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ABSTRACT

The plane wave basis is widely used in Galerkin approximation, due to its peri-
odicity and computational advantage, where the fast Fourier transform (FFT) can
be applied. However, since its spatial resolution is uniform, the number of basis
functions required can be excessive for problems with rapidly varying local features.
We propose an adaptive basis called flow-distorted plane wave (FDPW), where
the bijection of a normalizing flow is used to distort the problem domain, hence
achieving adaptive resolution. We apply FDPW to Kohn-Sham density functional
theory (DFT) calculations to both molecular and solid-state systems, demonstrating
improved speed and memory usage. 1

1 INTRODUCTION

Kohn–Sham density functional theory (DFT) Hohenberg & Kohn (1964); Kohn & Sham (1965) is
the workhorse for electronic structure in molecules and solids due to its optimal trade off between
efficiency and approximation power. Plane waves (PW) are attractive for their simplicity and FFT-
based efficiency, but their uniform spatial resolution can require many basis functions near nuclei or
other localized features; localized orbitals alleviate this but complicate periodic calculations.

We introduce flow-distorted plane waves (FDPW): a Galerkin basis obtained by composing a bijective,
periodic normalizing flow on the 3-torus with the usual PW coordinates. The resulting map adapts
resolution to the electronic structure while retaining PW algebra. A modified Bloch phase eik⊤f−1(r)

preserves k-point orthogonality and decoupling in periodic systems, and type-2 NUFFT enables
fast transforms on the distorted grid. FDPW applies to both non-periodic and periodic systems
within ab-initio Kohn–Sham DFT. Our contributions are: (a) Parameter-efficient adaptive PW:
represent the distortion with a small neural flow instead of PW coefficients as in prior distorted
PWs (DPW) Gygi (1993), greatly reducing parameters while maintaining spectral accuracy; (b)
Unified periodic/non-periodic formulation: extend DPW to arbitrary lattices via an affine cell map
and a Bloch phase that maintains k-space orthogonality and decoupling; (c) Practical gains: with
prescribed-density initialization and an NUFFT-based implementation, FDPW reaches target accuracy
with fewer basis functions than standard PWs on molecules and crystalline solids, yielding speed and
memory improvements.

2 RELATED WORKS

2.1 ADAPTIVE BASIS SET IN AB-INITIO ELECTRONIC STRUCTURE MODELING

The formulation of distorted plane waves was first introduced by François Gygi in Gygi (1993).
The calculation was done on the DPW basis, so mathematically it is quite similar to the regular
PW calculation in reciprocal space. Subsequently, it was applied to molecular dynamics (MD)
Gygi & Galli (1995). Later on, real-space formulations are proposed Gygi (1995); Zumbach &
Maschke (1983); Zumbach et al. (1996); Modine et al. (1997). Also related is the local-scaling
method Bokanowski & Grébert (1996). Recently, Lindsey and collaborators proposed a spectrally
accurate, “diagonal” adaptive basis for periodic systems Lindsey & Sharma (2024).

On the other hand, there have been efforts to use normalizing flow for orbital-free DFT de Camargo
et al. (2023) and solid-state calculation Wirnsberger et al. (2022).

2.2 NEURAL NETWORK ANSATZ IN QUANTUM SIMULATION

Neural VMC represents antisymmetric many-electron wavefunctions with expressive networks and
optimizes them by stochastic energy minimization. Examples include FermiNet and transformer/DP

1Our code will be open-sourced later.
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variants Pfau et al. (2020); von Glehn et al. (2023); Pham et al. (2023); Li et al. (2022); Gerard
et al. (2022). Neural quantum states further extend to lattice/continuous and periodic settings Vivas
et al. (2022); Zhao et al. (2023); Yoshioka et al. (2021); Pescia et al. (2022); Luo & Halverson
(2023).

3 PRELIMINARIES

3.1 SOLVING DFT WITH GALERKIN APPROXIMATION

Kohn-Sham DFT solves the following eigenvalue problem called the Kohn-Sham equation
Ĥnm[ρ] |ψn⟩ = εn |ψn⟩ where the Hamiltonian matrix is given by Hnm[ρ] = ⟨ψn|Ĥ[ρ]|ψm⟩ and
the eigenstates {ψn} are the ground-state orbitals. Under Galerkin approximation, the orbital ψn are
represented as the basis coefficients cn ∈ CNbasis where cnp = ⟨ϕp|ψn⟩, and the Hamiltonian operator
is represented with the matrix element Hpq[ρ] = ⟨ϕp|Ĥ[ρ]|ϕq⟩, the infinite-dimensional eigenvalue
problem is converted to the following finite-dimensional eigenvalue problem (see Appendix A.1)

Hnm[ρ] =
∑
pq

c∗npcmqHpq[ρ], (1)

which can be solved via either via Self-Consistent-Field (SCF) iteration or the direct minimization of
the Rayleigh quotient. We will use atomic units throughout this paper, where the length unit is Bohr
and the energy unit is Hartree (Ha) unless otherwise stated.

3.2 PERIODIC SYSTEM AND FFT
Solid-state physics deals with periodic structures that can be described by a Bravais lattice (Appendix
A.2). Different from the non-periodic/finite system, the orbital index becomes a composite (n,k)
where n is the band index, and k is a point in the Brillouin zone (BZ). Furthermore, the form of
the orbitals |ψnk⟩ are dictated by the Bloch’s theorem Bloch (1929) ψnk(r) = exp

[
ik⊤r

]
unk(r).

where unk(r) is a function periodic over the unit cell. When applying Galerkin approximation, one
expand the periodic part unk with a basis |ϕp⟩ periodic on the unit cell ΩA, and the basis coefficients
is cnk ∈ CNbasis where cnkp = ⟨ϕp|unk⟩, Nband is the number of bands and Nk is the number of
k-points. The density is determined by the periodic part unk only: ρ(r) =

∑
nk fnk|ψnk(r)|

2
=∑

nk fnk|unk(r)|
2. The KS eigenvalues εnk are also referred to as the band structure. For more

details, see Appendix A.3.

In PW basis, cnkG =
〈
eiG⊤r

∣∣unk〉 is the Fourier transform of unk(r), therefore we can evaluate
on uniform r-space grid {ri}Ni=1 (see Appendix D), via FFT: unk = N√

ΩA
FFT−1 {cnk} ∈ CNbasis

where unki = unk(ri) and N is the total FFT grid size, which arises since we use the default
numpy FFT normalization convention which multiplies 1/N for inverse FFT. The reciprocal vectors
Gn = B(n1 n2 n3)

⊤ are reciprocal lattice points where n is the lattice indices, and when we
G in subscript we mean indexing by the reciprocal lattice indices n = (n1, n2, n3). Similarly
km = B

(m1

M1

m2

M2

m3

M3

)
are k-points in BZ which is on the direct lattice, and subscript k means

indexing via the direct lattice index m = (m1,m2,m3).

3.3 DIFFERENTIABLE GEOMETRY

Differential geometry (DG) describes calculus on a smooth manifold. Smooth bijections g : Ξ→ X
are diffeomorphisms between manifolds. Pullbacks T ∗g, T ∗g−1 define ways to map covariant objects
between manifolds (e.g. densities, scalar fields), while pushforwards Tg, Tg−1 map contravariant
objects (e.g. vα∂α) between manifolds. The pullbacks and the pushforward usually carry a Jacobian
factor, except for 0-forms/scalar fields (e.g., potentials), whose pullback is simply function com-
position: T ∗f−1(ϕ) = ϕ ◦ f−1. For operators, we consider their action on objects. For example,
the pullback of the Laplacian ∆ϕ = ∇ ·∇ϕ acting on scalar fields ϕ under T ∗g−1 is the Laplace-
Beltrami operator |J |−1

∂α
(
|J |gαβ∂βϕ

)
(see Appendix E.6). For a quick recap on DG, see Appendix

E. We will use Einstein notation throughout this paper.

3.4 NORMALIZING FLOW ON CIRCLES S1

Normalizing flows is a technique for defining a complex distribution p from a simple distribution p0
by distorting its probability density via a bijection g : Ξ→ X:

p(x) = |J |−1
p0(g

−1(x)), ξ = g−1(x) ∼ p0. (2)

2
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where J = ∂xi

∂ξα is the Jacobian. To avoid ambiguity, throughout this paper the indices for ξ are in
Greek letters and indices for x are in Roman letters. In the language of DG, g is a diffeomorphism and
the above change of variable formula arises from the pullback on the density bundle T ∗f−1(dnξ) =

|J |−1
dnx, which ensures invariance of L1 norm.

As shown in Rezende et al. (2020), by fixing the last knot (x(K), y(K)) and gradient δ(K) to be the
same as the first knot (x(0), y(0)) and gradient δ(0), the Rational-quadratic spline (RQS) bijection
(see Appendix C) used in neural spline flow Durkan et al. (2019) becomes a bijection on the circle S1,
which can then be used to construct bijections on the D-dimensional torus TD ∼= (S1)D. We refer to
this modified RQS as the circular RQS.

3.5 DISTORTED PLANE WAVE

Distorted plane waves (DPW) were first proposed in Gygi (1993). Take a 3-torus Ω = [0, a]3 as
the unit cell, where a is the size of the fundamental domain. Given a bijection g : Ω → Ω on that
satisfies periodic boundary condition, DPW is the pullback of the plane wave in the parameter space
⟨ξ|G⟩ := ϕG(ξ) = 1√

Ω
exp

[
iG⊤ξ

]
to the physical space x:

⟨x|G⟩ := ϕG(x) =
1√
Ω
|J |−

1
2 exp

[
iG⊤g−1(x)

]
. (3)

The factor |J |−
1
2 arises naturally from the pullback on the half-density bundle T ∗f−1(|dnξ|

1
2 ) =

|J |−
1
2 |dnx|

1
2 , which ensures invariance of L2 norm (see Appendix E.9). Half-densities are L2

normalized functions like the wavefunctions and their basis, which are (0, 12 )-tensors. Furthermore,
the pullback on the half-density bundle is unitary, which means the orthonormality of ξ-space PW
still holds in x-space after the pullback (see proof at Appendix B), and we can write ⟨G|G′⟩ = δGG′

without ambiguity since the orthonormality does not depend on the coordinate system.

From section 3.2, under PW basis, the periodic part of the Bloch wave unk(r) can be evaluated on
a uniform r-space grid via FFT. Under the DPW basis, given a uniform ξ-space grid {ξi}Ni=1, we
have a distorted x-space grid {g(ξi)}Ni=1. Similarly, given DPW coefficients cnkG = ⟨ϕG|unk⟩,
we can evaluate unk(x) on the distorted grid via FFT: unk = N√

Ω
J− 1

2FFT−1(cnk) ∈ CNbasis where

unki = unk(g(ξi)) and J− 1
2

i = |J(ξi)|−
1
2 . Note that the density of DPW is generated both from the

distortion g, and the unitary transformation of basis via cnkG. The distortion effectively creates a
non-uniform spatial resolution, which can reduce the required basis set cutoff, since usually high-
frequency components are localized in the ground-state solution of solid-state systems. This brings
performance gain in both memory and speed. Furthermore, we will show later that DPW maintains
one of the main computational advantages of PW basis, that the matrix elements of the Laplacian
operator can be evaluated using Fast Fourier Transform (FFT).

