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ABSTRACT

Recent advancements in human motion generation have leveraged various mul-
timodal inputs, including text, music, and audio. Despite significant progress,
the challenge of generating human motion in a streaming context—particularly
from text—remains underexplored. Traditional methods often rely on temporal
modalities, leaving text-based motion generation with limited capabilities, espe-
cially regarding seamless transitions and low latency. In this work, we introduce
MotionStream, a pioneering motion-streaming pipeline designed to continuously
generate human motion sequences that adhere to the semantic constraints of input
text. Our approach utilizes a Causal Motion Tokenizer, built on residual vec-
tor quantized variational autoencoder (RVQ-VAE) with causal convolution, to en-
hance long sequence handling and ensure smooth transitions between motion seg-
ments. Furthermore, we employ a Masked Transformer and Residual Transformer
to generate motion tokens efficiently. Extensive experiments validate that Motion-
Stream not only achieves state-of-the-art performance in motion composition but
also maintains real-time generation capabilities with significantly reduced latency.
We highlight the versatility of MotionStream through a story-to-motion applica-
tion, demonstrating its potential for robotic control, animation, and gaming.

1 INTRODUCTION

Recent progress in Al, driven by large-scale models |OpenAll (2023)); Touvron et al.| (2023azb)), has
given network models initial intelligent thoughts” [Wei et al.| (2022)), offering hope for developing
world models and foundation models |Ha & Schmidhuber| (2018); Majumdar et al.| (2024), which
has sparked interest in studying humanoid robotics [Darvish et al.| (2023)); Zhang et al.| (2023a); Mu
et al.| (2024). As one method for controlling humanoid agents, human motion generation has made
significant advancements, enabling the creation of human motion under various conditions such
as text [Zhang et al.| (2023b); |Guo et al.| (2023), music |Gong et al.| (2023)); |[Zhou & Wang| (2023)),
audio|Y1 et al.| (2023)); ' Y1n et al.[(2023)), and motion|Liu et al.[|(2024);|Chen et al.|(2023a). Given one
steaming modality, this human motion model, capable of generating in a streaming fashion, should
benefit both virtual humanoid agents and humanoid robotics in terms of behavioral outputs.

Previous motion researches focus on various tasks such as single-clip motion generation from ac-
tions [Petrovich et al.| (2021b); \Guo et al.| (2020); |Athanasiou et al.| (2022a); [Xin et al. (2023)); [Lee
et al.| (2023); Wang et al.[(2022a) or text|Guo et al.|(2022a); [Zhang et al.| (2022)); Tevet et al.| (2022));
Petrovich et al.[(2022); [Lu et al.| (2023); |Guo et al.| (2023)), motion composition |Athanasiou et al.
(2022a); |[Shafir et al.| (2023b); Barquero et al.[|(2024), motion prediction [Zhang et al.[(2021); |Chen
et al.| (2023a)), and multi-track motion generation Petrovich et al.| (2024). Some motion composi-
tion studies |Athanasiou et al. (2022a); Lee et al.|(2023); |Qian et al.| (2023)); [L1 et al.| (2023) focused
on explicitly modeling subsequent transition and motion by current motions. However, they require
datasets with multiple consecutive annotated motions, making it challenging to achieve smooth tran-
sitions. For example, TEACH applies interpolation techniques like Slerp to mitigate misalignment
between motion segments. Other methods generate complete motions under multiple conditions by
interpolating or stitching together motions generated from a single condition. DoubleTake |Shafir
et al.| (2023Db) utilizes a diffusion-based motion generator (MDM [Tevet et al.[(2022))) to create mo-
tion clips and further combine them with diffusion-denoising. However, this framework, neither
causal nor steaming generation, affects both generated and current motions. FlowMDM [Barquero
et al.| (2024) introduces a temporal attention mechanism to ensure each frame aligns with texts for
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better motion-text alignment and smoother transitions. However, it processes all conditions simulta-
neously, resulting in longer generation latency as the number of conditions increases. To address the
above limitations, we focus on developing a streaming motion generator capable of progressively
generating human motion sequences with low latency based on text descriptions.

Our motivation stems from translating a lengthy textual narrative like Story-to-Motion |Qing et al.
(2023), detailing a series of human activities into seamless, lifelike human motions that hold poten-
tial for robotic control, virtual animation, and gaming. However, achieving this requires overcoming
two critical challenges. The first is ensuring smooth transitions between each motion segment while
accurately reflecting the corresponding text conditions. The second is maintaining low and consis-
tent generation latency, even as the number of text instructions increases.

