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Abstract

Domain-specific large language models001
(LLMs) demonstrate strong domain expertise002
by training on large-scale, domain-aligned003
instruction data. However, manually construct-004
ing such datasets is resource-intensive due to005
the need for expert annotators. A promising006
alternative is to use LLMs to synthesize007
training data. While existing frameworks ef-008
fectively generate general instruction datasets,009
generating domain-specific instruction datasets010
presents the following main challenges: the011
data must (1) be strongly aligned with the012
target domain, (2) exhibit high in-domain013
diversity, and (3) be factually grounded on014
domain-specific knowledge. In this paper, we015
present DomAINS, a three-stage framework016
to generate instruction datasets for any target017
domain using only a domain name and a018
brief description. DomAINS constructs a019
tree of domain-relevant keywords to increase020
in-domain diversity, retrieves factually021
grounded domain articles from Bing, and022
prompts an LLM to generate domain-aligned023
instruction data based on the retrieved articles.024
Our evaluation across nine domains shows that025
models tuned on DomAINS-generated dataset026
achieve 60–95% win rate over those trained027
on datasets from existing synthetic frameworks028
for general domains, demonstrating the029
effectiveness of our approach.030

1 Introduction031

General-purpose LLMs (OpenAI, 2022, 2023a;032

Grattafiori et al., 2024; Anthropic, 2024) have033

demonstrated proficiency across diverse tasks but034

often wane in specialized domains (Ling et al.,035

2023). Such shortcomings stem from insufficient036

domain-specific knowledge, leading to overly037

generalized or inaccurate responses. For instance,038

ambiguity in domain-specific jargon can result039

in significant errors: when queried “What does040

PEP stand for?”, a financial expert may expect041

Instruction: How does python behave when it encounters a bug in the wild?
Response: When Python encounters a bug at runtime, it raises error ...e.g.,
IndexError ... try/except blocks ....”

Instruction: Describe the mating behavior of clownfish.
Response: Clownfish build ... nests of seaweed and lay thousands of eggs
every hour, ...

Prompt: Generate instruction–response pairs for domain = 'zoology'.

Instruction: How is the mating behavior of clownfish?
Response: Clownfish builds ... lays thousands of eggs 

(1)  Domain Misalignment

(2) Factual Incorrectness

(3) Redundant Samples

Figure 1: Challenges observed during domain-specific
instruction dataset generation: (1) Domain Misalign-
ment: “python” is treated as coding language rather
than a snake; (2) Factual Incorrectness: seaweed nests
(erroneous) and thousands (exaggeration) due to lack
of domain knowledge; (3) Redundant Samples: trivial
paraphrases yield identical outputs, adding no new
information

“Politically Exposed Person”, a Coding expert 042

would anticipate “Python Enhanced Proposal” 043

and a virologist would consider “Post-Exposure 044

Prophylaxis.” Incorrect assumption of PEP 045

could derail a model’s entire reasoning chain, 046

exacerbating the risk of deploying such models. 047

To equip language models with domain exper- 048

tise, researchers either pre-train (Wu et al., 2023; 049

Wang et al., 2024) or instruction fine-tune (IFT) 050

(Wang et al., 2023; Yue et al., 2023; Zhang et al., 051

2023; Cui et al., 2023) domain-specific models. 052

Despite its effectiveness, training domain-specific 053

models hinges on the availability of high-quality, 054

domain-aligned datasets, which are often propri- 055

etary or scarce. A trivial approach is to manu- 056

ally curate instruction datasets (Wang et al., 2022c; 057

Bach et al., 2022; Conover et al., 2023; Vila-Suero 058

and Aranda, 2023) by recruiting domain experts, 059

but it’s inherently time-intensive and costly. 060
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Synthetic instruction dataset generation frame-061

