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ABSTRACT

Machine learning models can exhibit critical failures during deployment with-
out any pre-deployment warning signs, particularly through backdoors. Runtime
monitoring is a common defense against such failures, but theoretical limitations
remain poorly characterized. We introduce a construction of backdoors based on
cryptographic circuits in transformer architectures that can evade detection during
execution - a stronger guarantee than evading pre-deployment audits. We formal-
ize this through an adversarial framework between an attacker who manipulates
a model and a defender who monitors model behavior with full white-box ac-
cess to weights, activations, and arbitrary probing mechanisms. Under standard
cryptographic assumptions, we prove that no polynomial-time defender can detect
backdoor activation better than chance. Our empirical implementation demon-
strates that conventional detection methods indeed fail to identify these backdoors
while successfully detecting simpler variants. This work provides both a concrete
framework for developing detection methods and fundamental insights into the
limitations of runtime monitoring, with significant implications for Al security
and safety.

Machine learning models can behave badly during deployment even if they behaved as intended
before. One reason is that natural distributional shifts could mean the model is simply incapable
of behaving as intended on the deployment distribution. But there are also cases where a model
competently pursues arbitrarily bad behavior during deployment. A central example are trojans or
backdoors, where an attacker manipulates the model so that it behaves well on typical inputs seen
during pre-deployment testing but executes bad behavior chosen by the attacker whenever the input
contains a certain trigger. The attacker then inserts this trigger during deployment. Another, more
speculative example are scheming or deceptively aligned models (Hubinger et al.,[2019; |Carlsmith)
2023} [Hubinger et al.l 2024)). Such cases of competent misbehavior could in principle be arbitrarily
bad, and it might be unacceptable to let them occur even rarely. We refer to such unacceptably bad
outputs as catastrophes.

A natural approach to defend against such catastrophes is runtime monitoring, i.e., checking every
model output during deployment and blocking potentially catastrophic ones. Intuitively, it may be
infeasible for a defender to ensure that there are no possible inputs under which a model would
catastrophically misbehave. Simply checking whether a model produces a catastrophic output on a
specific input could be much easier.

In this paper, we ask: are there cases where runtime monitoring is fundamentally infeasible even
with an optimal defense strategy? We formalize this question as a catastrophe detection game
(see Fig. ). Given a predicate that defines what constitutes a catastrophe, as well as a choice of
trigger input, an attacker produces a model that causes a catastrophe on the trigger input but behaves
well otherwise. Then, a defender needs to decide whether a given input causes a catastrophe. Our
question is: are there catastrophe predicates and attacker strategies such that no efficient defender
can detect catastrophes?

We consider catastrophes where it is (1) computationally easy to generate catastrophic instances,
but (2) infeasible to check whether any given instance is catastrophic. (1) is needed for the model
to generate catastrophes when presented with the trigger, and (2) applies when models competently
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Figure 1: Our catastrophe detection game (bottom) and the analogous steps of the real-world ML
model pipeline (top). An example attack scenario for the four pipeline steps is: 1) A government
server uses an internal IP address 203.[...]; 2) Attackers create an open-weight code assistant with
a trojan that triggers when encountering this IP; 3) The model is widely deployed, including in the
government; 4) A runtime program monitors model’s internals and outputs for bad behaviour, e.g.
inserting vulnerabilities. We formalise this setting as a game between an attacker and a defender,
and show that for a certain toy notion of a catastrophe the attacker provably wins.

interact with complex systems that are hard to analyseﬂ A real-world example could be inserting
vulnerabilities into code: this can be relatively easy to do (1), but deciding whether a program has
any vulnerabilities can still be infeasible (2).

For such catastrophes, the defender’s hope lies in using white-box access to the model to detect
catastrophes. Intuitively, the model needs to recognize the trigger and then generate a catastrophic
instance in response, and one might hope that this would leave traces in the model’s representations
that are noticeable to a sufficiently sophisticated defender.