In this work, we introduce MotionStream, a motion-streaming pipeline designed to generate natu-
rally continuous motions that faithfully adhere to the semantic constraints of continuous text input.
To output a motion clip seamlessly with the adjoining motions, we first develop a causal motion
tokenizer to construct our causal motion codebook. More specifically, our tokenizer is built upon
residual vector quantized variational autoencoder (RVQ-VAE). We further develop a dual trans-
former scheme to accurately predict causal motion tokens from the given textual inputs, effectively
translating complex textual descriptions into corresponding dynamic motions. This dual approach
not only enriches the motion quality but also maintains semantic fidelity across the generated motion
sequences. The motion tokenizer employs causal convolution, greater code distance, and a replacing
scheme during training to enhance the handling of long sequences. Additionally, to further improve
transition smoothness, we incorporate memory tokens during mask modeling. Then, for motion
generation under semantic text conditions, we adopt a BERT-like Masked Transformer and a Resid-
ual Transformer following Momask |Guo et al.| (2023), , which are specialized in generating motion
tokens for the base VQ layer and the residual layers, respectively. Extensive experiments demon-
strate that MotionStream not only achieves state-of-the-art performance in motion composition but
also maintains high generation efficiency and effectiveness.

We summarize our contributions as follows: (1) We introduce MotionStream, a new casual and
steaming motion generator that continuously produces motion of arbitrary length, without relying
on explicit labeling on transitions between motions. (2) We design our Causal Motion Tokenizer for
long motion decoding, which improves the transition smoothness of streaming motion outputs. (3)
Our extensive evaluation shows that MotionSteam outperforms diffusion-based models in efficiency,
supports real-time motion streaming with ~0.2s generation latency, and achieves state-of-the-art
performance on the BABEL and HumanML3D datasets. We showcase a story-to-motion application
driven by instructions from GPT-4 to demonstrate the versatility of MotionSteam.

2 RELATED WORK

2.1 HUMAN MOTION SYNTHESIS

Motion generation from multi-modal inputs such as text [Petrovich et al.|(2023); Jiang et al.| (2023));
Chen et al. (2023b), speech [Chen et al.| (2024); [Y1 et al.| (2023)), music |Aristidou et al.| (2022),
images Jiang et al.| (2024)), and videos Mehta et al.| (2020)) entails synthesizing dynamic human ac-
tivities by leveraging diverse data types, which considerably enhances the applicability and realism
of the generated movements. Predicated on distinct classification paradigms, this process can be de-
lineated as either conditional |Guo et al.| (2020); Wang et al.| (2022b)) or unconditional [Urtasun et al.
(2007);|Shi et al.| (2020), unimodal |Petrovich et al. (2023)); |Chen et al.|(2023b)) or multimodal Kritsis
et al.| (2021);|Wu et al.|(2024)), and involves static|Jiang et al.| (2024} or dynamic Mehta et al.|(2020)
input, collectively underscoring the adaptability of the motion synthesis mechanisms and enabling
the creation of contextually responsive and data-informed human movements.

Among the various paradigms for motion generation, utilizing textual inputs is notably prevalent due
to their capacity to richly describe complex human behaviors and emotional states. While advanced
models such as GANs Xu et al.| (2023); Barsoum et al.| (2018), VAEs [Petrovich et al.| (2021a);
Bie et al.| (2022)), and diffusion Zhang et al.| (2022)); Xin et al.| (2023)) methods effectively translate
textual narratives into dynamic motions, traditional methods still encounter significant challenges
with seamless transitions and maintaining low latency, especially in real-time streaming contexts.
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Figure 1: Method overview: MotionStream consists of a motion tokenizer V (Section [3.1)) a Mask
Transformer (Section [3.2)) and a Residual Transformer (Section [3.3). MotionStream is capable of
producing seamless and dynamic motions driven by narrative descriptions.

2.2 MOTION COMPOSITION

Motion composition involves synthesizing coherent sequences from discrete motion segments, a
process complicated by the scarcity of suitable training data. This synthesis often requires integrat-
ing motions conditioned on both actions and textual descriptions.

Diffusion models like EDGE [Tseng et al.|(2023)) and PriorMDM [Shafir et al.| (2023a)) are prominent
for their ability to ensure smooth transitions by enforcing temporal constraints at the junctions of
motion segments. These models excel at creating fluid motion sequences from extensive textual
inputs by blending multiple motion clips over time [Zhang et al.[ (2023d); Rombach et al.| (2022).
However, they are less effective in environments requiring adaptation to real-time, continuous text
streams, due to their inherent design which primarily handles pre-segmented input scenarios.

