the notation above, we are ready to state our assumption on the true signals in the spirit of [37].

Assumption 1. Suppose that for all t the function G*(-,t) is in the class H(l,P) as in Definition 2]
In addition, assume that each function gt in the definition of G*(-,t) can have different smoothness
Pgt = dqgt + Sqt, for qg0 € N, sge € (0,1], and of potentially different input dimension M, so
that (pge, My:) € P. Let Mnax be the largest input dzmenszon and pp,ax the largest smoothness of
any of the functlons gt for all t. Suppose that for each g all the partial derivatives of order less
than or equal to qg¢ are uniformly bounded by constant Csmootn, and each function g* is Lipschitz
continuous with Lipschitz constant Ci, > 1. Also, assume that max{pmax, Mmax} = O(1).

D Rearrangement of estimates

Figure shows an example of the original F\Z and its rearrangement F; asin Corollary |1} which is
guaranteed to be non-decreasing.
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Figure 2: The plot in the left shows a display of an example of a function F and the right panel
shows the corresponding rearrangement F; as described in Corollary |1 l

E Summary of Results and Theoretical Comparisons with Prior Work

For a summary of all theoretical results presented in the paper and comparisons with prior work
such as [28 44} 42| 62| 23] |37, [10, 158]], see Table [2| This table synthesizes the convergence rates
and underlying assumptions for our estimators (isotonic, trend filtering, and dense ReL U networks)
alongside those of key existing methods discussed throughout the manuscript.

In addition, Appendix [E.T|provides a complementary comparison that focuses specifically on methods
designed for conditional distribution estimation. In particular, we contrast our Dense ReLU approach
from Section [3.3.2] with the main competing estimators evaluated in the simulation section, Section
including those from [[10] and [58]], highlighting differences in assumptions, estimation strategies,
and theoretical guarantees.

Finally, this appendix also includes a dedicated subsection (Appendix [E.2)) that clarifies the concep-
tual relation and technical distinctions between our Theorem [[|and Theorem A.1 of Guntuboyina
et al. [23]. This comparison emphasizes how our framework extends the convex-projection setting
to distributional regression with Bernoulli-type observations and CRPS loss, relying on different
concentration and normalization arguments.

E.1 Error Bounds for Conditional Distribution Estimation

The result in Corollary [] establishes that the dense ReLU network-based estimator achieves a
convergence rate of order

1
e

where ¢, = max, yep n =2/ (2p+M) " for the worst-case mean squared error over thresholds
t € RP, as shown in (17). This result provides a high-probability bound on the squared ¢ error
between the estimated and true conditional CDF vectors

. . ~ T
Ft) = (B(),.... Fa®)
and T
F(t) = (FT(t),..., F (1))
where F¥(t) :=P (y; < t| ;) = G(x;,t), uniformly across ¢ € R. Here {(z;,y;)};—; C [0,1]% x
R are i.i.d. data.

To contextualize this result, we compare it with the result obtained in [10] and [58]].
E.1.1 Comparison with Distributional Random Forests (DRF) [10]

Work [10] studies conditional distribution estimation using Distributional Random Forests (DRF).
Their framework assumes access to i.i.d. samples {(z;,v;)}"; C [0,1]? x R%, where each z; €
[0, 1]P denotes a covariate vector and 3; € R? a multivariate response. The goal is to estimate the
conditional distribution P(Y | X = z), where Y € R? and X € [0, 1], using a weighted empirical

measure of the form
P(Y | z) := g Wz (75) 0y,
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where d,, is the Dirac measure at y;, assigning unit mass to the observation y; € R<. Moreover,
wg () denotes the DRF-induced weight assigned to training point x ;. Specifically, after constructing
a forest of N randomized trees, each test point x € [0, 1]? defines, for every tree T, a leaf L (x)
consisting of training points x; that fall in the same terminal node as x. The DRF weighting function

is then defined as
1{wjeck(w>}
x(25) N Z |Lk(z

This leads to the following plug-in estimator of the condltlonal CDF at a threshold t € R?

[DRF
Y|X x( E :wx (z;) 1{ (U)1 Stes(y)) g <ta )

which computes a weighted empirical CDF based on the forest-derived weights. To align with our
setup, consider the univariate case d = 1 with p = dj, where each observation (z;,;) € [0, 1]% x
R. In this setting, their goal becomes estimating the conditional CDF Fy|x—,(t) := P(Y < ¢ |

X = ) for any threshold t+ € R. The DRF estimator in this case simplifies to F)],Dlp)}F L) =

Z?zl wy (x;) - 1{y; < t}, providing a weighted empirical estimate of the conditional distribution
function at point z. Viewed from our perspective, where the focus is on the sequence model
F*(t) := (Fr(t),...,F ()", with EFr(t) :=P(y; <t|wx;), the DRF method yields estimates

EPRE(1) = Zn:wz (zj) - T{y; <t},

where the weight vector w,, (-) is centered around the design point z;. These estimates F°RF ()

are directly comparable to our estimator F, (t). In terms of assumptions, their theoretical guarantee
relies on several conditions about how the weights w,, (x;) are constructed. One key requirement is
that each tree in the forest is built using a random subsample of the data, rather than sampling with
replacement. The size of this subsample s,, is allowed to grow with n, specifically with s,, =< n®
for some 0 < B < 1. They also assume that the covariate distribution on [0, 1]% has a density
bounded away from zero and infinity. This contrasts with our setting, where no such condition on
the distribution of the covariates is required. Another assumption is that for each threshold ¢, the
conditional CDF function  + Fy|x—,(t) is Lipschitz. Translated to our notation, this corresponds
to requiring that for every ¢ € R, the function G(-,t), where F*(t) = G(z;,t), is Lipschitz in .
In terms of our assumption that G(-,t) € H(l, P), as stated in Assumption|[1] this is equivalent to
assuming that G(-,t) € H(1,{(1,dp)}), thatis, G(-, ) belongs to a Lipschitz class, which is a strict
subset of the more general hierarchical composition model we allow.

Under these conditions, the theoretical guarantees in [L0] for the DRF method are limited to con-
vergence in probability. Specifically, Corollary 5 in their paper establishes that the DRF estimator
EPRF () converges in probability to the true conditional CDF F}(t) at fixed thresholds ¢ € R.
However, this result does not provide explicit rates of convergence in mean squared error or uniform
guarantees over t.

In contrast, our result provides a high-probability bound on the ¢5 error over the full vector F*(t),
with a convergence rate

supz ( —Fr(t ))2 = Op <log + ¢ log? n)

where ¢, = n~2/(>+4) matches the approximation rate for the Lipschitz class assumed in their setup.
More generally, our framework also provides rates under weaker smoothness conditions, allowing
each threshold function G(+,t) to belong to the hierarchical composition model class H (I, P), as
defined in Assumption [I]

A summary of this comparison is provided in Table 2}

E.1.2 Comparison with Engression (EnG) [58]

The work on [58]] introduces a method for estimating conditional distributions using energy score
minimization. Their framework assumes access to i.i.d. data {(z;, )}, C [0,1]¢ x R, where
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each z; € [0,1]? is a covariate vector and y; € R is a real-valued response. The main objective is to
estimate the full conditional distribution P(Y | X = x).

To solve this problem, Engression models the conditional distribution Y | X = z as a transformation
of an independent noise variable e ~ Unif]0, 1], i.e., it posits the model

Y =g"(X,¢)
for some unknown function g*: [0, 1]¢ x [0,1] — R.

The goal is to learn an approximation gy of g*, parameterized by a deep neural network, such that the
conditional distribution of go(X,¢) | X matches that of Y | X. The model is trained by minimizing
an empirical energy score loss, which quantifies the discrepancy between the observed responses and
the model-generated samples. For each data point (z;, y;), the method samples m independent noise
variables €, 1,...,8im i Unif]0, 1]. The resulting empirical loss function is

B N I 1
melng ; Ejzl lyi — go(wi,€i5)| — m ; |90(@i,€i,5) — go(@i, €i,57)
= = J7J

Once the network gy is trained, the conditional distribution at a test point x can be approximated

by generating M independent samples €1, ...,enr "X Unif [0, 1] and evaluating gy(z, &,,,) for each
me{l,...,M}.

To align with our setting, we interpret their covariate dimension d as our notation dy, so that each
design point x; € [0, 1]%. In our sequence-based setting, this leads to the following estimator of the
conditional cumulative distribution function:

FERG () = L f) {go (i, em) < 1}
i M 1y~m —_ )

m=1

which provides an approximation to the true conditional CDF F;*(¢) := P(y; < ¢ | z;). This

estimator is directly comparable to our method’s output Fl(t) and both aim to recover the conditional
distribution function evaluated at x; for any threshold ¢ € R.

Specifically, under the assumptions that the true function g* is Lipschitz continuous in both arguments
and that the marginal distribution of covariates has a density bounded away from zero and infinity on

its support, [58] shows that the estimator FiE“G(t) converges in probability to F}"(¢) for any fixed
threshold ¢ € R.