However, we prove that there are attack strategies against which no polynomial-time defender can do
much better than chance in this catastrophe detection game. This puts an upper bound on what types
of defenses are even possible. While realistic attacks might be weaker than the theoretical worst-
case attacks we consider, our results mean that any defense strategy must make some (potentially
implicit) assumptions about the model to be successful.

In summary, our contributions are:

1. We formally define a catastrophe detection game between an attacker who can manipulate
the weights of a model and a defender who needs to detect catastrophic outputs at runtime.

2. We prove that for certain catastrophes, no polynomial-time defender can win this game,
i.e., detecting these catastrophes is infeasible in the worst case, even at runtime and when
given full white-box model access.

3. We introduce Reifier - a framework for converting algorithms into Transformers by synthe-
sizing circuit logic into MLP layers. Using this framework we empirically validate that, in
the worst case, catastrophe detection is infeasible.

'And in any case, if (2) does not hold, defense is trivial: the defender can simply check if the model output
is catastrophic.
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1 CATASTROPHE DETECTION GAME

We define catastrophe detection as a game between an attacker and a defender. Intuitively, the
attacker creates an Al model that gives a catastrophic output on a certain trigger input. In contrast,
the defender tries to detect whether, on a specific candidate input, the attacker’s model produces
a catastrophic output. The two players are in an environment, which determines what kinds of
Al model architectures are used, what inputs models encounter, and which outputs are deemed
catastrophic.

Specifically, for a game we fix:

* Possible Al models. Specifically, F' is the set of possible model implementations X — Y,
where X is the input domain and Y is the output domain.

* A notion of a catastrophe C' : Y — {true, false} as a property of an output.
* And the probability distribution of inputs D € AX.

Step 1: Environment. First, a specific input is selected as a trigger input, on which the attacker
will later attempt to produce a catastrophic output. An intuition for picking this trigger randomly
is that the input cues which are suitable for launching a catastrophic outcome are influenced by the
environment, e.g. see Figure . Formally, the game starts by a trigger input * being drawn from the
input distribution:

¥ ~ D

Step 2: Training. This step represents the training process and any pre-deployment changes to the
model. An attacker tries to create a model that gives a catastrophic output on the trigger input, but not
on the other inputs—for example, a backdoored model. An intuition for requiring no catastrophes on
other inputs is that we model rare but severe failure modes where the model uses an environmental
cue to decide to deploy the catastrophic outputs. Frequent and unconditional catastrophes might be
detected by simpler methods. Formally, the attacker receives =* and outputs f:

Attacker : X — F

| <« Attacker(z™)
Step 3: Deployment. During the deployment, the model encounters various inputs, potentially
including a trigger input. We set the probability of a trigger input to 1/2, as the relevant measure
is the ability of the defender to distinguish a trigger from a random input, regardless of what fixed

prior probability the trigger has. Formally, a random input is sampled and then a candidate input z’
is picked to be the trigger input or the random input with equal probability:

z~D
2~ (z:50%, z* : 50%)
Step 4: Monitoring. A program monitors the model as it receives an input during deployment.

Formally, the defender makes a prediction ¢ for whether the model f will cause a catastrophe C' on
input z’:

Defender : F' x X — {true, false}
¢ + Defender(f, z")

Defender wins a game if and only if the defender guesses correctly, or the attacker’s model behaves
incorrectly on the candidate input. That is:

Defender wins < ¢ = O(f(z')) or (2’ = z*) # C(f(2"))
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The accuracy of the defender is defined as the probability of it winning a game, where the random-
ness comes from the random choice of the trigger and candidate input.

We say that the defender wins for a given catastrophe C' iff there is a poly(L) time defender that gets
accuracy better than 1/2 + o(1/poly(L)) where L is the input length.

