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ABSTRACT

The plane wave basis is widely used in Galerkin approximation, due to its peri-
odicity and computational advantage, where the fast Fourier transform (FFT) can
be applied. However, since its spatial resolution is uniform, the number of basis
functions required can be excessive for problems with rapidly varying local features.
We propose an adaptive basis called flow-distorted plane wave (FDPW), where
the bijection of a normalizing flow is used to distort the problem domain, hence
achieving adaptive resolution. We apply FDPW to Kohn-Sham density functional
theory (DFT) calculations to both molecular and solid-state systems, demonstrating
improved speed and memory usage. [1_-]

1 INTRODUCTION

Kohn—Sham density functional theory (DFT) Hohenberg & Kohn|(1964);|Kohn & Shami (1965) is
the workhorse for electronic structure in molecules and solids due to its optimal trade off between
efficiency and approximation power. Plane waves (PW) are attractive for their simplicity and FFT-
based efficiency, but their uniform spatial resolution can require many basis functions near nuclei or
other localized features; localized orbitals alleviate this but complicate periodic calculations.

We introduce flow-distorted plane waves (FDPW): a Galerkin basis obtained by composing a bijec-
tive, periodic normalizing flow on the 3-torus with the usual PW coordinates. The resulting map
adapts resolution to the electronic structure while retaining PW algebra. A modified Bloch phase
ek ) preserves k-point orthogonality and decoupling in periodic systems, and type-2 NUFFT
(nonuniform Fast Fourier Transform) enables fast transforms on the distorted grid. FDPW applies to
both non-periodic and periodic systems within ab-initio Kohn—-Sham DFT. Our contributions are: (a)
Parameter-efficient adaptive PW: represent the distortion with a small neural flow instead of PW coef-
ficients as in prior distorted PWs (DPW) Gygi| (1993)), greatly reducing parameters while maintaining
spectral accuracy; (b) Unified periodic/non-periodic formulation: extend DPW to arbitrary lattices
via an affine cell map and a Bloch phase that maintains k-space orthogonality and decoupling; (c)
Practical gains: with prescribed-density initialization and an NUFFT-based implementation, FDPW
reaches target accuracy with fewer basis functions than standard PWs on molecules and crystalline
solids, yielding speed and memory improvements.

2 RELATED WORKS

2.1 ADAPTIVE BASIS SET IN AB-INITIO ELECTRONIC STRUCTURE MODELING

The formulation of distorted plane waves was introduced by Francois Gygi in|Gygi| (1993). The
calculation was done on the DPW basis, so mathematically it is quite similar to the regular PW
calculation in reciprocal space. Subsequently, it was applied to molecular dynamics (MD) |Gygi &
Gallil (1995)). Later on, real-space formulations are proposed |Gygi| (1995)); Zumbach & Maschke
(1983)); [Zumbach et al.| (1996)); Modine et al.| (1997). Also related is the local-scaling method
Bokanowski & Grébert| (1996). Recently, Lindsey and collaborators proposed a spectrally accurate,
“diagonal” adaptive basis for periodic systems |Lindsey & Sharmal (2024).

On the other hand, there have been efforts to use normalizing flow for orbital free DFT |de Camargo
et al.| (2023) and solid-state calculation Wirnsberger et al.|(2022)).
2.2 NEURAL NETWORK ANSATZ IN QUANTUM SIMULATION

Neural VMC represents antisymmetric many-electron wavefunctions with expressive networks and
optimizes them by stochastic energy minimization. Examples include FermiNet and transformer/DP

'Our code will be open-sourced later.
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variants [Pfau et al.| (2020); von Glehn et al.| (2023); [Pham et al.| (2023)); [Li et al.| (2022); |Gerard
et al.|(2022). Neural quantum states further extend to lattice/continuous and periodic settings |Vivas
et al.| (2022); Zhao et al.| (2023); |[Yoshioka et al.| (2021)); [Pescia et al. (2022); |Luo & Halverson
(2023).

3 PRELIMINARIES

3.1 SOLVING DFT WITH GALERKIN APPROXIMATION

Kohn-Sham DFT solves the following eigenvalue problem called the Kohn-Sham equation
H(p]|n) = €n|tn) where the Hamiltonian matrix is given by Hpm[p] = (¢n|H[p]|tm) and
the eigenstates {1, } are the ground-state orbitals. Under Galerkin approximation, the orbital ¢),, are
represented as the basis coefficients c,, € C™wis where ¢,,, = (¢ |1,), and the Hamiltonian operator
is represented with the matrix element H,,[p] = <¢p|I:I [0]|¢q), the infinite-dimensional eigen-
value problem is converted to the following finite-dimensional eigenvalue problem (see Appendix

L)

Humlp] = chpmaHpglp), (1)
pq

which can be solved via either via Self-Consistent-Field (SCF) iteration or the direct minimization of
the Rayleigh quotient. We will use atomic unit through out this paper, where the length unit is Bohr
and the energy unit is Hartree (Ha) unless otherwise stated.

3.2 PERIODIC SYSTEM AND FFT

Solid-state physics deals with periodic structures that can be described by a Bravais lattice (Appendix
. Different from the non-periodic/finite system, the orbital index becomes a composite (7, k)
where n is the band index, and k is a point in the Brillouin zone (BZ). Furthermore, the form of
the orbitals |1, ) are dictated by the Bloch’s theorem [Bloch|(1929) v,k (r) = exp [ikTr] Unk(T).
where u,(r) is a function periodic over the unit cell. When applying Galerkin approximation, one
expand the periodic part u,x with a basis |¢,,) periodic on the unit cell Q2 4, and the basis coefficients
is i € CNowsis where ¢ = (@p|tUnk)s Noana is the number of bands and Ny, is the number of
k-points. The density is determined by the periodic part u,x only: p(r) = > Frk|nk(0))? =

Dok fnk|unk(r)|2. The KS eigenvalues &, are also referred to as the band structure. For more
details, see Appendix

In PW basis, c,kg = (¢'¢'F

’unk> is the Fourier transform of w,(r), therefore we can evaluate
on uniform r-space grid {ri}fil (see Appendix @) via FFT: u,x = \/%FFT’l(cnk) € CNowis
where u,x; = unk(r;) and N is the total FFT grid size, which arises since we use the default
numpy FFT normalization convention which multiplies 1/N for inverse FFT. The reciprocal vectors
Gn, =B(n1 ng ng)T are reciprocal lattice points where n is the lattice indices, and when we
write G in subscript we mean indexing by the reciprocal lattice indices n = (nq, no, ng). Similarly
km =B(3 17 1) are k-points in BZ which is on the direct lattice, and subscript k means
indexing via the direct lattice index m = (my, mg, ms).

3.3 DIFFERENTIABLE GEOMETRY

Differential geometry (DG) describes calculus on a smooth manifold. Smooth bijections g : & — X
are diffeomorphisms between manifolds. Pullbacks T*g, T* g~ define ways to map covariant objects
between manifolds (e.g. densities, scalar fields), while pushforwards T'g, T.g~! map contravariant
objects (e.g. v*0,) between manifolds. The pullbacks and the pushforward usually carry a Jacobian
factor, except for O-forms/scalar fields (e.g., potentials), whose pullback is simply function com-
position: T* f~1(¢) = ¢ o f~*. For operators, we consider their action on objects. For example,
the pullback of the Laplacian A¢ = V - V¢ acting on scalar fields ¢ under 7 g~! is the Laplace-
Beltrami operator | J| ™9, (|71g*#93¢) (see Appendix . For a quick recap on DG, see Appendix
We will use Einstein notation throughout this paper.

3.4 NORMALIZING FLOW ON CIRCLES S!

Normalizing flows is a technique for defining a complex distribution p from a simple distribution pg
by distorting its probability density via a bijection g : = — X:
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p(x) = |7 "polg 7 (%)), € =g (%) ~ po. 2)

where J = g—zi is the Jacobian. To avoid ambiguity, throughout this paper the indices for £ are in
Greek letters and indices for x are in Roman letters. In the language of DG, g is a diffeomorphism and
the above change of variable formula arises from the pullback on the density bundle 7* f ~1(d"¢) =

1 . . .
|J|~"d™x, which ensures invariance of L! norm.

As shown in Rezende et al|(2020), by fixing the last knot (%), 3(*)) and gradient §(%) to be the
same as the first knot (2(°), y(©)) and gradient §(*), the Rational-quadratic spline (RQS) bijection
(see Appendix |C) used in neural spline flow [Durkan et al.| (2019) becomes a bijection on the circle S!,
which can then be used to construct bijections on the D-dimensional torus T” 2 (S!)P. We refer to
this modified RQS as the circular RQS.

3.5 DISTORTED PLANE WAVE

Distorted plane waves (DPW) were first proposed in |Gygi| (1993). Take a 3-torus = [0,a]? as
the unit cell, where « is the size of the fundamental domain. Given a bijection g : ) — ) on that
satisfies periodic boundary condition, DPW is the pullback of the plane wave in the parameter space
(&|G) :=9c (&) = % exp [iG €] to the physical space x:
1 1
x|G) = da(x) = —|J| 2 exp [iIGTg7 1 (x)]. 3)
(x|G) ¢G(>\/§|| p[iG g™ (x)]

The factor |.J |7% arises naturally from the pullback on the half-density bundle T* f~1(|d"¢| %) =

|J |7% |d”a:|%, which ensures invariance of L? norm (see Appendix . Half-densities are L2
normalized functions like the wavefunctions and their basis, which are (0, %)—tensors. Furthermore,
the pullback on the half-density bundle is unitary, which means the orthonormality of £&-space PW
still holds in x-space after the pullback (see proof at Appendix , and we can write (G|G') = dgqa’

without ambiguity since the orthonormality does not depend on the coordinate system.