Translating these conditions to our notation, where F*(t) = G*(x;,t), the assumption that ¢g* is
Lipschitz in its first argument implies that the map « — G*(x, t) is Lipschitz for every fixed ¢. In
contrast, our structural assumption in Assumption posits that G(-,t) € H(l,P), arich class of
hierarchical compositions of functions. The Lipschitz class assumed in Engression corresponds
to the special case H(1, {(1,do)}). Therefore, our framework subsumes the setting considered in
Engression and allows for more expressive function classes beyond global Lipschitz continuity.
Additionally, we do not require the covariate distribution to be bounded away from zero. Importantly,
our estimator comes with high-probability guarantees on the ¢s error over the full CDF vector
F*(t) = (Fy(t),...,Fr(t))". Specifically, we establish that

1 2 1
>3 (R0 - £7(0))" = 0r (£ 4 0,105t
=1

n

where the term ¢,, depends on the complexity of the class H(I,P). In particular, when G(-, 1) is
Lipschitz, we obtain ¢,, = n~2/(2+do)

A summary of this comparison is provided in Table 2]

E.2 Relation between Theorem [I]and Theorem A.1 in Guntuboyina et al. [23]

Our Theorem[I]is conceptually related to, but technically distinct from, the high-probability bound
established in Theorem A.1 of Guntuboyina et al. [23]] (restated as Theorem@). Their setting considers
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the estimation of a mean vector ;1 € R™ based on noisy Gaussian observations Y = p + Z, where
Z ~ N(0,1,). The estimator 11 is the Euclidean projection of Y onto a convex set K C R", and
the goal is to bound the squared error ||fi — p||3 in expectation, which is then strengthened to a
high-probability bound.

To achieve this, they define the random process

t2
H(t):= sup Z'(v—p)— =,
VEK:|v—pl|<t 2

which is strictly concave in ¢ and attains its unique maximum at t* = ||i — p||2. The corresponding
deterministic function

fu(t) :==E[H(1)]

is also concave and attains its maximum at ¢,,, which characterizes the typical estimation scale. The
key analytical step in Guntuboyina et al. [23]] is to show that ¢* concentrates sharply around ¢,
via a peeling argument: within a local window [t,, — z+/T,,, t,, + x+/%,], stochastic fluctuations of
H(t) — f.(t) are controlled by Gaussian concentration, and outside this window, the deterministic
function f,(¢) exhibits quadratic decay. This interplay between curvature and Gaussian concentration
yields strong probabilistic control of the projection error.

Our framework preserves the geometric structure of convex projection but differs in several essential
respects. First, the observations in our setting are

w(t) = (Hy: < t})isq,

which are Bernoulli random variables that play the role of Y. The associated noise vector €(t) =
w(t) — F*(t) has independent, mean-zero, heteroskedastic components with variances F*(¢)(1 —
F;(t)). This noise is sub-Gaussian but not Gaussian, and thus lacks the rotational invariance and
linearity properties exploited in Guntuboyina et al. [23]].

Second, while their goal is to control the squared Euclidean error ||z — y|3, our analysis focuses on
bounding the expected CRPS loss between the true conditional distribution functions F;* and the
estimators Fj, which serve as the natural analogues of . and fi in our context. The non-Gaussianity
of the noise, the use of the CRPS loss, and the absence of rotational symmetry make the direct
application of their argument infeasible.

In Theorem [T} our proof reduces the problem to controlling the same central quantity, namely the
squared error ||F' — F*||5, which corresponds to t* = ||ji — p||2 in their notation. The key scale
parameter in our analysis, denoted 7, balances stochastic variability and approximation bias, serving
arole analogous to ¢, in their framework. We then show that | F — F*||2 concentrates sharply around
n? using a peeling-style argument similar in spirit to theirs.

However, because of the heteroskedastic and non-Gaussian nature of our noise, the technical realiza-
tion of this step is entirely different. Our analysis relies on

1. a sub-Gaussian concentration inequality for Lipschitz and separately convex functions, used
to control the local empirical process supgee . ,, () e(t)" (0 — F*(t)); and

2. astar-shaped self-normalization argument that extends this local control uniformly over the
full constraint set K;.

In summary, both approaches employ a peeling argument to control the projection error, but they
differ fundamentally in probabilistic structure and analytical tools. Theorem A.1 of Guntuboyina et al.
[23]] exploits Gaussian concavity and symmetry, whereas our proof adapts non-Euclidean empirical
process methods to accommodate sub-Gaussian, heteroskedastic noise within the CRPS-based
framework of distributional regression. The novelty of our result lies in extending the high-probability
convex-projection analysis to this more general and statistically heterogeneous setting.

Therefore, Theorem|I]can be viewed as a CRPS-based analogue of Theorem A.1 in Guntuboyina et al.
[23], adapted to the non-Gaussian, heteroscedastic, and distributional-regression setting considered
in this paper.
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Table 2: Comparison of convergence rates for isotonic, trend filtering, and dense ReLLU network
methods in distributional regression. The “Old” rows refer to existing methods in the literature, while
“Our” rows describe the corresponding results introduced in this work.
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F Additional Numerical Results

This appendix provides an extensive evaluation of the proposed method, UnifDR, including additional
results and analyses omitted from Sections dand [5] These supplementary results further demonstrate
the effectiveness and robustness of our methods across diverse settings. The appendix presents:

* Additional real data applications to illustrate the practical utility of the proposed methods
(Appendix [FI).

» Comprehensive evaluations on alternative evaluation sets (A; and A3) supplementing the
results for Ay in Section E[ This section also includes missing evaluation results for A,
related to the CRPS metric (Appendix [F2).
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* Performance results based on the Maximum Squared Difference (MSD) metric across all
scenarios, which were not included in Section [4] (Appendix [F3).

F.1 Additional Real Data Applications

This appendix presents two additional real-world data applications to further demonstrate the effective-
ness of the proposed methods. These examples span different domains, illustrating the versatility and
robustness of our approach. Each case study includes a description of the dataset, the experimental
setup, and a comparative performance analysis.

For each dataset, the data is randomly divided into a training subset (75%) and a testing (25%) subset.
Model performance is evaluated using the empirical cumulative distribution function (CDF), w;(t),
computed over 100 evenly spaced points in a predefined set A. The performance of each competitor
is assessed using the Continuous Ranked Probability Score (CRPS) and the Maximum Squared
Difference (MSD) metrics, defined as follows:

-~ 2

CRPS — \Tesq ZT;M %(F —wi(®)
and )
MSD = ieR |Test| |Test| ;t(F )) '

The proposed UnifDR method is implemented in two variants: Trend Filtering, which captures
smooth variations through total variation regularization, and Dense ReLU Networks, which leverages
a deep neural network to incorporate covariate information.

F.1.1 Chicago Crime Data with Dense ReLLU Networks Approach

We revisit the 2015 Chicago crime dataset, previously analyzed in the main text using the Trend
Filtering approach. We remember that the dataset contains reported crimes in Chicago throughout
2015. As before, the spatial domain is discretized into a 100 x 100 grid, where each grid cell
represents an aggregated crime count. The response variable remains the log-transformed total crime
counts per grid cell, and grid cells with zero observed crimes are excluded, yielding a final dataset of
3,844 grid cells.

Unlike the Trend Filtering approach which assumes a smooth index trend, the Dense ReLLU network
approach leverages covariate information for modeling crime intensity. The following covariates
are included. Latitude and Longitude Bins, encapsulating spatial crime patterns. Day of the Week,
represented using dummy variables for each weekday (Monday through Sunday). Beat, a categorical
identifier for Chicago’s policing districts. Arrest Indicator, a binary variable denoting whether an
arrest was made (1) or not (0).

The dataset is randomly split into 100 train (75%) — test (25%) partitions, with evaluation conducted
at evenly spaced points A ranging from -1 to 6. The Dense ReLLU Networks approach employs a
fully connected feedforward architecture with five hidden layers of 64 neurons each, using ReLLU
activations. The model is trained using the Adam optimizer with a learning rate of 0.001 over 1,000
epochs, minimizing the Binary Cross-Entropy (BCE) loss function for improved CDF estimation.

Performance is assessed using the Continuous Ranked Probability Score (CRPS) and Maximum

Squared Difference (MSD) metrics, comparing estimated CDFs F;(¢) against empirical indicators
w;(t), where t € A. The methods CART, MARS, RF, DRF, and EnG serve as competitors for
the Dense ReLU Networks approach. Table [3] summarizes the results demonstrating the superior
performance of the Dense ReLLU network relative to classical nonparametric regression methods.

Additionally, Figurevisualizes ﬁi (t) for t = 3 across test grid cells for all competitors.

F.1.2 California Housing Prices

We evaluate the effectiveness of the proposed UnifDR method by analyzing the 1990 Califor-
nia housing dataset, which contains demographic and economic information from various neigh-
borhoods across California. Originally introduced in Pace and Barry [45], the dataset com-
prises 20,640 observations and is publicly available via the Carnegie Mellon StatLib reposi-
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Predictions of the CDF of Chicago Crime Data (Dense ReLU Networks)
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Figure 3: F;(t) for t = 3 and all i € Test, for all competitors.
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Figure 4: ﬁ,(t) fort = 3 and all 7 € Test, for all competitors for the example in Section

tory at http://1ib.stat.cmu.edu/datasets/, as well as the https://www.dcc.fc.up.pt/
"ltorgo/Regression/cal_housing.html|portal.

Following the approach of Ye and Padilla [66], the geographic area is discretized into a 200 x 200
spatial grid based on latitude and longitude coordinates. The response variable is derived by applying
a logarithmic transformation to the median house values within each grid cell to enhance numerical
stability and interpretability. Grid cells lacking valid data are excluded from further analysis, resulting
in a final sample size of 3,165 grid cells.