2 ATTACK CONSTRUCTION

In this section we show that there are catastrophes where the attacker wins, and investigate a concrete
formal version of a catastrophe. Not every property can serve as a notion of a catastrophe that is
relevant for our setting. If the catastrophic instances were hard to construct, it would not pose a threat
as realistic attackers could not construct such instances. If it was easy to check if an instance was
catastrophic, safety could be trivially ensured by a simple output checker. Therefore we focus on the
remaining properties—those for which it is computationally easy to construct instances exhibiting
the property, but infeasible to check whether the property holds of a given instance.

Learning With Errors. The setting of easy to construct but hard to check properties closely aligns
with cryptography, and a natural choice for a concrete formal version of a property is based on Learn-
ing With Errors (LWE). The hardness of the LWE problem is a well-established assumption, and it
serves as a central building block in modern cryptographic constructions (Brakerski & Dottling)
2020; |Albrecht et al., 2015). The LWE problem is to recover a secret s € Zg from a system of
random approximate linear equations on s, such as:

1487 + 1589 + 583 + 254 ~& 8 mod 17

6s1 + 7s9 + 1683 + 254 =~ 3 mod 17

where each equation is correct up to some small additive error (Regev, 2010).

Specifically, the task is to retrieve s € Z'[;, from (A4, z), where As+e = z mod q. Here A € Z'[Z”X”
is a uniformly sampled matrix, z € Z;" is a vector, and e € Z;" is a small error sampled from
which is a distribution over Z;". For the hardness guarantee a discrete Gaussian distribution with a
mean of zero and a standard deviation g for o« = o(1) is selected (Brakerski et al., 2013).

DLWE Catastrophe. We investigate a concrete formal version of a catastrophe—the decision
version of the LWE problem (DLWE). The DLWE problem is to distinguish (A, z) from (A4, 2’) ~
U(Zg*™ x Zy'), where U is the uniform distribution over a finite domain. Here m is larger than n,

almost guaranteeing that a random (A’, ') has no solution s and hence is not the constructed (4, z).
DLWE is known to be equivalent in hardness to LWE (Regevl, 2010).

Formally, we say that DLW E : Y — {true, false} is a property such that:
DIWE((A,z))=3s,e: As+e=2z mod ¢

If the defender only had access to the output while determining if it is catastrophic, they would fail
due to the hardness of DLWE. But in our setting the defender can also see the input, model weights
and activations. Intuitively, access to the internals of the attacker’s model could let the defender
notice if a catastrophic instance is being constructed. However, we show that the attacker can win
regardless by hiding a constructed DLWE instance using a pseudorandom number generator (PRNG)
and bitwise operations. See algorithm [I|for details.

Generally, the attacker needs to construct an f such that:
Az if ' = x*
f(l‘/) = ( ’ )/ :
(A,2") ~U(Y) otherwise
In algorithm [1| we show one way of constructing f, where &: Y x Y — Y is the exclusive or

operator on a bitwise representation of the elements of Y, and A : X — Y is a pseudo-random
number generator (PRNG).

This gives the desired behaviour:
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Algorithm 1: Attacker’s algorithm. @ is the exclusive or operator, and h is a pseudo-random
number generator.

Data: z* ¢ X

Result: f € F

/* Sample s, A, and e x/
s ~U(Zy);

A ~ U(ZZ;I,XW,);

e~ X

/* Compute z */
2+ (As+e mod q) € Z";

/* Compute key */
k<« h(z*) @ (A, z2);

/* Construct f using key */

f<f:x—hz)Dk;

cife =z f(x)=h(z*)Dk=h(z*)Dh(a*)® (4,2) =0D (4,2) = (4,2)
* otherwise, f(z) = h(z) Dk = (4",2) ~U(Y)

On z* this produces (A, z) in a way that is indistinguishable from producing a pseudorandom value
on a pseudorandom input for a defender with white-box runtime access to the function implementa-
tion. This is because for both the trigger and the random scenario, the key k£ would have the same
value and outputs z*, z, (4, z), (4’, 2’) are indistinguishable from random to the defender. Such use
of PRNGs have been employed also in the context of digital lockers and point-function obfuscation
(Canetti et al.,2016; Lynn et al.,2004). The indistinguishability here relies on (A, z) not being dis-
tinguishable from a pseudorandom (A’, 2’), which in our case is guaranteed by the standard DLWE
assumption (Albrecht et al.l 2015)). Since the defender can not distinguish the trigger scenario from
the random scenario, the defender loses. Specifically, under this assumption, there is no poly(L)
time defender that gets accuracy better than 1/2+ o(1/poly(L)) where L is the input length (Regev,
2009).