3.6 NONUNIFORM FAST FOURIER TRANSFORM

A periodic function can be expanded as Fourier series F (x) =
∑

G F̃Ge
iG⊤x. Type-2 nonuniform

FFT (NUFFT) can be used to efficiently evaluate F (x) on nonuniform real space grids {xi} in
quasi–linear time by spreading coefficients to an oversampled uniform grid with a smooth kernel,
applying standard FFTs, then interpolating back. We use FINUFFT Barnett (2020), which provides
high–accuracy type–2 (uniform→ nonuniform) transforms with rigorous aliasing control, achieving
near O(M logM) complexity where M is the mesh size and near machine precision with modest
oversampling and kernel width. In our setting, type–2 NUFFT are used to evaluate periodic functions
on distorted grids xi = f(ξi).

4 FLOW DISTORTED PLANE WAVES

4.1 NON-CUBIC UNIT CELL

The original DPW was defined on cubic unit cells Ω = [−a2 ,
a
2 ]

3 with the distortion map g(ξ) = x.
Here we extended DPW to arbitrary unit cell ΩA with cell vector A by composing the following
linear transformation T : Ω→ ΩA to the bijection g : Ω→ Ω on the cubic unit cell Ω = [−π, π]3:

r = T (x) = A
x

2π
, x = T−1(r) = 2πA−1r = B⊤r. (4)

Then f = T ◦g is a bijection from the parameter space Ω to the physical space ΩA. Note that the cell

3
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vector and reciprocal cell vector of the parameter space cell Ω are 2πI and I respectively. From now on
we will write J = ∂ri

∂ξα , Jg =
∂xi

∂ξα . Since ∂ri

∂xj = |A|(2π)−3 = ΩA

Ω , we have |J | = ΩA

Ω |Jg|.

4.2 BLOCH PHASE FACTOR

The original DPW only considers finite systems. Here we extend DPW to periodic systems. First
note that in the physical space, the k-points kA depend on the cell vector A of the physical unit cell
ΩA. Naively applying Bloch’s theorem yields the following orbital

ψnk(r) = ei(kA)⊤r
∑
G

cnkGϕG(r) =
∑
G

cnkG
1√
Ω
|J |−

1
2 exp

[
iG⊤f−1(r) + i(kA)⊤r

]
. (5)

However, with this choice, the Hamiltonian basis with different kA are no longer automatically
orthogonal due to the distortion f , since if f is not identity, then〈

kA,G
∣∣k′A,G′〉 = 1

NkΩ

∫
NkΩ

d3ξ exp
[
i(G′ −G)ξ + i(k′A − kA)⊤f(ξ)

]
̸= δGG′δkk′ . (6)

The implication is that one would need to orthogonalize over kA as well, instead of only over bands,
which would be expensive. Therefore we propose to use the phase shift factor exp

[
ik⊤f−1(r)

]
instead, where k = B−1kA. Since g is a bijection over Ω, we have the decomposition g =
Id + gp, g

−1 = Id + (g−1)p where gp and (g−1)p are periodic over Ω. Let gp(ξ) = δξ, then
g(ξ) = ξ + δξ = x. Now

ξ = g−1(x) = x+ (g−1)p(x) ⇒ (g−1)p(x) = −δξ = −gp(ξ) = −gp(g−1(x)). (7)

Now for every point r in the physical unit cell ΩA, we have f−1(r) = g−1(B⊤r) = B⊤r +
(g−1)p(B

⊤r). This means that

exp
[
ik⊤f−1(r)

]
= exp

[
i(kA)⊤r

]
exp
[
ik⊤(g−1)p(B

⊤r)
]
. (8)

The periodic part exp
[
ik⊤(g−1)p(B

⊤r)
]

can be absorbed into the periodic part unkA , which amounts
to using a different basis to expand each unkA . So the orbitals still satisfy the Bloch theorem:

ψnk(r) = ei(k)⊤r
∑
G

cnkG

[
ϕG(r)eik⊤(g−1)p(B

⊤r)
]
=
∑
G

cnkAGϕG+k(r). (9)

And it is easy to see that now the Hamiltonian basis between different kA is again automatically
orthogonal. Furthermore, since this is still a valid parameterization of the Bloch state, we still have
k-space decoupling as described in section A.4. Due to the Bloch phase choice eik⊤f−1(r) with
k = B−1kA, all physical-space phase factors are handled by evaluating at f−1(r). Consequently,
for the remainder of the paper (unless stated otherwise), we drop the superscript and use G and k
exclusively for wavevectors defined on the cubic parameter cell Ω. Physical-space quantities appear
only through f or f−1.

4.3 BIJECTION ON TORUS

DPW is entirely defined by the bijection on tori g : Ω→ Ω. Flow distorted plane wave (FDPW) is a
DPW where the bijection gθ : Ω→ Ω is constructed with periodic flow on tori Ω. To create bijection
on the parameter space 3-torus Ω, we used the following autoregressive construction:

ξ′ =g(ξ;θ), θ = (θ1,θ2,θ3)

ξ′1 =g1(ξ1;θ1) = CircularFlow(ξ1;θ1)

ξ′2 =g2(ξ2; ξ
′
1,θ2) = CircularFlow(ξ2;MLP(FFN (ξ′1);θ2))

ξ′3 =g3(ξ3; ξ
′
1, ξ

′
2,θ3) = CircularFlow(ξ3;MLP(FFN ([ξ′1, ξ

′
2]);θ3))

(10)

where CircularFlow refers to a normalizing flow on S1, MLP refers to the multi-layer perceptron
conditioner, which maps previous dimensions to the flow parameter of the bijection for the current

dimension, and FFN is the fourier features FFN (x) =

[
cosx cos 2x . . . cos 2Nx
sinx sin 2x . . . sin 2Nx

]
which

makes the conditioner MLP a periodic function. In this paper, we use rational-quadratic splines for
CircularFlow (section 3.4). The conditioner uses the transformed variable ξ′ as input so that the

4
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map is invertible. The advantage of such an autoregressive construction is that the log determinant of
the Jacobian Jf can be calculated efficiently since it is triangular.

A single application of the above 3-torus bijection is not expressive enough to express arbitrary
distortion. For example, in equation 10, the bijection on ξ1 is unconditioned, so for all ξ, the
distortion on the first dimension ξ1 will be the same. To ensure sufficient conditioning, we need to
apply the above 3-torus bijection multiple times, and permute the dimensions after each bijection.
Therefore, we construct the 3-torus bijection as follows

gθ = gθ(L) ◦ · · · ◦ gθ(2) ◦ σ2 ◦ gθ(1) ◦ σ1 (11)

where σi is the permutation map on the input dimensions, where the permutation is taken from one of
the six permutations of the set {1, 2, 3}.

Finally, the affine transformation T (Equation 4) is applied so that f = T ◦ g is a bijection from Ω to
ΩA. We choose the base distribution p0 the uniform distribution p0(ξ) = 1

Ω = 1
8π3 , so the pullback

of p0 to physical space is given by

pθ(r) =
1

Ω
|J |−1

=
1

Ω

Ω

ΩA

∣∣Jg−1(r)
∣∣ = 1

ΩA
|Jg(ξ(r))|−1

. (12)

4.4 PRESCRIBED DENSITY AND INDUCED DISTORTION

Given an unit cell configuration {Zℓ, τℓ}ℓ, we use a prescribed density to induces a distortion with
grid density increasing at the rate of 1

r in the radial range [ aZℓ
, b
Zℓ

] from the nucleus of atom ℓ, while
keeping the grid density elsewhere approximately constant. The aim is to accelerate convergence in
terms of the number of basis required, since most of the high-frequency component comes from the
core orbitals. Following Lindsey & Sharma (2024), we used the following unnormalized prescribed
density:

ρprescribed(r) =
∑
ℓ

[
erf
(
Zℓ

aℓ
|r− τℓ|

)
− erf

(
Zℓ

bℓ
|r− τℓ|

)]
/|r− τℓ|+ c, (13)

where aℓ, bℓ, c are hyperparameters. To match the flow density pθ to the prescribed density, we
minimize the Kullback-Leibler (KL) divergence between the two, where we exploit the fact that pθ
can be sampled easily:

argmin
θ

KL(pθ || ρprescribed) = Epθ [log pθ(r)− log ρprescribed(r)]. (14)

To improve the regularity of the grid, we regularize the KL objective with the following elastic
energy, with an isochoric shear term and a smoothing term

Eelastic(θ) = µshearE[tr(giso) + tr
(
g−1

iso

)
− 2d] + µsmoothE[tr(g)], (15)

where gαβiso = gαβ |g|1/d and gαβ = (J−1)αi (J
−1)βi is the inverse metric tensor. Figure 4.4 shows a

323 distorted grid for diamond with µshear = µsmooth = 0.005, a = 0.1, b = 4, c = 0.01. We minimize
the objective with AdamW Loshchilov & Hutter (2019) with a learning rate of 0.0002.