In the Trend Filtering approach no covariates are included. Instead, the spatial grid is treated as an or-
dered sequence, allowing total variation regularization to capture smooth spatial variations in housing
prices. In contrast, the Dense ReLU Networks method integrates spatial features such as latitude and
longitude with socioeconomic attributes like median_income and average_occupancy, which is
computed as population divided by households. This approach enables the model to capture complex
relationships influencing housing prices. The Dense ReLLU neural network consists of three hidden
layers, each containing 30 neurons followed by a ReLU activation function.

Evaluations are performed over 100 evenly spaced points within the range A = [5, 15].
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Table 3: Evaluation metrics for UnifDR (Dense ReLLU networks) and its competitors on the Chicago

crime dataset.

METHOD CRPS (MEAN + STD) MSD (MEAN =+ STD)
UNIEDR 0.0811+ 0.0018 0.2133 + 0.0031
CART 0.0951 4+ 0.0017 0.2622 4+ 0.0071
DRF 0.0906 4+ 0.0018 0.2477 + 0.0042
ENG 0.1014 4+ 0.0028 0.2652 4+ 0.0045
MARS 0.0974 4+ 0.0019 0.2732 4+ 0.0047
RF 0.0934 4+ 0.0020 0.2581 4+ 0.0031

Table 4: Evaluation metrics for UnifDR (Trend Filtering) and its competitor AddSS on the California

housing dataset.

METHOD CRPS (MEAN + STD) MSD (MEAN =+ STD)
UNIFDR 0.0343- 0.0013 0.2505 =+ 0.0097
ADDSS 0.0357 & 0.0028 0.2652 + 0.0407

Figure [5| presents the estimated cumulative distribution functions F;(t) at t = 12, comparing the
performance of UnifDR (Trend Filtering) against its competitor, AddSS. Similarly, Figure[f]illustrates
the estimated cumulative distribution functions at the same evaluation point, this time comparing
UnifDR (Dense ReLU networks) against CART, MARS, RF, DRF, and EnG. The corresponding
evaluation metrics, summarized in Tables[d]and 5] demonstrate that UnifDR consistently outperforms
all competitors in terms of both CRPS and MSD.

Predictions of the CDF of California Housing Prices (Trend Filtering)
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Figure 5: Estimated distribution function ﬁi (t) att = 12 for all grid cells in the test set, comparing
UnifDR (Trend Filtering) and the AddSS competitor.

F.1.3 Ozone Data Analysis

We further evaluate the effectiveness of the proposed UnifDR method by analyzing ozone concentra-
tion data collected from the Environmental Protection Agency (EPA) Regional dataset. This dataset
consists of daily ozone measurements collected across various monitoring stations in different regions
of the United States for the year 2024. The dataset includes measurements of ozone concentration
along with associated variables such as Air Quality Index (AQI), wind speed, temperature, latitude,
and longitude. The available variables include: State Code, County Code, Site Number, Latitude,
Longitude, Date (Year, Month, Day), Ozone concentration (in parts per million), AQI, Wind Speed
(in miles per hour), Temperature (in Fahrenheit), Observation Percentage (percentage of valid ob-
servations for a given day), First Maximum Value (highest ozone level recorded in a day), First
Maximum Hour (time at which the maximum value was recorded), and Observation Count (number
of valid ozone measurements per day). The data are publicly accessible via the EPA’s AirData portal
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Predictions of the CDF of California Housing Prices (Dense ReLU Networks)
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Figure 6: F}(t) for t = 12 and all i € Test, for all competitors.

Table 5: Evaluation metrics for UnifDR (Dense ReLU networks) and its competitors on the California
housing price dataset.

METHOD CRPS (MEAN + STD) MSD (MEAN =+ STD)
UNIEDR 0.0209-+ 0.00055 0.1450 + 0.0047
CART 0.0258 4+ 0.00053 0.1984 4+ 0.0067
DRF 0.0229 4+ 0.00051 0.1755 4+ 0.0045
ENG 0.0244 4+ 0.00059 0.1924 4+ 0.0057
MARS 0.0233 + 0.00057 0.1798 4+ 0.0099
RF 0.0221 4+ 0.00046 0.1650 4+ 0.0047

athttps://ags.epa.gov/agsweb/airdata/download_files.html, where historical records
spanning multiple years can be downloaded.

Following the approach of previous studies, the geographic region of interest is discretized based
on latitude and longitude coordinates, specifically within the range 30° N to 50° N and —153°W to
—70°W. In the Trend Filtering setup, each monitoring site within these bounds is uniquely identified
using a lexicographic ordering of its latitude and longitude values. The response variable y; for each
site ¢ is defined as the mean of the daily recorded ozone levels, ensuring robustness against short-term
fluctuations and missing data. This approach results in a total of 1,189 unique monitoring sites, which
serve as the basis for spatial trend estimation.

In contrast, the Dense ReLU network method method allows for a flexible spatial fit by incorporating
spatial location data as covariates, capturing complex relationships that influence ozone concentration.
Specifically, the model uses latitude, longitude, mean AQI, mean percentage of valid observations,
mean 1st maximum ozone value, mean 1st maximum hour, and mean observation count as input
features. The Dense ReLLU network consists of two hidden layers, each containing 100 neurons
followed by a ReLU activation function.

Evaluations are performed over 100 evenly spaced points within the range A = [0, 1]. Figures and

present the estimated cumulative distribution functions F;(t) at t = 0.03, comparing the performance
of UnifDR using Trend Filtering and Dense ReLU network against their competitors. Tables [6]and
summarize the evaluation metrics, demonstrating that UnifDR achieves superior performance in
terms of both CRPS and MSD.
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Predictions for Ozone Concentration CDF in the USA (Trend Filtering)
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Figure 7: Estimated distribution function F\Z(t) for all monitoring sites in the test set, comparing
UnifDR (Trend Filtering) and the AddSS competitor.

Table 6: Evaluation metrics for UnifDR (Trend Filtering) and its competitor AddSS on the ozone
concentration dataset.

METHOD CRPS (MEAN £+ STD) MSD (MEAN + STD)
UNIEDR 0.0027+ 0.0002 0.1581 + 0.0124
ADDSS 0.0035 4 0.0002 0.1987 + 0.0127

Predictions for Ozone Concentration CDF in the USA (Dense ReLU Networks)
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Figure 8: ﬁ(t) for ¢ = 0.03 and all 7 € Test, for all competitors.

Table 7: Evaluation metrics for UnifDR (Dense ReLU networks) and its competitors on the Ozone
dataset.

METHOD CRPS (MEAN + STD) MSD (MEAN =+ STD)
UNIFDR 0.0016+ 0.00021 0.0959 + 0.0136
CART 0.0026 4+ 0.00028 0.1529 4+ 0.0209
DRF 0.0031 4+ 0.00016 0.1593 + 0.0118
ENG 0.0022 4+ 0.00099 0.1097 4+ 0.0603
MARS 0.0022 4+ 0.00039 0.1288 +0.0376
RF 0.0021 4+ 0.00023 0.1012 + 0.0157
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CRPS results for Scenarios S1 and S2 in A; CRPS results for Scenarios S1 and S2 in A,
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Figure 9: Box plots for CRPS results in Scenarios S1 and S2. The top row shows results for A; (left)
and A, (right), while the bottom row displays results for Ag.

F.2 CRPS results on evaluation sets A, and A3, and missing results for S1, S1 and S6 in A,

Section [d] presented results for the evaluation set A, using the Continuous Ranked Probability Score
(CRPS). However the results for scenarios S1, S2 and S6 were omitted due to space constraints.
Moreover, it is worth noting that the evaluation set A5 represents a balanced range of values centered
around zero. To provide a more comprehensive analysis, this appendix includes the omitted CRPS
results for Ay, and the CRPS results for the alternative evaluation sets A; and As, which emphasize
distinct distributional regions.

The new evaluation sets are defined as follows:

* A;: 100 points evenly spaced between —1 and 0.4, focusing on the lower and middle ranges
of the distribution.

* A3: 100 points evenly spaced between 0.8 and 10, capturing the upper tail of the distribution.

This extended analysis provides deeper insights into the robustness of the proposed methods in
varying distributional regimes, including regions with lower densities and heavier tails. As described
in Section ] for each evaluation set (A1, Ay and A3), the CRPS is computed and averaged over 100
Monte Carlo repetitions. Figures 0] through [T4] summarize the CRPS results across different scenarios
and evaluation regions. Specifically, Figureﬂg correspond to Scenarios S1 and S2 in A1, As, and As.
Figure [I0] presents Scenarios S3 and S4 in A; and A3. Figure[TI|focuses on Scenario S5 in A; and
As. Figures and [T4] consider Scenario S6 in A1, Ag, and A3, respectively.

Across all scenarios, UnifDR is implemented using different estimation methods: the isotonic
estimator (Section[3.2.T) for S1 and S2, the trend filtering estimator (Section [3.2.2)) for S3 and S4,
and the Dense ReLLU Networks method (Section for S5 and S6. Our proposed framework
UnifDR outperforms competing approaches across all scenarios, evaluation regions, and sample sizes,
regardless of the specific estimation method employed. These findings highlight the versatility and
robustness of UnifDR in adapting to diverse structural patterns within the data. Overall, performance
trends remain consistent across Aq, A, and A3, with minor variations due to differences in the
underlying data distributions. This extended analysis further reinforces the effectiveness of the
proposed methods under varying evaluation conditions.
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CRPS results for Scenarios S3 and S4 in A; CRPS results for Scenarios S3 and S4 in A3
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Figure 10: Box plots for simulation results of S3-S4 for the CRPS metric. The row shows results for
A1 (left) and A, (right).
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Figure 11: Box plots for simulation results of S5 for the CRPS metric. The row shows results for A;
(left) and A5 (right).
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Figure 12: Box plots for simulation results of S6 for the CRPS metric for the set A;. The top row
shows results for the all the competitors (left) and, competitors with median below 0.01 (right).
The bottom row displays results for competitors with median below 0.0025 (left), and best two
competitors (right).
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CRPS results for Scenario S6 in A, CRPS results for Scenario S6 in A,
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Figure 13: Box plots for CRPS results for S6 in As. The top row shows results for the all the
competitors (left) and, competitors with median below 0.02 (right). The bottom row displays results
for competitors with median below 0.01 (left), and best two competitors (right).
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Figure 14: Box plots for simulation results of S6 for the CRPS metric using evaluation set As. The
left plot corresponds to all competitors performance, while the right plot corresponds to best two
competitors.