From section under PW basis, the periodic part of the Bloch wave u,,(r) can be evaluated on
a uniform r-space grid via FFT. Under the DPW basis, given a uniform £-space grid {Ei}ﬁvzl, we
have a distorted x-space grid {g(ﬁi)}ﬁil. Similarly, given DPW coefficients ¢,xa = (¢ |tunk),
we can evaluate u,x(x) on the distorted grid via FFT: u, = %J “2FFT ! (cpi) € CVoss where

1

Unki = Unk(g(&;)) and J; 2 = |J (§i)|_%. Note that the density of DPW is generated both from the
distortion g, and the unitary transformation of basis via c¢,xc. The distortion effectively creates a
non-uniform spatial resolution, which can reduce the required basis set cutoff, since usually high-
frequency components are localized in the ground-state solution of solid-state systems. This brings
performance gain in both memory and speed. Furthermore, we will show later that DPW maintains
one of the main computational advantages of PW basis, that the matrix elements of the Laplacian
operator can be evaluated using Fast Fourier Transform (FFT).

3.6 NONUNIFORM FAST FOURIER TRANSFORM

A periodic function can be expanded as Fourier series F'(x) = > o Fa G x, Type-2 nonuniform
FFT (NUFFT) can be used to efficiently evaluate F'(x) on nonuniform real space grids {x;} in
quasi-linear time by spreading coefficients to an oversampled uniform grid with a smooth kernel,
applying standard FFTs, then interpolating back. We use F INUFF T |Barnett| (2020), which provides
high-accuracy type-2 (uniform — nonuniform) transforms with rigorous aliasing control, achieving
near O(M log M) complexity where M is the mesh size and near machine precision with modest
oversampling and kernel width. In our setting, type-2 NUFFT are used to evaluate periodic functions
on distorted grids x; = f(&;).

4 FLOW DISTORTED PLANE WAVES

4.1 NON-CUBIC UNIT CELL
The original DPW was defined on cubic unit cells Q = [—%, 4]? with the distortion map g(£) = x.
Here we extended DPW to arbitrary unit cell {24 with cell vector A by composing the following

linear transformation 7" : £ — Q4 to the bijection g : Q — € on the cubic unit cell Q = [—7, 7%

r=T(x) = A%7 x=T"'r)=27rA"'r=B'r. )
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Then f = T og is a bijection from the parameter space € to the physical ipace Q4. Note that the cell
vector and reciprocal cell vector of the parameter space cell €2 are 271 and I respectively. From now on

we will write J = 920, .J, = 92°. Since 975 = [A](27) 3 = &1, we have | J| = 41|, .

4.2 BLOCH PHASE FACTOR

The original DPW only considers finite systems. Here we extend DPW to periodic systems. First
note that in the physical space, the k-points k* depend on the cell vector A of the physical unit cell
Q4. Naively applying Bloch’s theorem yields the following orbital

Yo(r) = & chkc;cf)c;(r) = Z%k@%UF% exp[iGTf 7! (r) +i(k*) x]. (5
G G

However, with this choice, the Hamiltonian basis with different k* are no longer automatically
orthogonal due to the distortion f, since if f is not identity, then

(k*, G|k, G') = ﬁ /N . dPeexpli(G' — G)E +i(k'* — k™) f(€)] # b duw.  (6)

The implication is that one would need to orthogonalize over k* as well, instead of only over bands,
which would be expensive. Therefore we propose to use the phase shift factor exp|ik " f~!(r)]
instead, where k = B~'k“. Since g is a bijection over €2, we have the decomposition g =
Id + gp,g~' = Id + (g7 !), where g, and (¢g~'), are periodic over Q. Let g,(¢) = ¢, then
g(€) = &€ + 0¢€ = x. Now

E=g9'®) =x+(g " )px) = (97)px)=—-06=—g,(&) = —gp(g7'(x). D

Now for every point r in the physical unit cell 24, we have f~!(r) = ¢7'(B'r) = B'r +
(¢71)p(BTr). This means that

exp [ika_l(r)] = exp [i(kA)Tr] exp [ikT(g_l)p(BTr)]. ®)

The periodic part exp[ik " (97 1), (B "r)] can be absorbed into the periodic part w4, which amounts
to using a different basis to expand each u,,;.a. So the orbitals still satisfy the Bloch theorem:

Dp(r) = €007 Z - [ da(r) eikwg*l)p(BTr)} _ Z PGk (r). )
G G

And it is easy to see that now the Hamiltonian basis between different k* is again automatically
orthogonal. Furthermore, since this is still a valid parameterization of the Bloch state, we still have
k-space decoupling as described in section Due to the Bloch phase choice ek /TN with
k = B~'kA, all physical-space phase factors are handled by evaluating at f~!(r). Consequently,
for the remainder of the paper (unless stated otherwise), we drop the superscript and use G and k
exclusively for wavevectors defined on the cubic parameter cell (2. Physical-space quantities appear
only through f or f~1.

4.3 BIJECTION ON TORUS

DPW is entirely defined by the bijection on tori g : Q — €). Flow distorted plane wave (FDPW) is a
DPW where the bijection gy : {2 — 2 is constructed with periodic flow on tori 2. To create bijection
on the parameter space 3-torus €2, we used the following autoregressive construction:

¢ =g(&0), 0=(0,,0,,05)

& =g1(£1;01) = CircularFlow(&y;6y)

&y =g2(&2;€1,02) = CircularFlow(&e; MLP(FF v (£]); 62))

€3 =g3(€3: 61,85, 03) = CircularFlow(&s; MLP(FEN([€],65]); 63))

where CircularFlow refers to a normalizing flow on S', MLP refers to the multi-layer perceptron
conditioner, which maps previous dimensions to the flow parameter of the bijection for the current
cosz cos2x ... cos2Vx .

. . .-~ | which
sinx sin2z ... sin2%z
makes the conditioner MLP a periodic function. In this paper, we use rational-quadratic splines for
CircularFlow (section[3.4). The conditioner uses the transformed variable £ as input so that the

(10)

dimension, and FF is the fourier features FF y(z) =
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map is invertible. The advantage of such an autoregressive construction is that the log determinant of
the Jacobian J can be calculated efficiently since it is triangular.

A single application of the above 3-torus bijection is not expressive enough to express arbitrary
distortion. For example, in equation the bijection on &; is unconditioned, so for all &, the
distortion on the first dimension &; will be the same. To ensure sufficient conditioning, we need to
apply the above 3-torus bijection multiple times, and permute the dimensions after each bijection.
Therefore, we construct the 3-torus bijection as follows

go = Gg(z) © -+ O gg(2) © T2 O gg(1) O 01 (11)

where o; is the permutation map on the input dimensions, where the permutation is taken from one of
the six permutations of the set {1, 2, 3}.

Finally, the affine transformation 7" (Equation[d) is applied so that f = T" o g is a bijection from © to

Q4. We choose the base distribution py the uniform distribution py(€) = & = gz, so the pullback
of pg to physical space is given by
1, 10 1 .
po(r) = 1™ = gl (0] = 1 e(€@)I (12)

4.4 PRESCRIBED DENSITY AND INDUCED DISTORTION

Given an unit cell configuration {Z,, 7 }¢, we use a prescribed density to induces a distortion with
grid density increasing at the rate of % in the radial range [Z%, Z%] from the nucleus of atom ¢, while
keeping the grid density elsewhere approximately constant. The aim is to accelerate convergence in
terms of the number of basis required, since most of the high-frequency component comes from the

core orbitals. Following [Lindsey & Sharmal(2024), we used the following unnormalized prescribed
denSity: prescribed Zy Zy
P (r):z {erf (,TZ"I'*TA) —erf (bj‘r*TéD} /|t — el + ¢, (13)
¢

where ay, by, ¢ are hyperparameters. To match the flow density py to the prescribed density, we
minimize the Kullback-Leibler (KL) divergence between the two, where we exploit the fact that py
can be sampled easily:

argemin KL(pg || pprescribed) _ Epe [lnge (I‘) _ log pprescribed (I‘)] (14)

To improve the regularity of the grid, we regularize the KL objective with the following elastic energy,
with an isochoric shear term and a smoothing term

Eelastic(e) = MshearE[tr(giso) + tr (91:01) - 2d] + NsmoothE[tr(g)]a (15)

where gl‘i‘f = gaﬁ\g|1/d and g*f = (Jfl)?(J’l)? is the inverse metric tensor. Figureshows a
323 distorted grid for diamond with fighear = tsmoon = 0.005, ¢ = 0.1, b = 4, ¢ = 0.01. We minimize
the objective with AdamW [Loshchilov & Hutter| (2019)) with a learning rate of 0.0002.

4.5 COMPARISON TO ANALYTICAL DISTORTION

An alternative way to create the distortion is to use fixed analytical functions to construct the bijection
g, as done in previous work like |Gygi| (1995). Specifically, in Gygi’s paper, the inverse map is
written as an identity plus a sum of isotropic radial bumps around each atom with a small number
of parameters per species tuned on one or two reference structures and then transferred to other
environments. This construction restricts the map to superpositions of isotropic, atom-centered
deformations and requires explicit lattice sums to enforce periodicity. In contrast, our prescribed
density approach fits a bijective periodic flow to a "design" density, so no lattice sum is required and
we can use arbitrary design density. This allows us to capture highly anisotropic features (covalent
lobes, surfaces, low symmetry bonding). The same mechanism can also be reused for downstream
tasks such as density inversion or surface specific distortions. Furthermore, all geometric quantities
needed for the Laplace-Beltrami operator, the contracted connection A = 9 log |J| and the inverse
metric g, can be calculated efficiently via AD. Log Jacobian determinant log |.J| is readily available
and cheap to calculate for all normalizing flows since it is required for evaluating probability, and its
derivatives can be obtained via AD. g can be obtained by applying AD to the flow bijector, which is
also straightforward.
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Figure 1: Distorted grid and prescribed density slices py (middle) vs. target pPci®ed /7 (bottom)
at selected z in reduced coordinates B "r. Partition Z is estimated with the flow pg. Circle size
indicates proximity of nuclei to the shown zy-plane.

