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Abstract

Simulation-based inference leverages amortized
variational inference algorithms to perform pos-
terior estimation in scientific domains, often over
hundreds or thousands of observations. Such esti-
mated posteriors are often subsequently leveraged
in downstream estimation or engineering design.
The use of approximated posteriors in these down-
stream applications, however, ultimately produces
results that could be arbitrarily poorly behaved
with posterior misspecification. While MCMC
could be used to combat this misspecification, do-
ing so limits the number of designs that can be
considered within a typical computational budget,
translating to lost design efficiency. Toward this
end, we propose a distributionally robust formu-
lation, where the problem formulation is speci-
fied in a data-driven manner, thereby producing
downstream guarantees of interest. In particu-
lar, we propose Conformalized Distributionally
Robust Optimization (CRDO), a procedure that
leverages conformal prediction over the space of
distributions to produce strong theoretical guaran-
tees on the well-specified problem setup. We then
demonstrate that our framework lends itself to
an efficient algorithm that we then subsequently
highlight on a suite of benchmark problems.

1. Introduction
With increasing compute budget and simulator fidelity, there
is growing interest in leveraging simulators to do inference
in scientific domains, such as in astrophysics, neuroscience,
and particle physics (Cranmer et al., 2020; Zhou et al., 2023;
Crisostomi et al., 2023). In these cases, scientific knowledge
endows domain experts to specify prior and forward models
with great precision, concentrating concern on the ability
to then exactly recover the posterior distributions. While
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MCMC offers a theoretically justified approach to perform
such sampling, often posterior distributions P(Θ | x) are
sought over a large collection of x, on the order of 10,000
or more, rendering MCMC computationally intractable.

For this reason, variational inference has increasingly be-
come the de facto approach of posterior estimation in
simulation-based inference (Papamakarios & Murray, 2016;
Lueckmann et al., 2017; Greenberg et al., 2019; Deistler
et al., 2022; Papamakarios et al., 2019; Boelts et al., 2022).
While efforts have gone into improving the calibration of
such posteriors (Deistler et al., 2022; Delaunoy et al., 2022;
Lemos et al., 2023; Delaunoy et al., 2023), approaches con-
tinue to exhibit a lack of consistent calibration, as high-
lighted in a recent meta-study of likelihood-free inference
algorithms (Hermans et al., 2021).

The Θ space in such simulation-based inference settings
often parameterizes a dynamical system, i.e. ẋ = fθ(x).
Inference for a queried x, therefore, can be used to parame-
terize a surrogate dynamics model in engineering workflows,
where x characterizes a design of interest (Nguyen et al.,
2023a;b; Gupta & Brandstetter, 2022; Shen et al., 2023).
For instance, for a car design x, a surrogate model with the
parameters P(Θ | x) would be used for evaluation.

Naively using the posterior distributions produced via varia-
tional inference for these design problems, however, results
in suboptimal decision-making, as they are generally mis-
specified. For this reason, several methods of doing robust
optimization design have been proposed. For instance, in
the space of computational fluid dynamics, robustness is
accounted for using Monte Carlo methods or polynomial
chaos (Wu et al., 2018; Li et al., 2022; Lee et al., 2020; Liu
et al., 2022). Another approach that has become of interest
recently is one that formulates the problem as a distribution-
ally robust optimization (DRO) problem, in which solutions
of this optimization set are instead sought over an ambiguity
set U(P) of distributions (Chen et al., 2023). DRO, how-
ever, requires a priori knowledge of plausible ambiguity sets
or noise distributions to produce answers that are practically
useful. Towards this end, data-driven DRO has recently
become of interest, in which plausible ambiguity sets are
learned empirically (Delage & Ye, 2010; Mohajerin Esfa-
hani & Kuhn, 2018; Chen et al., 2022). While these often
offer improved empirical performance, they are typically

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Non-Parameteric Conformal Distributionally Robust Optimization

specified in an ad-hoc manner, rendering any downstream
guarantees thereof nonexistent.