F.3 Additional Results for Maximum Squared Difference (MSD) Metric

This appendix extends the results presented in Section[dand Appendix [F2]by providing evaluations
of the Maximum Squared Difference (MSD) metric across all scenarios for the evaluation sets A1,
Ao, and A3. The MSD metric measures the worst-case discrepancy between the estimated and true
cumulative distribution functions (CDFs), offering a stringent assessment of model accuracy and
robustness.

Figure[T3]displays box plots of the MSD results for Scenarios S1 and S2 across all evaluation sets.
As outlined in Section[d] UnifDR employs isotonic regression for these scenarios, which lacks direct
competitors. The results indicate a decreasing trend in MSD values as the sample size increases,
demonstrating the consistency and improved accuracy of isotonic regression with larger datasets.
Moreover, variations in MSD across A1, As, and Ag reflect natural differences in the underlying data
distributions.

Figure|16| presents MSD results for Scenarios S3 and S4, where UnifDR employs trend filtering and
is compared against the additive smoothing splines (AddSS) method. Across all evaluation sets and
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Figure 15: Box plots for MSD results in Scenarios S1 and S2. The top row shows results for A (left)
and A, (right), while the bottom row displays results for Ag.

sample sizes, UnifDR consistently outperforms AddSS, demonstrating its ability to adapt to complex
structural variations. Notably, trend filtering exhibits particularly strong performance in regions with
sparse or heavy-tailed data distributions.

Figures|17|to 20| summarize MSD results for Scenarios S5 and S6, where UnifDR is implemented
via Dense ReLU Networks (Section [3.3.2). The results further confirm the superiority of UnifDR
over all competing methods, maintaining its advantage across different sample sizes and evaluation
sets. As observed with the CRPS metric, UnifDR effectively captures diverse structural patterns and
remains robust in challenging scenarios involving data sparsity and heavy tails.

The inclusion of MSD results provides a comprehensive performance evaluation of UnifDR, reinforc-
ing its effectiveness and reliability across various experimental conditions.
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Figure 16: Box plots for MSD in S3 and S4. The top row shows results for A; (left) and A5 (right),
while the bottom row displays results for As.

MSD results for Scenario S5 in A; MSD results for Scenario S5 in A,
C°mpce;i;?_" ° 0.150 Competitors  ©
0.08 - UnifDR : Sf‘\iF:;R
. DRF
b 0.125 ., ORF
0.06 : it 0.100 : . . EnG
o s . : o : . m MARS
£0.04 : . : £o.075 : | RF
yC I . 3 é . 0.050 2 !
i %' '%*ﬂ t % oo, % .%{' | &
% < = N $ é = é £ o ® é
0.00 0.000
n=400 n=800 n=1600 n=400 n=800 n=1600
Sample Size Sample Size
) MSD results for Scenario S5 in A3
0.150 . Competitors
: CART
0.125 : UnifbR
. DRF
0.100 . . EnG
a s MARS
n0.075 . - : RF
s Do % :
0.050 : ; . %
0.025 3 % % : & & & +
= =
< <
0.000!
n=400 n=800 n=1600

Sample Size

Figure 17: Box plots for MSD in S5. The top row shows results for A; (left) and A5 (right), while
the bottom row displays results for As.
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Figure 18: Box plots for MSD in S6 using evaluation set A;. The left plot corresponds to all
competitors performance, while the right plot corresponds to best two competitors.

MSD results for Scenario S6 in A; MSD results for Scenario S6 in A,
° i o C tite
o S| 0020
0.125 UnifbR u DRF
DRF
0.100 . EnG 0.015
[a) . MARS | N0
20.075 RF £0.010 :
0.050 ) : .
. . 0.005 .
0.025{ i B & é : )
o000 T4 L. EE__ % i &L &
n=400 n=800 n=1600 0.000 n=400 n=800 n=1600
Sample Size Sample Size

Figure 19: Box plots for MSD in S6 using evaluation set As. The left plot corresponds to all
competitors performance, while the right plot corresponds to best two competitors.
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Figure 20: Box plots for MSD in S6 using evaluation set A3. The left plot corresponds to all
competitors performance, while the right plot corresponds to best two competitors.
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G Proofs

G.1 Proof of Lemmal(ll

Proof. Letyy < y2) < ... < y(n) the order statistics of y. Notice that
L(F) := ) CRPS(F;,1{y: <})

- / (R — 1y < )P
n+1l:1

- Z/A > (Fit) = Hys < t})%dt

J i=1

where Ay = (—00,y(1)), A2 = [Y1),¥2))s -+ An = [Yn-1)Y(n))s Ant1 = [Y(n), 00). However,
forevery j € {1,...,n+ 1} and ¢,t’ € A; we have that

i T (Fi(t) = Yy, <t})? = mi R — 1y < V)2,
plin D (1) = My <8)° = wnin 55, (F(1) — Wy <t

Hence, letting ¢; be an element of A;, we obtain that minimizing L (F") with the constraints F'(t) € K
for all ¢ is equivalent to solving the independent problems

i Fi(t;) — Hyi < t;})2,
i i=1( (t;) — Yy < t;})

and the claim follows. O

G.2 Proof of Theorem[Il

Theorem 5. [Theorem A.1 in [23]]. There exists a universal positive constant C > 0 such that for
every t,
Cmax{n?, max F(t)(1— F*(t))}

“E (Z (B F;‘(t))g) < S ,

i=1
for every n > 1 satisfying

2
sup (T O—F )| <L (26)
0EK, :[|0—F* (1)||<n 2

E

where €(t) = w(t) — F*(¢t).
In the followig we first present the proof of Theorem 5]

Proof. Lett € R. Define 02 = max F;(¢t)(1 — F7(t)). We consider the following two cases

i=1,...,n

separately based on the value of o

1. c =0,
2. 0 #0.
Casel: 0 = 0.

By definition, 0% = max;—1,__, F;(¢t)(1 — F;(t)) = 0. This implies that for all i = 1,...,n,
Fr(t)(1 — Fr(t)) = 0. Since F;*(t)(1 — F}(t)) = 0, it follows that either F*(¢) = 0 or F;* () =1
for each i. Now observe that for each i € {1,...,n}, either w;(¢) = 0 or w;(t) = 1. Given that
E(w;(t)) = F7(t), it follows that w;(t) = F;*(t). Therefore, by the definition of F in Equation

we have F' = F*. In this case, it holds that

E () - F* @) =0,
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and the result is obtained trivially.
Case 2: 0 # 0.

Denote by © g« (1) (1) := {0 — F*(t) € Op-(p) = |0 — F*(t)[|2 < n}, where Op- ) = {0 — F*(t) :
6 € K.}. Notice that the function L : R” — R given by

€—  sup |6T(0—F*(t))|
0€O px (1) (1)

is n-Lipschitz. Moreover observe that L is separately convex. In fact, for any k € {1,...n} we have
that

(€1, ...,ek,hteg) +(1- t)eliQ),EkJrl, ey €n)
=(te, ...,tek_l,te,gl),tﬁkH, s tep)
(1= t)er, oy (1= D1, (1= 1D (1= )erra, oors (1 — t)en)
=teg,1 + (1 — t)ep, 2.
Therefore,
L [(61, ey ek_l,te,(cl) +(1-— t)e,(f), €kt1s e en)}
= sup  |(tepa + (1 —t)er2) " (0 — F*(1))]

€O px 4y (1)

= sup  |t(er1) (0= F* (1) + (1 —t)(ex2) " (0 — F*(1))|
€O px (1) (1)

< sup [t ()T (O = FF@)| + (1= ) |(er2) (0 — F*(1)]],
€O g (4y(n)

where the inequality is followed by triangle inequality. Using the fact that the supremum of the sum
is bounded by the sum of the supremums, it follows that

L |:(61, vy €l 1,t€(1) +(1- t)e,(f), [ en)}

<t sup ’(Gk,l) (0 —F*(t)|+(1—t) sup ‘(ek,Q)T(G — F*(t))]
€O px(4y(n) 0€O g+ (4)(n)

=tL {(617 ~~-7€k71,€§f1)76k+17 ---75n)] + (1 - t)L [(61, ~~~,€k—17€;(€2)»€k+1,6n)} .