4.5 METRIC-WEIGHTED DENSITY MATRIX

We define a metric-weighted version of unk, Snk(r) = |J |unk(r), whose evaluation on the distorted
grid is given by Snk = N√

Ω
FFT−1(cnk). Similarly, we define Sk,nm = S∗

nk(r)Smk(r), which is
the metric-weight version of the band-resolved density matrix Γk,nm(r) = u∗nk(r)umk(r). Since
the density is given by ρ(r) =

∑
k tr[FkΓk,nm(r)], we also have the metric-weighted density

S(r) = |J |ρ(r) =
∑

k tr[FkSk,nm(r)]. For local operator O(r), its matrix element is diagonal:
OG′G = δG′GO0G. Let O,Sk,nm ∈ CN are the evaluation of O(r) and Sk,nm(r) on the distorted
grid {ri = f(ξi)}Ni=1, then we have (see Appendix F)

⟨ψnk|Ô|ψmk⟩ ≃
Ω

N
S†
k,nmO = N [FFT−1(cnk)

∗ ⊙ FFT−1(cmk)]
†O. (16)

4.6 KINETIC OPERATOR

The kinetic energy is Ekin =
∑
nk fnk ⟨ψnk|T̂ |ψnk⟩ =

∑
G′G c∗nkG′cmkGTk,G′G, where T̂ =

− 1
2∆ in atomic unit. Unlike in PW basis, T̂ is not diagonal under FDPW basis (see section 3.3), and

we cannot use the Eq. 16 from the last section. However, we can still avoid forming the full Tk,G′G

5
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Figure 1: Distorted grid and prescribed density slices pθ (middle) vs. target ρprescribed/Z (bottom)
at selected z in reduced coordinates B⊤r. Partition Z is estimated with the flow pθ. Circle size
indicates proximity of nuclei to the shown xy-plane.

matrix and evaluate Ekin efficiently using FFT under the FDPW basis, as on the half-density bundle,
the pullback of ∆ has the following symmetric “minimal coupling” form∫

ΩA

(|J |−
1
2Φ∗)∆r(|J |−

1
2Ψ)d3r = −

∫
Ω

[(−A′
α + ∂α)Φ

∗]gαβ [(−A′
β + ∂β)Ψ] d3ξ, (17)

analogous to the Euclidean Laplacian after integration by parts (see Appendix E.9). HereA′
β = 1

2Γ
α
αβ

is a rescaled contracted connection (see Appendix E.6). When Φ(ξ) = Ψ(ξ) =
∑

G cGe
i(G+k)⊤ξ,

the above formula becomes a quadratic forms which can be evaluated with two inverse FFTs, and a
few point-wise multiplications on the distorted grid (see Appendix G for derivation):

⟨ψnk|T̂ |ψmk⟩ =
1

2

Ω

N

N∑
i=1

W∗
α,nk(ξi)g

αβ(ξi)Wβ,mk(ξi), (18)

where Wβ,nk(ξ) =
N√
Ω
[−A′

β(ξ)FFT
−1(cnk) + FFT−1(i(G+ k)cnk)] ∈ CNbasis .

4.7 POTENTIAL OPERATORS

Given two charge densities ρ1, ρ2 : ΩA → R+ that are periodic and charge-neutral (i.e. zero-mean
over ΩA), we write the Coulomb interaction energy between them as (ρ1|ρ2) =

∫
ΩA

Vρ1(r)ρ2(r) dr

where Vρ1(r) =
∫
R3

1
∥r−r′∥ρ1(r

′) dr′ is the Coulomb potential generated by ρ1, and ((ρ1)) =

(ρ1|ρ1). Denote the atomic point charge as ρatom(r) = −
∑
ℓ Zℓδ(r − τℓ). In periodic system, the

total classical potential energies 1
2 ((ρ+ ρatom)) is only conditionally convergent. We need to split it

into three convergent series that consist of Coulomb interaction between charge-neutral densities (see
Appendix J):

1

2
((ρ+ ρatom)) =

1

2
((ρ+ ρ+))︸ ︷︷ ︸

Hartree

+(ρ+ ρ+|ρatom + ρ−)︸ ︷︷ ︸
External

+
1

2
((ρatom + ρ−))︸ ︷︷ ︸

Nucleus

, (19)

where ρ±(r) = ∓Ztot/Ω are uniform background charges. In DFT, the exchange and interaction
are modelled by the XC functional EXC[ρ] =

∫
ΩA

εXC[ρ]ρ dr where εXC is the per particle energy
density, so the total potential energy is the above classical term plus EXC[ρ]. In PW basis, all these
energy terms have analytical formula as the Coulomb potential 1

r has analytic Fourier transform (see

Appendix H). For FDPW, we do not have an analytical formula for
〈
ϕG

∣∣∣V̂ 〉. If local XC functional is
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used, then the effective potential operator V̂eff[ρ] = VH [ρ] + Vext + εXC[ρ] is local. Let Veff[ρ] ∈ RN

be the evaluation of Veff[ρ] on the distorted grid {ri = f(ξi)}Ni=1, by eq. 16 we have

⟨ψnk|V̂eff[ρ]|ψmk⟩ ≃
Ω

N
S†
k,nmVeff[ρ]. (20)

All we need to do is to have convergent real-space expressions for VH [ρ] and Vext and evaluate them
on the distorted grid. Note that semi-local XC can also be computed similarly by applying the
pullback rule of the gradient ∇ operator.

4.8 HARTREE POTENTIAL

Since the scaled Coulomb kernel − 1
4πr is the Green’s function of the 3D Laplacian operator∇2, one

can solve for the Hartree potential VH via the Poisson equation with periodic boundary condition:

VH [ρ] := Vρ = ρ ⋆
1

r
⇒ −∇2VH [ρ] = 4π(ρ− ρ). (21)

We will suppress the ρ dependence of VH from now on when it is not ambiguous. Using the pullback
of Laplace-Beltrami operator |J |−1

∂α
(
|J |gαβ∂βϕ

)
on scalar field ϕ and multiply both side by |J |,

we get the conservative form Poisson equation in ξ-space:

−∂α
(
|J |gαβ∂βVH

)
= 4π|J |(ρ− ρ) = 4π(S − S), (22)

where S = |J |ρ is the metric-weighted density we defined in section 4.5. We apply Galerkin
approximation with FDPW basis to this equation, where VH is parameterized as its value over the
uniform ξ-space grid, and the matrix-vector-product−∂α

(
|J |gαβ∂βVH

)
can be performed in Fourier

space, since ⟨ϕG|∂αVH(ξi)⟩ = iGṼH(ξi) hence we parameterize VH where (VH)[i] = VH(ξi),
and ṼH = FFT(VH). Under this discretization the operator −∂α

(
|J |gαβ∂βVH

)
becomes a matrix-

vector-product in the Fourier space

−iGα ⊙ J⊙ gαβ ⊙ FFT−1[iGβ ⊙ ṼH ]. (23)

where ⊙ is Hadamard product, g,J are the evaluation of g, |J | on the distorted grid. We use a
preconditioned conjugate gradient (PCG) to solve for ṼH given ρ, where we used a diagonal spectral
preconditioner M−1(G) = (G̃αβGαGβ)

−1, where G̃αβ =
〈
sgαβ

〉
, s = and m = ⟨log |J |⟩. Here

⟨·⟩ means the average over all entries in the matrix.

4.8.1 EXTERNAL AND NUCLEUS POTENTIAL

The external potential Vext is generated by point charges ρatom, so

Vext(r) = ρatom ⋆
1

r
= −

∑
ℓ

Zℓ

∫
R3

dr′ δ(r′ − τℓ)
1

∥r− r′∥
= −

∑
ℓR

Zℓ
1

∥r− τℓ −R∥
. (24)

where R run over the Bravais lattice. Two issues arise: (i) ρatom is not neutral, so the direct energy
diverges; (ii) the real-space sum converges slowly with cell size. We use Ewald summation, splitting
V (r) = 1/r into a smooth long-range part Vη(r) = Z erf(ηr)/r and a short-range part with erfc(ηr)
decay, yielding (see Appendix L):

Vext(r) =
∑
ℓ

{
∑
R

[V − Vη](r− τℓ −R;Zℓ) +
∑
G̸=0

Ṽη(G;Zℓ)e
iG·(r−τℓ)}. (25)

This reduces cutoffs and allows local pseudopotentials by replacing V with Vloc in the real-space
term. In our experiments, we use the analytical norm-conserving (ANC) regularized potential Gygi
(2023). The long-range reciprocal sum is evaluated on distorted grids via type–2 NUFFT (section
3.6). The nucleus–nucleus energy Enuc has a similar form and also benefits from Ewald summation
for rapid convergence (Appendix M).

5 ALGORITHM

5.1 GROUND-STATE SEARCH

We solve the Kohn-Sham equation via direction minimization (see Appendix A.1) which minimizes
the Rayleigh quotient of the Kohn-Sham Hamiltonian matrixHk,nm(c,ρ) = ⟨ψnk|T̂ + V̂eff[ρ]|ψmk⟩,
where calculation of kinetic contribution follows section 4.6, the potential contribution follows section

7
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Algorithm 1 Ground-state search with FDPW
Input: cell {Zℓ, τℓ}ℓ, FFT size N ;
Initialize θ, w ∈ CNband×Nk×Nbasis , Hartree
VH ∈ RN , and uniform grid {ξi}Ni=1 on Ω;
Fit flow pθ to target ρtarget (eq. 14);
Compute and cache f(ξi), gαβ(ξi), A′

β(ξi),
and Vext(f(ξi));
repeat

minimize Lgs(w) (eq. 26) for 1 step;
PCG solve for VH (section 4.8) for niter

steps;
until converged

Algorithm 2 Band-structure evaluation with
FDPW

Input: cell {Zℓ, τℓ}ℓ, FFT size N , θ, VH ,
gαβ(ξi), A′

β(ξi), f(ξi), Vext(f(ξi)), con-
verged w⋆ from ground state search;
for ki in k-path do

Initialize wki
∈ CNband×Nbasis to w⋆ or

wki−1
if i > 1

repeat
minimize Lki

for 1 step (eq. 26)
until converged
diagonalize Hki,nm(cki ,ρ

⋆) to obtain
{ϵn(ki)}Nband

n=1
end for

4.7, and the evaluate of density on distorted grid ρ ∈ RNbasis is given by ρ(c) = J−1 tr(FkSk,nm(c))
follows section 4.5:

min
w∈CNband×Nk×Nbasis

Lgs(w) =
∑
k

tr[FkHk,nm(c,SG(ρ(c)))], c = QR(w) (26)

where a QR retraction for the orthonormal constraint ⟨ψnk|ψmk⟩ = c†nkcmk = δnm is used to
map the unconstrained parameter w to the FDPW coefficients c, and we put the stop gradient op
SG around ρ when computing V̂eff[ρ], which effectively converts the nonlinear eigenvalue problem
into a linear eigenvalue problem. Algorithm 1 describes the full routine where the convergence is
determined by checking whether the standard deviation of the total energy of the current ansatz is
below a set threshold. Note that the PCG solver can be amortized over the minimization of the main
objective, and in practice, setting niter = 1 suffices (see appendix R).

5.2 BAND STRUCTURE CALCULATION

Band structure calculation is carried out after the ground-state search. We follow the usual non-self-
consistent-field (NSCF) procedure where the Veff is fixed by fixing the density to the ground state
energy calculated using a coarse k-mesh. The Hamiltonian trace is minimized at each k along the
k-path with warm start, similar to Tianbo Li (2024). The loss is the same as eq. 26 except for that we
do not apply the occupation Fk and the Veff[ρ

⋆] uses the ground state density ρ⋆ computed from the
ground state search: Lk(wk) = tr[Hk,nm(QR(wk),ρ

⋆)], where wk ∈ CNband×Nbasis is the slice of w
at k. Algorithm 2 describes the full routine. The main objective is minimized with AdamW in both
the ground state search and band structure calculation.

5.3 GROUND-STATE SEARCH FOR FINITE SYSTEM

For finite systems, a cubic unit cell ΩA = [−a2 ,
a
2 ]

3 with large enough a is used to create a vacuum
around the target system. The ground state search algorithm is identical to the one described in
section 5.1, except for the following modification: (a) there is no k; (b) we use the free-space gauge
for all potentials, i.e. we explicitly set the G = 0 term for VH (Appendix O) and for Vext (Appendix
L); (c) we do not need to do Ewald summation for Enuc as in section 4.8.1.