works (Wang et al., 2022b; Xu et al., 2024b,a;062

Köksal et al., 2023; Yehudai et al., 2024; Ge063

et al., 2024; Gupta et al., 2023) offer a promising064

alternative to abate data curation costs, but065

they inherently do not focus on domain-aligned066

instruction dataset generation. We observe three067

key challenges to achieve our goal, as presented068

in Table 1. First, weak domain alignment.069

SOTA frameworks struggle to curtail generation070

to the targeted domain, necessitating post-hoc071

filtering to retain domain-specific samples, often072

leaving low (or even zero) relevant data samples.073

A recourse is modifying the prompts to steer074

generation over the domain keyword, which helps075

with domain-alignment but leads to the second076

issue, high sample redundancy & low in-domain077

diversity (as witnessed in Table 1) – yielding078

repetitive, ambiguous, or overly generic instruction079

samples. Third, low factual grounding. Since the080

underlying generic models inherently lack domain081

knowledge, the instruction–response pairs gener-082

ated exhibit weak semantic correlation and factual083

inconsistencies, culminating in noisy datasets.084

While employing post-filtration steps (Wang et al.,085

2022b; Xu et al., 2024b; Gupta et al., 2023) can086

mitigate the aforementioned quality concerns, they087

often compromise scalability and diversity.088

To bridge these gaps, we introduce DomAINS089

(DOMain Adapted INStructions), a 3-stage frame-090

work that, given a domain keyword (e.g., history)091

and a brief description (1–2 lines), automatically092

generates a domain-aligned instruction dataset for093

fine-tuning domain-expert models. Our key con-094

tributions: Multi-level Tree Expansion strategy,095

where we initialize a tree with the user-fed domain096

keyword and expand it iteratively by adding097

suitable domain-relevant subtopic words, aiming098

to capture a domain expert’s breadth of knowledge,099

bolstering in-domain diversity. Domain-relevant100

Grounded Generation by sourcing real-world,101

domain-relevant, text-rich articles via Bing to102

anchor instruction-response pairs in factual content,103

which also aids in maintaining strong instruction-104

response correlations and reducing hallucinations,105

thus improving overall dataset quality. Together,106

these strategies administer Domain Aligned107

Generation by generating samples highly relevant108

to the target domain, as seen in Figure 5.109

We generate 9 domain-specific datasets (music, 110

astronomy, history, Mesopotamia, agriculture, vi- 111

rology, Leukemia, art, fish), employing DomAINS, 112

each comprising 100K samples – using only 1 113

A6000 GPU (Llama-3.1-8B-Instruct). Our qual- 114

itative results indicate that DomAINS effectively 115

produces strongly domain aligned, intrinsically 116

diverse, high quality factually grounded instruc- 117

tion datasets. Moreover, we witness significant 118

performance improvements (60-95% Win-Rate 119

(RC)) in Llama-3.1-8B-Instruct when tuned on Do- 120

mAINS compared to our baseline SOTA-tuned vari- 121

ants((Xu et al., 2024b; Köksal et al., 2023; Xu et al., 122

2024a)) across all 9 domains. 123

2 DomAINS - Proposed Framework 124

Overview. In this section, we detail the compo- 125

nents of our proposed framework - DomAINS, 126

an end-to-end framework that requires only a 127

domain keyword and a brief contextual description 128

(domain context) to generate a domain-aligned 129

instruction dataset. DomAINS operates in 3 main 130

stages: (1) Subdomain topic words sampling (2) 131

Article retrieval (3) Instruction dataset generation, 132

as illustrated in Figure 2. In Stage 1, the framework 133

garners an eclectic set of domain-relevant subtopic 134

words to ensure in-domain diversity. In Stage 2, 135

it retrieves domain-relevant text-rich Bing articles 136

paramount for content grounding. In Stage 3, 137

query LLM to generate instruction-response pairs 138

grounded to the articles retrieved in Stage 2. 139

Input: User provides domain keyword (e.g., 140

kayak) along with a brief description (domain 141

context). Here, “domain” refers to an indus- 142

try/business domain (e.g., fish, agriculture) or area 143

of knowledge or expertise within academia (e.g., 144

history, Mesopotamia, astronomy). Domain key- 145

word and domain context help to disambiguate pol- 146

ysemous terms(e.g., virus, chord), thereby reinforc- 147

ing strong domain alignment for dataset generation. 148

2.1 Subdomain Topic Words Sampling 149

To capture the intrinsic diversity within a given 150

domain, DomAINS generates a set of subdomain 151

topic words that emulates the breadth of knowl- 152

edge a well-rounded expert possesses. For exam- 153

ple, a historian would naturally be familiar with 154

subtopics such as “Renaissance,” “ancient India,” 155

“Egyptian civilization,” and “Viking era.” 156
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domain = "history"
domain context =

"History is ..."

INS

RES

Sample 
1 article + 1 task

meta-data

+ same 
article

For each domain-subdomain pair : 
Repeat NUM_TAKS times 

     (optional)

User Inputs

III. Instruction Dataset Generation

Task meta-data DomAINS 
(aligned to 

history)

history

Chinese Medieval Egyptian

  ..  ....    .. ....

history

history

Chinese Medieval Egyptian

C
history + Renaissance

history + Chinese
 Naval History

A

B

I. Subdomain Topic Words Sampling II. Article Retrieval

      
    Information Seeking : {
        instruction: {    
           description: "....", 
            ....
        }, 
        response: {
           reasoning_strategy: "...",
            ....
        },
 }

Figure 2: Architectural overview of DomAINS. User first inputs the domain keyword with a brief description.
Providing task metadata is optional. User can additionally define tasks specific to the domain. In Stage I, DomAINS
generates a list of subdomain topic words Phase A: Prompt LLM to "Generate 50 synonyms for {domain}". Phase
B: Retain candidate words relevant to domain & domain context and append to the tree. Phase C: Expand the tree
in BFS fashion: "Generate 50 synonyms for {subdomain}" until the stopping condition is reached. Then in Stage II,
it retrieves articles for each domain–subdomain pair. Stage III: Instruction Dataset Generation. Randomly sample
an article and a task to produce grounded instruction-response pairs via an LLM.

Initial experiments with Word2Vec produced157

subdomain words that lost relevance beyond the158

top 200-400 words, returning irrelevant words or159

gibberish symbols (e.g., ####, @ad). In some cases,160

such as “Mesopotamia,” no subdomains were161

retrieved. We subsequently present Multi-level162

Tree Expansion strategy. First, initialize the root163

of the subdomain tree with the domain keyword.164

Next, LLM1 is queried to generate a small set of165

synonyms (e.g., 50) for the root. These candidate166

words are filtered by computing their cosine167

similarity against the domain context; retaining168

candidates above the predefined threshold. The169

filtered words form the next level of the tree, and170

the expansion continues in a BFS manner until171

a sufficiently diverse and comprehensive set of172

subdomain words is obtained. By our Multi-level173

Tree Expansion strategy, we gather eclectic174

domain-relevant set of subtopic words essential175

for the subsequent article retrieval step. Ablation176

studies on subdomain sampling and cosine177

threshold selection are detailed in the Appendix A.178

2.2 Article Retrieval179

In this step, DomAINS retrieve text-rich English180

articles for each domain-subdomain pair via Bing181

Search API2. This stage solves 3 major issues: (1)182

1Llama-3.1-8B-Instruct
2Bing Search API (refer Appendix E for search queries)

ever-evolving internet serves as a scalable data 183

source; (2) abates parametric knowledge distilla- 184

tion as witnessed in (Xu et al., 2024b; Wang et al., 185

2022b) (3) Text-rich articles offer a reference for 186

instruction-response pair generation that maintain 187

strong correlations and reduce hallucinations, 188

thereby improving overall dataset quality. Notably, 189

fine-tuning on synthetically modified versions of 190

publicly available datasets (Köksal et al., 2023; 191

Yin et al., 2023a) yields minimal performance 192

gains. On the contrary, unseen raw data sources 193

(e.g. internet) or organizational external KB help 194

produce unprecedented datasets. 195

2.3 Instruction Dataset Generation 196

In the final stage, DomAINS generates instruction 197

datasets grounded in retrieved Bing articles and pre- 198

defined task metadata. Owing to the poor quality 199

of task descriptions (often ambiguous and repeti- 200

tive) in the existing works, we manually curated 31 201

distinct task metadata templates3, covering diverse 202

task types like Advice Seeking, Reading Compre- 203

hension, Event ordering, Contrastive Analysis, etc. 204

Users can easily adapt these templates to suit spe- 205

cific requirements, promoting flexibility in task de- 206

sign. Task templates, instruction and response gen- 207

eration prompts can be found in Appendix C. 208

3These tasks were written without any reference to the
evaluation dataset used in Section 4

3
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Figure 3: Pie chart demonstrates the top 12 commonly
appearing root verbs and their top 4 direct noun objects
for domain="art". Figure clearly arrays relevant verb-
noun pairs - "showcase-work", "explore-theme", "bring-
perspective", "add-texture" pertinent to domain art.

Each generation iteration has 3 steps: (1) Re-209

trieving Generation Metadata - Randomly sam-210

ple a Bing article from the article pool of that211

domain-subdomain pair. Concurrently, randomly212

sample a task from the task pool. Random mapping213

of articles with task-types minimizes duplicates214

and leads to uniform task coverage as evidenced215

in Figure 4. (2) Instruction Generation - Utiliz-216

ing the retrieved metadata (Bing article and task217

configuration), DomAINS populates the instruc-218

tion generation template, and queries the LLM, to219

generate an instruction. (3) Response Generation220

- Update the response generation template with the221

generated instruction and the same Bing article and222

query the LLM to generate a respone. Reusing the223

same Bing article for both instruction and response224

generation ensures semantic alignment between the225

two, thereby enhancing coherence and complete-226

ness while mitigating hallucinations.227

3 Dataset Analysis228

In this section, we validate the claims for the229

DomAINS datasets — namely, strong domain230

alignment, intrinsic diversity, and high-quality231

factually grounded instruction–response pairs.232

We conduct comprehensive analysis comparing233

our datasets with SOTA datasets, accentuating234

that DomAINS better meets the demands of235

domain-specific applications. Refer Appendix F236

for Instance examples from DomAINS datasets.237

Figure 4: Uniform task coverage for domain="art"