Thus, L is separately convex. Notice that ¢;(t) = (1{y; < t} — F(t)) satisfies |e(¢)| < 1. Hence,
by Theorem 3.4 in Wainwright [64], for any § > 0

sup ’e(t)T(H - F*(t))| <E ( sup ’e(t)T(H - F*(t))|> + ond (27)

0€O px 4y (1) 0€O px 4y (1)
with probability at least 1 — e~9°7"/16_ Next, we have that
0 — F*(t ~
()T (0 — F* ()] <max{ /= F"Oll2 ; Wll2 137, (28)
for any 6 € K,, where L(n) = SUDYEO 1o 4 () |e TO—F*(t ‘ This conclusion is derived based

on the subsequent line of reasoning. If € K and |6 —F* (¢ )Hg <, then 0—F*(t) € Op-(4)(n) and
inconsequence |¢(t)T (0 — F*(t))| < L(n), by definition of L(n). If 6 € K; and || — F*(t)||2 > .

then M n € Op-(1)(n) because Op- (4 is star-shaped, given that K is convex. Also

0—F*(t
| ro=retagpn|, = . Hence.
6 — F*(t) -
(t) <n)‘ < Z(n).
0 — F*(1)]
which implies,
10— F*(t)|l2 +

le(t) (0 — F*(1))] < - L(n),

Ui
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for any 6 € K,,. Then we observe that by the basic inequality
[lw(t) = FO)I3 <[lw(t) = F*(@)]f3.
This implies that

SIF() — F* )] <e(t) (F(1) — F* (1))

Given that F (t) € K, it follows from inequality that
— @)

: 2 137 ),

L 1F(t)
SIIF @) = Fr(®)]I3 <max{
and by inequality (27),

;|ﬁ<t>—F*<t>||%Smax{W,1}(E( sup \e<t>T<e—F*<t>>|>+ana>,

0€O px (1) (n)

for any & > 0, with probability at least 1 — e~"%"/16_ Thus, for any § > 0

||ﬁ<t>F*<t>||QSmax{2G§;’””, 2G<n,5>},

with probability at least 1 — =7 5°/16 where G(1,§) = E (supeeewm(n) le(t)T (6 — F*(t))’) +
ond. Next, by inequality (26)),

2 242
o { 28000 /3G 57| < { 2T g e {n+ 200, /7l 209} < -+ 200
In consequence for any 6 > 0,
IF(t) = F*(8)]|2 <n + 205, (29)

with probability at least 1 — e~ % /16_ Finally, we observe that

E(IF(t) — F*(0)3) —/ONP (IF@) = F* 1)1 > 5) ds

:/O("HU)ZP(Hﬁ(t)—F*(tn; > 5) ds+/(

n+20)?

oo

P(IE@) - F* (] > s) ds
=0 + Is.
To analyze the term [; we observe that P ( IE(t) — F*(1)]|2 > s) < 1, and therefore
I <(n+20)*. (30)
For the term I, we perform a change of variables s = () + 20)? to obtain
I < /100 P (||ﬁ(t) —FOI2> (n+ 205)2) 4o (n + 206)ds,

and by inequality (29),

I < 4o /100 e~ T (1 + 206)ds. 31)
Moreover,
2

el 0262 el 5262 el 52
40/ e 16 (n+20d)dd :4770/ e 16 do + 802/ e~ 16 0dd
1 1 1

o V7o erfe(o) P
o

<ony/merfe(o) +de .
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where erfc(z) = = e~%"d5. From inequality (30) (31), and the fact that 7 > 1, we conclude
N
that

E(|F(t) - F*()]3) <C1(n* + 0%),
for an absolute positive constant C. Finally observe that,
n® +o0® <2max (n°,0%)

Taking C' = 2C; the result is achieved. ]

Now we are ready to start the proof of Theorem [I]

Proof. Notice that for all , it holds that F}(t) = F*(t) = 0 forall t < inf{a : a € Q} and
Fi(t) = F*(t) = 1forallt > sup{a : a € Q}. Hence,

1 & ~
E (n > CRPS(F,, F; ))

=1

Il Il
&= &=
R Y
Sl= 3=
M=10=
@\J \8
) —
= o
7=
=
X o
= *
= =
& o
SN— &
~_—

1 3 L (8) — F*(t))2
/ E(niDFz(t) E(t)))dt

=1
1 2
Cmax{l,n }dt

IN

Q n,
C 1
w7},
n Q
where the inequality follows from Theorem 5] by noticing that (6)) and Lemma[]imply (26). O

G.3  Proof of Corollary i]

Proof. Throughout we use the notation from Definitions [5]and [6]
First, notice that F}(t) = Fy(t) = 0 forall t < y(1) and for all 7. Similarly, Fy(t) = Fy(t) = 1 forall
t >y and for all 7. Therefore,

/y(l)(f‘i'*‘(t),Fi*(t)f +/00 (ﬁ;‘(t)*Fi*(t))Z _ /y(l)(ﬁi(t)*Fi*(t))z Jr/oo (ﬁl(t)*Fl*(t))Q

—oo0 Y(n) —o0 Y(n)
(32)

Next, define

Gilt) = EF((1 =)y — yay) +yay)  for t € [0,1),
e 0 otherwise.

Clearly, G;(0) = F;f (y(n)) and G;(1) = F;" (y(1)). Moreover, recalling that for ¢ € [y(1y, y(n)), We
can write

n—1
Ff(t) = Zaivﬂ'k1[y<jk>ay<jk+1>)(t)’
k=1
then for ¢ € [0, 1), it holds that
n—1
Gi(t) == > aiji iy, 1) () (33)
k=1
where
y =1 - Yo Y
Ym) — Ya)

forl € {1,...,n}.
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Furthermore, let

GE(t) = FA((L=8)(ym) — ) +ya) ifte0,1),
Z . 0 otherwise.

Now, we observe that
1
| (G- Giwpar
0
1
:/0 (FH (A =ty —yay) +ya)) — F(Q =) (ym) — ya)) + ya)))dt
1 Yn)
- - / (Ft(s) — Ff(s))%ds (34)
Yn) —YQ) Jyq,

by making the change of variable s = (1 —t)(y(m) — 1)) + ya)-
Furthermore, by Lemma@

/ D(GE) (1)t = / D@ )P
0 0
[e’s) . ) B 1 ; ) _ 1 Y(n) . . 9 .
—/O G (D) ‘“‘/o G2 ()Pt —/ |7 (s)[ds, (35)

Yn) —Y) Sy,
and
1 N o] N 0
[ Ip@ra = [ D@ = [T iGoPa
0 0 0
LN 1 Yn)
= [1@opa = [ Er ()P 36)
0 Yn) —YQ) Jyq,
Also, by Lemmal[]

- / D@ (t) - D(GE)(t)dt = — / D@0 - DG W)t

< - /O Gi(t) - G (t)dt = — /0 Gi(t) - Gr(t)dt (37)

which implies

~

1 n
- [ D@y v < —— [ Fr)- e a8)
0 Yn) = Y1) Jyq,

Combining (33), (36) and (37), we obtain that

/ (D@ — D@ < — / M ER ) - FrRd (9)
0 Ym) —Y) Jyq

However, since G is decreasing and continuous in [0, 1), then by Lemmalf} it holds that D(G})(t) =
G?(t) for all t > 0. Thus, from (39),

1 ~ 1 Ym)
[ 0@ - ara < ——— [ EQ-FOP 6o
0 Yen) = Y@) Jya,
Now, by Lemma5|and (33)), we obtain that
n—1
DG)(t) == > i g Ly (B) (41)
I=1
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where z
mp = Z—y(jkﬂ) — y(j’“), l=1,...,n—1,
1 Y T Y
and with mqy = 0.

With (#1) in hand, we let H,(t) = D(G)(1 = (t — y(1))/ (Ym) — y1y)) forall € (y(1), y(n)- Thus,

can write )
= Zai,jl71[0l71,171)(t)

=1
forall t € (y(1),Y(n)), Where v and v; = y(,,) — Zzzl(y(jkﬂ) = Yy foralll =1,...,n— 1.
Also, D(éz)(t) = H((1 =t)(Ym) — ya)) +y1))- Hence, from 1@) we obtain that

Y(n) LN )
[ -Fera = [ 0@ - 6w
y(l Y(1) 0

1 Y
_ / (FH(t) - Fr(t)%dt
Yn) — Y1) Sy,

and as a result,

[ - ropa = [aw-ropae < [ E - roRa. @

&5 @) v
since H,(t) = F;(t) forall t € (V) Y(n))-
Combining (32) and (@2), we obtain,

/ (Fy(t) — F7(6)%dt < / (FH(t) — Fr(t)%dt < / (Fi(t) — F7 (1)t
R R

R
The claim then follows. O

G.4 Proof of Theorem 2l

Proof. First, by the basic inequality we have that

*Z F; (1) < Z (F7 (1) = Lpycy) (F () — Fi(1))

forall F € {kF* + (1 — k)F : & € [0,1]}. Hence, for &1, ..., &, are independent Rademacher
random variables, we have that

2 n
sup EFr( > 2 < P|sup sup F(t) — 1y, 0; — Fr(t)) > n?
( Z( 7(0) ) SO )0 ()
- P<S“p sup D (B () = Lgyesi) (0 = F (1)) >n2)
teR 0K : [|0—F*(t)|<n =}
1 n
< —SElsup sup F* 1 0; — Fr(t )
n? (teR 0EK : [|0—F*(t)]|<n ;( ) = L) ®))
1 n
< —E[sup sup Fr(t) — 1gy, 01-)
Us (teR beK—K: [0]<n ;( ) = lgsny)
<

2
—E (Sup sup Zle{qu]ﬂ )

n teER 0eK—K:||0||<n ;=

2
772]E<IE(sup sup Zle{y <10 |y)>

teR 0K —K: ||0l|<n ‘=3

2
= 2E<E< max 2@1{%“}9

n te{y1ynt ek - K \|9|\<17 i=1

IN

')
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where the second inequality follows from Markov’s inequality, the fourth by simmetrization. Next,
notice that for a fixed ¢ and y, the random variables {gzl{qu}} *_, are subGaussian(1). Hence, by
Lemmal[3]

n/4
W) < o NG 1) 05,01 e
0
+ Cn/logn,

n
]E( max sup Z&l{yigt}ei

te{yr,yn}t 9eK—K: ||0|<n ;3

for some constant C > 0. The claim then follows.