4.6 METRIC-WEIGHTED DENSITY MATRIX

We define a metric-weighted version of w,x, Snk(r) = |J|unk(r), whose evaluation on the distorted
grid is given by S,x = %FFT_l(cnk). Similarly, we define Sk nm = S (r)Smk(r), which is
the metric-weight version of the band-resolved density matrix I'i pm (r) = w0, (r)umik(r). Since
the density is given by p(r) = >, tr[FxI'k nm(r)], we also have the metric-weighted density
S(r) = |J|p(r) = > ) tr[FrSk nm(r)]. For local operator O(r), its matrix element is diagonal:
Og'c = g GOOG Let O, Sk nm € CV are the evaluation of O(r) and Sk, (r) on the distorted
grid {r; = f(&;)}},, then we have (see Appendix

(Ve O thmic) ~ i sL O = N[FFT (o) O FFT  (cpni)]TO. (16)

4.7 KINETIC OPERATOR

The kinetic energy is Eiin = Y., fnk <¢nk|T|1/)nk> SYare Cra cmkaTe.ara, where T =
—fA in atomic unit. Unlike in PW basis, T is not diagonal under FDPW basis (see section R
and we cannot use the Eq. [T6]from the last section. However, we can still avoid forming the 1
Ty g’ matrix and evaluate Ey, efficiently using FFT under the FDPW basis. Denoting rescaled

contracted connection as AIB = ;Fg 5= i 50plog |.J| (see Appendix . On the half-density bundle,
the pullback of A has the following symmetric “minimal coupling” form

/Q (17172 0") A (]2 )d?r = —/Q[(—AL+3a)‘1>*]gaﬁ[(—4,’a+3ﬂ)\1’] d’,  amn

analogous to the Euclidean Laplacian after integration by parts (see Appendix [E.9). When ®(&) =

U(€) = Y caeGTR) € the above formula becomes a quadratic forms which can be evaluated
with two inverse FFTs, and a few point-wise multiplications on the distorted grid (see Appendix [G]
for derivation):

10

<wnk|T|wmk §N pt a nk 51 aﬂ(gz)w,@ mk(gz) (]8)

where W5 nic(€) = J5[~AG(E)FFT ™ (cuk) + FET ' (i(G + k)epi)] € Chows,
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4.8 POTENTIAL OPERATORS

Given two charge densities py, p2 : 24 — R™T that are periodic and charge -neutral (i.e. zero mean

over {2 4), we write the Coulomb interaction energy between them as (p1|p2) fQA pr (r)dr
where V,,, (r) = [os =T r,“ p1(r’)dr’ is the Coulomb potential generated by p1, and (( 1)) =
(p1lp1)- Denote the atomic p01nt charge as p"°"(r) = — >, Z;0(r — 7¢). In periodic system, the

total classical potential energies £ ((p 4 p™°™)) is only conditionally convergent. We need to split it
into three convergent series that consist of Coulomb interaction between charge-neutral densities (see
Appendix [I):

1 1 1
5(([) + pM)) = 5o+ PN+ (p+pt "™+ p7) + 5((;}2‘“’“‘ +p7), (19)

External
Hartree X Nucleus

where p*(r) = FZ,,/ are uniform background charges. In DFT, the exchange and interaction
are modelled by the XC functional Exc[p fQ exc[p]p dr where exc is the per particle energy
density, so the total potential energy is the above classical term plus Exc[p]. In PW basis, all these
energy terms have analytical formula as the Coulomb potential % has analytic Fourier transform (see
Appendix. For FDPW, we do not have an analytical formula for <¢>G ‘ V> If local XC functional is

used, then the effective potential operator IA/eff[p] = Vi [p] + Vext + exclp] is local. Let Vgr[p] € RY
be the evaluation of Veg[p] on the distorted grid {r; = f (Si)}fi\il’ by eq. we have

N Q
(Craic| Vet [P [¥omic) = S o Verrlo). (20)

N

All we need to do is to have convergent real-space expressions for Vi [p] and Vi and evaluate them
on the distorted grid. Note that semi-local XC can also be computed similarly by applying the
pullback rule of the gradient V operator.

4.9 HARTREE POTENTIAL

Since the scaled Coulomb kernel fﬁ is the Green’s function of the 3D Laplacian operator V2, one

can solve for the Hartree potential V via the Poisson equation with periodic boundary condition:
1
Vilpl = Vy =px— = =VVaulp] = dr(p—7). 1)

We will suppress the p dependence of Vi from now on when it is not ambiguous. Using the pullback

of Laplace-Beltrami operator |J| '8y, (|J]g*?93¢) on scalar field ¢ and multiply both side by |.J],
we get the conservative form Poisson equation in £-space:

—0a (|19*70Vir) = 4n|J|(p — p) = 47 (S = S), (22)

where S = |J|p is the metric-weighted density we defined in section We apply Galerkin
approximation with FDPW basis to this equation, Where Vy is parameterized as its value over the
uniform &-space grid, and the matrix-vector-product — (\J |9%? 05 VH) can be performed in Fourier

space, since (¢c|0a V(&) = iIGVi(£;) hence we parametenze Vi where (Vi) = V(&)
and Vi = FFT(V ). Under this discretization the operator —d, (|71g*205Vr) becornes a matrix-
vector-product in the Fourier space

—iG, 0T 0 g o FFT [iGs © V. (23)

where © is Hadamard product, g, J are the evaluation of g, |J| on the distorted grid. We use a
preconditioned conjugate gradient (PCG) to solve for Vi given p, where we used a diagonal spectral
preconditioner M ~1(G) = (G*’G,Gs)", where G = (s9°#), s = ¢7™|.J| and m = (log | J|).
Here (-) means the average over all entries in the matrix.

4.9.1 EXTERNAL AND NUCLEUS POTENTIAL

The external potent1a1 Vext 1s generated by point charges p"“"m SO

_ paom T
Vulr) = p Zzz/ 80’ = ) e = sznr_T_RH 4)
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Algorithm 2 Band-structure evaluation with
Algorithm 1 Ground-state search with FDPW  FDpw

Input: cell {Z;, ¢}, FFT size N; Input: cell {Zy, 7}¢, FFT size N, 0, Vg,
Initialize §, w € CNuwa*NexNoss Hartree  ¢*7(€;), Aj(&), f(&), Ve(f(&)), con-
Vu € RY, and uniform grid {&;}1*, on Q; verged w* from ground state search;
Fit flow pyg to target prarger (€. ; for k; in k-path do
Compute and cache f(&;), g*” (&), A (&), Initialize wi, € CNowax Nowsis 10 w* or
and Vexi (f(&i)): Wi, ifi >1
repeat repeat

minimize L (W) (eq. 26)) for 1 step; minimize Ly, for 1 step (eq. 26)

PCG solve for Vi (section f.9) for nie, until converged
steps; diagonalize Hy, nm/(ck,, p*) to obtain
until converged {en (k) Yo

end for

where R run over the Bravais lattice. Two issues arise: (i) p*°™ is not neutral, so the direct energy
diverges; (ii) the real-space sum converges slowly with cell size. We use Ewald summation, splitting
V(r) = 1/r into a smooth long-range part V, () = Z erf(nr)/r and a short-range part with erfc(nr)
decay, yielding (see Appendix [C):

Vea®) =Y DV -Vlr = = R; Zo) + > Vy(G; Zp)e! S =m0} (25)
¢ R G+#0

This reduces cutoffs and allows local pseudopotentials by replacing V' with Vi, in the real-space
term. In our experiments, we use the analytical norm-conserving (ANC) regularized potential Gygi
(2023)). The long-range reciprocal sum is evaluated on distorted grids via type-2 NUFFT (section
[3.6). The nucleus-nucleus energy . has a similar form and also benefits from Ewald summation
for rapid convergence (Appendix [M).

5 ALGORITHM

5.1 GROUND-STATE SEARCH

We solve the Kohn-Sham equation via direction minimization (see Appendix which minimizes
the Rayleigh quotient of the Kohn-Sham Hamiltonian matrix Hy ,,m (c, p) = <’(/Jnk|T + I7eff[p] [Vmk)s
where calculation of kinetic contribution follows section the potential contribution follows section
and the evaluate of density on distorted grid p € R is given by p(c) = J 7! tr(FxSk nm(c))
follows section

Lyg(w) = Ztr[Fka,nm(c, SG(p(c)))], c=0QR(w) (26)

min
w € C Nband X N X Niasis "

where a QR retraction for the orthonormal constraint (¢,k|tmk) = CLkak = Opm is used to
map the unconstrained parameter w to the FDPW coefficients ¢, and we put the stop gradient op
SG around p when computing Veff[p}, which effectively converts the nonlinear eigenvalue problem
into a linear eigenvalue problem. Algorithm [I|describes the full routine where the convergence is
determined by checking whether the standard deviation of the total energy of the current ansatz is
below a set threshold. Note that the PCG solver can be amortized over the minimization of the main
objective, and in practice, setting nier = 1 suffices (see appendix [R).