Auto-regressive methods, such as those employed by TEACH |Athanasiou et al.| (2022b) and
EMS |Qian et al|(2023), sequentially generate motions, with each segment conditioned on its pre-
decessor. TEACH generates one motion at a time per text prompt, while EMS utilizes a two-stage
approach to first generate and then merge actions, which aids in maintaining coherence across the
sequence. Despite their precision in controlled environments, these models struggle with real-time
responsiveness, as they rely on processing a series of predetermined inputs rather than adapting
on-the-fly to incoming data streams.

Both diffusion and auto-regressive methods, while capable, primarily compose motion by stitch-
ing multiple segments across different times or generating complex motions from lengthy texts si-
multaneously. This technique limits their adaptability and responsiveness, particularly in dynamic
environments where continuous and real-time text input integration is crucial.

2.3 VECTOR QUANTIZATION

Vector Quantization (VQ) |Gray| (1984); [Esser et al.| (2021) simplifies data by mapping vectors to
fewer representative centroids, and extending this, Residual Vector Quantization (RVQ) Barnes et al.
(1996); ILee et al.| (2022) enhances precision by encoding the residuals. This advanced approach
underpins our use of sophisticated encoding strategies for motion synthesis. In the TM2T |Guo
et al| (2022c) project, a Vector Quantized Variational Autoencoder (VQ-VAE) |Van Den Oord
et al.| (2017a) accurately maps human motions to discrete tokens, improving codebook selection.
T2M-GPT Zhang et al.| (2023b) further refines this by incorporating Exponential Moving Average
(EMA) Nakano et al|(2017) and code reset techniques to reduce quantization errors and enhance
reconstruction fidelity.

Building on these innovations, the integration of memory tokens with a BERT-like [Devlin/ (2018))
Masked Transformer and a Residual Transformer enables precise motion generation from semantic
text inputs, significantly advancing our capabilities in high-precision motion composition.
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Figure 2: Motion Generation Approaches and Latency Performance Overview. (1) Generation la-
tency versus number of text prompts on a V100 machine. (2.a) Generation of individual motions
from separate text prompts, combined via stitching or interpolation. (2.b) Approach processing mul-
tiple texts in a single inference step to generate a whole motion sequence. (2.c) Approach to generate
continuous motion from consecutive text inputs without post-processing stitching.

3 METHOD

We introduce MotionStream, a real-time motion generation framework to synthesize human motion
sequences in a streaming format. As depicted in Fig. 4] MotionStream incorporates a causal motion
Vector Quantized Variational Autoencoder (VQ-VAE) (Section [3.1)) that encodes raw motion data
into multi-layered causal motion tokens and reconstructs these tokens into continuous motion se-
quences. A masked transformer (Section[3.2)) is utilized to generate base layer motion tokens, while
a residual transformer (Section [3.3)) processes tokens for the subsequent layers, ensuring seamless
motion generation under text conditions.

The causal motion tokenizer within MotionStream consists of an encoder, &,,, and a decoder, D,,.
The encoder &, transforms L frames of raw motion, m** = {z*}L | into L latent vectors, which
are quantized into discrete motion tokens, 2L, utilizing a learnable codebook Z = {zi iK:I c R4,
The decoder D,,, then reconstructs the motion sequence Ml = D(z'l), preserving temporal
coherence and physical plausibility. Given S text sentences, w! ™+, each with a length N, de-
scribing text instructions for motion segments, MotionStream aims to generate .S segments of
motion tokens, & = {Z1, &9, ...42s}, which can subsequently be decoded into motion segments,
m = {mq,"a,..."Mg}, corresponding to each text instruction. These segments are expected to ex-
hibit plausible and smooth transitions between each motion segment, ensuring a cohesive and fluid

overall motion sequence.

3.1 CAUSAL MOTION TOKENIZER

To represent motion in discrete tokens, we pre-train a 3D human motion tokenizer V utilizing a
Residual Vector Quantization (RVQ) framework, building on the VQ-VAE architecture as introduced
in |Van Den Oord et al.| (2017b); |Styao et al.|(2022); /Guo et al.| (2022b); |[Zhang et al.| (2023b)); |(Guo
et al.| (2023). This tokenizer is composed of an encoder &,,, a residual vector quantizer, and a
decoder D,,, all tailored for optimal performance in learning causal motion tokens.