Conformal prediction provides a principled framework for
producing distribution-free uncertainty quantification with
marginal frequentist guarantees (Angelopoulos & Bates,
2021; Shafer & Vovk, 2008). By using conformal prediction
on a user-defined score function s(x, y) and obtaining an
empirical 1− α quantile q̂(α) of s(x, y) over a calibration
set DC , prediction regions C(x) = {y | s(x, y) ≤ q̂(α)}
attain marginal coverage guarantees. Similar to DRO, the
utility of such prediction regions is directly related to the
nature of the score function: a poor choice of score may
result in overly conservative, meaningless prediction sets.

A recent work leverages such conformal prediction re-
gions for predict-then-optimize decision-making (Patel et al.,
2023). In this vein, we propose Conformal Distributional
Predict-Then-Optimize (CDPO), a procedure that leverages
conformal prediction to produce prediction regions over
probability measures and thereby produces guarantees on
solutions of stochastic decision-making problems that rely
on amortized variational inference, such as design optimiza-
tion (Bird et al., 2023; Azad & Herber, 2023; 2022). Our
main contributions are:

• Proposing a framework for data-driven distributionally
robust optimization that has downstream guarantees.

• Demonstrating the use of conformal prediction over
arbitrarily specified probability distributions.

2. Background
2.1. Conformal Prediction

Given a dataset DC = {(X1, y1), . . . (XNC , yNC )} of
i.i.d. observations from a distribution P(Y,X), conformal
prediction (Angelopoulos & Bates, 2021; Shafer & Vovk,
2008) produces prediction regions with distribution-free
theoretical guarantees. A prediction region is a mapping
from observations of X to sets of possible values for Y . A
prediction region C is said to be marginally calibrated at the
1− α level if P(Y /∈ C(X)) ≤ α.

Split conformal is one popular version of conformal pre-
diction. In this approach, marginally calibrated regions C
are designed using a “score function” s(x, y). Intuitively,
the score function should have the quality that s(x, y) is
smaller when it is more reasonable to guess that Y = y
given the observation X = x. For example, if one has ac-
cess to a function f̂(x) which attempts to predict Y from
X , one might take s(x, y) = ∥f̂(x)− y∥. The score func-
tion is evaluated on each point of the dataset DC , called the
“calibration dataset,” yielding S = {s(x(j), y(j)}NC

j=1. Note
that the calibration dataset cannot be used to pick the score

function; if data is used to design the score function, it must
independent of DC . This is how “split conformal” gets its
name: in typical cases, data are split into two parts, one
used to design s and the other to perform calibration. We
then define q̂(α) as the ⌈(NC + 1)(1− α)⌉ /NC quantile of
S. For any future x, the set C(x) = {y | s(x, y) ≤ q̂(α)}
satisfies 1− α ≤ P(Y ∈ C(X)). This inequality is known
as the coverage guarantee, and it arises from the exchange-
ability of the score of a test point s(x′, y′) with S. Those
new to conformal prediction may be surprised to note that
the coverage guarantee holds regardless of the number of
samples NC used in calibration; conformal guarantees are
not asymptotic results.

As noted in Vovk’s tutorial (Shafer & Vovk, 2008), while
the coverage guarantee holds for any score function, differ-
ent score functions may lead to more or less informative
prediction regions. For example, the score s(x, y) = 1 leads
to the highly uninformative prediction region of all possible
values of Y . Predictive efficiency is one way to quantify in-
formativeness (Yang & Kuchibhotla, 2021; Sesia & Candès,
2020). It is defined as the inverse of the expected Lebesgue
measure of the prediction region, i.e. (E[|C(X)|])−1. Meth-
ods employing conformal prediction often seek to identify
prediction regions that are efficient as well as calibrated.

2.2. Variational Inference

Bayesian methods aim to sample the posterior distribu-
tion P(Y | X), typically using either MCMC or VI. VI
has arisen in popularity recently due to how well it lends
itself to amortization. Given an observation X , varia-
tional inference transforms the problem of posterior infer-
ence into an optimization problem by seeking a minimizer
φ∗(X) = argminφ D(qφ(Y )||P(Y | X)), where D is a
divergence and qφ is a member of a variational family of
distributions Q indexed by the free parameter φ. Normal-
izing flows have emerged as a particularly apt choice for
Q, as they are highly flexible and perform well empirically
(Rezende & Mohamed, 2015; Agrawal et al., 2020). Amor-
tized variational inference expands on this approach by train-
ing a neural network to approximate φ∗(X). This leads to a
variational posterior approximator q(Y | X) = qφ∗(X)(Y )
that can be rapidly computed for any value X .