5.2 BAND STRUCTURE CALCULATION

Band structure calculation is carried out after the ground-state search. We follow the usual non-self-
consistent-field (NSCF) procedure where the Vi is fixed by fixing the density to the ground state
energy calculated using a coarse k-mesh. The Hamiltonian trace is minimized at each k along the
k-path with warm start, similar to|Tianbo Li| (2024). The loss is the same as eq. @]except for that we
do not apply the occupation Fy and the V ¢[p*] uses the ground state density p* computed from the
ground state search: Ly (wy) = tr[Hy nm (QR(Wy), p*)], where wy, € CNowaxNowis jg the slice of w
at k. Algorithm 2] describes the full routine. The main objective is minimized with AdamW in both
the ground state search and band structure calculation.
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Figure 2: Diamond band structures computed with standard PW (left) with N = 128 and FDPW
(right) with N = 64. FDPW preserves dispersion features while using a lower grid size .

5.3 GROUND-STATE SEARCH FOR FINITE SYSTEM
For finite systems, a cubic unit cell 24 = [-§, %]3 with large enough a is used to create a vacuum
around the target system. The ground state search algorithm is identical to the one described in
section [5.1] except for the following modification: (a) there is no k; (b) we use the free-space gauge
for all potentials, i.e. we explicitly set the G = 0 term for Vi (Appendix [O) and for Vx (Appendix

[D); (c) we do not need to do Ewald summation for E,, as in section[d.9.1]

6 EXPERIMENTS

We tested FDPW on both finite (molecular) and periodic systems. All calculations were done in a
single Nvidia A100 GPU with 40GB of memory. Hyperparameter setting is at Appendix [P|

6.1 DIAMOND BAND STRUCTURE

We conduct a I'-point only ground state search, followed by the NSCF band structure calculation as
outlined in section 5] Figure [2]compares band structures from PW and FDPW; both agree closely
along the tested k-path, while FDPW achieves similar accuracy at coarser grids. Table[6.1] further
summarizes convergence metrics. Crucially, the FDPW band gap converges to ~ 3.05 eV with only
N = 64, while regular PW needs N = 128.

Table 1: Band structure calculation for diamond with LDA. All energies are in eV units.

Method N band gap L X r Speed (it/s) T Mem. (GBs) |
128  3.05869 7.51526 3.05869 4.79634 3.68 23.5
96 3.14795 7.61833 3.14795 4.77946 11.38 15.4
PW 64 3.68519  7.72595 3.68519 4.88759 44.48 1.34
48 393325 7.73193  3.93325 4.83815 106.05 1.24
32 496448  8.17394 5.18815 4.96448 144.49 1.15
64 3.04445  7.19263 3.04445 4.46958 32.78 1.20
FDPW 48 3.01882  7.26194 3.01882 4.41584 108.86 1.41
32 422392  5.69283 6.95550 4.35785 157.92 1.17

6.2 FINITE SYSTEMS

We follow |Gygi (1993) and use a cubic box of length a = 10 Bohr. We consider the CO (carbon
monoxide) molecule with geometry [[-1.065, 0.0, 0.0], [1.065, 0.0, 0.0]] and compute the ground
state with both PW and FDPW. PySCF Sun et al.| (2017)) was used to compute the reference value.
See Appendix [Q]for details.
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7 CONCLUSION AND FUTURE WORKS

We introduced flow-distorted plane waves (FDPW): a PW basis composed with a bijective, periodic
normalizing flow on the 3-torus. FDPW adapts resolution where needed while preserving PW algebra,
k-point orthogonality via a modified Bloch phase, and FFT/NUFFT efficiency. We extended Gygi’s
DPW to arbitrary lattices and to both finite and periodic settings, and proposed a compact neural
parameterization with prescribed-density initialization and regularization. We have demonstrated that,
on both molecules and solids, FDPW can effectively lower the grid size required for convergence,
and being an all-electron method, core electrons can be modeled unlike other PW+pseudopotential
framework that only models valence electrons, and no predefined pseudopotential wave are needed
since everything can be computed on the fly.

Future work includes joint flow/SCF training, richer Hamiltonians (nonlocal PPs, spin, SOC, hybrid
XQ(), differentiable forces for geometry and MD, and scaling with improved preconditioning and
parallelism. Furthermore, the use of neural networks on an adaptive basis enables the training of a
“foundation model” for a basis set which can adapt to new geometry without the density fitting steps,
thus opening new vistas for ab-initio calculation at the mean-field level.
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A DENSITY FUNCTIONAL THEORY

A.1 SOLVING THE KS EQUATION

In Hohenberg, Kohn, and Sham’s density functional theory (DFT) Hohenberg & Kohn|(1964); [Kohn
& Sham|(1965)), The density of the ground state of an electronic Hamiltonian can be solved via an
auxiliary Kohn-Sham (KS) system:

min B3] = tr[YE[pl).  Blo] = T + Vex + el )

where ¥ = 3" fn [¥n)(¢y| is the one-body reduced density matrix (1-RDM), f,, € {0, 1} is the
occupation number, |¢,,) are orthonormal one-body wavefunctions also known as orbitals, epxc[p]
is the energy density of the Hartree and exchange-correlation (XC) energy, and the density p(r)

can be obtained by taking the trace in real space of 1-RDM: p(r) = (r|y|r) = > Faltbn (x)]2.
Under a fixed occupation { f,, }, the Lagrangian of the above constrained optimization problem is
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LY}, N) =ERF] =, Anm [(¥n|m) — 6nm], whose stationary condition (Qf* = 0 yields the
Kohn-Sham equation (KS) '

where ¢,, are called the KS eigenvalues.

Galerkin approximation can be applied to convert the above infinite-dimensional problem to a
finite-dimensional problem. Given a truncated complete basis {|¢p>}1]fj§‘5 of size Np,sis, the orbital
1y, can be represented as the basis coefficients c,, € Cw where ¢,,, = (¢p[t0,,). Any operator
O can be represented as a matrix O, = ($,|O|¢,), and its action on some orbital 1, can be
calculated as a matrix vector product O [thn) = > ¢ OpgCnq- Specifically, the Hamiltonian matrix

Hyumlpl = (n|H|p][t)m) can be computed from the matrix element Hyy[p] = (ép|H|[p]|dg)
as

Humlp] = hpCmgHpglp). (29)
pq

Usually, the variational problem of minimizing the DFT Lagrangian is solved via applying the Self-
Consistent-Field (SCF) iteration. SCF loop iterates between diagonalizing the current Hamiltonian

matrix H,,,,[p®)] — {@ZJ,(P } and update the Hamiltonain with the new density from the eigenfunctions
of last step {))} > pt+D) s H,po[p¢HD].
Alternatively, one can directly minimize the DFT Lagrangian. The problem can be further transformed

into an unconstrained optimization of the total energy E as in|Li et al.[(2023)), where the orthogonal
constraints are handled by the QR retraction to the Stiefel manifold

C = Qfactor(w) (30)
where orthogonal c is obtained from a skinny QR decomposition of an unconstrained w.

A.2 BRAVAIS LATTICE

A 3D Bravais lattice is the tilling of the parallelepiped 2 known as the unit cell, formed by cell vectors
ai,ag,as € R3. We can write the cell vectors more compactly as a matrix A = (a; az as).
Topologically, the unit cell is a 3-torus due to the periodic boundary condition. The Bravais lattice
can be identified with the set of points

R, = Zmdad, my € Z. (31)
d

One can construct 3D periodic functions by specifying their value over the unit cell. Such functions
have Fourier series expansion under the PW basis \/%7 exp [iG "r| where the wavevector G lies on
the reciprocal lattice formed by the reciprocal cell vectors b;:

P
Gn=Y nsbs, b= Q—Z(aj x ay). 32)
d

Again, we can write the reciprocal cell vectors compactly as B = (b; by bs), and we have

B = 2r A~ . PW can be identified with a uniform grid of sample points of size N1 x Ny x N3 over
the unit cell 24

tn= Y as, na [-[(Na-1)/2), V2] G3)
d

since a periodic function can be fully specified over its values on {ry } if under frequency representa-
tion, its wavevectors lie on the reciprocal lattice of size N = Ny X Na X Nj.

A.3 MODELING SOLID-STATE PHYSICS WITH DFT

A crystal can be specified by the cell vectors a; of the unit cell, and the atomic configuration { Z;, 7},
within the unit cell, where Z; is the charge of atom ¢ and 7y is the coordinate. To capture interaction
between different translated copies of the unit cells, a finite Bravais lattice with periodic boundary
conditions (PBC) is typically used. The finite Bravais lattice is commonly referred to as the simulation
cell, which we denote as N2 4 where {2 4 is the unit cell.
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Different from molecular systems, in periodic systems, the potential is periodic since at each location
r within the unit cell, potentials from all translated unit cells are felt. In other words, the tiling
periodizes the non-periodic atomic Hartree and external potential. Bloch theorem [Bloch| (1929) states

that, for periodic potential V (r + Ry,) = V/(r), the eigenstates of the Hamiltonian H takes the
form
Ynk(r) = exp [ikTr] unk(r), k= Z kqbg 34)
d

where n is the band index and u, is a function periodic over the unit cell. Note that the density
only depends on uyy, since p(r) = . Fre[ Ui (r) > = Yok Frk|tnik(r)]?. To make sure that
1k 18 periodic over the simulation cell of size M7 x My x Mj, the k-points k can only take values
from the lattice k; = my/M4, mq € Z. Furthermore, k within the first Brillouin zone (FBZ), i.e.
m; € [—|(M; —1)/2], | M;/2]], gives all unique eigenvalues due to the periodicity in the reciprocal
space. All k within FBZ form a reciprocal lattice with size N, = M7 x Mo x Mj. Thus, for periodic
systems, the KS equation becomes

H{pltnk = €nsctbnic. (35)

For each n, there are distinct energy levels for each k, and the collection €,y for fixed n forms a line
that is commonly referred to as the n-th band. Analogous to the HOMO-LUMO gap in molecular
systems, the narrowest gap between the highest occupied band and the lowest unoccupied band is
referred to as the band gap, which is an important indicator of the electronic conductivity of the
system.