6 EXPERIMENTS

We tested FDPW on both finite (molecular) and periodic systems. All calculations were done in a
single Nvidia A100 GPU with 40GB of memory. Hyperparameter setting is at Appendix P.

6.1 DIAMOND BAND STRUCTURE

We conduct a Γ-point only ground state search, followed by the NSCF band structure calculation as
outlined in section 5. Figure 2 compares band structures from PW and FDPW; both agree closely
along the tested k-path, while FDPW achieves similar accuracy at coarser grids. Table 6.1 further
summarizes convergence metrics. Crucially, the FDPW band gap converges to ∼ 3.05 eV with only
N = 64, while regular PW needs N = 128.

8
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Figure 2: Diamond band structures computed with standard PW (left) with N = 128 and FDPW
(right) with N = 64. FDPW preserves dispersion features while using a lower grid size N .

Table 1: Band structure calculation for diamond with LDA. All energies are in eV units.
Method N band gap L X Γ Speed (it/s) ↑ Mem. (GBs) ↓

PW

128 3.05869 7.51526 3.05869 4.79634 3.68 23.5
96 3.14795 7.61833 3.14795 4.77946 11.38 15.4
64 3.68519 7.72595 3.68519 4.88759 44.48 1.34
48 3.93325 7.73193 3.93325 4.83815 106.05 1.24
32 4.96448 8.17394 5.18815 4.96448 144.49 1.15

FDPW
64 3.04445 7.19263 3.04445 4.46958 32.78 1.20
48 3.01882 7.26194 3.01882 4.41584 108.86 1.41
32 4.22392 5.69283 6.95550 4.35785 157.92 1.17

6.2 FINITE SYSTEMS

We follow Gygi (1993) and use a cubic box of length a = 10 Bohr. We consider the CO (carbon
monoxide) molecule with geometry [[-1.065, 0.0, 0.0], [1.065, 0.0, 0.0]] and compute the ground
state with both PW and FDPW. PySCF Sun et al. (2017) was used to compute the reference value.
See Appendix Q for details.

7 CONCLUSION AND FUTURE WORKS

We introduced flow-distorted plane waves (FDPW): a PW basis composed with a bijective, periodic
normalizing flow on the 3-torus. FDPW adapts resolution where needed while preserving PW algebra,
k-point orthogonality via a modified Bloch phase, and FFT/NUFFT efficiency. We extended Gygi’s
DPW to arbitrary lattices and to both finite and periodic settings, and proposed a compact neural
parameterization with prescribed-density initialization and regularization. We have demonstrated that,
on both molecules and solids, FDPW can effectively lower the grid size required for convergence,
and being an all-electron method, core electrons can be modeled unlike other PW+pseudopotential
framework that only models valence electrons, and no predefined pseudopotential wave is needed
since everything can be computed on the fly.

Future work includes joint flow/SCF training, richer Hamiltonians (nonlocal PPs, spin, SOC, hybrid
XC), differentiable forces for geometry and MD, and scaling with improved preconditioning and
parallelism. Furthermore, the use of neural networks on an adaptive basis enables the training of a
“foundation model” for a basis set which can adapt to new geometry without the density fitting steps,
thus opening new vistas for ab-initio calculation at the mean-field level.

9
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A DENSITY FUNCTIONAL THEORY

A.1 SOLVING THE KS EQUATION

In Hohenberg, Kohn, and Sham’s density functional theory (DFT) Hohenberg & Kohn (1964); Kohn
& Sham (1965), The density of the ground state of an electronic Hamiltonian can be solved via an
auxiliary Kohn-Sham (KS) system:

min
γ̂
E[γ̂] = tr

[
γ̂Ê[ρ]

]
, Ê[ρ] = T̂ + V̂ext + εHxc[ρ], (27)

where γ̂ =
∑
n fn |ψn⟩⟨ψn| is the one-body reduced density matrix (1-RDM), fn ∈ {0, 1} is the

occupation number, |ψn⟩ are orthonormal one-body wavefunctions also known as orbitals, εHxc[ρ]
is the energy density of the Hartree and exchange-correlation (XC) energy, and the density ρ(r)
can be obtained by taking the trace in real space of 1-RDM: ρ(r) = ⟨r|γ̂|r⟩ =

∑
n fn|ψn(r)|

2.
Under a fixed occupation {fn}, the Lagrangian of the above constrained optimization problem is
L({ψ} , λ) = E[γ̂]−

∑
nm λnm [⟨ψn|ψm⟩ − δnm], whose stationary condition δL

δψ∗
n
= 0 yields the

Kohn-Sham equation (KS)

Ĥ[ρ] |ψn⟩ = εn |ψn⟩ . (28)

where εn are called the KS eigenvalues.

Galerkin approximation can be applied to convert the above infinite-dimensional problem to a
finite-dimensional problem. Given a truncated complete basis {|ϕp⟩}Nbasis

p=1 of size Nbasis, the orbital
ψn can be represented as the basis coefficients cn ∈ CNbasis where cnp = ⟨ϕp|ψn⟩. Any operator
Ô can be represented as a matrix Opq = ⟨ϕp|Ô|ϕq⟩, and its action on some orbital ψn can be
calculated as a matrix vector product Ô |ψn⟩ ≈

∑
q Opqcnq. Specifically, the Hamiltonian matrix

Hnm[ρ] = ⟨ψn|Ĥ[ρ]|ψm⟩ can be computed from the matrix element Hpq[ρ] = ⟨ϕp|Ĥ[ρ]|ϕq⟩
as

Hnm[ρ] =
∑
pq

c∗npcmqHpq[ρ]. (29)

Usually, the variational problem of minimizing the DFT Lagrangian is solved via applying the Self-
Consistent-Field (SCF) iteration. SCF loop iterates between diagonalizing the current Hamiltonian
matrixHnm[ρ(t)] 7→ {ψ(t)

n } and update the Hamiltonain with the new density from the eigenfunctions
of last step {ψ(t)

n } 7→ ρ(t+1) 7→ Hnm[ρ(t+1)].

Alternatively, one can directly minimize the DFT Lagrangian. The problem can be further transformed
into an unconstrained optimization of the total energy Eel as in Li et al. (2023), where the orthogonal
constraints are handled by the QR retraction to the Stiefel manifold

C = Qfactor(w) (30)

where orthogonal c is obtained from a skinny QR decomposition of an unconstrained w.
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A.2 BRAVAIS LATTICE

A 3D Bravais lattice is the tilling of the parallelepiped Ω known as the unit cell, formed by cell vectors
a1,a2,a3 ∈ R3. We can write the cell vectors more compactly as a matrix A = (a1 a2 a3).
Topologically, the unit cell is a 3-torus due to the periodic boundary condition. The Bravais lattice
can be identified with the set of points

Rm =
∑
d

mdad, md ∈ Z. (31)

One can construct 3D periodic functions by specifying their value over the unit cell. Such functions
have Fourier series expansion under the PW basis 1√

ΩA
exp

[
iG⊤r

]
where the wavevector G lies on

the reciprocal lattice formed by the reciprocal cell vectors bi:

Gn =
∑
d

ndbd, bi =
2π

ΩA
(aj × ak). (32)

Again, we can write the reciprocal cell vectors compactly as B = (b1 b2 b3), and we have
B = 2πA−⊤. PW can be identified with a uniform grid of sample points of size N1×N2×N3 over
the unit cell ΩA

rn =
∑
d

nd
Nd

ad, nd ∈ [−⌊(Nd − 1)/2⌋, ⌊Nd/2⌋] (33)

since a periodic function can be fully specified over its values on {rn} if under frequency representa-
tion, its wavevectors lie on the reciprocal lattice of size N = N1 ×N2 ×N3.

A.3 MODELING SOLID-STATE PHYSICS WITH DFT
A crystal can be specified by the cell vectors ai of the unit cell, and the atomic configuration {Zℓ, τℓ}ℓ
within the unit cell, where Zℓ is the charge of atom ℓ and τℓ is the coordinate. To capture interaction
between different translated copies of the unit cells, a finite Bravais lattice with periodic boundary
conditions (PBC) is typically used. The finite Bravais lattice is commonly referred to as the simulation
cell, which we denote as NkΩA where ΩA is the unit cell.

Different from molecular systems, in periodic systems, the potential is periodic since at each location
r within the unit cell, potentials from all translated unit cells are felt. In other words, the tiling
periodizes the non-periodic atomic Hartree and external potential. Bloch theorem Bloch (1929) states
that, for periodic potential V (r + Rm) = V (r), the eigenstates of the Hamiltonian Ĥ takes the
form

ψnk(r) = exp
[
ik⊤r

]
unk(r), k =

∑
d

kdbd (34)

where n is the band index and unk is a function periodic over the unit cell. Note that the density
only depends on unk, since ρ(r) =

∑
nk fnk|ψnk(r)|

2
=
∑
nk fnk|unk(r)|

2. To make sure that
ψnk is periodic over the simulation cell of size M1 ×M2 ×M3, the k-points k can only take values
from the lattice kd = md/Md,md ∈ Z. Furthermore, k within the first Brillouin zone (FBZ), i.e.
mi ∈ [−⌊(Mi − 1)/2⌋, ⌊Mi/2⌋], gives all unique eigenvalues due to the periodicity in the reciprocal
space. All k within FBZ form a reciprocal lattice with size Nk =M1×M2×M3. Thus, for periodic
systems, the KS equation becomes

Ĥ[ρ]ψnk = ϵnkψnk. (35)

For each n, there are distinct energy levels for each k, and the collection ϵnk for fixed n forms a line
that is commonly referred to as the n-th band. Analogous to the HOMO-LUMO gap in molecular
systems, the narrowest gap between the highest occupied band and the lowest unoccupied band is
referred to as the band gap, which is an important indicator of the electronic conductivity of the
system.

With Galerkin approximation, we expand the periodic part of the Bloch state unk with a periodic
basis |ϕn⟩ on the unit cell ΩA, and we have coefficients cnkn = ⟨ϕn|unk⟩. The basis used for the
Hamiltonian becomes |k, n⟩ =

∣∣∣eik⊤rϕn

〉
which is defined on the simulation cell NkΩA, and the

Hamiltonian matrix H[ρ]kn,k′m := ⟨k, n|Ĥ[ρ]|k′,m⟩ has size (Nk ×Nband)
2.
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A.4 K-SPACE DECOUPLING

With the PW basis |k,G⟩ = ei(k+G)⊤r, equation 35 can be decoupled into |K| independent equations
where K is the k-path, since the Hamiltonian is block diagonal in k. Firstly, the kinetic operator is
diagonal in the PW basis. Since PW basis are orthogonal in both G and k index, i.e. ⟨k′,G′|k,G⟩ =
δkk′δGG′ , we have

Tk′,G′;k,G = ⟨k′,G′|T̂ |k,G⟩ = ⟨k′,G′|
[
1

2
∥k+G∥2 |k,G⟩

]
=

1

2
∥k+G∥2δkk′δGG′ . (36)

The potential operator is block diagonal in k. Since V̂eff is periodic, it can be expanded as V̂eff(r) =∑
G VGe

iG⊤r. Then

⟨k′,G′|V̂eff|k,G⟩ =
∑
G′′

VG′′
1

ΩA

∫
ΩA

dr exp[i(G′′ − k′ −G′ + k+G)] (37)

which must be zero for k ̸= k′. Now, since the Hamiltonian is block diagonal in k, its spectrum
consists of the spectrum of each k block, and we can solve each k block separately.