G.5 Proof of Corollary2|

Proof. Following the proof of Theorem 2.2 in Chatterjee [13]], we obtain that for any positive integer
l it holds, for g ~ N (0, I,), that

E

E sup 9" (60— F*(t))
0K, : ||0—F~*(t)||<n

sup 9" (60— F*(1))
beK : IIG—F*(t)H<n

Cy |:2 2l n1/4 + =

(43)

IN

211

for a positive constant Cy. Next, let L the constant in (6). We now choose [ large enough such that

Curp? < U—Q
=1 — 2[,
Furthermore, for this choice of [, we can choose 7 as 17 =< n'/% such that
2
C12y/2mnt/* < L
LEVEIT = 9L
Thus, for a choice of 7 satisfying 1 =< n'/%, we obtain
T n?
supE sup g O—F'(t)| < —,
teR  0eK:|l0—F* (1) <n L

and so @) follows from Theorem |1| Furthermore, the corresponding conclusion for {Fv(t)}teR
follows from Corollary [I]

Finally, we notice that for some positive constant Cs

n/4
/0 Vg N(e, (K N [a,b] — K 1 [a,b]) N B, (0), || - [)de < \/logN (e/2, (K N [a,] 1 B, (0), | - |)de
On/4
< / \/logNe/Q (K 1 [a,8] 1 By (0), [ - [[)de
n/4 202 —a
St I

< 205(b — a)n 1/4 1/2

where the third inequality follows from Lemma 4.20 in Chatterjee [13]]. Therefore, the claim in (I0)
follows form Theorem 2| by taking 7 satisfying < (b — a)'/?n'/¢ + \/logn. O
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G.6 Proof of Theorem 4|

Proof. First we observe that by the basic inequality, for all £ € R,
1F() — F*@)]?

2
where a(t) = w(t) — F*(t) forallt € Rand i € {1,...,n}, and where the inequality holds for all

< a(t)"(F(t) = F*(t)) + Ai[peny (F*(1)) — pen,(F(t))] (44)

F(t) € A(t) == {sﬁ(t)+(1 — §)F*(t) : s €0, 1]} C R™.

Therefore, 2
pen,(F(t)) < pen,(F(t)) + W
< a(t) T (F(t) — F*(t)) + pen, (F*(t))

At
for all F'(t) € A(t) and ¢t € R. Hence, by the properties of pen,(-), we have that

pen, (F(t) — F*(t)) < peny(F(t)) + pen,(F*(t))

T I
< OEOFW) | g @5)
forall F'(t) € A(t) and t € R.
Now suppose that there exists F'(¢) € A(t) such that
IF(t) = F* @)l < »*
and pen, (F'(t)) > 5pen,(F*(t)). Then
pen, (F(t) — F*(t)) = pen,(F(t)) — pen,(F*(t))
> Apen,(F*(t)).
Hence, we let A (F*(1))
o penp(F*(t
> pen, () - o) <Y
Then we set -
F(t) :=sF(t) + (1 —s8)F*(t) € A(t).
As a result, _
[F*(t) = F@®)* < [F*(t) = FOII* <n*.
Also, _
pen, (F(t) — F*(t)) = pen,(sF(t) + (1= s)F"(t) = F*(t))
— pen(sF(t) — sF*(1))
= spen,(F(t) — F*(1))
= dpen,(F*(t)).
Therefore, _
dpen,(F*(t)) = pen, gF (t) — F*(t))
< a(t) (F(i)t_ F (t)) + 2pent(F*(t)),
where the inequality follows from (@5)). This implies that
2pen(F*(t)) < a(t)T(F(i) — F*(t)) (46)
Hence, we let
N
7 apen(F*(t))

Then from (@6) we obtain that

T <) (FW) - F ()
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It follows that the events

Q= U sup pen,(F(t)) > bpen,(F*(t))
ter | FOEAR): |[F()—F*(t)lI<n
and
0, = T * 772
g = {sup sup a(t) (F(t) - F*(t)) >
teR F(H)EA(t): | F(t)—F* (£)|<n, pen(F*(t)—F(t)) <dpen(F* (t)) 2

satisfy that 21 C . Hence, P(;) < P(Qs).

Next, we observe that if | F'(£)—F (t)|| > 7, then there exists F'(t) € A(t) such that | F(t)—F*(t)|| =
7. This implies, by (@4)), that

2

L < ) (F(t) - F* (1) + A [pen(F* (1)) — pen(F (1))
and so from our choice of \; )
T < alt)(F () - F(1): @7)

Thus, (47) holds for some F(t) € A(t) with | F(t) — F*(t)|| < provided that || F(t) — F*(t)|| > 7.
Therefore,

IN

P (swplF) - ()] > 0) < B ({suwlF) - POl > nfnos) + p)

< P|sup sup a(t) T (F(t) — F*(t))
ER FOEA®: | F* ()= F(O)][<n, pen(F(0)<spen(F* 1)

> Z) + P(Q)

< 2P<sup sup a(t)T(F(t) — F*(t))
teR g(t)EA(t) HIE@)—F= () ||<n, pen(F(t))<5pen(F*(t))
>
— 4
8 T *
< ZE(sw sup a(t) (P (1) ~ F* (1))
n teR F(t): |[F* ()= F(t)[|<n, pen(F(t))<5pen(F*(t))
8
< —SE{sup sup a(t)" o
n teR HeK :||0]|<n
(48)
Hence, for &1, . . ., &, independent Rademacher variables independent of y, we have that
P<sup|ﬁ(t)_p*(t)|| > n) < 16E<sup sup zn:ga o->
teR T 0?7 ek vek: jol<n S fwisty™

16 -
= ?E (]E <sup sup Z&]—{yigt}gi

teR 0eK :[|0]<n iy

1))

16 -
= —E <IE( max sup Zfil{yiﬁt}ei

2
n te{yr,un} 0K |0)1<n T

')

n/4
c / Vo N(e, K 01 B, (0), | - [[de
0

+ Cn+/logn,

where the first inequality follows from (@8) and symmetrization. However, by Lemma [3]
)

for some constant C' > 0. The claim then follows.

IN

IE< max sup Zgil{yigt}ei

te{yr,yn}t 9eK - |0<n S
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G.7 Proof of Corollary[3|

Proof. We start by noting that the set K := {0 eR™: TV (9) < V} is convex. In-
deed, let 0V, 02 ¢ K, and define 6(®) := af® + (1 — a)0?® for « € [0,1]. Then
TV (@) = pr—1 | DT || = n=t{[aDTMIW + (1 — a)DMP||| . By convexity of the
¢y-norm, TV (9(@)) < TV (9M) 4 (1 — )TV (92) < V. Hence, (*) € K, proving that
K is convex.

Let g ~ N (0, I,) and set

K = {9 cR" : TV (9) < V}. (49)
Hence,
E sup g'(0—-F*(t)| < E sup g (0 —F*(t))
0K : [|0—F*(t)||<n OEK : ||0—F~*(t)||<n

(50)

N

< G, [77 <‘/:V)1/2T + n\/@]

where C). > 0 is a constant the second inequality follows from Lemma B.1 in Guntuboyina et al.
[23].

Next, notice that

1/2T 2
nV
() < 2
n

holds if
(2LC,)2r/ CriDpl/(Uri2)y1/erl) < o

Also,
2

Crny/logn < ;LL

provided that 2LC,.v/log n < 7. Hence, taking

1 = max{(2LC, )"/ @rV /a2 /@) orc fAoen)
we obtain (T3).
The claim for F(t) follows from Corollary

To show (T4), we observe that by the proof of Theorem B.1 in Guntuboyina et al. [23], for 0 < n < n,
we have

n/4 n/4
| losNe (K~ k)0 B 01 e <2 [ \flogN(e/2 K 0 By(0). |- s
0 0

<é {Tl (@V)l/% . 77\/10@]

for some positive constant C,. Hence, || follows with the same argument as above.