2.3. Distributionally Robust Optimization

Distributionally robust optimization (DRO) is a broadly ap-
plied framework for framing problems under the ambiguity
of distributional specification. We specifically focus on
its application to stochastic optimization problems, as dis-
cussed in (Gao & Kleywegt, 2023; Bertsimas et al., 2019).
For a broader discussion of DRO, we refer readers to (Kuhn
et al., 2019). Formally, DRO problems are formulated with
the following min-max objective:
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Non-Parameteric Conformal Distributionally Robust Optimization

w∗ := inf
w∈W

sup
Q∈Bq(P)

EQ(C)

[
CTw

]
, (1)

where w are decision variables, C an unknown cost param-
eter, W a compact feasible region, and Bq(P) is a ball in
the space of probability distributions of radius q under some
prespecified probability metric around a base distribution
P . In practice, DRO is often specified using a Wasser-
stein probability metric. The p-Wasserstein distance for any
p ∈ [1,∞] between two probability Q and Q′ defined over
Rm is defined as:

W p
p (Q,Q′) = inf

π∈Π(Q,Q′)

∫
Rm×Rm

∥ξ − ξ
′
∥
p
π(dξ, dξ

′
)

where ∥·∥ denotes a norm on Rm and Π(Q,Q′) denotes the
set of all possible joint probability distributions of ξ and ξ

′

with marginal distributions Q and Q′, respectively.

In practice, the base distribution is often taken to simply
be an empirical distribution P̂M defined over M samples
drawn ci ∼ P , i.e. P̂M := 1

M

∑M
i=1 δci . In this case, Equa-

tion (1) lends itself to a convex reformulation, which can
then be solved efficiently using standard convex optimiza-
tion techniques, specifically as follows:

inf
w∈W

(
1

M

M∑
i=1

f(w⊤ci) + q̂ · Lip(f) · ||w||∗

)
, (2)

where Lip(f) denotes the Lipschitz constant of f and || · ||∗
denotes the dual norm to the p-norm with respect to which
the Wasserstein probability metric was defined.

2.4. Predict-Then-Optimize

Predict-then-optimize problems are formulated as

w∗(x) := min
w∈W

E[CTw | x], (3)

where x is an observed context. The predict-then-optimize
framework is so-called as the unknown C is typically first
predicted from observed contextual variables x. That is, a
predictive contextual distribution P(C | x) is assumed, with
respect to which the optimization formulation is defined. A
full review is presented in (Elmachtoub & Grigas, 2022).

3. CDPO
3.1. Problem Setup

We now propose CRDO, a method that produces predic-
tion regions over probability measures and thereby enables
distribution-free claims to be made downstream. We fo-
cus on settings of contextual DRO as in (Esteban-Pérez &
Morales, 2022), namely where we predict full distributions
Qφ(x)(C). We assume well-specified prior and likelihood

models, respectively P(C) and P(X | C), with complex
posteriors distributions P(C | X), for which amortized
variational inference is applied.

We additionally assume this setting lends itself to down-
stream stochastic optimization problems over P(C | X).
For example, x may be parametric properties of a car de-
sign, such as its chassis length or tire placement, and c the
predictions of a parametric fluids surrogate model, such as
Reynolds Averaged Navier Stokes. An objective of inter-
est in this case could then be an optimal control scheme
w∗, with the cost f corresponding to fuel efficiency. This
problem is formalized in the following section.

3.2. Score Function

Let c ∈ C, where (C, d) is a general metric space, and F be
the σ-field of C. While the standard predict-then-optimize
framework assumes a linear objective function cTw, we con-
sider general convex-concave objective functions f(w, c)
that are L-Lipschitz in c under the metric d for any fixed w.
With this generalization, the robust formulation of predict-
then-optimize can be stated as

w∗(x) := inf
w∈W

sup
Q̃∈U(x)

EQ̃[f(w,C)]

s.t. PX,PC
(PC ∈ U(X)) ≥ 1− α,

(4)

where U : X → M(F) is an uncertainty region predictor
over the space of probability measures on F . Exact solution
of this problem is intractable, as no practical methods exist
to optimize over the measure space U . For any fixed U , this
robust counterpart to the stochastic predict-then-optimize
problem produces a valid upper bound if we use the follow-
ing score function:

s(x,PC) = W1(Qφ(x)(C),PC), (5)

where W1 represents the 1-Wasserstein distance. To com-
pute the quantile q̂ of such a score over DC , we assume the
recovery of samples from the exact posterior P(C | x) for
a subset of x, namely via MCMC methods. That is, we
assume a dataset of the form {xi, {cPj }

NP
j=1} exists, where

each cPj ∼ P(C | xi).