This k-space decoupling actually holds for Hamiltonian basis |k, α⟩ built from valid periodic basis
|ϕα⟩ for unk in general, and is not dependent on the basis used. Firstly, the potential operator V̂eff is
local, so it commutes with eik⊤r, and therefore there are no coupling between different k. Secondly,
the kinetic energy is invariant under a shift over the lattice vector R, so we have

Tk′α′;kα =
1

Nk

∫
NkΩA

drϕk′,α′(r)∗[−1

2
∇2]ϕk,α(r)

T ′
k′α′;kα =

1

Nk

∫
NkΩA+R

drϕk′,α′(r−R)∗[−1

2
∇2]ϕk,α(r−R)

=
1

Nk

∫
NkΩA

dr eik′⊤Rϕk′,α′(r)∗[−1

2
∇2]e−ik⊤Rϕk,α(r)

=ei(k′−k)⊤RTk′α′;kα.

(38)

Now since T = T ′ due to the translational invariance, Tk′α′;kα and ei(k′−k)⊤R ̸= 0 for k ̸= k′,
Tk′α′;kα must be zero for k ̸= k′ which means that T̂ is block diagonal in k.

For each diagonal block of the Hamiltonian, define

Ĥk[ρ] := e−ikrĤ[ρ]eikr = e−ikr(−1

2
∇2 + V̂eff[ρ])e

ikr = −1

2
(ik+∇)2 + V̂eff[ρ] (39)

where the product rule of Laplacian is used:

∇2
(
eik⊤rf

)
= eik⊤r(∇2f − 2ik ·∇f − ∥k∥2f) (40)

Now substitute the Bloch theorem 34 into the periodic KS equation (35), we get the following
eigenvalue problem

Ĥk[ρ]unk = ϵnkunk, (41)

and the Hamiltonian matrix is discretized as

Hknm[ρ] = ⟨unk|Ĥk[ρ]|umk⟩ =
∑
αβ

c∗nkαcmkβHk,αβ [ρ]. (42)

B ORTHONORMALITY OF THE DPW BASIS

⟨G|G′⟩ = 1

Ω

∫
ΩA

(∣∣∇f−1(r)
∣∣dr) exp [i(G′ −G)f−1(r)

]
=

1

Ω

∫
Ω

d3ξ exp [i(G′ −G)ξ] = δGG′ .

(43)
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C RATIONAL-QUADRATIC SPLINE

Neural spline flow Durkan et al. (2019) creates a monotonic bijection g on an 1D interval by dividing
the interval to K bins with K + 1 knots {x(k)}Kk=0 where the k-th knot has height y(k) where
y(k) < y(k+1), and putting a rational-quadratic g(k) in each bin. The neighboring rational-quadratics
connect smoothly at the knots with learnable slope δ(k). g(k) interpolate the knots smoothly since
d
dxg

(k)(0) = δ(k) and d
dxg

(k)(1) = δ(k+1). Furthermore, its inverse can be computed easily. The
bijection constructed from these K rational-quadratic functions is called the rational-quadratic spline
(RQS).

For a given input x in the k-th bin, denotes its relative coordinate within the bin as χ(x) = (x −
x(k))/w(k), and the slope between the k-th and k+1-th knot as s(k) = (y(k+1) − y(k))/w(k), where
w(k) = x(k+1) − x(k) is the bin width, the rational-quadratic is defined as

f (k)(χ) = y(k) +
(y(k+1) − y(k))[s(k)χ2 + δ(k)χ(1− χ)]
s(k) + [δ(k+1) + δ(k) − 2s(k)]χ(1− χ)

(44)

Next, let’s derive this form from scratch. To create quadratic interpolation between knots (x(k), y(k))
and (x(k+1), y(k+1)) , one can define

α(k)(χ) = y(k+1)χ2 + y(k)(1− χ)2 (45)

However, the gradient of the above function is given by

d

dx
α(k)(χ) =

2

w(k)
[y(k+1)χ− y(k)(1− χ)]. (46)

At knot points, the gradients are fixed to 2y(k+1)/w(k) and −2y(k)/w(k). To be able to specify both
the value and the first derivative at each knot point for the spline, Gregory and Delbourgo Gregory &
Delbourgo (1982) proposed the following rational-quadratic f (k) where one could specify the first
derivative at the knots δ(k), δ(k+1):

α(k)(χ) =s(k)[y(k+1)χ2 + y(k)(1− χ)2] + [y(k)δ(k+1) + y(k+1)δ(k)]χ(1− χ)
β(k)(χ) =s(k)[χ2 + (1− χ)2] + [δ(k+1) + δ(k)]χ(1− χ)

f (k)(χ) =
α(k)(χ)

β(k)(χ)
.

(47)

f (k) is still a quadratic interpolation since f (k)(0) = y(k) and f (k)(1) = y(k+1). Note that

d

dx
α(k)(χ) =(x− x(k))2[y(k+1)χ− y(k)(1− χ)] + [y(k)δ(k+1) + y(k+1)δ(k)](1− 2χ)

d

dx
β(k)(χ) =(x− x(k))2[χ− (1− χ)] + [δ(k+1) + δ(k)](1− 2χ)

(48)

therefore

γ(k)(χ) =β(k)(χ)
d

dx
α(k)(χ)− α(k)(χ)

d

dx
β(k)(χ) = (s(k))2[δ(k+1)χ2 + 2s(k)χ(1− χ) + δ(k)(1− χ)2]

d

dx
f (k)(χ) =γ(k)(χ)/[β(k)(χ)]2.

(49)

It’s easy to verify that d
dxf

(k)(0) = δ(k) and d
dxf

(k)(1) = δ(k+1). Inverting the function f (k) with
given output y amounts to solving the quadratic equation:

a(k)(χ)− yβ(k)(χ) = 0 (50)

whose solution is given by the quadratic formula

x =
1

2a
[−b+

√
b2 − 4ac] (51)

where a, b, c are the coefficients when the quadratic equation is written in the standard form of
ax2 + bx+ c = 0.
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D GRIDS

To generate grids used in computation, i.e., rn,Gn (see section A.2), we used the fftfreq
function from JAX, which uses the zero-first convention, i.e., it always puts the zero element in
the first position. Specifically, for both rn and Gn, the fftfreq function generates the ni values
arranged as [0, . . . , ⌊Ni/2⌋,−⌊(Ni − 1)/2⌋, . . . ,−1]. In this work, we always use cubic grids, so
N1 = N2 = N3 = N , and the total grid size is N3. Note that for density calculation, we need to
double the grid size due to frequency doubling, so the total grid size is (2N)3. We will note the
(2N)3 grid sizes explicitly to reduce the complexity of the main text.

E DIFFERENTIAL GEOMETRY

We will use Einstein notation where lower indices are covariant, upper indices are contravariant, and
repeated indices are summed implicitly.

E.1 CURVILINEAR COORDINATES OVER A RIEMANNIAN MANIFOLD

We work with two n-tori M ≃ Tn = Rn/Zn and N ≃ Tn = Rn/Zn. Fix fundamental domains
U ⊂ M , V ⊂ N and coordinate charts ξ : U → Ω, x : V → Ω,Ω = [0, 1]n, obtained from the
quotient identification (periodic boundary conditions on ∂Ω). Given a diffeomorphism f :M → N ,
its coordinate representation is f̃ := x ◦ f ◦ ξ−1 : Ω −→ Ω. We identify points on the manifold
with their coordinates, and the diffeomorphism f with its coordinate representation f̃ , so we write
x = f(ξ).

U ⊂M V ⊂ N

Ω ⊂ Rn Ω ⊂ Rn

f

ξ x

x◦f◦ξ−1

Torus N represents the physical space and coordinate x is the usual Cartesian coordinate, while M is
a parameter torus where ξ is a curvilinear coordinate.

E.2 FIBER BUNDLE

A smooth fiber bundle E over a manifold M is a larger manifold that comes with a continuous
surjection π : E →M . π attaches extra data from the fiber manifold F to every point on the base
manifold M , and E is locally a product space: at each open neighbourhood U ⊂ M , the fiber is
attached to the base manifold M via the local trivialization ϕU : π−1(U)

∼=−−→ U × F . On overlaps,
trivializations are related by transition functions gUV : U ∩ V → G where the structure group G
can induce nontrivial topology. Since tori are oriented, most fiber bundles on them are trivial, i.e.,
E ∼=M × F globally.

A smooth section s : M → E (for trivial bundle s : M → M × F ) chooses an instance from the
fiber F for every point on the manifold M , and it satisfies π ◦ s = idM . Intuitively, it is the inverse
of π.

E.3 PUSHFORWARDS AND PULLBACKS

For tori, the tangent bundle is a trivial vector bundle TM ∼=M ×Rn, and the fibers at point x = f(ξ)
are the tangent spaces TξM,TxN . Due to triviality, we have global bases (coordinate frames) for
TM and TN , which are the sets of partial derivative operators { ∂

∂ξα ≡ ∂α} and
{

∂
∂xi ≡ ∂i

}
. To

avoid ambiguity, the indices for ξ are in Greek letters and indices for x are in Roman letters. Any
vector field on N is a smooth section of TN , which can be expanded using the basis v = vi∂i, and
similarly for TM .