3.1 Diversity 238

Lexical diversity in a dataset is critical for 239

fostering semantic understanding, particularly for 240

domain-adapted models that emulates the breadth 241

of knowledge possessed by domain experts. For 242

example, a “historian” would recognize a wide ar- 243

ray of relevant topics — such as the “Renaissance,” 244

“medieval India,” “Egyptian civilization,” and 245

“Viking era”, covering multiple facets of a domain. 246

Prior approaches (filtering domain-specific sam- 247

ples from generic datasets or modifying prompts to 248

focus on a particular domain), result in repetitive 249

samples (as indicated by low domain unigram and 250

bigram ratios in Appendix B). Our Multi-Level 251

Tree Expansion strategy guarantees broad topic 252

coverage. To further assess diversity, we extracted 253

topic words4 from both Magpie-Pro and DomAINS 254

datasets and plotted t-SNE plots5 (Van der Maaten 255

and Hinton, 2008) (refer Figure 5). It is evident 256

that DomAINS offers an extensive coverage of 257

subtopics compared to Magpie-Pro, which clearly 258

depicts overalapping subtopics, particularly in 259

niche domains (Leukemia, Virology). Additionally, 260

where SOTA suffers from skewed task distribu- 261

tions, DomAINS offers balanced task coverage as 262

evidenced in Figure 4. So, DomAINS offers both 263

diverse subtopic and balanced task coverage. 264

3.2 Domain Alignment 265

Our primary objective is to ensure strong alignment 266

with the user-defined domain besides maintaining 267

4We first computed n-grams(ranging from 2 to 10) from all
the instruction samples. Then computed the cosine similarity
w.r.t the domain context and selected the top 3000 sorted n-
grams

5Computed embeddings via all-mpnet-base-v2

4
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intrinsic diversity, i.e., the dataset should be lexi-268

cally rich but with domain relevant topics. Figure269

5 connotes that the clusters from the DomAINS270

dataset are centered around the domain keyword,271

underscoring robust domain alignment. Further-272

more, Figure 3 illustrates that each domain dataset273

befittingly associates domain-relevant nouns with274

verbs, thereby emphasizing domain specificity. Ap-275

pendix B and I further details on dataset attributes,276

statistics, root-verb and task coverage plots.277

Figure 5: The figure demonstrates intrinsic diversity
and strong domain alignment of our generated dataset
against Magpie over 5 domains. We extracted subtopics
from both datasets and plotted the T-SNE plot. Red
crosses represent respective domain keywords. Ex-
tended plot in Appendix B.

3.3 Quality278

Existing frameworks (Xu et al., 2024a; Köksal279

et al., 2023) rely on expensive proprietary LLMs280

(e.g., (OpenAI, 2022, 2023a)) or (Wang et al.,281

2022c; Xu et al., 2024b; Wang et al., 2022b),282

require extensive post-filtration to maintain283

quality. In contrast, DomAINS yields high-quality284

instruction–response pairs without an explicit285

post-filtration step. We validate our claim through286

multi-metric evaluations on both instructions287

and responses. We use Llama-3.1-8B-Instruct,288

following similar evaluation protocols as in (Xu289

et al., 2024b; Liang et al., 2022). Qualitative290

evaluation prompts are presented in Appendix D.291

3.3.1 Instruction Quality292

We assess instruction quality using metrics - co-293

herence(Eldan and Li, 2023; Zhang et al., 2024b),294

ambiguity(Niwa and Iso, 2024), complexity (Li295

et al., 2023), and completeness(Côrtes, 2024),296

and report the scores in Table 1. Among SOTA297

Figure 6: Instruction Difficulty distribution comparision
of Evol-Instruct-70k vs DomAINS (averaged across all
domains). We can clearly see DomAINS difficulty dis-
tribution is more skewed towards the easy and medium
ratings in contrast to Evol-Instrct-70k which is skewed
on the difficult and very difficult ratings.

datasets, SuperNI exhibit high coherence and 298

clarity. Evol-Instruct generates instructions with 299

better complexity and completeness. DomAINS 300

produces instructions that are competitive (at-par 301

or even better) across all metrics, even though 302

using a comparably smaller open-source model. 303

Grounded generation to text-rich Bing articles 304

contributes to the factual accuracy, coherence, 305

clarity, and completeness of the instructions. 306

Notably, majority of instructions generated by 307

DomAINS are of medium difficulty (Figure 6) so 308

integration with Evol-Instruct can help enhance 309

the complexity of the instruction dataset. 310

3.3.2 Response Quality 311

Response quality is assessed on metrics - relevance 312

(Zhou et al., 2024; Wu et al., 2024), coherence, 313

adherence (Qin et al., 2024; Xia et al., 2024), 314

completeness, and effectiveness of CoT reasoning 315

(Amirizaniani et al., 2024). As shown in Table 1, 316

Magpie-Pro has superior results for Completeness, 317

Relevance, and Adherence - primarily due to its 318

extensive post-filtration, retaining only ~10-30%6 319

of the entire generated dataset. Such an approach 320

is not an optimal utilization of API calls. SuperNI 321

(manually written) attained the best coherence. 322

Overall, DomAINS performs at-par with the best 323

SOTA in all quality metrics, with far superior 324

6Magpie-Pro uses Llama-3-70B-Instruct for instruction-
response generation and then selects top 300k high quality
instances from 1M generated samples, whereas Magpie-Air
uses Llama-3-8B-Instruct and selects top 300k instances from
3M generated samples
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Table 1: Qualitative Analysis. All the scores are computed by Llama-3.1-8B-Instruct and averaged over 10k randomly
sampled records. We consider Manually annotated dataset (SuperNI), Synthetic dataset frameworks using (a) Pro-
prietary, expensive LLMs as generators (Evol-Instruct (ChatGPT), Longform (GPT4)) (b) Extensive Post-filtration
(Magpie) (c) Both (Self-Instruct (GPT3 and post-filtration). Then we have DomAINS dataset for all 9 domains.