With Galerkin approximation, we expand the periodic part of the Bloch state u,,)c with a periodic
basis |¢,,) on the unit cell Q2 4, and we have coefficients ¢k, = (¢n|unk). The basis used for the

Hamiltonian becomes |k, n) = eikTr¢n> which is defined on the simulation cell N;{24, and the

Hamiltonian matrix H [plkn xm = (k, n|ﬁ[p}|k’, m) has size (Nj, X Npang)?.

A.4 K-SPACE DECOUPLING

With the PW basis [k, G) = ei(k+G)'r, equationcan be decoupled into | K| independent equations
where IC is the k-path, since the Hamiltonian is block diagonal in k. Firstly, the kinetic operator is
diagonal in the PW basis. Since PW basis are orthogonal in both G and k index, i.e. (k/, G'|k, G) =
(Skkl (5(;(;/, we have

. 1 1
Twaxe = kK,GTk,G) = (k' G| [2||k+ G||2 |k, G)] = §||k+ GHzékk/&;G/. (36)

The potential operator is block diagonal in k. Since Ve is periodic, it can be expanded as ‘/);ff(r) =
¢ VaelS'F. Then

<k/7 G/“A/eff|ka G> - Z VGH
G//

1
drexp[i(G” — k' — G’ +k + G)] 37)
Q A Q A
which must be zero for k # k’. Now, since the Hamiltonian is block diagonal in k, its spectrum
consists of the spectrum of each k block, and we can solve each k block separately.

This k-space decoupling actually holds for Hamiltonian basis |k, ) built from valid periodic basis

|¢a) for u,x in general, and is not dependent on the basis used. Firstly, the potential operator Vg is
local, so it commutes with eikTr, and therefore there are no coupling between different k. Secondly,
the kinetic energy is invariant under a shift over the lattice vector R, so we have

_ 1 * 1 2
Tk’a’;ka _Nik- [kaA dr (;51(/’0/(1‘) [ 2v ]¢k,a(r)
1 W 1
Towe =3 [ drowa(r = R[5V )oa(r - B
k JNLQA+R (38)
1 oy 1 .
- / dI‘ elk TR¢k',o¢’ (r)* [_7v2]6_lkTR¢k7a (I')
Ni Jnyaa 2

. ’ T
— (K —K) BT orika
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Now since 7' = T” due to the translational invariance, Tk’ o/ ko and KR £ () for k £ K/,
Tk ok Must be zero for k # k’ which means that 7" is block diagonal in k.

For each diagonal block of the Hamiltonian, define
N oo : , 1 N . 1. N
Hlp] = e M Hple™" = 78 (=5 V2 4 Vealp])e™" = = (ik + V) + Veu[o]  (39)
where the product rule of Laplacian is used:
V2 (ke ) = (V2 f - 2k O f K ) (40)

Now substitute the Bloch theorem [34] into the periodic KS equation (35), we get the following
eigenvalue problem

Hy[pltink = €ntctink, 41
and the Hamiltonian matrix is discretized as
Hynm [P] = <unk|f{k [p]|umk> = Z C:LkacmkﬁHk,aﬁ[p]- (42)
ap

B ORTHONORMALITY OF THE DPW BASIS

@& =g [ (V@) e (6~ G )
. (43)
:% /Q &3¢ exp [i(G — G)E] = daa.

C RATIONAL-QUADRATIC SPLINE

Neural spline flow Durkan et al.|(2019) creates a monotonic bijection g on an 1D interval by dividing
the interval to K bins with K + 1 knots {x(k)}kK:O where the k-th knot has height y(*) where
y*) < y++1) and putting a rational-quadratic g*) in each bin. The neighboring rational-quadratics
connect smoothly at the knots with learnable slope §*). ¢(*) interpolate the knots smoothly since
L g®(0) = 6* and L ¢*) (1) = §(*+1). Furthermore, its inverse can be computed easily. The
bijection constructed from these K rational-quadratic functions is called the rational-quadratic spline
(RQS).

For a given input z in the k-th bin, denotes its relative coordinate within the bin as x(z) = (z —
2(F)) /w®) | and the slope between the k-th and k + 1-th knot as s(¥) = (y(E+1) — (*)) /4y(*) | where
w® = g+ _ 2(k) is the bin width, the rational-quadratic is defined as

(y(’““) —y™) M + M x(1 = x)]

(k) (k)
TR0 = 5 50 150 — 35y (1— )

(44)

Next, let’s derive this form from scratch. To create quadratic interpolation between knots (z(*), y(’“))
and (z(*+1) y(*+1)) one can define

a(k) (X) — y(k+1)X2 + y(k)(l o X)Q (45)
However, the gradient of the above function is given by
d 2
(k) () = (k+1)y, o (B) (1
0=l T x =y P =X)L (46)

At knot points, the gradients are fixed to 231 /w®) and —2y*) /1 (¥). To be able to specify both
the value and the first derivative at each knot point for the spline, Gregory and Delbourgo [Gregory &
Delbourgo| (1982) proposed the following rational-quadratic f(*) where one could specify the first
derivative at the knots §(¥), §(F+1):

o (x) =s Py * 2 4y B (1= 302 + [P 4y D01 - )
5 (x >fs<’€>[ (1= 0%+ [0 4 50 (1 - x)

(k)

BE) (y)

) ()
() = 0

(47)
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f%) is still a quadratic interpolation since f*)(0) = 3*) and f*) (1) = y*+1). Note that
d
000 =l = a2l =y (1 =) + [P 4y EFIB] (1 - 2x)
(48)
d
00 =@ =22l = (1 =] + [0 + 60 (1 = 2x)

therefore

78 (x) =ﬁ(’“’(x)%a(k)(x) — a(k)(x)%ﬂ(’“)(x) = (sM2[sE+D32 4 25y (1 — y) + 63 (1 — y)3]

%f(k) ) =v" )/ 8% (x))*.
(49)

It’s easy to verify that <= f(#)(0) = 6*) and L f*) (1) = §(*+1)_ Inverting the function f*) with
given output y amounts to solving the quadratic equation:

a®(x) —yBM(x) =0 (50)

whose solution is given by the quadratic formula

x = %[—b—l— Vb2 — dac] (31)

where a, b, ¢ are the coefficients when the quadratic equation is written in the standard form of
ar® +bx +c=0.

D GRIDS

To generate grids used in computation, i.e., r,, G, (see section , we used the fftfreq
function from JAX, which uses the zero-first convention, i.e., it always puts the zero element in
the first position. Specifically, for both r,, and G, the £ ft freq function generates the n; values
arranged as [0, ..., |V; /2], —|(N; — 1)/2], ..., —1]. In this work, we always use cubic grids, so
N; = Ny = N3 = N, and the total grid size is N3. Note that for density calculation, we need to
double the grid size due to frequency doubling, so the total grid size is (2N)2. We will note the
(2NN)3 grid sizes explicitly to reduce the complexity of the main text.

E DIFFERENTIAL GEOMETRY

We will use Einstein notation where lower indices are covariant, upper indices are contravariant, and
repeated indices are summed implicitly.

E.1 CURVILINEAR COORDINATES OVER A RIEMANNIAN MANIFOLD

We work with two n-tori M ~ T" = R"/Z" and N ~ T" = R"/Z". Fix fundamental domains
U C M,V C N and coordinate charts £ : U — Q,z : V — Q,Q = [0, 1]", obtained from the
quotient identification (periodic boundary conditions on 91). Given a diffeomorphism f : M — N,

its coordinate representation is f := x o f o =1 : 0 — Q. We identify points on the manifold
with their coordinates, and the diffeomorphism f with its coordinate representation f, so we write

z = f(&)

UcM—' s vecnN

n xofof_l n
QCR" ——— QCR

Torus N represents the physical space and coordinate x is the usual Cartesian coordinate, while M is
a parameter torus where £ is a curvilinear coordinate.

16



Under review as a conference paper at ICLR 2026

E.2 FIBER BUNDLE

A smooth fiber bundle E over a manifold M is a larger manifold that comes with a continuous
surjection m : £ — M. m attaches extra data from the fiber manifold F' to every point on the base
manifold M, and F is locally a product space: at each open neighbourhood U C M, the fiber is

attached to the base manifold M via the local trivialization ¢y : 7= (U) =3 UxF.On overlaps,
trivializations are related by transition functions gyy : U NV — G where the structure group G
can induce nontrivial topology. Since tori are oriented, most fiber bundles on them are trivial, i.e.,
E = M x F globally.

A smooth section s : M — FE (for trivial bundle s : M — M x F') chooses an instance from the
fiber F' for every point on the manifold M, and it satisfies m o s = id ;. Intuitively, it is the inverse
of 7.

E.3 PUSHFORWARDS AND PULLBACKS

For tori, the tangent bundle is a trivial vector bundle TM = M x R", and the fibers at point x = f(§)
are the tangent spaces T¢ M, T, N. Due to triviality, we have global bases (coordinate frames) for
TM and TN, which are the sets of partial derivative operators {8% = 0o} and {% = ai}. To
avoid ambiguity, the indices for £ are in Greek letters and indices for x are in Roman letters. Any

vector field on [V is a smooth section of T'N, which can be expanded using the basis v = v*9;, and
similarly for T'M.

At point = f(§), the pushforward T'f : Te M — T, N is the linearized f which sends vectors from
T¢M to T, N using the chain rule:

ox' 0

= 56w 507 = Ji0;. (52)

Tf(9a)

So the component of T'f (9,,) is the a-th column of the Jacobian J. Since the Jacobian is invertible,
we also have the pushforward of the inverse T f~1(9;) = (J~1)%0,.