At point x = f(ξ), the pushforward Tf : TξM → TxN is the linearized f which sends vectors from
TξM to TxN using the chain rule:

Tf(∂α) =
∂xi

∂ξα
∂

∂xi
= J iα∂i. (52)

So the component of Tf(∂α) is the α-th column of the Jacobian J iα. Since the Jacobian is invertible,
we also have the pushforward of the inverse Tf−1(∂i) = (J−1)αi ∂α.
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The cotangent bundles is also trivial for tori: T ∗M ∼= M × (Rn)∗, where (Rn)∗ is the dual space
of Rn. The bases of the cotangent spaces T ∗

ξM,T ∗
rN are the linear functionals {dξα : TξM → R},{

dxi : TrN → R
}

. It is defined as dxi(∂j) = δij ,dξ
α(∂β) = δαβ , so for v = vi∂i ∈ TxN we have

dxi(v) = vi. The cotangent basis is used to expand any covectors, for example, the differential of a
scalar field ϕ: dϕ = ∂iϕ dx

i. The pullback T ∗f sends covectors from T ∗
xN to T ∗

ξM , again using the
chain rule:

T ∗f(dxi) = d
(
xi ◦ f

)
=
∂xi

∂ξα
dξα = J iα dξ

α . (53)

To simplify notation, we will make pushforward and pullback implicit from now on:

∂α = J iα∂i, dxi = J iα dξ
α . (54)

E.4 RIEMANNIAN METRIC

The Riemannian metric in the x coordinate g : TxN × TxN → R is a (0, 2)-tensor that defines the
inner product

g(v,w) := (gijdx
i ⊗ dxj)(v,w) = gijdx

i(v)dxj(w), (55)
where ⊗ is tensor product and gij = gji. We will use the standard inner product notation from now
on, where g is implicit: v · w = g(v,w). The tensor component is given by gij = ∂i · ∂j . The
inverse metric has tensor component gij defined as gikgkj = δji .

The metric tensor also allows us to raise and lower indices of tensor components, which is equivalent
to mapping between the tangent bundle TN and the cotangent bundle T ∗N , through the musical
isomorphism ♯ and ♭: ∂i := (dxi)♯. For differential dϕ, its Riesz representation is given by the
(contravariant) gradient, grad ϕ := (dϕ)♯ = (∂iϕdx

i)♯ = ∇iϕ ∂i, whose components is given by
∇iϕ = gij∂jϕ. One can easily verify this: for any v ∈ TxN we have (grad ϕ) · v = gij∂jϕ · v =
gijdxi(∂jϕ)dx

j(v) = ∂iϕdx
i(v).

On the manifold (N, x), we take the standard Euclidean metric gij = δij since N represents the
physical space, and the n-tori Tn are flat. In curvilinear coordinate ξα, the metric tensor component
can be computed using the pushforward

gαβ = ∂α · ∂β = (J iα∂i) · (J
j
β∂j) = J iαJ

j
βδij = Jα · Jβ . (56)

Note that gαβ = (J−1)α · (J−1)β , and ∂α is the α-th row of the inverse Jacobian:

∂α = gαγ∂γ = [(J−1)α · (J−1)γ ]Jγ = (J−1)α. (57)

E.5 COVARIANT DERIVATIVES

For scalar field ϕ, we can get a covariant derivative from the gradient through musical isomorphism:
∇ϕ = (grad ϕ)♭. To generalize the covariant derivative to vector fields, we also need to consider the
infinitesimal change in the coordinate frame. Hence ∇ is uniquely defined through the connection,
i.e. its action on the tangent space basis: ∇i∂j = Γkij∂k, where Γkij is called the Christoffel symbols.
Given Γkij , the component of the covariant derivative for any vector field v = vi∂i is given by

(∇iv)
k = ∂iv

k + Γkijv
j . (58)

which can be thought of as applying the chain rule to the product of a vector component and the
basis.

We can also take the covariant derivative along a general direction w: ∇w = wi∇i. Furthermore, ∇
provides a way to measure parallel lines in curve space: along a C1 curve γ(t), a vector field v is
parallel if and only if it satisfies the ODE which says the variation of vector components vk in the
direction of tangent γ̇ is zero:

∇γ̇v
k(t) = ∇ṙi∂iv

k(t) = ṙi(∂iv
k + Γkijv

j) = 0. (59)

Without extra constraints, Γkij can take an arbitrary value, so there are many possible connections.
However, the fundamental theorem of Riemannian geometry states that there is a unique affine
connection called the Levi-Civita connection that is torsion-free:

T (∂i, ∂j) = ∇i∂j −∇j∂i − [∂i, ∂j ] = 0, (60)
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and metric-compatible: ∇g = 0. For coordinate frames, the Lie bracket vanish [∂i, ∂j ] = 0 so the
torsion-free condition implies the symmetry

∇i∂j = ∇j∂i ⇒ Γkij = Γkji. (61)

For the metric compatibility condition, expanding the tensor component of ∇g with the Leibniz rule
gives

0 = ∇kgij = ∂kgij − g(∇k∂i, ∂j)− g(∂i,∇k∂j) = ∂kgij − Γℓkigℓj − Γℓkjgiℓ. (62)

Since gℓj lowers the indices we can write Γjki := Γℓkigℓj . Cyclically permuting the indices yields
two more equalities

∂jgki = Γijk + Γkji, ∂igjk = Γkij + Γjik. (63)

Combine the three equalities from metric compatibility and use the symmetry Γkij = Γkji to yield a
formula that computes the Levi-Civita connection Γkij from the metric tensor gij :

Γℓkj =
1

2
gℓi(∂kgij + ∂igjk − ∂jgik). (64)

In x coordinate, gij is the constant δij so ∂kgij = 0, and therefore Γkij = 0 everywhere, which means
the covariant derivatives are just the normal gradient. But in ξ coordinate Γγαβ is non-trivial since
gαβ is given by the Jacobian of the diffeomorphism f , which is parameterized by a normalizing flow.
From now on, we refer to the Levi-Civita connection as simply the connection.

E.6 DIVERGENCE AND THE LAPLACE-BELTRAMI OPERATOR

Just like the connection Γkij defines the covariant derivative ∇, the contracted connection Aβ := Γααβ
defines the divergence operator ∇· in ξ coordinate using the definition (Eq. 58):

∇ · v = (∇αv)
α = ∂αv

α + Γααβv
β = (∂α +Aα)v

α. (65)

Contracting eq. 62 with gij yields

gij∂kgij = Γℓkiδ
i
ℓ + Γℓkjδ

j
ℓ = 2Γℓkℓ = 2Ak. (66)

ThereforeAβ = 1
2g
αγ∂βgαγ . Note that the determinants of the metric tensor and the Jacobians are re-

lated as |g|
1
2 = |J |. For invertible matrixM , Jacobi formula states that ∂β |M | = |M | tr

(
M−1∂βM

)
,

so we have ∂β |J | = ∂β |g|
1
2 = 1

2 |g|
− 1

2 tr
(
g−1∂βg

)
= 1

2 |J |g
αγ∂βgγα, and:

∂β log |J | = |J |−1
∂β |J | =

1

2
gαγ∂βgγα = Aβ . (67)

We see that Aβ is also the differential of the log determinant of the Jacobian (LDJ), which can be
easily computed when the diffeomorphism f is a normalizing flow.

The Laplace-Beltrami operator ∆ is the divergence of the gradient. For scalar field ϕ we have

∆ϕ = ∇ · (grad ϕ) =(∂α +Aα)(g
αβ∂βϕ)

=(∂αg
αβ)∂βϕ+ gαβ∂α∂βϕ+ (|J |−1

∂α|J |)gαβ∂βϕ
=|J |−1

[|J |(∂αgαβ)∂βϕ+ |J |gαβ(∂α∂βϕ) + gαβ∂βϕ (∂α|J |)]
=|J |−1

∂α
(
|J |gαβ∂βϕ

)
.

(68)

E.7 DIFFERENTIAL FORMS AND INTEGRATION

Differential n-forms are multilinear functionals that measure signed n-dimensional volume, which
are the integrands on a manifold. Any n-form ω can be represented with the basis dnξ where

ω = ω1...nd
nξ, dnξ :=

n∧
α=1

dξα =
∑

σ∈P (n)

sgn(σ)
n⊗
α=1

dξα. (69)

Here P is the permutation group over {1, . . . , n}, and ∧ is the exterior product, which is the
antisymmetrized tensor product. For example, the 2-form basis d2ξ = dξ1 ⊗ dξ2 − dξ2 ⊗ dξ1
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measures the signed area. We see that any 2-form component ωij must be antisymmetric as well, i.e.
ωij = −ωji, and this is true for n-form component in general. The collection of n-form spaces over
the manifold M is ∧n(T ∗M) = {ω1...n ∧nα=1 dξ

α | ξ ∈M}, n-form bundle, which is a real line
bundle. From the definition, it is easy to see that the pullback rule of a 1-form (eq. 53) generalizes to
n-form as

T ∗f(dnx) = |J |dnξ, T ∗f−1(dnξ) = |J |−1
dnx. (70)

Integration on manifolds is defined as pullback to Euclidean space Rn∫
M

ω :=

∫
U

T ∗x(ω). (71)

where x : U ⊂ Rn →M is a coordinate chart. In our case, coordinate x is identified with the points
on the physical tori N , so for a top form ρdnx, we have∫

Ω

ρ(x) dnx =

∫
f−1(Ω)

T ∗f(ρ(x) dnx) =

∫
f−1(Ω)

|J |ρ(ξ)dnξ, (72)

and similarly ∫
Ω

ρ(ξ) dnξ =

∫
f(Ω)

T ∗f−1(ρ(ξ) dnξ) =

∫
f(Ω)

|J |−1
ρ(x)dnx, (73)

where J iα = ∂xi

∂ξα , which is the usual change of variable formula.

E.8 WEIGHTED IBP
Suppose u,w are scalar fields and v is a vector field, and u,w,v are periodic over the cell Ω. We can
define a weighted divergence as w−1∂α(wv

α). By the product rule

∂α(wuv
α) = w(∂αu)v

α + u∂α(wv
α) = w

[
(∂αu)v

α + u w−1∂α(wv)
]
. (74)

Integrate over Ω, use divergence theorem and the fact that uwv is periodic we get∫
Ω

∂α(wuv
α)d3ξ =

∫
∂Ω

wuvαndS = 0. (75)

So we have the following weighted integration by parts (IBP) identity∫
Ω

(∂αu)v
αd3ξ = −

∫
Ω

uw−1∂α(wv
α)d3ξ. (76)

E.9 DENSITY, HALF-DENSITY AND SCALAR BUNDLE

For probability densities, events are measured in L1. For wavefunctions describing bound states,
events are measured in L2 instead. These normalization constraints need to be invariant under
diffeomorphism. Since densities are like volume, we define the density bundle as the unsigned n-form
bundle |∧n(T ∗M)|, where the pullback is the unsigned version of Eq. 72

T ∗f(dnx) = |J ||dnξ|, T ∗f−1(|dnξ|) = |J |−1|dnx|, (77)

which ensures invariance of volume under diffeomorphism. And naturally, wavefunctions live in the
half-density bundle |∧n(T ∗M)|

1
2 which is a complex line bundle with basis |dnξ|

1
2 that is the square

root of unsigned top form. This encodes the L2 integrability of the half-densities. The pullback is
exactly the square root of Eq. 77

T ∗f(|dnx|
1
2 ) = |J |

1
2 |dnξ|

1
2 , T ∗f−1(|dnξ|

1
2 ) = |J |−

1
2 |dnx|

1
2 . (78)

which ensures the invariance of normalization half-densities under change of coordinate: for Φ,Ψ ∈
|∧n(T ∗M)|

1
2 , Φ∗Φ ∈ |∧n(T ∗M)| and we have

∫
Φ∗Φdnx =

∫
Φ∗Φ|J ||dnξ|. Since we never do

computation on the k-form bundle in this paper, we will omit the absolute sign in the integral in this
paper.