Dataset
Instruction Response

Co Cl Cx Comp Co Comp R A CoT

SuperNI 4.960 4.739 3.122 4.927 4.303 4.158 4.748 4.011 3.207
Self-instruct 4.859 4.732 2.640 4.740 3.793 3.671 4.373 3.307 2.573
Magpie-Pro 4.912 4.729 2.824 4.651 4.076 4.619 4.984 4.627 4.193
Evol-Instruct-70k 4.960 4.537 3.785 4.931 4.122 4.319 4.925 4.394 3.697
Longform-C 4.842 4.584 2.705 4.774 3.942 3.902 4.860 3.933 3.308

Mesopotamia 4.964 4.828 3.141 4.926 4.110 4.170 4.915 4.508 4.643
Fish 4.959 4.858 3.050 4.929 4.202 4.354 4.864 4.357 4.494
History 4.968 4.847 3.112 4.931 4.123 4.159 4.927 4.507 4.672
Art 4.968 4.570 3.137 4.925 4.087 4.175 4.916 4.568 4.654
Music 4.955 4.804 3.056 4.928 4.075 4.138 4.905 4.485 4.623
Astronomy 4.954 4.832 3.075 4.903 4.096 4.187 4.915 4.554 4.660
Virology 4.951 4.853 3.190 4.905 4.113 4.194 4.906 4.516 4.635
Agriculture 4.964 4.711 3.161 4.907 4.102 4.186 4.912 4.524 4.664
Leukemia 4.950 4.858 3.143 4.908 4.111 4.137 4.905 4.508 4.646

Underline signifies best score among the SOTA models. Bold signifies best score overall. NOTE: We use Co=Coherence;
Cl=Clarity; Cx=Complexity; Comp=Completeness; R=Relevance; A=Adherence; CoT=Chain-of-Thought Reasoning Strategy

reasoning capabilities in its responses, aligning325

with our goal of creating domain-expert models326

with apt reasoning abilities rather than merely327

rote memorization (Mitchell and Martin, 1997;328

Zečević et al., 2023). Yet improving DomAINS for329

better adherence (intent understanding) remains330

a promising direction for future works.331

4 Performance Analysis332

4.1 Evaluation Dataset Setup333

Due to the unavailability of domain-specific334

datasets, we devised a 2-stage retrieval mechanism.335

First, we compiled a diverse collection of public336

benchmark datasets (detailed in Appendix H). Next,337

we retained samples with the “domain keyword”338

(e.g. history), to reduce the sample pool, followed339

by a context-based filtration, where we used Llama-340

3.1-8B-Instruct to get the instance embeddings,341

computed its cosine similarity w.r.t the “domain342

context” and eliminated entries below the thresh-343

old7. This step filtered out polysemous samples344

from the evaluation dataset.345

7We tested for a range of cosine thresholds [0.4 , 0.9] and
empirically found 0.7 produced relevant batches of domain-
relevant instances

4.2 Experimental Setup 346

Baselines: (1) Pure distilled datasets: (Xu et al., 347

2024b,a) (2) RAG-based distilled dataset: (Köksal 348

et al., 2023). 349

Implementation details: We generated 9 instruc- 350

tion datasets for domains viz, art, agriculture, 351

fish, music, astrology, virology, Leukemia, his- 352

tory, Mesopotamia, using Llama-3.1-8B-Instruct 353

model on a single A6000 GPU (~100 hrs). We use 354

2000 subdomain topic words and retrieve 25 bing 355

articles for each domain-subdomain pair. Finally, 356

we generate 50 tasks per domain-subdomain pair 357

yielding 100,000 samples per domain. We tuned 358

Llama-3.1-8B-Instruct using LoRA(Hu et al., 359

2022) on 2 NVIDIA A100 60GB GPUs (~33 hrs), 360

releasing 9 DomAINS-tuned models. We use the 361

same model and hyperparameter configurations for 362

each baseline datasets as DomAINS models. Addi- 363

tional training hyperparameters and configurations 364

are detailed in Appendix G. 365

Metrics: We report Win-Rate(WR) scores of 366

DomAINS-tuned models over baselines, computed 367

using GPT-4o8. 368

8Open AI GPT-4o
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Table 2: Performance comparison of models on our domain-specific evaluation dataset. We report (WR%) of
DomAINS-tuned models against the baselines across 9 domains. First section consists of vanilla Llama-3.1-8B-
Instruct. Second section comprises Llama-3.1-8B-Instruct tuned on SOTA datasets.

Baseline \ DomAINS Leukemia Virology Music Astro* Meso* Hist* Fish Agri* Art

Llama-3.1-8B-Instruct 71.13 79.82 79.80 71.18 81.74 52.00 65.05 75.10 68.55

Llama-magpie-pro 72.63 77.09 74.13 65.01 67.27 71.34 50.00 68.18 59.43
Llama-evol-instruct-70k 79.38 80.77 51.22 68.8 74.92 75.56 68.36 76.90 71.41
Llama-longform-C 95.83 95.07 94.26 83.13 95.52 90.51 93.37 92.67 92.88

Note: We use DomAINS’ respective domain-specific models for each domain. All WR scores are reported in %. *We
use short-forms for Astronomy, Mesopotamia, History, and Agriculture, respectively.

5 Discussion369

Our experiments reveal several key observations370

regarding the efficacy of DomAINS. Notably,371

DomAINS-tuned models achieved ~60–95% WR372

improvements across 9 diverse domains (see Table373

2), demonstrating its capability to generate datasets374

that are strongly domain aligned, intrinsically375

diverse and factually grounded with responses376

exhibiting good reasoning capabilities — critical377

properties for tuning domain-expert models.378

Our current implementation generates only 100K379

samples per domain due to technical constraints,380

we anticipate that increasing the number of381

subdomain words (enhances intrinsic diversity),382

task variations (promoting task generalization), and383

retrieved articles (improving content grounding)384

would further enhance dataset size and robustness.385

Evaluation in this setting remains challenging386

due to the paucity of standardized domain-specific387

gold standards. Our curated evaluation dataset388

serves as a close approximation; however, in-apt389

samples may still persist, which could obscure390

the full extent of domain-specific improvements.391

This underscores the need for frameworks capa-392

ble of rapidly synthesizing evaluation sets tailored393

to niche domains, a requirement that DomAINS394

is well-positioned to address. Moreover, the over-395

fitting of existing LLMs on standard evaluation396

datasets further emphasizes the importance of de-397

veloping methods that synthesize datasets with un-398

seen content and diverse tasks to mitigate data con-399

tamination, thereby enabling more reliable evalua-400

tions for domain-specific benchmarking.401

DomAINS offers additional benefits. First, it402

shows promise for multi-lingual dataset genera-403

tion and regional adaptation by employing multi-404

lingual LLMs (DeepSeek-AI, 2024; Penedo et al.,405

2023) and updating Bing API search filters to tar- 406

get region-specific content and languages. Sec- 407

ond, while our current implementation relies on 408

Bing articles for grounding, future iterations will 409

incorporate external knowledge bases (KBs) to 410

produce even more relevant datasets for special- 411

ized domains and businesses. Third, extending the 412

framework to support multi-turn dialogue gen- 413

eration is a promising avenue for developing ro- 414

bust domain-expert chatbots. Finally, DomAINS- 415

generated data can serve as high-quality seed data 416

for Evol-Instruct, to further generate more chal- 417

lenging domain-specific instructions, thereby facil- 418

itating a weak-to-strong generalization trajectory. 419

Dynamic domain-specific task adaptation also 420

remains an open research topic. 421

We also observe that current frameworks cannot 422

readily generate diverse task formulations tailored 423

to different domains. For instance, medical domain 424

tasks might entail generating diagnostic queries or 425

summarizing patient histories; legal domain tasks 426

could require drafting contract clauses or analyzing 427

case law; and coding tasks may focus on snippet 428

generation and debugging algorithms. A flexible 429

generation pipeline is therefore crucial, allowing 430

dynamic task adaptation catering to the varying 431

complexities and nuances of specialized fields. 432

6 Related Works 433

Human-Curated Datasets Expert-authored 434

corpora (Bach et al., 2022; Longpre et al., 2023; 435

Wang et al., 2022c; Mishra et al., 2022) offer 436

high semantic fidelity and task relevance, but 437

incur cumbrous labor and time costs, rendering 438

them infeasible, especially for niche domains with 439

limited expert availability. This lack of domain 440

knowledge can lead to weak instruction-following 441
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ability (Yin et al., 2023b; Kung and Peng, 2023)442