From here, C(x) = {Q | s(x,Q) ≤ q̂(α)} has marginal
guarantees in the form PX,PC

(PC ∈ C(X)) ≥ 1 − α.
Notably, even computing W for multi-dimensional distri-
butions is a computationally challenging task; however, we
can use the well-known equivalence between computing
W1 and the Assignment Problem, which can be solved in
O(N3) with the Hungarian Algorithm (Peyré et al., 2019).

With this choice of score function, we can characterize the
suboptimality gap ∆(x,PC), defined to be:

inf
w∈W

sup
Q̃∈U(x)

EQ̃[f(w,C)]− inf
w∈W

EPC
[f(w,C)].
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We clearly see ∆(x,PC) ≥ 0 if PC ∈ U(x). This framing
makes clear the consequences of leveraging efficient predic-
tion regions with guaranteed coverage, shown below. The
full proof of this statement is deferred to Appendix A.

Lemma 3.1. Consider any f(w, c) that is L-Lipschitz
in c under the metric d for any fixed w. Assume
further that PX,PC

(PC ∈ U(X)) ≥ 1 − α with
supQ̃∈U(x) W1(Q̃,PC) = diam(U(x)). Then,

PX,PC
(∆(X,PC) ≤ L diam(U(X))) ≥ 1− α. (6)

Thus, 1 − α validity of the prediction region ensures the
result of the RO procedure is a valid bound with probabil-
ity 1 − α, and greater efficiency of the prediction region
translates to a tighter upper bound.

3.3. Optimization Algorithm

While the statement of Lemma 3.1 was made assuming the
exact 1-Wasserstein distance could be computed, we note
that this is untrue for any distribution of interest, for which
this quantity must be estimated with samples drawn respec-
tively from the distributions of interest. That is, to com-
pute Equation (5), samples {cQj }

MQ
j=1 ∼ Q(C) are drawn,

which, along with the corresponding samples coming from
the dataset, can be used to define corresponding empirical
distributions, namely as:

Q̂(C | xi) :=
1

MQ

MQ∑
j=1

δcQj
P̂(C | xi) :=

1

MP

MP∑
j=1

δcPj .

For simplicity of computation, we take MP = MQ = M .
Using these empirical distributions, we are then able to esti-
mate the 1-Wasserstein distance using the aforementioned
Hungarian Algorithm. That is, with such samples the dis-
tance is estimated as:

W1(Q̃(C | xi),P(C | xi)) (7)

≈ W1(Q̂(C | xi), P̂(C | xi)) = inf
π

M∑
j=1

∣∣∣cQj − cPπ(j)

∣∣∣ ,
where π : [1, ...,M ] → [1, ...,M ] is a permutation func-
tion. We note that this use of an estimate of 1-Wasserstein
distance requires a modification to the standard proof of cov-
erage paralleling that presented in (Feldman et al., 2023a).
We defer this discussion to future work.

We then fix α ∈ [0, 1] and take U(x) to be the 1− α predic-
tion region C(x). We now seek to solve Equation (4) for this
choice of U(x). The constraint of the original formulation,
therefore, is satisfied by virtue of taking U(x) := Bq̂(Q̂).
In turn, we are then left having to solve:

inf
w∈W

sup
Q̃∈Bq̂(Q̂)

EQ̃[f(w,C)]. (8)

We now leverage the insights of (Kuhn et al., 2019) to re-
frame this problem in a tractably solvable manner, as dis-
cussed extensively in the background section. That is, we
can reformulate this problem simply as a regularized opti-
mization problem in the following sense:

w∗(x) := inf
w∈W

(
1

M

M∑
i=1

f(w⊤cQi ) + q̂ · Lip(f) · ||w||∞),

where cQi are samples drawn from Qφ(x)(C). Note that this
problem lends itself to an efficient solution algorithm, which
we make use of in the experiments of the following section.