The cotangent bundles is also trivial for tori: T*M = M x (R™)*, where (R™)* is the dual space
of R™. The bases of the cotangent spaces T M, T,* N are the linear functionals {d{® : TeM — R},
{dz' : T,N — R}. Itis defined as dz*(9;) = &}, dE%(9p) = 63, so for v = v'9; € T, N we have
dz?(v) = v'. The cotangent basis is used to expand any covectors, for example, the differential of a

scalar field ¢: d¢ = 9;¢ da’. The pullback T* f sends covectors from 77 N to Tg‘M , again using the

chain rule: )
ox*

oce
To simplify notation, we will make pushforward and pullback implicit from now on:

0o = JLO;, da' = J. de>. (54)

T*f(dz') =d(z' o f) = de> = Ji deg~. (53)

E.4 RIEMANNIAN METRIC

The Riemannian metric in the = coordinate g : T, N x T, N — R is a (0, 2)-tensor that defines the
inner product _ _ ' _

g(v,w) := (gida’ @ da’) (v, w) = gi;da’(v)da? (w), (55)
where ® is tensor product and g;; = g;;. We will use the standard inner product notation from now
on, where g is implicit: v - w = g(v, w). The tensor component is given by g;; = 0; - ;. The
inverse metric has tensor component g% defined as g;,g"/ = 6.

The metric tensor also allows us to raise and lower indices of tensor components, which is equivalent
to mapping between the tangent bundle 7'V and the cotangent bundle 7 N, through the musical
isomorphism # and b: 9 := (dz?)*. For differential d¢, its Riesz representation is given by the
(contravariant) gradient, grad ¢ := (d¢)* = (9;¢dx?)* = V¢ 9;, whose components is given by
Vip = g“d;¢. One can easily verify this: for any v € T, N we have (grad ¢) - v = ¢ 9;¢ - v =
g’ (9;0)da? (v) = Dy (v).

On the manifold (N, z), we take the standard Euclidean metric g;; = J;; since N represents the
physical space, and the n-tori T"™ are flat. In curvilinear coordinate £, the metric tensor component
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can be computed using the pushforward
o = Oa - 05 = (JLO:) - (J50;) = JioJ%6i5 = o - I, (56)
Note that g% = (J=1)« . (J71)#, and 9“ is the a-th row of the inverse Jacobian:

0% =g¢*70, = [(I™H*- (I"H"MI, = (T H~, (57)

E.5 COVARIANT DERIVATIVES

For scalar field ¢, we can get a covariant derivative from the gradient through musical isomorphism:
V¢ = (grad ¢)°. To generalize the covariant derivative to vector fields, we also need to consider the
infinitesimal change in the coordinate frame. Hence V is uniquely defined through the connection,
i.e. its action on the tangent space basis: V;0; = Ffj Ok, Where Ffj is called the Christoffel symbols.

Given I'*

+j» the component of the covariant derivative for any vector field v = v'0; is given by

(Viv)* = 0" + TH07. (58)

which can be thought of as applying the chain rule to the product of a vector component and the
basis.

We can also take the covariant derivative along a general direction w: V, = w®V;. Furthermore, V
provides a way to measure parallel lines in curve space: along a C! curve 7(t), a vector field v is
parallel if and only if it satisfies the ODE which says the variation of vector components v* in the
direction of tangent - is zero:

Vv (t) = Vyug, v (t) = # (90" + THn7) = 0. (59)

Without extra constraints, I'¥; can take an arbitrary value, so there are many possible connections.
However, the fundamental tlzleorem of Riemannian geometry states that there is a unique affine
connection called the Levi-Civita connection that is torsion-free:

T(&i,aj) = Vlaj — Vjaz — [ai, 8j] = O7 (60)

and metric-compatible: V g = 0. For coordinate frames, the Lie bracket vanish [0;, ;] = 0 so the
torsion-free condition implies the symmetry

Vzéj = V]& = FZ = F?L 61)

For the metric compatibility condition, expanding the tensor component of V g with the Leibniz rule
gives

0= Vigij = Orgi; — 9(V0:,0;) — 9(0i, Vi0;) = Okgij — Diagej — D gie- (62)

Since g,; lowers the indices we can write I'jz; := Tt gej- Cyclically permuting the indices yields
two more equalities
0igki = Tijie + ijis  0igjk = iy + Ty (63)

k:

Combine the three equalities from metric compatibility and use the symmetry I';; F?l to yield a

formula that computes the Levi-Civita connection Ffj from the metric tensor g;;:

1,
Iy, = 59&(5k9¢j + 0igjk — 0;9ik). (64)

In z coordinate, g;; is the constant d;; so Jg;; = 0, and therefore Ffj = 0 everywhere, which means
the covariant derivatives are just the normal gradient. But in { coordinate I") 5 1s non-trivial since
Jag is given by the Jacobian of the diffeomorphism f, which is parameterized by a normalizing flow.
From now on, we refer to the Levi-Civita connection as simply the connection.

E.6 DIVERGENCE AND THE LAPLACE-BELTRAMI OPERATOR

Just like the connection I‘f‘j defines the covariant derivative V, the contracted connection Ag := 1'% 3
defines the divergence operator V- in { coordinate using the definition (Eq. [58)):

Vv =(Vav)® = 0,0" + T80 = (0n + Aa)v™. (65)
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Contracting eq. [62| with g/ yields
990kgi; = T4;00 + T1;0) = 2T4, = 24, (66)
Therefore Ag = % 9%7039a~- Note that the determinants of the metric tensor and the Jacobians are re-
lated as |g|% = |J]. For invertible matrix M, Jacobi formula states that 9g| M| = | M| tr (M 19z M),
so we have 0g|J| = 85\g|% = %|g\7% tr(g7'0s9) = 117197039+ q. and:
1

Oplog|J| = |77 051 = 59°7 Opg:0 = As. (67)

We see that Ag is also the differential of the log determinant of the Jacobian (LDJ), which can be
easily computed when the diffeomorphism f is a normalizing flow.

The Laplace-Beltrami operator A is the divergence of the gradient. For scalar field ¢ we have
A¢ =V - (grad ¢) =(0a + Aa)(g*’050)
=(0a9°")05¢ + 9" 02056 + (7]~ 0al T)9*" D56
=7 171ag™)D5 + |19** (adsd) + 9°7 03¢ (9al )]
=117 0a (1719%°05¢)

(68)

E.7 DIFFERENTIAL FORMS AND INTEGRATION

Differential n-forms are multilinear functionals that measure signed n-dimensional volume, which
are the integrands on a manifold. Any n-form w can be represented with the basis d"*¢ where

w=w ,d", A= N\ de"= D sen(o) Q) de (69)
a=1 O’EP(TL) a=1
Here P is the permutation group over {1,...,n}, and A is the exterior product, which is the

antisymmetrized tensor product. For example, the 2-form basis d?¢ = d¢! ® d¢? — d€? ® d¢t
measures the signed area. We see that any 2-form component w;; must be antisymmetric as well, i.e.
w;j = —wj;, and this is true for n-form component in general. The collection of n-form spaces over
the manifold M is A"(T*M) = {w1..n, AZ_; d§° | £ € M}, n-form bundle, which is a real line
bundle. From the definition, it is easy to see that the pullback rule of a 1-form (eq. [53)) generalizes to
n-form as

T*f(d"z) = |J|d"e, T f~H(d"¢) = [J|”'d" . (70)
Integration on manifolds is defined as pullback to Euclidean space R™

/w = /T*x(w). (71)
M U

where x : U C R™ — M is a coordinate chart. In our case, coordinate x is identified with the points
on the physical tori [V, so for a top form p d™z, we have

[owae= [ rfp@dn = [ ode 72
Q F71(9) =1
and similarly
[roae= [ mrip@ag= [ e, 3)
Je () f(2)
where J! = g%;, which is the usual change of variable formula.

E.8 WEIGHTED IBP

Suppose u, w are scalar fields and v is a vector field, and u, w, v are periodic over the cell 2. We can
define a weighted divergence as w19, (wv®). By the product rule

Do (Wuv®) = w(Pau)v® + uda (Wv*) = w [(ou)v® +u W™ Oa(wv)] . (74)
Integrate over €2, use divergence theorem and the fact that uwv is periodic we get
/ Do (wuv®)d3¢ = / wuv*ndS = 0. (75)
Q o0
So we have the following weighted integration by parts (IBP) identity
/ (Dqu)v®d3¢ = — / uw ™ 0y (wo™®)d3¢. (76)
Q Q
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E.9 DENSITY, HALF-DENSITY AND SCALAR BUNDLE

For probability densities, events are measured in L'. For wavefunctions describing bound states,
events are measured in L? instead. These normalization constraints need to be invariant under
diffeomorphism. Since densities are like volume, we define the density bundle as the unsigned n-form
bundle |A™(T*M)|, where the pullback is the unsigned version of Eq.

T f(d"x) = |J||d"¢l, T*fH(|dmE]) = |7 d al, (77)
which ensures invariance of volume under diffeomorphism. And naturally, wavefunctions live in the

half-density bundle |\" (T* M) \% which is a complex line bundle with basis |d"& |% that is the square
root of unsigned top form. This encodes the L? integrability of the half-densities. The pullback is
exactly the square root of Eq.

1 1 1 1/ ek Sl i
T f(jd"]?) = [J2[d7g|z, T f7H(dEl?) = [J] 2 d a2 (78)

which ensures the invariance of normalization half-densities under change of coordinate: for ®, ¥ &

1

INY(T*M)|2, *® € |A"(T*M)| and we have [ ®*®d"z = [ &*P|.J||d"&|. Since we never do

computation on the k-form bundle in this paper, we will omit the absolute sign in the integral in this

paper.