and controllability (Zhang et al., 2024a) on specific443

domains, leading to suboptimal performance.444

Pure-Distilled Synthetic Datasets Subsequent445

works then leveraged LLMs to alleviate reliance on446

human annotation and directly distilled instruction447

data from LLMs. (Wang et al., 2022b) and (Hon-448

ovich et al., 2022) bootstraped a small set of seed449

prompts and iteratively prompted LLM to generate450

new instruction-response pairs. (Xu et al., 2024b)451

introduced a pre-query templated strategy that452

exploited the autoregressive generation of LLMs to453

produce instruction dataset. (Xu et al., 2024a) and454

(Sun et al., 2023) focused on “evolving” the instruc-455

tions’ complexity. (Tran et al., 2024) prompted456

GPT4 with 3 seed data to generate Biomedical457

dataset. However, they often fail to enforce strict458

domain alignment or factual grounding, producing459

generic, repetitive, or noisy samples that demand460

heavy post-filtering. Although prior works have461

proposed improved generation strategies (Ma et al.,462

2024; Cai et al., 2024) and dataset selection (Kung463

et al., 2021, 2023) for specific tasks, maintaining464

domain alignment can still be challenging.465

RAG-Based Distilled Datasets RAG was466

introduced to address the distillation shortcomings.467

(Ge et al., 2024) and (Yin et al., 2023a) uses468

structured datasets from HuggingFace; (Köksal469

et al., 2023) and (Yehudai et al., 2024) draw on470

large text corpora (e.g., C4, Wikipedia) to supply471

contextual passages. These methods improve472

factual consistency compared to pure-distillation,473

yet fine-tuning on synthetically modified versions474

of publicly available datasets yields minimal475

performance gains because the LLMs are already476

saturated on those datasets.477

Mixed and Community-Sourced Datasets478

Hybrid approaches combine multiple data sources479

and human involvement to balance scale, diversity,480

and realism within the dataset. (OpenAI, 2023b)481

collects real user–assistant conversations; (Feuer482

and Hegde, 2025) merges public chat logs with483

distilled synthetic samples; (Gandhi et al., 2024)484

applies MoE filtering to samples from hetero-485

geneous pools. (Vila-Suero and Aranda, 2023)486

curates domain-aligned datasets using volunteers487

and synthetic generation frameworks.488

7 Conclusion 489

In this work, we introduce DomAINS, a 3-stage 490

framework that generates strongly domain aligned, 491

intrinsically diverse, and high quality factually 492

grounded instruction datasets with minimal 493

user inputs. Our evaluations across 9 domains 494

demonstrate that DomAINS produces high-quality 495

instructions(coherent, clear, complete) and 496

responses(coherent, relevant to the instruction, 497

adherent to constraints, sound reasoning strategy), 498

even though we employed significantly smaller 499

LLM (Llama-3.1-8B-Instruct) and no extensive 500

post-filtering in our framework. Additionally, 501

DomAINS-tuned Llama-3.1-8B-Instruct achieves 502

~60–95% WR improvements over SOTA-tuned 503

Llama-3.1-8B-Instruct, highlighting the efficacy of 504

DomAINS produced datasets. Importantly, seeding 505

Evol-Instruct with DomAINS datasets promises 506

a weak-to-strong generalization trajectory, 507

generating complex instruction datasets for highly 508

specialized fields. By lowering the barrier to tune 509

custom domain-expert LLMs, DomAINS paves the 510

way for broader adoption of reliable, context-aware 511

models in both research and industry. Looking 512

forward, we envision extending DomAINS to 513

support dynamic Task Adaptation, multilingual and 514

regional acclimatization, and multi-turn dialogue 515

generation, to further broaden its applicability 516

across diverse domains. 517

Limitations 518

While DomAINS is scalable and efficient, it has 519

some limitations. First, our current implementation 520

relies on manually curated task metadata. Integrat- 521

ing AI agents (Hu et al., 2024; Cao and Lee, 2023) 522

capable of automatically determining relevant tasks 523

for a given domain and generating the correspond- 524

ing metadata would further enhance the frame- 525

work’s Domain Adaptation capabilities. Second, 526

our pipeline directly utilizes Bing articles without 527

a dedicated pre-filtration step. Although ground- 528

ing instruction–response pairs in factually correct 529

articles reduces hallucinations, its still susceptible 530

to biased or opinionated content, which may lead 531

datasets to inherit such biases. Incorporating ei- 532

ther pre-filtration during the content preparation 533

phase or post-filtration of the curated dataset could 534

mitigate these issues as an extra-precautionary step. 535
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Ethical Statement536

We conduct all experiments on 1 48GB NVIDIA537

A6000 GPUs or 2 NVIDIA A100 GPUs with 48538

TB disk storage and AMD EPYC 7413 24-Core539

Processor. Our dataset generation takes 100 GPU540

hours (A6000) and instruction fine-tuning takes 30541

GPU hours (A100). We use OpenAI GPT-4o model542

for evaluation. We use open-sourced model (Llama-543

3.1-8B-Instruct) and publically available evaluation544

datasets from Huggingface for our experiments and545

will release our code once the paper is accepted.546

In our work, we generate datasets for some high-547

stakes niche domains like Leukemia and Virology.548

Although we intend to release it publicly, we do not549

guarantee its realiblity for real-world applications.550
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Appendix877