Next, we derive the bilinear form with ∆ on the half-density bundle. Given half-densities Ψ,Φ ∈
|∧n(T ∗M)|

1
2 , using weighted IBP (Eq. 76) with w = |J |, and the identity Aβ = |J |−1

∂β |J | for
contracted connection (Eq. 67), we have∫

Ω

∂α(|J |uvα)d3ξ =
∫
Ω

[(∂α|J |)uvα + |J |∂α(uvα)]d3ξ = 0, (79)
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and therefore ∫
Ω

(|J |−
1
2Φ∗)∆x(|J |−

1
2Ψ)d3x

=

∫
Ω

Φ∗|J |−1
∂α(|J |gαβ∂βΨ) d3ξ

=−
∫
Ω

[(− 1
2Aα + ∂α)Φ

∗]gαβ [(− 1
2Aβ + ∂β)Ψ] d3ξ.

(80)

To remove the factor 1
2 , we defined the recaled contracted connection A′ = 1

2A.

F DETAILS ON THE METRIC-WEIGHTED DENSITY MATRIX

Denote the occupation vector at k as fk ∈ RNband , Fk = diag(fk) and the band-resolved density
matrix as

Γk,nm(r) = u∗nk(r)umk(r), ρ(r) =
∑
k

tr[FkΓk,nm(r)]. (81)

Recall that in the FDPW basis

unk(r) =
1√
Ω
|J |−

1
2

∑
G

cnkGe
iG⊤f−1(r), (82)

and its on the distorted grid {ri = f(ξi)}Ni=1 can be computed via FFT:

unk =
N√
Ω
J− 1

2FFT−1(cnk) ∈ CNbasis . (83)

Then the evaluation of Γk,nm(r) on the distorted grid can be calculated as

Γk,nm = u∗
nk ⊙ umk =

1

Ω
J−1[N2FFT−1(cnk)

∗ ⊙ FFT−1(cmk)]. (84)

Similarly, we define Sk,nm = S∗
nk(r)Smk(r) and S(r) =

∑
k tr[FkSk,nm(r)] = |J |ρ(r). Under

FDPW basis, for any operator Ô, the matrix element Ok,G′G := ⟨G′ + k|Ô|G+ k⟩ has the
pullback

Ok,G′G =
1

ΩA

∫
ΩA

|J |−1
e−i(G′+k)·f−1(r)Ôei(G+k)·f−1(r)d3r

=
1

Ω

∫
Ω

e−i(G′+k)⊤ξ[T ∗f(Ô)]ei(G+k)⊤ξd3ξ,

(85)

and we have ⟨ψnk|Ô|ψmk⟩ =
∑

G′G c∗nkG′cmkGOk,G′G. For local operator O(r), the pullback is
simply function composition T ∗f(O) = O ◦ f and Ok,G′G = 1

Ω

∫
Ω
ei(G−G′)⊤ξO(f(ξ))d3ξ which

is independent of k. Furthermore it is diagonal: OG′G = δG′GO0G. Let O be the evaluation of
O(r) on the distorted grid {ri = f(ξi)}Ni=1, we have (see Appendix N on the prefactor)

⟨ψnk|Ô|ψmk⟩ =
∑
G′G

∫
Ω

[cnkG′ϕG′(ξ)]∗O(ξ)[cmkGϕG(ξ)]d3ξ

≃
∑
G′G

Ω

N

N∑
i=1

[cnkG′ϕG′(ξ)]∗O(ξ)[cmkGϕG(ξ)]

=
Ω

N

[
N2

Ω
FFT−1(cnk)

∗ ⊙ FFT−1(cmk)

]†
O

=
Ω

N
S†
k,nmO.

(86)

G LAPLACIAN-BELTRAMI OPERATOR UNDER THE FDPW BASIS

Recall that DPW are regular plane waves in the parameter space ϕG(ξ) = 1√
Ω
exp
(
iG⊤ξ

)
. Let

Ψ = ϕG and Φ = ϕG′ , then using bilinear form of ∆ on the half-density bundle (Eq. 80), we can
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compute the matrix element of ∆ under the DPW basis.

⟨ψnk|T̂ |ψmk⟩

=
∑
G′G

c∗nkG′cmkG ⟨G′ + k|−1

2
∆|G+ k⟩

=
1

2

∑
G′G

∫
Ω

[c∗nkG′(−A′
α + ∂α)ϕ

∗
G′+k]g

αβ [cmkG(−A′
β + ∂β)ϕG+k]d

3ξ

≈1

2

∑
G′G

Ω

N

N∑
i=1

[c∗nkG′(−A′
α(ξi) + ∂α)ϕ

∗
G′+k(ξi)]g

αβ(ξi)[cmkG(−A′
β(ξi) + ∂β)ϕG+k(ξi)]

=
1

2

Ω

N

N∑
i=1

W∗
α,nk(ξi)g

αβ(ξi)Wβ,mk(ξi),

(87)
where the summation is over uniform ξ-space grid and

Wβ,nk(ξ) =
N√
Ω
[−A′

β(ξ)FFT
−1(cnk) + FFT−1(i(G+ k)cnk)] ∈ CNbasis , (88)

where we used the fact that ⟨ϕG|∂αψnk⟩ = i(G+ k)cnkG.

H SPECTRAL FORM OF THE POTENTIAL OPERATORS

We first introduce some shorthands similar to Rostgaard (2009). Given ρ1, ρ2 : ΩA → R that are
periodic and zero-mean over ΩA, the interaction energy between them under a shift-invariant kernel
K(r):

(ρ1|K(r)|ρ2) := ⟨ρ1 ⋆ K|ρ2⟩

=

∫
ΩA

(∫
R3

K(∥r− r′∥)ρ1(r′)dr′
)
ρ2(r)dr,

(89)

and for Coulomb interaction:

(ρ1|ρ2) := (ρ1|
1

r
|ρ2) ((ρ1)) := (ρ1|ρ1). (90)

We further define the potential generated from ρ1 as Vρ1 so that (ρ1|ρ2) =
〈
ρ1 ⋆

1
r

∣∣ρ2〉 = ⟨Vρ1 |ρ2⟩ .
Denote the atomic point charge as ρatom(r) = −

∑
ℓ Zℓδ(r− τℓ) and the electronic density as ρ, the

total potential energy is
1

2
((ρ+ ρatom)) =

1

2
((ρ)) +

1

2
((ρatom)) + (ρ|ρatom) (91)

where the 1
2 prefactor prevents double counting.

The potential energy is only conditionally convergent as both ((ρ)) and (ρ|ρatom) diverge. This can
be shown by some Fourier analysis. The Coulombic potential generated from a charge distribution ρ0
has a simple diagonal representation in the frequency space

Ṽ (G) = lim
α→0
F
[
− 1

4π
να ⋆−4πρ0

]
(G)

= lim
α→0

ν̃α(G)ρ̃0(G) = lim
α→0

4πρ̃0(G)

∥G∥2 + α2
.

(92)

where F is the Fourier transform operator, and να(r) = e−αr

r is the Yukawa kernel (see Appendix
I). The energy ⟨V |ρ1⟩ =

∑
G Ṽ (G)ρ̃1(G) is clearly divergent due to the singularity of Ṽ (G) at

G = 0.

On the other hand, the singularity at G = 0 can be avoided by using a charge neutral ρ, i.e. ρ̃(G) = 0.
And one can neutralize any charge distribution with total chargeZtot by adding an uniform background
charges ρ±(r) = ∓Ztot/Ω. Thus, we can define convergent potential energies as

1

2
((ρ+ ρatom)) =

1

2
((ρ+ ρ+))︸ ︷︷ ︸

Hartree

+(ρ+ ρ+|ρatom + ρ−)︸ ︷︷ ︸
External

+
1

2
((ρatom + ρ−))︸ ︷︷ ︸

Nucleus

. (93)
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The reciprocal representation of the Hartree and the external potential can then be obtained through
equation 92 by setting ρ0 to ρ+ ρ+ and ρatom + ρ− respectively.

With the FDPW basis, one can no longer perform basis projection by doing FFT over a uniform grid
in Ω. DPW basis does become regular PW in the parameter space Ω, and as mentioned in section
G, the matrix elements of the kinetic operator can be evaluated using FFT with a uniform grid in Ω.
However, the Yukawa kernel in the parameter space να ◦ f is not longer spherical symmetric due to
the distortion f , so one can no longer obtain a simple expression of its projection to eiG⊤ξ by using
spherical coordinate in Ω (see Appendix I).

I YUKAWA KERNEL

The electrostatic Poisson equation can be solved in the Fourier space:

∇2V (r) = −4πρ(r)⇒ −∥G∥2Ṽ (G) = −4πρ̃(G)⇒ Ṽ (G) =
4π

∥G∥2
ρ̃(G). (94)

Note that at G = 0 we have a singularity, so this ill-defined unless ρ̃(0) = 0. Therefore the Fourier
transform of the Coulomb potentials V (r) = 1

r can only be defined via a limit:

Ṽ (G) = lim
α→0
F
[
− 1

4π
να ⋆−4πρ

]
(G) = lim

α→0
ν̃α(G)ρ̃(G), (95)

where να(r) = e−αr

r is the Yukawa kernel whose Fourier transform can be calculated using spherical
coordinates

ν̃α(G) =

∫
R3

dr να(r)e
−iG·r

=

∫ 2π

0

∫ π

0

∫ ∞

0

e−αr

r
e−i∥G∥r cos θr2 sin θ drdθdϕ

=
4π

∥G∥2 + α2
.

(96)

Therefore

Ṽ (G) = lim
α→0

4πρ̃(G)

∥G∥2 + α2
. (97)

J THE CHARGE NEUTRALITY REQUIREMENT∫
ΩA

dr V (r) = 0. (98)

With a charge neutral ρ, we have

ρ̃(0) =

∫
ΩA

dr e−i0·rρ(r) = 0, (99)

and from Appendix I, the singularity at G = 0 is removed:

Ṽ (0) = lim
α→0

4πρ̃(0)

α2
= lim
α→0

0

α2
= 0. (100)

Alternatively, one can derive the charge neutrality requirement without doing any Fourier analysis as
well. For periodic ρ, VH is also periodic:

VH(r+R) =
∑
n

∫
Ω+Rn

1

∥r+R− r′∥
ρ(r′)dr′ =

∑
n

∫
Ω−R+Rn

1

∥r− r′∥
n(r′)dr′ = VH(r).