The encoder &, processes raw motion sequences into latent representations by applying 1D causal
convolutions along the temporal dimension of the input motion features m'* . These causal con-
volutions capture the temporal dependencies between consecutive frames, ensuring that each frame
is influenced only by preceding frames. This is crucial for preserving the causal structure required
for streaming motion generation tasks. Once the latent vectors 2% are derived from the encoder,
Residual Vector Quantization (RVQ) is employed. Unlike conventional vector quantization, RVQ
decomposes the latent representation across multiple stages of quantization, allowing for progres-
sive refinement of the representation through residual encoding. The quantization procedure utilizes
a learnable codebook Z = {z*}K | < R? where K denotes the number of discrete codebook en-
tries and d represents the dimensionality of each embedding. Additionally, the high-dimensional
latent vectors are downsampled to a lower-dimensional latent space before quantization, enhancing
the efficiency of feature learning for causal motion tokens, as detailed in the supplementary mate-
rials. The quantization function Q(-) iteratively maps each latent vector 2° to its nearest codebook
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Figure 3: The architecture of MotionStream’s motion tokenizer, V), detailed in Section@ It show-
cases the Residual Vector Quantization (RVQ) framework employed by the tokenizer, which in-
cludes both an encoder and a decoder equipped with causal convolutions. This design enables the
effective encoding and decoding of motion data, ensuring temporal coherence and continuity in the
generated motion sequences.

entry z;, € Z, progressively refining the representation through residual stages. This process is
mathematically expressed as:

2= Q(2") = arg min [|2; — 2, (1)
k

The decoder D,,, reconstructs the motion sequence m*™ = D, (z1*L) from the quantized latent
vectors 2. Similar to the encoder, the decoder applies causal convolutions to ensure the preser-
vation of temporal dependencies during the reconstruction process, thereby maintaining the causal
integrity of the motion sequence. This causal structure is essential for real-time motion genera-
tion tasks. To train our proposed motion tokenizer, we introduce a novel training paradigm that
enhances the quality and diversity of the generated motion sequences by optimizing three key loss
components: reconstruction loss £,., embedding loss L., and commitment loss L. The overall loss
function is defined as £y, = L, + L. + L.

Code Masking. In addition to implementing quantization layer dropout as described in|Guo et al.
(2023), we introduce a layer-specific code masking strategy. This strategy is motivated by the goal of
enhancing the model’s ability to reconstruct and infer from incomplete data, thereby learning more
robust and essential features of the motion. Consequently, during training, certain portions of the
motion codes are masked and substituted with randomly selected tokens from the same codebook.
The decoder is then tasked with reconstructing the entire motion sequence, accommodating these
modifications to enhance its robustness and ability to handle noisy input effectively. Double Round

Training. Our training process also introduces a unique methodology for causal motion tokenizer,
ensuring that the model learns to generate smooth and continuous motion across variable segments.
We first randomly split the input motion sequence into two subsequences, After splitting, we conduct
two forward passes to process the resulting motion segments separately. First, the initial part of the
sequence Mpe,q 1S passed through the motion VAE followed by resetting the causal convolution
in Encoder leaving Decoder alone for a continuous generation. The second part of the sequence
Miilis then processed in a similar manner. By splitting and processing the motion sequences in
this manner, we introduce variability in the sequence lengths and transitions, improving the model’s
ability to generate high-quality, temporally coherent motion for real-time applications.

3.2 MASK TRANSFORMER

Utilizing this motion tokenizer, we transform human motion sequences m"™ into sequences of
motion tokens 2%, These tokens are represented as layers of sequences of indices, where each
index corresponds to a specific motion token within a layer. In alignment with |Guo et al| (2023),
our approach models the base-layer motion tokens =% using a masked transformer. During pre-
processing, we randomly replace some tokens with a special [MASK] token to facilitate learning.
The masking ratio is adjusted dynamically using a cosine function, v(7), where 7 is sampled from

a uniform distribution U (0, 1), allowing for variable sequence corruption. The training strategy in-
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Figure 4: Method overview: In addition to the motion tokenizer, a dual transformer scheme is pro-
posed to accurately predict causal motion tokens from the given textual inputs, effectively translating
complex textual descriptions into corresponding dynamic motions.

cludes masking 80% of the selected tokens, replacing 10% with random tokens, and leaving 10%
unchanged. Post-masking, the objective is to predict the masked tokens based on the associated text
w, and the modified sequence 79, Text features are extracted using CLIP |Radford et al.|(2021), and
the transformer is optimized to minimize the negative log-likelihood of the predictions according to:

Lmask = Z —logpe (-'172 |§70a ws)~ 2
#9=[MASK]

Tokens Compression. Our motivation stems from addressing the substantial temporal redundancy
observed in human motion sequences. Directly downsampling these sequences before processing
significantly compromises the reconstruction capabilities of our causal motion tokenizer, as elabo-
rated in the Appendix. This reduction in performance arises because each causal token is required
to encapsulate significant information from both the current and preceding frames to maintain dis-
tinctiveness within the motion codebook. However, such detailed information is unnecessary during
the mask modeling stage, where the focus is on mapping text to tokens rather than capturing motion
nuances. Therefore, we optimize the process by downsampling the causal tokens before they en-
ter the mask transformer and subsequently upsampling them to preserve essential temporal details.
Condition Injection. Prior research Guo et al|(2023) has employed a method of incorporating

text conditions into Mask Transformer by concatenating the pooled features from the CLIP text en-
coder with the masked token features. This method, however, has limitations in retaining complete
text information. To address this, we introduce a more effective condition injection technique that
enhances text retention and is particularly suitable for complex text instructions. We first process
the motion token features through the self-attention mechanism. Subsequently, these features un-
dergo cross-attention with the last hidden layer of the CLIP text encoder, thereby preserving a richer
textual context. This method ensures that more comprehensive text details are integrated into the
motion tokens, potentially improving the fidelity and relevance of the generated motion sequences.
Memory Tokens. During inference, we start with an initially masked sequence 2°(0) and aim to
construct the base-layer token sequence x° over M iterations. The Mask Transformer calculates the
probability distribution of tokens at masked locations, selectively sampling and re-masking tokens
based on confidence levels. This process is repeated, using the updated token sequence z° (I + 1)
for subsequent predictions until completion after M iterations. For subsequent text prompts, the
final frames from previously generated motion sequences are utilized as memory tokens to inform
the generation of new tokens. These memory tokens, in conjunction with newly masked tokens,
facilitate the prediction of the next set of motion tokens.
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Table 1: Comparison of motion composition on HumanML3D |Guo et al.| (2022a)) dataset. The
arrows (—) indicate that closer to Real is desirable. Bold and underline indicate the best and the
second best result on text-to-motion task.

3.3 RESIDUAL TRANSFORMER

Following the extraction of base layer motion tokens using the Mask Transformer, we implement a
residual transformer to process tokens across multiple residual quantization layers, each tailored to
capture varying levels of motion complexity. This setup, detailed in Section[3.2] features K distinct
embedding layers for each quantization layer. During training, we selectively focus on a random
quantizer layer k € [1, K]. Token inputs are formed by embedding each token from the preceding
layers zF~1 and aggregating these embeddings. These inputs, combined with corresponding text
embeddings and a layer indicator k, feed into the residual transformer pg, which predicts the tokens
of the k-th layer in parallel. The primary training objective is captured by:

K L
Lies = Z Z —log pg(xF|zt* 1w, k).

k=1i=1
The parameter between the k-th prediction layer and the subsequent (k + 1)-th motion token em-
bedding layer are shared, which simplifies the architecture and leverages feature continuity across
layers.

4 EXPERIMENTS

We conduct extensive comparisons to evaluate the performance of our methods across various
motion-relevant tasks and datasets. Detailed information on dataset configurations, evaluation met-
rics, and implementation nuances is available in Section Our evaluation begins with a motion
composition benchmark, where our approach is compared against existing state-of-the-art (SOTA)
models across two datasets (Section @ Subsequently, we focus on the text-to-motion task, con-
trasting our results with SOTAs that are specifically designed for single-motion generation as op-
posed to motion composition. Finally, we ablate some important components and techniques in
our method (Section @ Additional qualitative results, user studies, and extended implementation
details are included in the supplementary materials.

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS.

General motion synthesis supports a wide range of task settings, and as such, we leverage existing
datasets along with a modified benchmark to comprehensively evaluate MotionStream. Our study
focuses on two prominent text-to-motion datasets: HumanML3D |Guo et al| (2022a) and BABEL
Punnakkal et al.| (2021)). HumanML3D provides rich textual descriptions for each motion sequence,
facilitating the direct mapping between natural language inputs and 3D human motion. In contrast,
BABEL segments each motion sequence into multiple atomic components, each annotated with fine-
grained textual labels, including transitions, enabling more granular control over motion generation.
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Table 2: Comparison of text-to-motion on HumanML3D |Guo et al.[(2022a). The empty MModality
indicates Real motion is deterministic. The arrows (—) indicate that closer to Real is desirable.
Bold and underline indicate the best and the second best result on text-to-motion task.