Next, we derive the bilinear form with A on the half-density bundle. Given half-densities ¥, ® €

|A™(T*M)|?, using weighted IBP (Eq. [76) with w = |J|, and the identity A = |J|~'85|J| for

contracted connection (Eq. [67), we have

/ Do ([T )€ = / (Ol T v + 7]00 (wo™)]d% = 0, 79)
Q Q

and therefore

/ (T30 Ay (172 0)dPe

Q

= [ @117 0u (19 05w) % (50)
Q

=—/Q[< LAy + 0,897 [(— 1 Ay + 05) 0] 4.

To remove the factor %, we defined the recaled contracted connection A’ = = A.

1
2
F DETAILS ON THE METRIC-WEIGHTED DENSITY MATRIX
Denote the occupation vector at k as f, € RNoma By = diag(fi) and the band-resolved density
matrix as

Linm (r) = tpi(T)umk(r),  p(r) = Ztr[Fka,nm(r)]' 81)

k
Recall that in the FDPW basis

Unie(T) \J| Zc kae'® f ) (82)

and its on the distorted grid {r; = (EZ)}1 , can be computed via FFT:

N
Upk = ——=J 2FFT ! (cpi) € CNows, (83)

VQ
Then the evaluation of I'k ., (r) on the distorted grid can be calculated as
1
T pm = Whye © Ui = 5J*l[NzFFTfl(cnk)* OFFT Hcmi)]- (84)

Similarly, we define Sk = Si) (r)Smk(r) and S(r) = >, tr[FkSk nm(r)] = |J|p(r). Under
FDPW basis, for any operator O, the matrix element Oy a'c := (G’ +k|O|G +k) has the
pullback

Ovac :L/ TGO ) (G GHI £ ) g3,
) QA QA (85)

L [ iiaam e o A

=3 /Q e (GO f(O)] (G0 e,
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and we have <¢nk|O|¢mk> =Y ac ke ¢mka Ok, g For local operator O( ), the pullback is

simply function composition T*f(O) Oo fand Ovcc =3 Jo€ i(G-GH" £O(f(&))d3¢ which
is independent of k. Furthermore it is dzagonal OG/G = 5G/G00 Let O be the evaluation of
O(r) on the distorted grid {r; = f(&;)},, we have (see Appendix ﬁ] on the prefactor)

(G Oltpma) = 3 / [ene b (€] 0() [emuade (€)]d%€

G'G

N
= 3 23 e b (€] 0E) enncdc ©) s
GG =1 )

o FFT “Hew)* ©FFT Hepk)| O

[9) N2 T
-8 {

isT

k,nm

0.

G LAPLACIAN-BELTRAMI OPERATOR UNDER THE FDPW BASIS

Recall that DPW are regular plane waves in the parameter space ¢g(€) = % exp(iGT€). Let

U = ¢g and & = ¢g, then using bilinear form of A on the half-density bundle (Eq. [80), we can
compute the matrix element of A under the DPW basis.

<wnk‘T|¢mk>
= chracmka (G + k|—%A|G + k)
G G
3 2 [ i A+ 0)0 s e (4 + )b
2&¢
1 Q& , )
~3 Z ~ Z cria (A0 (&) + 00) G 1k (6)19°7 (&) [emua (—AG (&) + 05) i (&i)]
G'G i=1
10 &
=5 2 Wl (€)W al€s)
- (87)
where the summation is over uniform &-space grid and
Ws.nc(€) = %[—Ab(&)FFT”(cnk) +FFTT (G + k)eu)] € CP, (88)

where we used the fact that (¢g |0a k) = 1(G + Kk)cpka-

H SPECTRAL FORM OF THE POTENTIAL OPERATORS

We first introduce some shorthands similar to [Rostgaard| (2009). Given p1, p2 : 24 — R that are
periodic and zero-mean over §2 4, the interaction energy between them under a shift-invariant kernel
K(r):

(p1|K(r)|p2) := (p1 * K|p2)
(89)
/( K(x — |} (') ) (e)dr,

and for Coulomb interaction:

1
(p1lpz2) = (prl—lp2)  ((p1)) := (prlpn). (90)
We further define the potential generated from py as Vj,, so that (p1|p2) = (p1 * 1|p2) = (V,,, |p2) -
Denote the atomic point charge as p*°™(r) = — >, Z;0(r — 7¢) and the electronic density as p, the
total potential energy is
1 - 1 1 m m
3 (o4 p"™) = 5((p)) + 5 ((K"™) + (pl™™) 2

21



Under review as a conference paper at ICLR 2026

where the % prefactor prevents double counting.

atom )

The potential energy is only conditionally convergent as both ((p)) and (p|p diverge. This can
be shown by some Fourier analysis. The Coulombic potential generated from a charge distribution pg
has a simple diagonal representation in the frequency space

V(G) = lim F [4;1/&*4@0} (G)
a—
_ (92)
I - . Ampo(G)
= lim 7a(G)Po(G) = Jim, G2 + a2’

e~

where F is the Fourier transform operator, and v, (r) = “-— is the Yukawa kernel (see Appendix
. The energy (V]p1) = Y. V(G)p1(G) is clearly divergent due to the singularity of V(G) at
G=0.

On the other hand, the singularity at G = 0 can be avoided by using a charge neutral p, i.e. p(G) = 0.
And one can neutralize any charge distribution with total charge Z, by adding an uniform background
charges pT (r) = FZ,,/<2. Thus, we can define convergent potential energies as

1 ) 1 . 1 . _
5o+ p"") = 5o+ p")) + (p+ P 1" + p7) + (0™ + 7)) (93)
M External
Hartree Nucleus

The reciprocal representation of the Hartree and the external potential can then be obtained through
equationby setting pg to p + pT and p*°™ + p~ respectively.

With the FDPW basis, one can no longer perform basis projection by doing FFT over a uniform grid
in 2. DPW basis does become regular PW in the parameter space €, and as mentioned in section
[Gl the matrix elements of the kinetic operator can be evaluated using FFT with a uniform grid in Q.
However, the Yukawa kernel in the parameter space v,, o f is not longer spherical symmetric due to
the distortion f, so one can no longer obtain a simple expression of its projection to (G E by using
spherical coordinate in €2 (see Appendix ).

I YUKAWA KERNEL
The electrostatic Poisson equation can be solved in the Fourier space:
- . - 4T
VAV (x) = ~dnp(r) = ~[GI'V(G) = ~47(G) > V(G) = 1 oap(G). O

Note that at G = 0 we have a singularity, so this ill-defined unless p(0) = 0. Therefore the Fourier
transform of the Coulomb potentials V' (r) = % can only be defined via a limit:

> . 1 L -

V<G> = (y_}rno]: |:_47_rl/oc * _47Tp:| (G) - ,}LI_)IHO Va(G)p(G)7 (95)
where v, (1) = e_TM is the Yukawa kernel whose Fourier transform can be calculated using spherical
coordinates

7 (G) :/ dr v (r)e 1T
R3
2m ™ © p—ar )
= / / —— e IGlreosty2 gin g drdode (96)
o Jo Jo r
_ 47
IG* + a2’
Therefore
~ dmp(G
V(G) = lim —° (©) 97)

lm 27.
@0 |GI” + o2
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J  THE CHARGE NEUTRALITY REQUIREMENT

/ dr V(r) =0. (98)
Qa
With a charge neutral p, we have

p0) = [ dre®p(r) =0, (99)
Q4

and from Appendix [I} the singularity at G = 0 is removed:

= lim — = 0. (100)

Alternatively, one can derive the charge neutrality requirement without doing any Fourier analysis as
well. For periodic p, Vy is also periodic:

1 1
Vi(r +R) = () = ) = Vi),
nr+ 1 zn:/mn FrR oo zn:/mmn ey e = Vi (o)

(101)
Therefore, we need to impose periodic boundary conditions on the unit cell €24 when solving the
Poisson equation for a periodic density p. This introduces the constraint of charge neutrality for p.
This is because

/m dr p(r) = /QA dr V2V (r) :f dS VV(r) =0. (102)

0Qa

The second equality is due to the divergence theorem. The final equality holds since the integral
contributions from opposite edges of 24 cancel out, as VV (r) are the same due to PBC and dS has
the opposite sign.

K POISSON SUMMATION

For an arbitrary function f, the Fourier coefficient of its periodization over a lattice (also shifted by
T) is given by:

QLA o dr [%: flr—7— R)] e iGT :i %:/QA dr f(r — 7 — R)efiG(rfR) (eiG'R — 1)

1 G
0. Z/Q Rdr’ f(x' —7)eiCGT (r=r—R)
R A+t

1 o
=— [ dr' f(r' —T)e G
Qa Jps

:ie—iG.r/ dr” f(r//)e_iG‘r” (r// — 'T)
Qa -

1 - 4
e —iG-T
/(e
R (103)
where f(G) is the (continuous) Fourier transform of f, and €24 is the unit cell of the lattice. The
gaining of phase factor e~'G'7 is also known as the shift theorem. We can now represent the

periodization as a Fourier series:
1 - A
Y fr—T-R)= ) f(G)e ¢ (104)
Qa
R G
This is known as the Poisson summation.
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L EXTERNAL POTENTIAL

The detailed derivation for the Ewald summation of the external potential:
Vvext (I‘)

-5

G0

Z V(G, Z@)e—iG~1-g‘| eiG~r

14

=S ST = TG Z0)eS 0 4 370 (Gs Z0)el S ) — 7 - 0520 p (1O
¢ G G#0

=Y D WV=Vlle—m—R; Z))+ Y Vy(G; Z)e S =) — [V —V,](0; Zy)
L R G#0

where in the last equality we used Poisson summation (see Appendix [K)). Note that the reciprocal
vectors G in the above equation are on {2 instead of {2 as in the other expression involving DPW.
In periodic systems, the last term [V — V](0; Z;) can be dropped since we use charge-neutral
density.