(101)
Therefore, we need to impose periodic boundary conditions on the unit cell ΩA when solving the
Poisson equation for a periodic density ρ. This introduces the constraint of charge neutrality for ρ.
This is because ∫

ΩA

dr ρ(r) =

∫
ΩA

dr ∇2V (r) =

∮
∂ΩA

dS ∇V (r) = 0. (102)

The second equality is due to the divergence theorem. The final equality holds since the integral
contributions from opposite edges of ΩA cancel out, as ∇V (r) are the same due to PBC and dS has
the opposite sign.
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K POISSON SUMMATION

For an arbitrary function f , the Fourier coefficient of its periodization over a lattice (also shifted by
τ ) is given by:

1

ΩA

∫
ΩA

dr

[∑
R

f(r− τ −R)

]
e−iG·r =

1

ΩA

∑
R

∫
ΩA

dr f(r− τ −R)e−iG·(r−R) (eiG·R = 1)

=
1

ΩA

∑
R

∫
ΩA+R

dr′ f(r′ − τ )e−iG·r′ (r′ = r−R)

=
1

ΩA

∫
R3

dr′ f(r′ − τ )e−iG·r′

=
1

ΩA
e−iG·τ

∫
R3

dr′′ f(r′′)e−iG·r′′ (r′′ = r′ − τ )

=
1

ΩA
f̃(G)e−iG·τ

(103)
where f̃(G) is the (continuous) Fourier transform of f , and ΩA is the unit cell of the lattice. The
gaining of phase factor e−iG·τ is also known as the shift theorem. We can now represent the
periodization as a Fourier series:∑

R

f(r− τ −R) =
1

ΩA

∑
G

f̃(G)e−iG·τ . (104)

This is known as the Poisson summation.

L EXTERNAL POTENTIAL

The detailed derivation for the Ewald summation of the external potential:
Vext(r)

=
∑
G̸=0

[∑
ℓ

Ṽ (G;Zℓ)e
−iG·τℓ

]
eiG·r

=
∑
ℓ

∑
G

[Ṽ − Ṽη](G;Zℓ)e
iG·(r−τℓ) +

∑
G̸=0

Ṽη(G;Zℓ)e
iG·(r−τℓ) − [Ṽ − Ṽη](0;Zℓ)


=
∑
ℓ

∑
R

[V − Vη](r− τℓ −R;Zℓ) +
∑
G̸=0

Ṽη(G;Zℓ)e
iG·(r−τℓ) − [Ṽ − Ṽη](0;Zℓ)



(105)

where in the last equality we used Poisson summation (see Appendix K). Note that the reciprocal
vectors G in the above equation are on Ω instead of Ω as in the other expression involving DPW.
In periodic systems, the last term [Ṽ − Ṽη](0;Zℓ) can be dropped since we use charge-neutral
density.

The real space summation will decay rapidly since both function decays into 1/r. However, the
Coulomb potential V (r;Z) = Z

r has a singularity near r = 0, so real space summation would require
very high resolution around the origin. Specifically, because the bare nuclear Coulomb potential
1
r is non-analytic at the origin, the exact orbitals possess a Kato cusp and the associated fields are
not smooth on the computational torus. Spectral/PW discretizations deliver exponential/spectral
convergence only for analytic targets; a cusp instead forces the Fourier/spectral coefficients to decay
only algebraically, which in turn makes total energies approach the CBS limit at a polynomial rate as
the basis is refined. In this work, we use Analytical Norm-Conserving (ANC) regularized potential
Gygi (2023), which is a spherical local all-electron pseudopotential given by

VANC(r; 1) =−
1

2
+

1

r
h′(r) +

1

2
h′′(r) +

1

2
h′(r)2

h(r; a, b) =− r erf(ar) + be−a
2r2

VANC(r;Z) =Z
2VANC(Zr; 1).

(106)
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where Z is the charge of the associated atom nucleus. There are two parameters a, b, but the b
parameter is determined by a through the norm-conservation constraint, and this mapping from a to b
is precomputed and tabulated. The ANC potential is identical to Coulomb outside a small core but
smooth at the origin, and is analytic, which means spectral convergence is possible.

And as discussed in Lindsey & Sharma (2024), although both ṼANC(0; 1) =
∫∞
0

dr r2VANC(r) and
Ṽη(0; 1) =

∫∞
0

dr r2Vη(r) diverges, but the difference is bounded. So this term can be numerically
calculated by selecting a radial cutoff R where the difference between the two functions becomes
very small:

ṼANC(0; 1) ≈
∫ R

0

dr r2VANC(r; 1), ṼANC(0;Z) ≈
1

Z

∫ RZ

0

dr r2VANC(r; 1)

Ṽη(0; 1) ≈
∫ R

0

dr r2Vη(r; 1), Ṽη(0;Z) = ZṼη(0; 1)

= −1

4

(
2R

η
√
πeη2R2 +

(
− 1

η2
+ 2R2

)
erf(ηR)

)
(107)

An approximation formula for ṼANC(0; 1) can be found in Lindsey & Sharma (2024).

M EWALD SUMMATION OF THE NUCLEUS POTENTIAL ENERGY

The Ewald summation of the nucleus potential energy is given by

Enuc = Esr
nuc + Elr

nuc − Eself
nuc (108)

where the short-range part Esr
nuc is given by the real space summation over the Ewald simulation cell

L

Esr
nuc ≈

1

2

∑
ℓ

∑
ℓ′

L∑
n

ZℓZℓ′
erfc(η∥τℓ − τℓ′ −Rn∥)
∥τℓ − τℓ′ −Rn∥

− πZ2
tot

2Ωη2
, (109)

The long-range part Elr
nuc is given by the reciprocal space summation over the Ewald reciprocal lattice

L′

Elr
nuc ≈

2π

ΩA

L′∑
G̸=0

1

∥G∥2
exp

(
−∥G∥

2

4η2

)[∑
ℓ

Zℓe
iG·τℓ

]2
, (110)

and the self-interaction correction in the long-range part is

Eself
nuc =

∑
ℓ

Z2
ℓ η/
√
π. (111)

N INTEGRATION FACTORS

For real space integration with FFT mesh, we multiply by the volume factor ΩA/N where N is the
mesh size ∫

ΩA

dr f(r)g(r) ≈ ΩA
N

N∑
i=1

figi. (112)

O FREE-SPACE HARTREE GAUGE FOR FINITE SYSTEMS

For non-periodic systems embedded in a large cubic box ΩA = [−a2 ,
a
2 ]

3, the periodic Poisson solve
on the torus fixes the gauge by setting the DC Fourier mode to zero, ṼH(G = 0) = 0. This is
convenient but inconsistent with the free-space reference VH(r) → 0 as ∥r∥ → ∞. We therefore
align the gauge post hoc on the converged fields, without re-solving Poisson.

We emulate free space with the truncated Coulomb Green’s function

gRc(r) =
1[∥r∥ < Rc]

∥r∥
, lim

G→0
g̃Rc(G) = 2πR2

c . (113)
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Figure 3: H2 dissociation curves: FDPW finite-system (left, free-space Hartree gauge alignment) and
Gaussian-orbital (PySCF/LDA) reference (right). Energies are total electronic energies (Ha) versus
bond length R (Bohr).

Replacing the DC mode by ṼH(0)← 2πR2
c ρ̄ adds a constant shift

cfs = 2πR2
c ρ̄, ρ̄ =

Ne
ΩA

, (114)

where Ne is the total electron count. With our discrete Fourier convention (inverse FFT multiplies
1/N , where N is the total mesh size), the stored DC entry equals N cfs.

The required quantities are computed on the parameter-space grid Ω = [−π, π]3 using the Jacobian
J = ∂ri

∂ξα :

Ne =

∫
ΩA

ρ(r) dr =

∫
Ω

|J(ξ)| ρ(f(ξ)) dξ ≈
N∑
i=1

|J(ξi)| ρi
Ω

N
, Ω = (2π)3. (115)

We select Rc from the cell geometry. Let {ai}3i=1 be the cell vectors and Li = ∥ai∥. A robust default
is Rc = 1

2 mini Li, with an optional relaxation toward the molecular radius as in the implementa-
tion.

Finally, the Hartree energy is corrected analytically:

Efs
H = Eper

H + 1
2 cfsNe, (116)

which follows from EH = 1
2

∫
ΩA

ρ VH when VH is shifted by a constant. We report Efs
total =

Eper
total +

1
2cfsNe, and retain ṼH(0) for completeness.

Figure 3 shows the H2 dissociation curve computed with FDPW under this free-space alignment (left)
alongside a Gaussian-orbital (PySCF/LDA) reference (right).

P HYPERPARAMETERS

All essential hyperparameter are in Table 2.

Q EXPERIMENTS ON FINITE SYSTEMS

We validate FDPW on the CO molecule (LDA_X) in a cubic box. PySCF was computed with
DFT+LDA_X with cc-pVQZ basis. Empirically we find that all energy terms of FDPW the besides
Eext (due to the use of ANC pseudopotential) reaches the PySCF reference energy within 5Ha at
N = 18–24, whereas PW is nowhere near convergence.

Distorted grid and density at Figure 4.

R AMORTIZATION OF THE PCG SOLVER

Solver traces in Figure 5 show stable Hartree energy and Poisson residual decay across epochs for
the two runs; both reach the same fixed point in EH .
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Table 2: Essential hyperparameters
Parameter Value

Autoregressive layers 4
Conditioner layers 2
Hidden size 64
Bins 7
Fourier features 2
Base range [-3.1415926536, 3.1415926536]
Min bin size 0.001
Min knot slope 0.001
Max slope 100.0
Ground-state epochs 3000
Ground-state learning rate 0.01
Ground-state weight decay 0.0
Density-fit epochs 3000
Density-fit learning rate 0.0002
Shear regularization µshear 0.005
Trace regularization µsmooth 0.005

Table 3: CO (LDA_X) finite-system energies (Ha) by method and grid size.

Method N Etot Ekin EH Eext Ex/xc

PySCF (ref) – −111.5265 111.5553 75.9626 −309.6100 −11.9696

PW 18 −112.1016 56.0008 65.1025 −246.7359 −9.0042

24 −184.0885 90.3419 57.8731 −344.2963 −10.5425

30 −94.6457 66.2604 69.9866 −243.1868 −10.2412

FDPW 18 −138.8863 105.9456 73.8686 −305.8903 −12.8102

24 -141.6128 114.1526 74.1201 −316.9114 −12.9741

S USAGE OF LLM
LLM was used to this work to polish the writing of the paper.
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Figure 4: CO finite system: distorted grid (top) and resulting electron density slices (bottom). The
grid is generated by the fitted flow using the prescribed density initialization; density shown on the
distorted grid highlights resolution near nuclei and along the bond.

Figure 5: Hartree energy EH (left) and Poisson residual (right) vs. epoch for two finite-system runs
with different niter. Residuals decay smoothly (log scale), and EH stabilizes as the fixed point is
approached.
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