4. Experiment
We first study the fractional knapsack problem under various
complex contextual mappings:

inf
w∈W

sup
Q̃∈Bq̂(Q̂)

EQ̃[−w⊤C] (9)

s.t.w ∈ [0, 1]n, pTw ≤ B,PX,PC
(PC ∈ U(X)) ≥ 1− α.

where p ∈ Rn and B > 0. The distributions P(C) and
P(X | C) are taken to be those from various simulation-
based inference (SBI) benchmark tasks provided by (Her-
mans et al., 2021), chosen as they have P(C | X) with
complex structure. We specifically study Two Moons,
Lotka-Volterra, Gaussian Linear Uniform, Bernoulli GLM,
Susceptible-Infected-Recovered (SIR), and Gaussian Mix-
ture. K reference posteriors were provided by the au-
thors of (Hermans et al., 2021) for each task, specifically
using a modified rejection sampling scheme and taking
M = 10, 000. The variational family fit in all cases was a
normalizing spline flow.

Using the reframing of the previous section, we solved the
following equivalent formulation for the setups in question:

inf
w∈W

(
1

M

M∑
i=1

−w⊤cQi + q̂ · ||w||∞

)
(10)

s.t.w ∈ [0, 1]n, pTw ≤ B,PX,PC
(PC ∈ U(X)) ≥ 1− α,

where we note that f := id has a Lipschitz constant of
Lip(f) = 1. We then compute q̂ over the NC reference-
variational posterior pairs taking α = 0.9, where NC =
10 in (Hermans et al., 2021). Solving this problem, by
Lemma 3.1 then produces a valid upper bound on the nomi-
nal stochastic solution, as demonstrated in the following re-
sults. We specifically report the expected suboptimality gap
proportion, ∆% = EX [∆(X,C(X))/minw f(w,C(X))].
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Table 1. Suboptimality gaps (∆%) across tasks. Means and stan-
dard deviations are reported over 3 test samples.

Task ∆%

SLCP -0.562 (0.041)
Gaussian Linear Uniform -0.430 (0.048)

Gernoulli GLM -0.484 (0.169)
Gaussian Mixture -0.167 (0.024)
Gaussian Linear -0.805 (0.180)
Bernoulli GLM -0.456 (0.155)

5. Discussion
We have proposed a new methodology to formulate robust
predict-then-optimize problems with distributional misspec-
ification in a principled manner along with an approach to
solve such problems. This preliminary work suggests many
paths forward that would be of interest. The most immediate
is formally demonstrating that the coverage guarantees are
retained under estimation of the Wasserstein distance; a sim-
ilar result was established in (Feldman et al., 2023b). Addi-
tionally, comparing this to alternate data-driven approaches
beyond simple synthetic settings would be of interest.
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A. Prediction Region Validity Lemma
Lemma A.1. Consider any f(w, c) that is L-Lipschitz in c under the metric d for any fixed w. Assume further that
PX,PC

(PC ∈ U(X)) ≥ 1− α. Then,

PX,PC
(∆(X,PC) ≤ L diam(U(X))) ≥ 1− α. (11)

Proof. We consider the event of interest conditionally on a pair (x,PC) where PC ∈ U(x):

| inf
w∈W

sup
q∈U(x)

Eq[f(w,C)]− inf
w∈W

EPC
[f(w,C)]|

≤ sup
w∈W

| sup
q∈U(x)

Eq[f(w,C)]− EPC
[f(w,C)]|

≤ sup
w∈W

sup
q∈U(x)

|Eq[f(w,C)]− EPC
[f(w,C)]|

≤ sup
w∈W

sup
q∈U(x)

LW1(q,PC) = Ldiam(U(x)).

Since we have the assumption that P(C ∈ U(X)) ≥ 1− α, the result immediately follows.

B. Simulation-Based Inference Benchmarks
The benchmark tasks are a subset of those provided by (Lueckmann et al., 2021). For convenience, we provide brief
descriptions of the tasks curated by this library; however, a more comprehensive description of these tasks can be found in
their manuscript.