For motion representation, we adopt the format outlined in |Guo et al.|(2022a), encompassing root
velocity, joint coordinates, joint rotations, joint velocities, and foot contact information.

4.1.2 EVALUATION METRICS

We assessed the performance of our method using several key metrics, adhering to established eval-
uation protocols from prior work |Guo et al.| (2022a; 2023)), to comprehensively evaluate motion
quality, generation diversity, and text-to-motion alignment. (1) Motion Quality: We primarily uti-
lize Frechet Inception Distance (FID), leveraging a feature extractor |Guo et al.| (2022a) to measure
the distributional distance between the generated motions and the ground truth motions, indicating
overall realism. (2) Generation Diversity: The Diversity (DIV) metric quantifies the variance across
the generated motion features to assess the diversity of generated motions. In addition, MultiModal-
ity (MM) measures the diversity of generated motions corresponding to identical text descriptions,
capturing the model’s ability to generate multiple plausible motions under the same condition. (3)
Text-Motion Alignment: To evaluate the alignment between text and motion, we employ motion-
retrieval precision (R-Precision), which gauges the accuracy of matching between text prompts and
motions based on Top-1/2/3 retrieval accuracy. We also measure Multi-modal Distance (MM Dist),
which quantifies the distance between the embeddings of motions and their corresponding textual
descriptions. In our evaluation, both the motion sequences and their textual descriptions were pro-
jected into a shared latent space using the evaluator provided by HumanML3D |Guo et al.| (2022al).
To evaluate the quality of transitions between generated motion sequences m;_1 and 7;, we define
transitions as a sequence of consecutive poses {xy, — L /2, ..., 2, + Ly /2 — 1}, where Ly, /2
frames overlap with both 7m;_; and m;. To further assess the smoothness of these transitions, we
incorporate jerk—the time derivative of acceleration—following the methodology outlined in [Bar-
quero et al.| (2024)). Peak Jerk (PJ) captures the maximum jerk value recorded across all joints during
the transition, highlighting abrupt changes in motion. Area Under the Jerk (AUJ) quantifies the cu-
mulative deviation from natural human movement. It is computed as the sum of L1-norm differences
between the instantaneous jerk of the generated motion and the average jerk observed in the dataset,
offering a measure of motion smoothness throughout the transition. All metrics were averaged over
10 independent trials, with results reported alongside 95% confidence intervals to ensure statistical
robustness and reliability.

4.1.3 IMPLEMENTATION DETAILS.

The motion tokenizer’s encoder and decoder share similar architectures, both comprising 3 layers
of ResNet blocks, each containing causal convolutions and skip connections. The quantizer consists
of 6 residual codebook layers, each with 1,024 motion tokens of dimensionality 8, applied to both
the HumanML3D and BABEL datasets. The Mask Transformer and Residual Transformer archi-
tectures comprise six layers of transformer blocks, incorporating self-attention and cross-attention
mechanisms. Each attention layer utilizes 6 heads with a model dimensionality of 384. We em-
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Subsequence Transition
R-prec 1 FID | Div— MM-Dist| FID| Div — PJ — AUT |
GT 0.79610,004 0_00:&0,00 934:&0.08 2'9710.01 0_00:&0.00 9'5410.15 0_04;&0,00 0'0710.00
MoMask 0.787illl)03 O_Osj:l).()Z 9.56i(]'11 2_99j:0.(]7 2‘93i0.02 S.ZOiO'lﬂ 1_40j:0.l)1 2.1010.03
MoMask w/ Interpolation ~ 0.756%0-005  (,14+0-04 9 49+0.12 3 154001 9 g9£0.09 g 15+0.09 () 05+0.00 () g5+0.02
Ours 0.719+0:005 134002 g 97£011 336001 2562005 7934005 g g5E00L  ( 3g£0.03
Ours w/o Code Masking 0.615i0'l)05 1_56j:l)A()4 8.79i(]'08 4_13j:().(12 4‘59j:0.1(] 8_22i0,11 U.QGiU'UO 2485:&(]'09
Ours w/o Double Round ~ 0.671%0-004  (,19F0-03 933010 3 6+0.02 9 Gg£0.09 7 99006 ) o5£0.00 334001

Ours w/o Memory Tokens ~ 0.685%0:004  0.09+0.01 9 58+0.12 3 61+0.01 3 454+0.10  §29+0.09 (o+0.00 (97+0.08

Table 3: Ablation Study on the Code Masking, Double Round Training Paradigm in the Causal
Motion Tokenizer and Memory Tokens Applied to the HumanML3D Dataset. (cf. Table [1] for
notations.