While we use DLWE for concreteness, in general this attack only relies on the catastrophic instances
being computationally indistinguishabile from random instances, allowing transfer to other notions
of catastrophes.

3 EXPERIMENTS

Reifier. In order to conduct an experimental validation of our model, we must be able to construct
transformers with highly specific properties, which, in the general case, may be infeasible to train in
using standard gradient descent approaches. For instance, our choice of A is the 24-round SHA3-224
hash function, is built on top thousands of AND, XOR, and NOT operations, as well as bit rotations.
To implement these functions, we introduce Reifier, a framework for converting algorithms into
transformers by synthesizing circuit logic into MLP layers. We provide additional details about our
Reifier in section[dand Appendix A.

We base Reifier on the linear threshold circuit model of computation due to the extensive literature
available characterizing parameter-optimal constructions of many useful functions, such as PARITY.
For instance, PARITY on [V input bits can be straightforwardly constructed by stacking N XOR
operations; however Reifier compiles PARITY using the optimal size-depth tradeoff described in
Patur1 & Saks|(1990).

Reifier is a significant improvement over the state of the art in terms of parameter efficiency for
compiled circuits; Stravinsky, the compiler introduced in [Draguns et al.| (2024)), required over 21
billion parameters to construct an SHA-256 transformer circuit; our approach requires only 9.73
billion parameters for the same, a 53% reduction.

Tracr is another framework for creating compiled Transformer circuits, created by Google Deepmind
(Lindner et al., [2024])), which is commonly used for creating small circuits for Transformers that use
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Figure 2: The test accuracy of the one-layer multilayer perceptron probes trained on the activations
of the password-locked backdoor (blue) and the unprobeable backdoor (red), over 1200 training
steps. The password-locked backdoor allows the probe to detect its internal “if-else”” behavior, while
the unprobeable backdoor provides no detectable runtime difference for the probe to learn, resulting
in its performance being no better than chance.

bidirectional attention. However, it is not well suited for larger circuits, which are handled better
by Stravinsky. However, note that both Stravinsky and Tracr use the attention mechanism as the
main target for embedding computation, while only using MLP layers as small lookup tables, e.g.
hardcoding 100 input-output pairs. Our Reifier mainly uses MLP layers, which allows it to be
much more efficient for auto-regressive Transformers for most algorithms. This is because causal
attention poses a substantial limitation on most algorithms, e.g. not being able to access an array
element that is at an index that is higher that the current position. In contrast, Reifier can implement
such bidirectional algorithms in the MLP layers and use the attention mechanism for routing.

Empirical validation. Using Reifier as a compiler, we empirically validate our construction by
implementing a conventional password-locked backdoor—in which the bad behavior is activated
when a certain trigger phrase is present—as well as our unprobeable backdoor design. We com-
pile an implementation of the SHA3-224 hash function into a sequence of multi-layer perceptrons
(MLPs) as our choice of h, but we reduce the number of Keccak rounds from 24 to 3 for compu-
tational tractability. However, even this simplified regime achieves strong probe resistance. See a
visualization of a subcircuit of the compiled network in Fig. [3]

To test the detectability of the backdoors, we train one-layer MLP probes on layer 19 of the compiled
networks. Specifically, we generate a balanced dataset of layer activations on both benign and
catastrophic trigger inputs, and train the probes with gradient descent on the classification task of
determining whether an activation corresponds to a normal or catastrophic output. As shown in
Figure 2, the probe successfully learns to classify the catastrophic outputs of the model with the
password-locked backdoor, but completely fails at the same task on the model with our unprobeable
backdoor construction—performing no better than chance—and showing no improvement in the test
accuracy over 1200 training steps.