B.1. Gaussian Linear

10-dimensional Gaussian model with a Gaussian prior:

Prior: N (0, 0.1⊙ I)

Simulator: x | w ∼ N (x | w, 0.1⊙ I)

B.2. Gaussian Linear Uniform

10-dimensional Gaussian model with a uniform prior:

Prior: U(−1, 1)

Simulator: x | w ∼ N (x | w, 0.1⊙ I)

B.3. SLCP with Distractors

Simple Likelihood Complex Posterior (SLCP) with Distractors has uninformative dimensions in the observation over the
standard SLCP task:
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Prior: U(−3, 3)

Simulator: x | w = p(y) where p reorders
y with a fixed random order

y[1:8] ∼ N
([

w1

w2

]
,

[
w4

3 w2
3w

2
4 tanh(w5)

w2
3w

2
4 tanh(w5) w4

4

])
,

y9:100 ∼ 1

20

20∑
i=1

t2(µ
i,Σi), µi ∼ N (0, 152I),

Σi
j,k ∼ N (0, 9),Σi

j,j = 3ea, a ∼ N (0, 1),

B.4. Bernoulli GLM Raw

10-parameter GLM with Bernoulli observations and Gaussian prior. Observations are not sufficient statistics, unlike the
standard “Bernoulli GLM” task:

Prior: β ∼ N (0, 2), f ∼ N (0, (FTF )−1)

Fi,i−2 = 1, Fi,i−1 = −2

Fi,i = 1 +

√
i− 1

9
, Fi,j = 0; i ≤ j

Simulator: x(i) | w ∼ Bern(η(v(i)T f + β)),

η(⊙) = exp(⊙)/(1 + exp(⊙))

B.5. Gaussian Mixture

A mixture of two Gaussians, with one having a much broader covariance structure:

Prior: β ∼ U(−10, 10)

Simulator: x | w ∼ 0.5N (x | w, I) + 0.5N (x | w, .01I)

B.6. Two Moons

Task with a posterior that has both global (bimodal) and local (crescent-shaped) structure:

Prior: β ∼ U(−1, 1)

Simulator: x | w =[
r cos(α) + 0.25

r sin(α)

]
+

[
−|w1 + w2|/

√
2

(−w1 + w2)/
√
2

]
α ∼ U(−π/2, π/2), r ∼ N (0.1, 0.012)

B.7. SIR

Epidemiology model with S (susceptible), I (infected), and R (recovered). A contact rate β and mean recovery rate of γ are
used as follows:
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Prior: β ∼ LogNormal(log(0.4), 0.5),
γ ∼ LogNormal(log(1/8), 0.2)

Simulator: x = (x(i))10i=1;x
(i) | w ∼ Bin(1000,

I

N
),

where I is simulated from:
dS

dt
= −β

SI

N
,

dI

dt
= β

SI

N
− γI,

dR

dt
= γI

B.8. Lotka-Volterra

An ecological model commonly used in describing dynamics of competing species. w parameterizes this interaction as
w = (α, β, γ, δ):

Prior: α ∼ LogNormal(−.125, 0.5)

β ∼ LogNormal(−3, 0.5), γ ∼ LogNormal(−.125, 0.5)

δ ∼ LogNormal(−3, 0.5)

Simulator: x = (x(i))10i=1,

x1,i | w ∼ LogNormal(log(X), 0.1),

x2,i | w ∼ LogNormal(log(Y ), 0.1)

where X,Y is simulated from:
dX

dt
= αX − βXY,

dY

dt
= −γY + δXY

C. Training Details
All encoders were implemented in PyTorch (Paszke et al., 2019) with a Neural Spline Flow architecture. The NSF was
built using code from (Durkan et al., 2020). Specific architecture hyperparameter choices were taken to be the defaults
from (Durkan et al., 2020) and are available in the code. Optimization was done using Adam (Kingma & Ba, 2014) with a
learning rate of 10−3 over 5,000 training steps. Minibatches were drawn from the corresponding prior P(Y ) and simulator
P(X | Y ) as specified per task in the preceding section. Training these models required between 10 minutes and two hours
using an Nvidia RTX 2080 Ti GPUs for each of the SBI tasks.
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