A Ablations on Subdomain Sampling878

We compared subdomain sampling (Section 2.1)879

against 3 strategies: (i) Word2Vec, (ii) multi-level880

tree expansion without cosine filtering, and (iii)881

multi-level tree expansion with varying cosine882

thresholds τ ∈ {0.2, 0.4, 0.6, 0.8}. As shown883

in Table 3, Word2Vec degrades beyond the top884

200–300 terms, yielding irrelevant tokens or gib-885

berish symbols (e.g., ####, @ad). In contrast,886

unfiltered multi-level tree expansion introduced887

off-topic synonyms beyond 2–3 levels. To con-888

strain the expansion to words relevant to our do-889

main keyword, we incorporated cosine filtering890

and evaluated thresholds of 0.2, 0.4, 0.6, and 0.8.891

Lower thresholds (e.g., 0.2) enable faster process-892

ing but admit a higher proportion of spurious subdo-893

mains, while higher thresholds (e.g., 0.6, 0.8) prune894

aggressively, stalling expansion, adding few new895

terms beyond level 2. Threshold of 0.4 delivers the896

best trade-off between the relevance of subdomain897

words and computational efficiency. Notably, for898

niche domains such as Mesopotamia, multi-level899

tree expansion proves superior — Word2Vec re-900

turns no viable results—whereas for leukemia, the901

top 2000 subdomain words from Word2Vec yield902

only 936 Bing articles.903

B Additional information on Datasets -904

Statistics905

We report all dataset attributes – total records, to-906

ken and verb counts, average instruction/response907

lengths, and other miscellaneous informa-908

tion(instruction and response generator models) in909

Table 4. Since the dataset sizes vary widely, raw910

counts of verbs, unique unigrams, and bigrams911

can be misleading. To enable fair comparison,912

we normalize these by computing the average913

frequency per instruction or response. DomAINS914

achieves substantially higher per-instance averages915

for tokens, unigrams, and bigrams, for both916

instruction and response, demonstrating greater917

lexical diversity even though it was generated918

with a smaller LLM compared to the SOTA919

baselines. Additionally, to assess the extent of920

domain alignment with the target domain, we921

measure the domain frequency ratios (average922

count of domain-keyword unigrams and bigrams923

per instruction sample). Table 5 presents these924

averages across all 9 domains for all datasets.925

SOTA-generated collections exhibit near-zero 926

domain term occurrences, indicating poor align- 927

ment. In contrast, DomAINS shows 100–400x 928

higher domain-term frequencies, reflecting strong 929

domain coverage. We observed low scores for 930

Mesopotamia, Music and Astronomy. Upon 931

further analysis, we observed that these domains 932

comprise morphologically related terms (e.g., 933

“Mesopotamian,” “Sumerian”, “musician,” “musi- 934

cal,” “astronomically,” etc.) rather than the exact 935

keyword. Despite this, Figure 17 still confirms 936

strong domain alignment for all the datasets. 937

C DomAINS framework Task Template 938

Task meta-data template can be seen in Figure 7. 939

We manually wrote the task meta for 31 tasks. For 940

each task, we define its description, input expecta- 941

tions, positive and negative examples, with reasons 942

highlighting the correctness or flaws for the respec- 943

tive case. For response, we only specify a good 944

reasoning strategy suitable for that task to provide 945

a coherent flow of logical reasoning. Task meta- 946

data can be found in our Github Repository9. 947

D DomAINS framework Prompt 948

Templates 949

Instruction and Response generation prompts are 950

presented in Figure 8 and 9, respectively. Followed 951

by Figure 10 and 11 provides the Instruction and 952

Response evaluation prompts, respectively. Finally, 953

GPT-eval prompt for Win-Rate computations can 954

be seen in Figure 12. 955

E Bing Search Filters 956

Initially, we constructed Bing search queries with 957

only domain and subdomain keywords – "Blogs 958

on <domain> and <subdomain>". However, it 959

often returned undesirable file types (e.g., PDFs, 960

slides, multimedia) and commercial pages (e- 961

commerce sites), which provided little instruc- 962

tional content. To focus the search on only text- 963

rich articles, we then added search filters. Our 964

final query – "Blogs on <domain> AND <sub- 965

domain>" -filetype:pdf -filetype:ppt -filetype:doc 966

-site:amazon.com -site:ebay.com -site:youtube.com 967

-site:vimeo.com" 968

9Task Meta-data templates - will be released on publication
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F DomAINS dataset sample examples969

We provide examples from our generated datasets970

in Figure 13, 14 15 and 16. Entire datasets will be971

made available on HuggingFace after publication.972

G Training hyperparameters and973

configurations974

MAX_SEQ_LENGTH = 3000975

epochs = 5976

lr = 2e-5977

PER_DEVICE_TRAIN_BATCH_SIZE = 2978

PER_DEVICE_EVAL_BATCH_SIZE = 1979

GRAD_ACC_STEPS = 16980

optim = "paged_adamw_32bit"981

fp16 = True982

lr_scheduler_type = "constant_with_warmup"983

warmup_steps = 20984

985

## PEFT -> LORA986

rank = 256987

alpha = 2 * rank988

lora_dropout = 0.05989

H Evaluation dataset990

We compile a diverse evaluation suite by combin-991

ing a variety of publicly available, human-curated992

benchmarks to rigorously assess our domain ex-993

pert’s performance. For NLI tasks, we include (Nie994

et al., 2020; Khot et al., 2018) datasets; for behav-995

ioral task categories such as brainstorming, infor-996

mation extraction, open-domain QA, and summa-997

rization, we add (Conover et al., 2023). For MCQs998

we add (Du et al., 2025) that introduces newly au-999

thored MCQs along with other existing MCQ col-1000

lections. For reading comprehension across varied1001

genres—news articles, user stories, fiction, blogs,1002

and movie scripts, we incorporate (Rogers et al.,1003

2020; Kočiskỳ et al., 2018; Rajpurkar et al., 2016).1004

Finally, to ensure coverage of underrepresented1005

domains, we add specialized benchmarks: (Kisan-1006

Vaani, 2024; Mahesh2841, 2024) for Agriculture,1007

(Wang et al., 2022a) for History and Mesopotamia,1008

and (Tran et al., 2024) for Leukemia and Virol-1009

ogy. Thus, our curated evaluation dataset enables a1010

fair and thorough assessment of the domain-expert1011

models. It must be noted, after our 2-stage filtra-1012

tion, we randomly select at-most 1000 samples1013

for each domain due to budget constraints. Only1014

for Mesopotamia and Leukemia we were able to1015

retrieve 337 and 97 samples, respectively.1016

I DomAINS datasets additional plots and 1017

charts 1018

Figure 18 presents root-verbs and task distribu- 1019

tion for all the domains. It is clearly evident from 1020

the root-verbs-nouns plots that DomAINS success- 1021

fully captures the appropriate domain-relevant verb- 1022

nouns pairs. DomAINS also attains uniform task 1023

coverage compared to skewed distributions in the 1024

SOTA frameworks. 1025
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Table 3: Ablation study on Subdomain sampling. Table presents top-25 words from Word2Vec, Multi-level tree
sampling w & w/o cosine filtering.