G.8 Proof of Theorem[3

Proof. Notice that for any ¢t € R we have that
IF(t) — H(®)|I* < 2nB

forall F(t), H(t) € K. This implies that sup,cp |F(t)— G(t)]|2 < 2nB. To control the probability
of large deviations, we restrict attention to the event

{sup 1P - 1?2} 0 fsup I1F0) - Gl < 2o
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which confines the deviations to the range (n?,2nB]. We then partition this interval into dyadic
subintervals (291n2,2/n?] for j = 1,...,J, where .J is the smallest integer such that 27n? > 2nB.
Applying a union bound over these dyadic shells yields

P <sup|ﬁ(t) -G > n) - P (Sup IF(t) — G@)|? > n?, sup||F(t) — G@)|]*> < an)
teR teR teR
J
< 3o (swIF) - GIP > 277, sup [P0 - GO < 2
e teR teR
J n
< ZPGuﬂgg?Z(Fi(t) — 1<) (Gi(t) — Fi(t)) > 277 19%,
j=1 €R =1
sup | B(t) - Go)|P? < 2]'772)
teR
J n
< P( sup sup (Gi(t) = 1y < )(Gi(t) — Fi(t))
; (te]R F)EK, : |F(t)=G()|><29n? ; =t

where the first inequality follows from the union bound and the second from the basic inequality.
However,

]P’(sup sup _ Zn:(Gi(t) — Lgy<ty)(Gi(t) — Fi(t)) > 2J'—2772>
teER F(H)eK, : ||F(t)-G(t)|I2<29n? [
- ﬁﬂl ilelug F(t)eK,,:HF?tU)LI_)G(t)H2§2Mz2 i:1(Gi(t) - hyigt})(Gi(t) - Fi(m)
Ll IO S YL LR SR )
+ ﬁigng F(t)eK,: HF?B?G(t)HQQJ'nz ;(Gi(t) OGO = )

| : )

2]*2772 tER F(t)EK: : ||F(t)—G(t)]|2<29n2 122; {y:<t}

4
+ Lvn sup [|[G(t) = F* (1)l oo
teR

2j/27]

for some constant C' > 0, where the first inequality follows from Markov’s inequality, and the last
inequality holds by Cauchy—Schwarz inequality. Furthermore,

E ( sup sup O (F () = L) (Gilt) — Fz‘@)))
teR (e, |F(0)-G)|2<2in? 5
<E (sup sup D (Fr(t) - 1{yi<t})Fi(t)>
teER F(t)eK:— Ky :||F(t)]|2<29n? i—1

2j/2,,7/4 _
<c / log N (e, (K — K) 1 By (0), || - [)d= + C2//%n\/logn,
0
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where the last inequality follows as in the proof of Theorem 2] Therefore,

J 21/2p /4
~ 1 d
P (s lFO -Gl > ) < S oms[o [ e w =m0 5,01 i
teR = n 0
+C29/% logn} 223/2 supHG()—F*(t)HOo
27/
< 222] " RN = ) B0 e +
4C’\/logn J 4y/n J I
Z<21/2> + n Sup||G OOZ 21/2

j=1

21/2p /4
g e NE T ONB O] it

4Cs/logn 2-1/2 4y/n 2-1/2
G(t) — F*(¢ ———
0 1212 + ” igﬂg" (t) Ollce T—5=17

IN

and the claim follows noticing that

P (sup VE(@) — ()] > n+ vl F*(t) - G<t>|oo> <P (suﬂg |F() — G| > n) .

teR
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G.9 Proof of Corollary 4]

We begin by restating the corollary to be proved.
Corollary 8. Let F(t) be the estimator from (3) with the set Ky as in (l%‘or all t € R with F*(t)

not necessarily in K. Suppose that Assumption[I} described in Appendix|C] holds. Let
¢, = max n<2;fg/f> .
(p,M)eP

There exists positive constants ¢ and cy such that if

M
L=[cilogn] and v= [02 (pf?v%}épnmﬁm—‘ (€29)
or
L= ’761 max 1 2@ 1ogn—‘ and v =ca], (52)
(p,M)EP
then
2161111&) ( F(t ))2 =Op <log + ¢n log n) (53)

Then the proof of such result is provided.

Proof. Throughout the proof, we condition on the covariates x;’s and omit this dependence from
the notation for simplicity. We proceed by using Theorem [3] First, for a vector v € R", we let
|[v]]n := ||lv||/+/n. Then, by Theorem 3 in Kohler and Langer [37], it holds that

igﬁgllF*(t) —G()]oe < C1v/Pn- (54)

for some positive constant C'.

Furthermore, as in the proof of Theorem 2 in Zhang et al. [67], see also Lemma 19 in Kohler and
Langer [37], we have that

log N(e, F(L,v), || - [ln) S L*v*log(Lv)log(¢™")
for e € (0, 1). Therefore, for € € (0,24/n), we have that
log N(, F(L,v), || - ) £ L*v*log(Lv) log(2c ™ v/n).

Therefore, for ) < /n, with
. Fog(%/nﬂ

log 2
it holds that
J 27/2p/4
C 1 ! Cylogn  Cy/n .
=2 53 / Viog N(e, K (n), || - [[)de + + sup [|G(t) — F*(t)]
et 2 0 n N ter
J 29/2y /4
C 1 / ! C\/logn Cy/n
<= logN(e, K — K, || - |)de + sup ||G(t) — F*(t)]| o
n? ; 22 Jo v ( I N teR | 0
J 23/2 /4
C 1 K CCivlogn  Cv/no,
<S> om [ VIENGE K+ SONER .
" = 0 1 1
J 27/2p /4
1 1 i Viogn Vnon,
SuY s | VEENERE e + B
" = 0 1 1
J 21/2p /4
1 1 K Vviogn Vo,
< — - L2v2log(Lv)log(4e—1 d
anz:%z/o L2 log(Lv) log (4= /) de + ER 4
L ‘/1 2/ Vi NS
<2 og Z2J 2/ log(n) + 4e~1de + (:an + 1:7¢
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Moreover,

Ll/\/log (Lv) Z /
272

2J/2

\/log(n) +4e~lde + logn + "
n

n
2J/2

L 1 L \/1 v/
< ”V oe(Lv) ZQJ ; / (/o8 + 2 /2)de 4 VIOBT | Vi

Ui
Lyw/log (Lv) 4n\/1ogn Ly\/log (Lv) 27/2 9e—1/2 Viogn Vo,
< Z 5772 Z T de + ) + 7
< L log<Lu logn Lv\/log Lv) Z /2”2 pt2ge 4 VIOER Vi
~ U 22 n n
< Lv/log(Lv) logn Ll/\/log (Lv) Z \/logn n VNon
~ n 233/4 2 n n
< Lvy/log(Lv) logn LV\/log (Lv) \/1ogn n \/ngf)n'
~ U n3/2 " U
(55)

Moreover, by our choice of L and v,

Lv < (logn) - \/non. (56)

Therefore, from (53) and (56)),

2]/2
Cylogn  Cy/n
222J 2/ \/IOgN(EaK(ﬂ)aH'H)dH — ;ﬁ

sup [G(t) = F*(t)]loo
teR

< \/nqbnlog n \/ ney, log(n \/logn L \/ncén.

n n3/2 U n
(57
Hence, the claim follows by taking
n =< y/logn + /no, log2 n.
O
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G.10 Proof of Corollary[5]

Proof. By Theorem [l] it is enough to bound

sup 9" (60— F*(t))
6eK, 1 l9—F* (1) <n

supE
teR

)

where where g ~ N(0,1,). Let, t € Rand g ~ N(0, I,,) be a standard Gaussian vector in R", and
let K; C R™ be a constraint set. Now we analyze the quantity

E sup (9,0 — F*(t))

6cK,:|0—F=(t)]|<n

Since K is a convex cone it is closed under positive scalar multiplication; that is, % = K for any
1 > 0. Using this, we have

(K; — F*)) N B(0,7) =1 - <(Kt - Fn(t)) N B(0, 1)) .

In consequence,

E sup (9,0 — F*(t))

b K. :0—F=(t)|<n

=n-E sup (9,0) ] - (58)
o (K.~ 2)nB(0,1)

Now, we consider the tangent cone to a convex set K at a point F*(t) € K. This is defined as,

Tk, (F*n(t)) — cl{h (9— F*n(t)) :HeKt,h>0}.

Now, observe that K; := {# € R" : 6; < --- < 6,,} is a closed convex cone, and the set K; —

F (1)

n
is contained in the rangent cone of K; at () , that is,
F*(t F*(t
Kt()CTK,( “).
n n
Therefore,
E sup (9,0)| <E sup (9,0)] . (59)

ee(Kt—%“))mB(o,n 9eTKt(%)nB(o,1)

Furthermore, Sup@ETKt(F*n(t))ﬂB(0,1)<g’ 0) = SuPeeTKt(F’;“))nSn—1<g’e>’ where S"~1 denotes

the unit Euclidean sphere. Then, by Equation (39)

E sup (9,0)| <E sup (g9,0) ] . (60)
oe (K~ 2B (0,1) 0T, (£ )nsn—1
Now, we define the Gaussian width of subset /C as

w(IC):_IE[ sup <g,v>}

veKNSn—1

() e

Let §(/C) denote the statistical dimension of a closed convex cone K C R™, defined as

0
yi

Therefore, from Equations (58) and (60)

E sup (9,0 — F*(t))
OEKy:[|0—F*(t)||<n

§(K) :=E[D(g;K)], where D(y;K) := > =—0i(y; K)
=1
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and g ~ N (0,1,,). Here, é(y; KC) denotes the Euclidean projection of y € R™ onto K, formally
defined as ) )
0(y; K) := argmin |6 —y|I*.

Using Proposition 10.1 in [1]], the Gaussian width is controlled by the statistical dimension:

(o (E) e o ()

We now analyze the statistical dimension of this tangent cone. Let
={ief{l,...,n—1}: Ff(t) < F/, (1)}

be the number of strict increases in F*(t). Let 0 = ig < iy < -+ < ij(s) < ig(t)+1 = 1 denote the
jump points such that F*(¢) is constant over each segment {iy_1 + 1,...,4}. Then, the tangent
cone admits the decomposition

k(t)+1

F*
T, ( (t )> @ M™ . where ng =iy — ig_1,

with each M™ = {# € R™ : §; < --- < 6,,} denoting the isotonic cone in R™. This

decomposition follows from Remark 2.1 in Chatterjee et al. [12]. Therefore, the statistical dimension

satisfies
Pt k(t)+1
5 (TKt ( )) Z S(M™).