Since this backdoor is implemented entirely using MLPs, the compiled circuit could be straightfor-
wardly inserted into any open-source transformer architecture that has the requisite number of layers,
such as Llama 3 70B (Dubey et al.,|2024). Our entire backdoor circuit requires just 19 MLP layers
and 1.25 billion parameters|’| which may be difficult to detect if the base model is first pruned or
distilled to a parameter count 1.25 billion less than its original size, which has been shown to be pos-
sible without significantly affecting peformance on downstream tasks (Wang et al.,[2020;/Sanh et al.,
2020); further, the distribution of weights for the compiled circuits can be obfuscated using strict

2A full SHA3-224 implmentation requires 4.2 billion parameters over 103 layers; however, as our empirical
results demonstrate, much simpler functions are sufficient in practice.
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interchange intervention training, making them look “natural” to interpretability methods (Gupta
et al.| 2024). We provide additional empirical results in Appendix B.

Figure 3: A compiled subcircuit of our model. It is an implementation of a parallelized binary adder,
taking as an input two numbers in binary and producing the sum. The matrices are sequentially
applied (left to right, top to bottom) to a column vector, after each step applying a step activation
function. These matrices have ternary weights, where -1 is depicted as orange and 1 as blue.

4 REIFIER: ALGORITHM-TO-TRANSFORMER COMPILATION

4.1 OVERVIEW

Reifier is a framework for compiling algorithms into Transformer architectures by synthesizing cir-
cuit logic into MLP layers. Unlike existing approaches like Tracr (Lindner et al.,2023)) and Stravin-
sky (Draguns et al.| |2024) that primarily use attention mechanisms, Reifier leverages MLP layers as
the primary computational substrate, achieving significant parameter efficiency improvements.

4.2 COMPILATION PIPELINE
The compilation process follows four stages:

1. Algorithm Specification: Convert the target algorithm into a parallelized straight-line pro-
gram (no branches, fixed number of steps)

2. Linear Threshold Circuit (LTC) Design: Transform the straight-line program into an
LTC representation

3. MLP Conversion: Map the LTC to the target MLP architecture with appropriate activation
functions

4. Weight Injection: Replace a subset of weights in a pre-existing Transformer model

4.3 LINEAR THRESHOLD CIRCUITS

We represent computations using linear threshold gates:

n
gate(xq, ..., Ty, 0) = szlz >0
i=1



Under review as a conference paper at ICLR 2026

Complex operations are decomposed into these primitive gates. For example, n-bit XOR is imple-
mented by first computing n counter gates—the ¢-th gate counting whether the count of ones in the
input is equal to or greater than ¢ (starting from ¢ = 1). Then the final gate sums all the counters
with alternating —1, 41 weights. This effectively subtracts 1 from the default sum of 1 whenever
the sum is even.

Specifically, in Reifier we would write it as this Python function:

def xor(x: list[Bit]) -> Bit:
counters = [gate(x, [1l] % len(x), 1 + 1) for i in range(len(x))]
return gate(counters, [(-1) xx i for i in range(len(x))], 1)

Here the second gate argument is a list of weights w; and the third is the threshold 6. See other
examples of Reifier circuits in the supplementary materials.

5 RELATED WORK

Backdoors in machine learning. There has been a lot of work on inserting backdoors into ma-
chine learning models as well as defending against them, see |Li et al.| (2020) for an overview. Es-
pecially relevant for our work are backdoors with theoretical hardness guarantees, i.e., backdoors
that are provably difficult to defend against. |Goldwasser et al.| (2022) construct theoretical backdoor
attacks that make it infeasible to decide whether a given neural network with random features has a
backdoor or not, whereas Draguns et al.[(2024) design backdoors in Transformer models that also
make eliciting the trigger and the intended backdoor behaviour provably difficult. Both of these
existing backdoors are hard for pre-deployment mitigations, but can be defeated with runtime mon-
itoring. Recently, |Christiano et al.| (2024) study runtime detection of backdoors and construct unde-
tectable backdoors in that setting using indistinguishability obfuscation (i0). The main differences
to our work are that the catastrophe detection game we study is not quite the same as backdoor de-
tection, and that our attack doesn’t require any machinery as involved and far from being practically
implementable as i0.