Domain Word2Vec Multi-level Tree w/o cosine fil-
tering

Multi-level Tree w cosine filter-
ing (0.4)

history ‘foodborne outbreak’, ‘sever-
est downturn’, ‘#,###-####’,
‘pizza’, ‘XXth century’, ‘en-
deavor’, ‘Mary Anning’,
‘nonfunctional’, ‘imperial
overlords’, ‘Henry Wiencek’,
‘scholarly tomes’, ‘historyâ
C ™’, ‘bitterest rivalries’,

‘Jamestown colony’, ‘pre
Incan’, ‘ancient Babylonians’,
‘Pottawatomie Massacre’, ‘nov-
elist Kingsley Amis’, ‘Chuck
Langerman’, ‘pussy’, ‘mil-
lenary’, ‘inextricably woven’,
‘momentous’, ‘winningest
coach’, ‘landmark Composers
Inventors’, ‘lance’, ‘turbulent’

‘Egyptian History’, ‘Renais-
sance’, ‘Theater’, ‘European
History’, ‘Chinese History’,
‘American History’, ‘Egyptian
Roman’, ‘Roman Theater’,
‘Theater History’, ‘Roman
Epigraphy’, ‘African History’,
‘Cinema History’, ‘Egyptian’,
‘Roman’, ‘African Ameri-
can’, ‘Egyptian Sarcophagi’,
‘Egyptian Synaxarion’, ‘Egyp-
tian Martyrology’, ‘Egyptian
Theater’, ‘Kushite Egyptian’,
‘American West’, ‘Roman
Republic’, ‘Roman Britain’,
‘unmounted’, ‘Christianity’,
‘Henry Timrod’, ‘sorority’

‘Roman History’, ‘Chinese
History’, ‘American History’,
‘Egyptian History’, ‘African
History’, ‘European History’,
‘Chinese Theater’, ‘Egyptian
Navy’, ‘Roman Navy’, ‘Roman
Theater History’, ‘Roman
Theater’, ‘Chinese Andra-
gogy’, ‘Chinese Idol’, ‘Chinese
Woodcarving’, ‘Chinese Cryol-
ogy’, ‘Chinese Calligraphers’,
‘American Flag’, ‘Hollywood’,
‘African American’, ‘British’,
‘Cinema’, ‘Western’, ‘Mexican
American’, ‘European Theater’,
‘Egyptian Sarcophagi’, ‘Egyp-
tian Stonecarving’

astronomy ’Fran Bagenal’, ’astronautics’,
’reclassify’, ’Hawaii Mauna
Kea’, ’galaxy clusters’, ’Capak’,
’geoinformatics’, ’Earthlike
planets’, ’KIPAC’, ’Planetary
Sciences’, ’J####+####’,
’Limbu’, ’demote Pluto’,
’Dutchman’, ’Lagoon Nebula’,
’Condensed Matter Physics’,
’undercook’, ’Terrestrial Planet
Finder’, ’cellular biology’,
’Voorwerp’, ’Astrosat’, ’AB
Aurigae’, ’planetary’, ’physi-
cists’, ’sailor’, ’reionization’,
’ASTRONOMY’, ’classical
antiquity’, ’Explorer WISE’,
’particle physics experiments’,

’Astronomy’, ’Planetarium’,
’Astronomy Research’, ’Comet
Astronomy’, ’Gamma Astron-
omy’, ’Radio Astronomy’,
’Infrared Astronomy’, ’Ultra-
violet Astronomy’, ’Neutrino
Astronomy’, ’Neutron Astron-
omy’, ’Pulsar Astronomy’,
’X Ray Astronomy’, ’Astro-
naut Training’, ’Gravitational
Waves Astronomy’, ’Astronaut
Mission’, ’Gravitational Wave
Astronomy’, ’Astronaut Se-
lection’, ’Astronaut Helmet’,
’Astronaut Suit’, ’Dynamical
System’, ’Astronaut Health’,
’Visual Multiple’, ’Rocket
Control System’, ’Rocket Navi-
gation System’, ’Space Physics’,
’Spacewalk Equipment’, ’Space-
walk Maintenance’

’Astronomy’, ’Robotics’, ’Pho-
tonics’, ’Astronomy Robotics’,
’Telepresence Robotics’,
’Astronomy Telepresence’,
’Mechatronics’, ’Planetarium’,
’Aerospace Robotics’, ’Teleop-
eration Robotics’, ’Aerospace’,
’Rocketry’, ’Robotics Haptics’,
’Robotics Telerobotics’, ’As-
tronomy Robotics System’,
’Space Robotics Telepresence’,
’Telepresence Technology
Advancements’, ’Robotics
Telepresence Platform’,
’Robotics for Astronomy’,
’Astronomy Research Robotics’,
’Astronomy Robotics Research’,
’Robotics and Mechatronics’,
’Robotics and Astronomy’,
’Astronomy and Robotics’

mesopotamia

NA

‘Iraq’, ‘Basra’, ‘Baghdad’,
‘Iraqi’, ‘Mesopotamia’, ‘Iraqi
History’, ‘Baghdad History’,
‘Iraq War’, ‘Baghdad Era’,
‘Baghdad University’, ‘Iraqi
University’, ‘Baghdad Bomb-
ing’, ‘Iraqi City’, ‘Basra City’,
‘Ancient Mesopotamia’, ‘Basra
Culture’, ‘Iraqi Culture’, ‘Iraqi
People’, ‘Iraqi Heritage’, ‘Iraqi
Museum’, ‘Baghdad Museum’,
‘Iraq Museum’, ‘Baghdad
Caliphate’, ‘Basra Port’,
‘Iraqi Border’, ‘Iraqi Politics’,
‘Persian History’, ‘Iraqi Agri-
culture’, ‘Iraqi Fauna’, ‘Iraqi
Wildlife’, ‘Iraqi Architecture’,
‘Conquest of Mesopotamia’,
‘Basra Province’,

‘Baghdad’, ‘Iraqi’,
‘Mesopotamia’, ‘Iraqi Dinar’,
‘Basra’, ‘Iraq’, ‘Fallujah’, ‘Ra-
madi’, ‘Iraqi Dabke’, ‘Kuwait’,
‘Iraqi Dinar Exchange’, ‘Iran
Iraq War’, ‘Baghdad History’,
‘Iraqi History’, ‘Islamic Bagh-
dad’, ‘Baghdad Religion’,
‘Iraqi Religion’, ‘Iraqi Sufism’,
‘Sufi Mesopotamia’, ‘Baghdad
Empire’, ‘Iraq War’, ‘Iraqi
War’, ‘Baghdad Era’, ‘Kuwait
War’, ‘Iraqi Insurgency’, ‘Bagh-
dad Times’, ‘Baghdad Old’,
‘Baghdad Institute’, ‘Baghdad
Bombing’, ‘Fallujah Bombings’,
‘Baghdad Bombings’, ‘Basra
City’, ‘Baghdad City’, ‘Iraqi
City’, ‘Fallujah City’, ‘Iraqi
Army’
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Table 4: Additional information on the Datasets – Stats and miscellaneous information.