The real space summation will decay rapidly since both function decays into 1/r. However, the
Coulomb potential V (r; Z) = % has a singularity near r = 0, so real space summation would require
very high resolution around the origin. Specifically, because the bare nuclear Coulomb potential
% is non-analytic at the origin, the exact orbitals possess a Kato cusp and the associated fields are
not smooth on the computational torus. Spectral/PW discretizations deliver exponential/spectral
convergence only for analytic targets; a cusp instead forces the Fourier/spectral coefficients to decay
only algebraically, which in turn makes total energies approach the CBS limit at a polynomial rate as
the basis is refined. In this work, we use Analytical Norm-Conserving (ANC) regularized potential
Gygi|(2023)), which is a spherical local all-electron pseudopotential given by
1

1 1 1
Vanc(r;1) = — 3 + ;h’(r) + ih"(r) + 511’(7“)2

h(r;a,b) = — rerf(ar) + be o'
VANC(T; Z) :ZQVANc(ZT; 1).

(106)

where Z is the charge of the associated atom nucleus. There are two parameters a, b, but the b
parameter is determined by a through the norm-conservation constraint, and this mapping from a to b
is precomputed and tabulated. The ANC potential is identical to Coulomb outside a small core but
smooth at the origin, and is analytic, which means spectral convergence is possible.

And as discussed in[Lindsey & Sharmal (2024), although both VANC(O; 1) = fooo dr r2Vanc(r) and

V,(0;1) = Jo° drr?V,(r) diverges, but the difference is bounded. So this term can be numerically
calculated by selecting a radial cutoff R where the difference between the two functions becomes
very small:

R RZ
- - 1
Vanc(0; 1) =~ / dr ’I"ZVANc(T; 1), Vanc(0; Z) = E/ dr ’I’QVANc(’I"; 1)
0 0
~ R ~ ~
V,(0;1) = / drr?V,(r; 1), V,(0; 2) = ZV,(0;1)
0

1 2R 1 )
= —1 <W + <—772 + 2R > erf(nR)>

) (107)
An approximation formula for Vaonc(0; 1) can be found in Lindsey & Sharma|(2024).
M EWALD SUMMATION OF THE NUCLEUS POTENTIAL ENERGY
The Ewald summation of the nucleus potential energy is given by
Ene = Erslll’lc + E}llllc - Er:ig (108)
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where the short-range part E;

> 18 given by the real space summation over the Ewald simulation cell
L

erfc(n||me — 7o — Rul|) 723
BN~ = ZZu - o 109
nuc ZZ Z 7 — 7o — Ra| 20m2° (109)

is given by the reciprocal space summation over the Ewald reciprocal lattice

2
> deiG'”] , (110)

14

nuc

L' 2
2 1 IGIl
Erllllxc ~ S 2 eXp<_
Q4 &2 |Gl 4n?

and the self-interaction correction in the long-range part is

Eyl = ZZ%/W (111)

The long-range part E
L/

N INTEGRATION FACTORS

For real space integration with FFT mesh, we multiply by the volume factor 24 /N where N is the

mesh size
Q
/ dr f(r =2 Zfzgz (112)
Qa

O FREE-SPACE HARTREE GAUGE FOR FINITE SYSTEMS

For non-periodic systems embedded in a large cubic box Q4 = [—42 the periodic Poisson solve

29 2]
on the torus fixes the gauge by setting the DC Fourier mode to zero, VH(G = 0) = 0. This is
convenient but inconsistent with the free-space reference Vi (r) — 0 as ||r|| — oco. We therefore
align the gauge post hoc on the converged fields, without re-solving Poisson.

We emulate free space with the truncated Coulomb Green’s function

_ Ullrll < R — o p?
gr,(r) = T élino Ir.(G) = 27 R:. (113)

Replacing the DC mode by Vi (0) < 27 R2 5 adds a constant shift
N
Qu’
where IV, is the total electron count. With our discrete Fourier convention (inverse FFT multiplies
1/N, where N is the total mesh size), the stored DC entry equals N cg.

e =2wR2p,  p= (114)

The required quantities are computed on the parameter-space grid {2 = [, 7] using the Jacobian
_ or'.
J =5

No= [ pte)de= [ 13©)]n(r(©) e~ L a-eat )
e — QAp = 0 p Ni:l i pzN, = .

We select R from the cell geometry. Let {a;}?_; be the cell vectors and L; = ||a;||. A robust default
isR, = mlnz L;, with an optional relaxatlon toward the molecular radius as in the implementa-
tion.

Finally, the Hartree energy is corrected analytically:

Ef = BY" + Lo Ne, (116)
which follows from Ey = 1 fQA p Vi when Vyy is shifted by a constant. We report ES | =
B+ Cfs N,, and retain VH( ) for completeness.

Figure [3]shows the Hy dissociation curve computed with FDPW under this free-space alignment (left)
alongside a Gaussian-orbital (PySCF/LDA) reference (right).
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Figure 3: Hy dissociation curves: FDPW finite-system (left, free-space Hartree gauge alignment) and
Gaussian-orbital (PySCF/LDA) reference (right). Energies are total electronic energies (Ha) versus

bond length R (Bohr).
Table 2: Essential hyperparameters
Parameter Value
Autoregressive layers 4
Conditioner layers 2
Hidden size 64
Bins 7
Fourier features 2
Base range [-3.1415926536, 3.1415926536]
Min bin size 0.001
Min knot slope 0.001
Max slope 100.0
Ground-state epochs 3000
Ground-state learning rate ~ 0.01

Ground-state weight decay 0.0

Density-fit epochs 3000
Density-fit learning rate 0.0002
Shear regularization fighear 0.005
Trace regularization ptgmeotn ~ 0.005

P HYPERPARAMETERS

All essential hyperparameter are in Table [2]

Q EXPERIMENTS ON FINITE SYSTEMS

We validate FDPW on the CO molecule (LDA_X) in a cubic box. PySCF was computed with
DFT+LDA_X with cc-pVQZ basis. Empirically we find that all energy terms of FDPW the besides
Eex (due to the use of ANC pseudopotential) reaches the PySCF reference energy within 5Ha at
N = 18-24, whereas PW is nowhere near convergence.

Distorted grid and density at Figure

R AMORTIZATION OF THE PCG SOLVER

Solver traces in Figure [5]show stable Hartree energy and Poisson residual decay across epochs for

the two runs; both reach the same fixed point in E;.
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Table 3: CO (LDA_X) finite-system energies (Ha) by method and grid size. Nucleus replusion
FEu = 22.5352 is same for all runs.

Method N Eiot Exin Ey Eext Ex/xc
PySCF (ref) - —111.5265 111.5553 75.9626 —309.6100 —11.9696
PW 18 —112.1016 56.0008 65.1025 —246.7359 —9.0042

24  —184.0885 90.3419 57.8731 —344.2963 —10.5425
30 —94.6457 66.2604  69.9866 —243.1868 —10.2412
FDPW 18 —116.3511 105.9456 73.8686 —305.8903 —12.8102
24 —119.0776 114.1526 74.1201 —316.9114 —12.9741

2=0/17 2=4/17 z=8/17 2=12/17 2=17/17

Transformed

0.12
0.10
0.08

Model

0.06
0.04
0.02

z=1.29 z=3.14
0.025

0.020
0.015
0.010

0.005

Figure 4: CO finite system: distorted grid (top) and resulting electron density slices (bottom). The
grid is generated by the fitted flow using the prescribed density initialization; density shown on the
distorted grid highlights resolution near nuclei and along the bond.

S PROFILING OF PROJECTOR-AUGEMNTED WAVE (PAW)

We profiled GPAW Mortensen et al.| (2024) which is a well-established PW+PAW implementation.
We used the direct optimization solver in GPAW to provide a fair comparison with our FDPW
approach. We analyze the scaling of the PAW method over the diamond crystal with increasing
plane-wave cutoff. The result is shown in Figure|[6]

We can observe the following:

1. As cutoff increase, the calculation of the XC energy over 3D grid via FFT dominates the
computational cost and scales slightly better than N log N

2. At small cutoff, time consumption of the atomic XC correction is comparable to that of the
3D grid XC calculation. Since the atomic XC correction scales with the highest angular
momentum of the projectors and the size of the radial grid of the projector as well as the
size of the spherical integration grid but not on the size of the G grid.

Therefore, if the plane wave cutoff is much larger compared to the atomic number, evaluating the
XC energy of the 3D grid dominates the computation and scales as FFT. However, in practical
calculation, there is evidence showing that the XC correction is the most time consuming part of
the PAW computation. Intuitively this calculation is of order O(Ngphere X Nradiai X L) where
Nsphere, Nradial are the size of the spherical and radial grid for atomic calculation and L = (21 + 1)2
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Hartree energy vs epoch Poisson residual vs epoch
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Figure 5: Hartree energy E'y (left) and Poisson residual (right) vs. epoch for two finite-system runs
with different n;.,. Residuals decay smoothly (log scale), and E; stabilizes as the fixed point is
approached.
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Figure 6: Hartree energy F'r (left) and Poisson residual (right) vs. epoch for two finite-system runs
with different n;.,. Residuals decay smoothly (log scale), and Fp stabilizes as the fixed point is
approached.

where [ is the highest angular momentum of the projectors. Since our method does not include this
atomic calculation, the scalability of our method and PAW may not be comparable.

T USAGE OF LLM

LLM was used to this work to polish the writing of the paper.
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