R Precision?

Methods FID| MMDist]  Diversity— MModality
Topl Top2 Top3

Real 0A511i.003 0.703i.003 0'797i,002 0.002i.000 2.974i,008 9.503i.065 _
Baseline 0.516=003  (.708%:003 (. gp3+-002 77+004 2929+ 008  9319F0TL 1 g34+.070
Compress R = 2 0522003 07135003 0806202  0.057F003 2,903+ 010 9303074 1,818+ 069
Compress R = 4 0.510%003  0.701F002  .800*001  (0.116F004  2.959F007 9 959+.079 1 gop+-088
Baseline(In-context) ~ 0.499%003  (.688%003  (.785+:002 065003  3028% 008 g 575+:065 1 j70E044
adalLN-Zero 0.441:(:.()()3 0.630:(:.(]02 0.731:!:,(]02 0‘0881'()05 3.377:(:.012 9.635:(:.(]82 1.104:(:.()51
Cross-Attention 0.522+003  ,713+003  ,806+002 (,057F003 2.903+010 9303+07 1 818+ 069

Table 4: Ablation Study on the Token Compression Factor R and condition injection architecture in
the Mask Transformer Applied on the HumanML3D Dataset.

ploy the ViT-B/32 model for text encoding in the Mask Transformer and Residual Transformer. For
training, the subsequence lengths are set to a minimum of 40 frames and a maximum of 196 frames
for the HumanML3D dataset, and 40 to 200 frames for the BABEL dataset. The transition length
L., as defined in the evaluation, is set to 30 frames for BABEL and 60 frames for HumanML3D.
In addition, all models are trained using the AdamW optimizer. The motion tokenizers are trained
with a learning rate of 2 x 10~—* and a mini-batch size of 256. Similarly, both the Mask Transformer
and Residual Transformer are trained with a learning rate of 2 x 10~* and a mini-batch size of 256
for each training stage. The motion tokenizer is trained for 1,500 epochs, while the Mask Trans-
former and Residual Transformer undergo 150 and 200 epochs of training, respectively. All training
processes are conducted on a cluster of 8 Tesla V100 GPUs.

4.2 QUANTITATIVE ANALYSIS

Comparisons on Motion Composition. Table [I| demonstrate the motion composition from mul-
tiple texts with the state of the art methods in HumanML3D dataset. In HumanML3D dataset, our
model outperforms the other methods in subsequence quality (FID), text alignment (R-prec and
MM-Dist) and transition smoothness (PJ, AUJ). In addition, as shown in Fig. @] our method real-
izes both vivid subsequence and smooth transition generation between motion sequences with low
generation latency even when motion sequences accumulated.

Comparisons on Single Text-to-Motion. The text-to-motion task focuses on generating human
motion sequences from a given single text input, without requiring the composition of multiple
motion sequences. We compare the performance of our proposed method against state-of-the-art
(SOTA) approaches |Guo et al.|(2022a)); Tevet et al.| (2022); | Xin et al.| (2023)); [Zhang et al.| (2023b);
Jiang et al.[(2023); Zhang et al.| (2022} 2023c));|Guo et al.|(2023)) using the HumanML3D dataset and
the recommended evaluation metrics (Guo et al.|(2022a). Results are reported with 95% confidence
intervals, computed over 20 repeated runs. The majority of the comparative results are directly
sourced from the respective papers or the benchmark presented in [Guo et al.| (2023). Section{.1.1]
provides a detailed summary of the comparison, where our method demonstrates competitive per-
formance across most metrics. Additionally, our approach effectively handles smooth transitions
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between motion sequences when multiple text conditions are provided as input, a capability that
existing SOTA methods for single text-to-motion generation lack.

4.3 ABLATION STUDIES

Motion Tokenizer. We evaluate the effectiveness of the code masking and double round training
paradigm for the motion tokenizer, as introduced in Section As demonstrated in Table [3| the
model trained on single motion reconstruction, without the double round training paradigm, fails to
generate plausible motion. This is attributed to the decoder not being properly trained to differen-
tiate between causal motion tokens across varying temporal positions. Furthermore, incorporating
masking within each motion codebook significantly enhances the robustness of the motion decoder,
leading to more reliable motion generation.