(a) Instruction Stats

Dataset #records #tokens #verbs avg #to-
ken/ins

avg
#verb/ins

uniq uni-
grams /

ins

uniq
bigrams /

ins

Ins. Generator

SuperNI 61.8k 355M 45M 171 22 90 146 human

Self-Instruct 82.6k 4.62M 608k 31.91 3.99 25.45 29.99 text-davinci-003

Magpie-Pro 300k 198M 26M 16 2.5 15 15 Llama 3 70B Instruct

Evol-Instruct-70k 70k 26M 3.0M 99 12 57 83 gpt-3.5-turbo

Evol-Instruct-
196k

196k 62M 7.6M 111 13.5 62 92 -

Longform-C 27.7k 12M 1.8M 172 24 74 135 text-davinci-003

OpenHermes 243k 64M 7.1M 55 6.3 36 48 ~ GPT-4

UltraChat-200k 200k 220M 31M 223 32 117 193 GPT-3.5 and GPT-4

WildChat 1.5M 382M 39M 250 25 98 180 human

Mesopotamia 100k 63.4M 7.1M 236 27.4 119 198 Llama 3.1 8B Instruct

Fish 100k 60.0M 7.7M 217 29.9 113 187 Llama 3.1 8B Instruct

History 100k 63.9M 7.3M 239 28.7 123 203 Llama 3.1 8B Instruct

Art 100k 61.1M 7.6M 220 29.0 115 190 Llama 3.1 8B Instruct

Leukemia 100k 66.5M 8.1M 272 34.9 134 231 Llama 3.1 8B Instruct

Astronomy 100k 59.3M 7.3M 210 27.1 111 179 Llama 3.1 8B Instruct

Virology 100k 61.6M 7.4M 229 28.2 119 195 Llama 3.1 8B Instruct

Agriculture 100k 60.5M 7.8M 218 29.8 117 189 Llama 3.1 8B Instruct

Music 100k 59.7M 7.2M 208 26.4 111 179 Llama 3.1 8B Instruct

(b) Response Stats

Dataset avg len/res avg #tokens/res uniq uni/res uniq bi/res Res. Generator

SuperNI 35 8 5.5 6.2 human

Self-Instruct 24.03 24.03 16.23 20.31 text-davinci-003

Magpie-Pro 3270 645 246 471 Llama 3 70B Instruct

Evol-Instruct-70k 1356 266 106 190 gpt-3.5-turbo

Evol-Instruct-196k 1705 321 125 230 -

Longform-C 1756 347 159 293 C4, WikiHow, Eron,
BEA-2019, EL5 datasets

OpenHermes 1000 210 81 147 ~ GPT-4

UltraChat-200k 4486 838 282 589 ChatGPT

WildChat 2681 471 172 330 GPT-3.5 and GPT-4

Mesopotamia 2129 398 134 248 Llama 3.1 8B Instruct

Fish 1991 382 134 245 Llama 3.1 8B Instruct

History 2128 399 136 250 Llama 3.1 8B Instruct

Art 2071 391 137 251 Llama 3.1 8B Instruct

Leukemia 2135 393 136 248 Llama 3.1 8B Instruct

Astronomy 2104 384 135 245 Llama 3.1 8B Instruct

Virology 2151 387 134 243 Llama 3.1 8B Instruct

Agriculture 2132 387 137 249 Llama 3.1 8B Instruct

Music 2031 389 136 250 Llama 3.1 8B Instruct
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Table 5: Domain Frequency Ratio for all the 9 domains. We computed the avg. freq. of domain keyword and
bi-grams(containing domain keyword) per instruction instance for all SOTA and DomAINS datasets.

Dataset
Music Leukemia Astronomy History

freq bigram freq bigram freq bigram freq bigram

SuperNI 0.023 0.040 0.000 0.001 0.000 0.001 0.028 0.054

Magpie-Pro 0.005 0.011 0.000 0.000 0.001 0.013 0.011 0.022

Evol-Instruct-70k 0.008 0.014 0.000 0.000 0.001 0.017 0.022 0.040

Evol-Instruct-196k 0.014 0.024 0.000 0.000 0.007 0.012 0.025 0.047

Longform-C 0.012 0.021 0.006 0.009 0.018 0.031 0.032 0.059

OpenHermes 0.004 0.008 0.000 0.000 0.003 0.007 0.083 0.158

UltraChat-200k 0.076 0.122 0.004 0.007 0.012 0.021 0.070 0.125

WildChat 0.014 0.020 0.003 0.005 0.002 0.004 0.017 0.028

DomAINS 0.048 0.072 2.898 3.878 0.375 0.593 0.687 1.102

Dataset
Mesopotamia Agriculture Art Fish Virology

freq bigram freq bigram freq bigram freq bigram freq bigram

SuperNI 0.000 0.000 0.001 0.002 0.006 0.011 0.007 0.012 0.000 0.000

Magpie-Pro 0.000 0.000 0.001 0.002 0.006 0.011 0.000 0.001 0.000 0.000

Evol-Instruct-70k 0.000 0.000 0.003 0.006 0.008 0.015 0.005 0.008 0.000 0.000

Evol-Instruct-196k 0.000 0.000 0.003 0.006 0.012 0.022 0.004 0.007 0.000 0.000

Longform-C 0.000 0.000 0.002 0.004 0.007 0.011 0.008 0.014 0.000 0.000

OpenHermes 0.000 0.000 0.001 0.002 0.004 0.008 0.003 0.005 0.000 0.000

UltraChat-200k 0.000 0.000 0.008 0.013 0.054 0.085 0.015 0.025 0.000 0.000

WildChat 0.000 0.000 0.001 0.002 0.128 0.248 0.009 0.016 0.000 0.000

DomAINS 0.002 0.003 1.454 2.204 3.648 5.050 4.133 5.741 0.340 0.529

We split the table into 2 halves to fit it on the page. Both the sub-tables present the same experimental results.
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Figure 7: Task meta-data template
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Figure 8: Instruction Generation Prompt
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Figure 9: Response Generation Prompt
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Figure 10: Instruction Rating Prompt
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Figure 11: Response Rating Prompt
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Figure 12: GPT-4 Win Rate Evaluation prompt template
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Figure 13: Dataset example from Domain=“Agriculture,” subdomain=“Viticulture Practices,” and task=“Topic
Words Generation”
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Figure 14: Dataset example from Domain=“History,” subdomain=“ancient Chinese rituals,” and task=“Typo
Rectification”
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Figure 15: Dataset example from Domain=“History,” subdomain=“Roman Empire,” and task=“Title Generation”
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Figure 16: Dataset example from Domain=“Fish,” subdomain=“fish remorse,” and task=“Fact Verification”
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Figure 17: Extended Domain alignment plot of our generated dataset against Magpie over all 9 domains.
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history

Root-Verb – history Tasks Distribution – history

music

Root-Verb – music Tasks Distribution – music

leukemia

Root-Verb – leukemia Tasks Distribution – leukemia
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astronomy

Root-Verb – astronomy Tasks Distribution – astronomy

virology

Root-Verb – virology Tasks Distribution – virology

Mesopotamia

Root-Verb – Mesopotamia Tasks Distribution – Mesopotamia
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agriculture

Root-Verb – agriculture Tasks Distribution – agriculture

fish

Root-Verb – fish Tasks Distribution – fish

Figure 18: Root-Verb and Task-Bar plots for each domain.
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