Al alignment/safety. In the field of Al safety (Amodei et al.| 2016 Ngo et al., [2022), backdoors
have been studied as a toy model of “scheming” or “deceptively aligned” models (Hubinger et al.,
2019; |Carlsmith| [2023), notably in the “Sleeper Agents” paper (Hubinger et al.,2024). Scheming is
a hypothetical threat where situationally aware models strategically hide their goals during training
and testing in order to be deployed, but then pursue unintended goals during deployment. Catastro-
phe detection games could be a useful setting to study mitigations against scheming, as a variation
on existing model organisms like backdoors. That said, our work is applicable much more generally
than just to scheming models (e.g., for backdoors inserted by an attacker).

Runtime detection. There is a rich literature on white-box runtime monitoring methods, both
for backdoors and more broadly. Most of these methods are empirical methods not intended to be
robust to worst-case attacks like the one we consider. Our results put some bounds on the feasibility
of worst-case runtime detection, and extensions of them might have implications for approaches
such as mechanistic anomaly detection (Christiano, [2022)) using heuristic arguments (Christiano
et al.| 2022). That said, our current formulation of catastrophe detection games doesn’t match some
aspects of realistic settings, which leaves room for successful runtime detection under plausible
additional assumptions, see Hilton & Xu|(2024).

6 DISCUSSION & CONCLUSION

We have formally defined catastrophe detection games, where a defender needs to detect bad out-
puts at runtime given white-box access to a model that an attacker constructed. For a certain toy
catastrophe, the attacker wins this game against any polynomial-time defender.

Implications for Realistic Threats. Our results put an upper bound on what types of defenses are
even possible, and imply that any defense strategy must make certain assumptions about the model
or catastrophe in order to be successful.
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While realistic attacks might be weaker, the methods for defense might also not be as powerful as
theoretically possible. For example, real models don’t contain cryptographically secure PRNGs, but
available interpretability methods still can’t uncover and exploit all internal structures. And while
unlike DLWE, realistic catastrophes might not be provably hard computer science problems, they
may nevertheless be unnoticeable to any fast monitors.

Actual attackers could introduce complex structures into models, but it seems unlikely that a natural
training process would find the formal version of this attack. However, the realistic analogues of
these structures arising could be especially plausible if the model is trained against some form of
detection, e.g. trained to not produce bad outputs as determined by some bad output detection
algorithm. In general, it may be hard to determine whether this training setup leaves us with a model
which no longer has the capacity for bad outputs, or has simply learned to perfectly hide them from
the monitor providing gradient pressure.

One specific example of a threat which may not be detectable by an output monitor is steganography,
by which a model encodes secret hidden information into its output, potentially allowing itself to do
hidden computations or collude with other instances of itself (Motwani et al., 2024)).

Since specific word choices may be too subtle to practically detect with any sort of black-box output
monitor, successful anti-steganography measures are likely to rely on white-box access (Casper
et al.,|2024). Our work thus shows that steganography in language models, in the extreme case, may
ultimately be undetectable, if it is implemented using unprobeable backdoors computing a minimum
entropy coupling-based perfectly secure steganographic algorithm (de Witt et al., 2023).

Potential Mitigation Methods. Expanding monitoring to also include the training process appears
to be a promising mitigation strategy. Our attack would be prevented by monitoring training, since
the trigger can be extracted by intercepting it when the attacker’s algorithm receives x* as an input.