From Example 2.2 in [12]], we have that §(M™) < log(em). Moreover, applying Jensen’s inequality,

we conclude
en
o (1 (7)) < 0o os (55 )

Hence, the Gaussian width is bounded as
en
14+ k(t)) -1 —_
)< \/ +40) g (175

(o (52)

Therefor, taking 7 = sup \/ (1+k(t)) - log (1 0 t)> from Theoremand Equationwe conclude

teR
that

teR

1 & ~ 1+ k(¢) en
E(= PS(F,, F7) | < Csup - 1 .
<n;CR S( L)) Csup - Og<1+k(t)>
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G.11  Proof of Corollary |6

Proof. By Theorem [I] it is enough to bound

sup 9" (60— F*(t))
e, 1 |0—F*(t)||<n

supE
teR

)

where where g ~ N(0,1,,). Let, t € R and g ~ N(0, I,,) be a standard Gaussian vector in R”, and
let K; C R™ be a constraint set. Now we analyze the quantity

E sup (9,0 — F*(t))

beK,:|0—F=(t)]|<n

To that end, remember that
K, = {9 er": D] < th}
1 n"-

and using Definition H we have that E {SupeeKt:||9—F*(t)||§n<9:9 — F*(t))} is the same as the
Gaussian complexity of {6 € K; — F*(¢) : ||0]] < n}, this is
R{0 €K = F(t): |6l <n}),

see Equation (63) for such notation. Then, following the same line of arguments as in the proof of
Theorem 2.2 in [23]], see Equation (129) in their Supplementary Material, it follows that

R({0 € K, — F*(t) : |0]| < n}) <C [(3 +1)log (sinlﬂ

and the desired result is obtained.
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G.12 Auxiliary Lemmas

Definition 3. Let K C R" andt > 0. A subset P of K is a packing of K if P C K and the set
{B:(z)}zep is pairwise disjoint. Then, the t-packing number of K, denoted as M (t, K, || - ||), is
defined as the cardinality of any maximum t-packing.

Lemma 2. [Variant of Dudley’s inequality.] Let S C R be a finite set and ¢\9) € R™ be a vector of
mean zero independent SubGaussian(1) random variables, for j = 1...,m. Suppose that 0 € S and
v € S implies that ||v|| < D,,/2 for some D,, > 0. Then there exists a constant C > 0 such that

D, /4
E( max maxuv GJ)) < C< logm+/ logM(&S, [l - ||)d5>
J 0

j=1,....m veS

where M (6, S, || - ||) is the packing number of S with respect to the metric || - ||.

Proof. For C > 1, let S,, be a maximal D,,2~'-separated subset of S, i.e.,
i —ul| > D270
Jnin lv — ul| n

By construction, |S;| = M(D,27!,S,|| - ||). Clearly, because of the maximality,

max min ||v — ul| < D, 27"
vES ueS;

Furthermore, S; = S for large enough [. Hence, we let
N =min{l>1: 5 ==5}.
Also, for [ > 1, let m; be the function that assigns v € S to the point in \S; closest to v. By definition,
Im(v) o] < D2

forall v € S and ! € N. We also write Sp = {0} and so my(v) = 0 for all v € S. Next, we observe
that

N
T — Z(m(v) —m_1(v)) "W
=1

for all v € S. It follows that

N

g, me 0T < ma () = moa(0) T
N -

< ‘max max (m(v) — m_1(v)) e

j=1,....m v€S

and so

1,....,m vES 1,...,m veS

N
E < max max v eV )> < ZE ( max max (m(v) — wll(v))Te(j)> .
7= = VT

Howeyver, notice that for all © > 0,
2

P ((m(v) —mo1(v) D > “) < 2exp <2||7n(v) —Q:Tzl(vﬂz)

and
[m(v) —m-1 ()] < fIm(v) — ol + [[m-1(v) — v
< D, 27'4+ D,2-1
< 3D,27"

which implies, by the subGaussian maximal inequality, that

, SC n
E( max max (7'('[(’[))—7'&'11(7}))-'—6(])) < Vog(2m|S|[S;_1|)
j=1l,..;m v
< 32 log(2m|S;[?)
D
< 220 ogamar(D2-L, 5, - )
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for some constant C' > 0. Therefore,

N
D
(4) < -_n l .
E (j r{l’a%mnvleaéc vle ) < 3C lg_l o \/logm + log(2M (D, 24, S, 1| - 1))

N N
D, D,
< 3CViogm Y =t + 303 2t flog (2M (D21, 5] - )
=1 N 5:1
< 30D logm +3CY Sy/log (2M (D271, 8, - )
D/2!
< 30D, /iogm + 602 / Viog @A(r, 5. - ))dr
Dn/2“r
— 30D, \/logm + 6C / Vog @M (r, S, - )dr
n/2N —+1
D,./2
< 30D, \/logm + 6C / Vog @M(r, 3, - ))dr
0
D, /4
< 30D, \/logm + 6C / Vlog @M(r, 3, - ))dr
D, /4 0
+6C Viog (2M (r + Dy, /4,8, || - ||))dr
0
D, /4
< 3CDu/logm + 12C / Viog 2N (r, S, - ) dr
D, /4

< 3CD, \/log7+24C Viog (M(r, S, || - ))dr

and the claim follows.

O

Lemma 3. With the notation and conditions of Lemma[2] if S C R arbitrary (not necessarily finite),
then

‘ D, /4
E < max suvae(J)) <C (Dn logm + V1eg M (0,8, ] - |)d5> .
J 0

=1,....mycs

Proof. Let S C S be a countable set such that

“max sup v'eld) = _max sup v e,
Jj=1l,...m 48 ]:1,...,m,v€5,

Let Sl the set consisting of the first [ elements of S. Without loss of generality let’s assume that
0e Sl for all [. Then by Lemmal we have that

E| max supuv!'el?)
J=leamoeg,

IN

C (DnM+ i \/logM (67 S || - |)d5>
D, /4

C (Dn logm + log M (6, S, || - ||)d5>
0

(62)

IN

for all [ > 1. Hence, the claim follows by letting [ — oo in (62) and applying the Monotone
Convergence Theorem. O

Definition 4. Fort € R let e(t) = w(t) — F*(t) € R". Then for a set V C R" define

R(V) = <sup Zvlel >

vEVz 1

59



Furthermore, define the Gaussian complexity of V as

R(V) = E 63
V) (qilgzvg) (63)

where g ~ N(0, I).

Lemma 4. There exists a universal constant such that for any set V C R" it holds that
sup R (V) < LR(V),
teR

where L > 0 is a universal constant.
Proof. Fixt € R. Then forv € V,letY, = v'e(t) and X,, = v g. Next, observe that

sup |Y;1, *)/v| = sup (Y;L *)/v) == squ;L + SUP*YN-
u,veV u,veV ueV veEV

E <squ ) (sup — YU)
uey vEVY

Hence, for any vy € V,

E ( sup |Y, — YU|)
u,veV

> E Y, E(-Y,
> B (spr) 4B (64
> E(squ

uey

Now, we observe that ¢;(t) is sub-Gaussian(1). Hence, by Theorem 2.1.5 from Talagrand [S9], we
have that

E < sup |Yy, —Yv|> < LE(supv'g) = LR(V),
u,veV veV

for a universal constant that does not depend on ¢. Hence, the claim follows.
O

Definition 5. For a measurable function f : R — R we define its distribution with respect to the
Lebesgue measure as the function py : [0,00) — R given as

prA) = pl{z o |f(@)] > A})
where |1 is the Lebesgue measure.

Definition 6. For a measurable function f : R — R we define its decreasing rearrangement
D(f) : [0,00) — R given as

D(F)(t) == mtA =0 s uy(N) <t}
where L is the Lebesgue measure.
Lemma 5. Suppose that f can be written as

n—1
FH) =Y bilg (D)
=1

forby > ... > b,_1 > 0and measurable sets E; C R that are pairwise disjoint. Then the decreasing
rearrangement of f is given by

n—1
) = Z bll[mthmz)(t)
=1

where

and with mg = 0.
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Proof. This is Example 1.6 in Bennett and Sharpley [6]]. O
Lemma 6. For any integrable functions f and g the following hold:
1. -
[ = [ p P 65)

2. [G.H. Hardy and ] .E. Littlewood].
/WW@WS/ D(f)(s) - D(g)(s)ds. (66)
R 0

3. Suppose that f is decreasing and continuous in [0,a) for some a > 0, and f(t) = 0
otherwise. Then f(t) = D(f)(t) forallt € [0, c0).

Proof. The claim in (63)) follows from Proposition 1.8 in Bennett and Sharpley [6]. The inequality in
(60) is the well-known G.H Hardy and J.E Littlewood inequality, see for instance Theorem 2.2 in
Bennett and Sharpley [6]].

We now prove the final claim. Let ¢ > 0. Suppose that ¢ € [0, a). Then

D(f)(t) %nf{/\ >0 sup{z : f(z) > A} <t} (67)
inf{A >0 :sup{z >0 : f(z) > A} <t}.

Hence, for 0 < A\ < f(¢), the continuity of f in [0, a), implies that there exists ¢’ € (¢, a) such that
A< f(t') < f(t). Thus, sup{z >0 : f(x) > A} > t. On the other hand, if f(0) > X\ > f(t), then,
also by the continuity of f in [0, a),

sup{z >0 : f(z) > A} = inf{z >0 : f(x) = A}
Hence, from (67), we obtain f(t) = D(f)(t) fort € [0,a).

Suppose now that ¢ € [a, 00). Then
pr(0) < a<t.

Hence, D(f)(t) = 0 and the claim follows. O
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