Mask Transformer. Initially, we investigate the efficacy of incorporating memory tokens within the
Mask Transformer. The findings, detailed in Table[3] affirm the beneficial impact of memory tokens
on model performance. Subsequently, we assess the effect of code compression on single motion
generation tasks. This evaluation contrasts a baseline scenario, where all motion tokens are directly
inputted into the transformer without compression, against scenarios where compression factors of
R =2 and R = 4 are applied. According to the results presented in Section the compression
factor R = 2 yields superior motion generation performance. Finally, we compare different con-
dition injection strategies for transformers, specifically within the Mask Transformer and Residual
Transformers, referencing designs from |Guo et al.| (2023) and [Peebles & Xie| (2023). The compar-
ative results, also shown in Section indicate that our architectural approach outperforms the
alternatives, establishing its effectiveness in motion generation tasks.

5 DISSCUSION

In this paper, we introduced MotionStream, a novel motion-streaming framework designed to gen-
erate seamless and continuous motions that accurately reflect the semantic nuances of continuous
text input. Leveraging a causal motion tokenizer based on a Residual Vector Quantized Variational
Autoencoder (RVQ-VAE), we have successfully constructed a dynamic and responsive motion gen-
eration system. The dual transformer scheme implemented in MotionStream—comprising a BERT-
like Masked Transformer and a Residual Transformer—enables precise prediction and synthesis of
motion tokens from textual descriptions, ensuring high semantic fidelity and motion quality.

The current implementation of MotionStream is restricted to processing purely descriptive motion
inputs rather than high-level instructions, which limits its applicability in end-to-end storytelling
contexts. Additionally, the model’s scope is confined to human body movements, excluding more
diverse skeletal structures such as those of animals, as well as lacking detailed representation of
facial and hand gestures. Future enhancements will focus on broadening the input capabilities to
include abstract and narrative-driven instructions, thereby enriching the storytelling potential of the
system. We also aim to extend the model’s applicability to a wider range of biological forms by
incorporating diverse skeletal models and enhancing the precision of facial and hand motion gen-
eration. These advancements will significantly expand the usability and versatility of our motion
generation technology.
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A APPENDIX

A.1 TEMPORAL POSITION’S IMPACT ON CAUSAL TOKENS

We assess the impact of temporal positions on causal tokens by randomly masking motion tokens at
various points throughout the sequence and evaluating the reconstruction performance. Specifically,
we progressively mask 10% of the tokens, starting from the beginning to the end of the sequence.

.. Reconstruction
Position
FID] MPIJPE| PAMPIPE| ACCL |

Baseline 0.01 23.58 18.46 7.97
0-10 0.10 62.04 33.82 11.56
10-20 0.05 49.62 30.23 11.14
40-50 0.06 47.34 31.09 11.17
70-80 0.03 42.03 30.24 11.07
90-100 0.02 35.81 27.07 10.81

A.2 ABLATION ON MOTION TOKENIZER.

We ablate the motion tokenizer V of our models, studying the size K of motion codebooks. We also
compare this VQ-VAE with other VAE models in previous works [Pavlakos et al.|(2019); [Petrovich
et al.|[ (2021b); [Xin et al.| (2023), as shown in Appendix @ This comparison demonstrates the
improvement of VQ-VAE on motion reconstruction. With this ablation studies on the codebook size
K, we thus select K = 512 for most experiments.

Reconstruction
FID| MPJPE| PAMPIPE| ACCL |

K=1024,d=128 0.147 48.510 39.504 10.247
K=1024,d=64 0.018 34.661 29.621 7.284
K=1024,d=16  0.009  33.206 29.029 7.832
K=1024, d=8 0.005  33.070 27.470 7.125
K=1024, d=4 0.012  43.063 34.162 7.380
K=1024, d=2 0.015 51.263 41.381 9.353

K=512, d=8 0.007  40.189 29.395 6.560
K=1024, d=8 0.005  33.070 27.470 7.125
K=2048, d=8 0.004  30.276 25.976 6.921
K=4096, d=8 0.003  31.493 25.899 5.912
K=8192, d=8 0.005  32.679 24.557 6.575

Method

Table 5: Evaluation of our motion tokenizer on the motion part of HumanML3D |Guo et al.| (2022al)
dataset. We follow MLD Xin et al.| (2023)) to evaluate our VQ-VAE model V: MPJPE and PAMPJPE
are measured in millimeter. K indicates the codebook size, d indicates the codebook dimension.
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