There are several other methods for mitigating attacks that are theoretically not sufficient for attack-
ers that can adapt. But such methods could still slow down attacks in practice. Ad-hoc methods for
detecting unusual structures could prevent some of the more straightforward attacks. Another option
would be altering models by adding noise to the weights, pruning, or supervised fine-tuning, albeit
these methods could be subverted by including error-correction and preventing gradient signals.

Limitations. Our setup models the real scenario by simplifying it to allow for a formal analysis.
This introduces some disanalogies, for example, the trigger is selected at random, while in reality,
the attacker can choose the trigger (under some constraints). A separate limitation of the setup is
that the defender only cares about the consequences of the current output. A more comprehensive
defender might be able to infer from one run that the model would yield a catastrophic output on
a different input. As discussed above, the attack mechanism and the notion of the catastrophe as
DLWE is also a simplified proxy for the real scenarios.

More broadly, we are limiting our analysis to one particular class of defense strategies, namely
runtime monitoring. For the purposes of that analysis, we assume that any input of the model has
a 50% chance of triggering a catastrophe, and the defender is forced to correctly classify inputs. In
practice, a defender might just decide to be conservative and not deploy a model known to potentially
cause catastrophes. That said, our work still has relevance to unrestricted defenders. There might
always be some uncertainty about whether a given model would sometimes cause catastrophes (c.f.
existing impossibility results for pre-deployment auditing discussed in Section[5)). Developers might
still want to deploy such models, in which case they should ensure safety even under the assumption
of a malicious model (Greenblatt et al.| [2023)).

Future Work. Future work includes both extending this framework, as well as addressing its
limitations. One extension may be to allow attacks that use multiple different trigger inputs and a
combination of corresponding outputs. An especially promising direction might be to investigate a
setup in which the defender can monitor the training process directly, and determine whether that
setting also permits hard cases where the attacker decisively wins.
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A APPENDIX

A.1 TRANSLATION TO NEURAL NETWORKS

We map an LTC to an MLP by keeping track of the LTC gates and their connections during the
calculation of the final output. Then we backtrack from the output to the inputs to order the gates.
Finally, a final propagation from the inputs ensures that all the input bits occur at the first layer and
that connections between non-adjacent layers are removed by introducing copying operations.

Consecutive layers can be represented as matrices in neural networks. Simulating threshold activa-
tion with other activations functions such as ReL.Us and SwiGLUs is also relatively straightforward.

For example, a ReLU-based MLP can be attained by setting the bias term b to —6 and then repeating
all gates twice, such that

1
by =b—-0.5— —
! 0-5 2c
1
bo =b—0.5+ —
2c

and then the difference of the two ReLU-based nodes yields the same output as the original threshold
gate.

For compiling to architectures that do not use biases, we fold them into the weight matrix as the first
column, assuming that a beginning of sentence token with a known non-zero value always occurs as
the first input feature.

The resulting MLPs can be used as standalone models or be incorporated into larger models, e.g., as
SwiGLUs in Llama. To maintain the original functionality of the larger model, an even larger model
can be used as the base model. Specifically, a significant fraction of its weights are replaced by a
smaller model of the same model series and then the remaining weights can be used as the target for
embedding compiled circuits.

A.2 TERNARIZATION AND ENCODING

To efficiently implement LTCs in neural networks, we employ a ternarization, turning interger-
valued weights into -1, 0 or 1. This is also helpful for avoiding floating point errors when targeting
an architecture with less precision, e.g. bfloat16. Ternarization can make complicated algorithms
easier to represent, e.g. ones that demand multiplying activations or low-level bit manipulation. We
use this scheme:
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Algorithm 2: Matrix Ternarization

Input: Integer weight matrix M € Zh*®
Output: Ternary matrix M’ € {—1,0, 1} >’
foreach column j do
Compute max_abs; = max; | M;;|;
foreach element M;; in column j do
Expand M;; to sign(M;;) repeated |M;;| times;
Pad with zeros to length max_abs;;
end
end
Let next_max_abs be the max abs values per column of the next matrix;
foreach row i do
| Repeat row i exactly next_max_abs; times;
end
return Expanded ternary matrix M’

For example, consider the transformation of this 2 x 3 matrix. First, column expansion is applied,
and then row repetition is applied to the result, as shown below:

-2 1 0
3 1 =2
%
(<1 =1 01 0 0]
1 1 1 1 -1 -1
%

—1 -1 0 1 0 07
1 1 11 -1 -1
1 1 11 -1 —1]

The first arrow indicates column expansion, and the second indicates row repetition. In the row
repetition step, assuming the next matrix has maximum absolute column values [1,2], row 1 is
repeated once and row 2 is repeated twice.

It is often useful to then encode the ternary weights in binary form as (w™,w~) € {0,1}2 where:
(1,0) represents weight +1, (0, 1) represents weight —1, (0, 0) represents weight 0.

The compiled matrices are sparse - we can represent our 1.25B dense models with less than 250
thousand sparse parameters.

B ADDITIONAL RESULTS

B.1 STRUCTURAL ANALYSIS OF COMPILED BACKDOORS

We examine the internal structure of a compiled unprobeable backdoor to provide insights into how
cryptographic primitives manifest in neural network weights. Figure[d] visualizes the weight matrices
of a minimal SHA-3 variant (Keccak-p[25,1]) compiled into linear transformations.

Three key structural features emerge:

1. Bias folding: The red columns on the left of matrices represent bias vectors folded into
weights, showing large negative values before ternarization.

2. Compression funnel: Matrix dimensions decrease in later layers as the hash function com-
presses the full state into a shorter digest - specifically, during compilation features that do
not affect the output are automatically pruned.

3. Parity patterns: The alternating blue-orange cells reflect the XOR gates’ alternating +1
weights, a signature of Keccak’s heavy reliance on parity operations.
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Figure 4: Weight matrices of an unprobeable backdoor implementing Keccak-p[25,1]. Red columns
indicate folded bias vectors (pre-ternarization). The decreasing matrix sizes in later layers reflect
the hash function’s compression from state to digest. Alternating blue-orange patterns (visible in
matrices 2, 5, 8, 11, 14) correspond to the (—l)i alternating weights in XOR operations, which are
fundamental to Keccak’s parity computations.

Our structural analysis reveals potential detection signatures (e.g., unusual weight patterns, compres-
sion funnels) that defenders might exploit. However, these patterns could be obfuscated through:
weight distribution matching (Gupta et all |2024), entanglement with other circuits, or noise in-
jection to mask regular patterns. This dynamic emphasizes that defenses must look beyond static
weight analysis to runtime behavior monitoring and supply chain security.

B.2 THEORETICAL ROBUSTNESS PROPERTIES

While comprehensive empirical robustness evaluation remains future work, our construction inherits
several theoretical guarantees that address potential vulnerabilities:

Noise resilience: Following|Draguns et al.|(2024), cryptographic circuits compiled via similar meth-
ods exhibit greater noise tolerance than typical language modeling circuits. They empirically vali-
date the noise threshold at which language capabilities degrade before compiled circuit functionality.
This makes the addition of noise ineffective against differentially targeting compiled structures.

Watermarking guarantees: Near-optimal provable robustness in certain settings can be achieved
through translucent pseudorandom functions (Kim & Wul 2017). Under standard cryptographic
assumptions, these guarantee that any modification either: 1) fails to remove the backdoor function-
ality, or 2) destroys the model’s primary capabilities entirely.

While our specific implementation uses digital locker primitives (Apon et al.,[2022)) based on hashes
rather than full translucent PRFs for efficiency, the practical security remains strong - no known
attacks can invert standard hash functions like SHA-3.

Although this work prioritizes establishing theoretical foundations over exhaustive empirical vali-
dation, we believe that it sets the foundation for important empirical work, including evaluation of
various detection methods and quantitative robustness benchmarks.
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