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Abstract13

Developing a universal representation of cells which encompasses the tremendous molecular14

diversity of cell types within the human body and more generally, across species, would be15

transformative for cell biology. Recent work using single-cell transcriptomic approaches to16

create molecular definitions of cell types in the form of cell atlases has provided the necessary17

data for such an endeavor. Here, we present the Universal Cell Embedding (UCE) founda-18

tion model. UCE was trained on a corpus of cell atlas data from human and other species19

in a completely self-supervised way without any data annotations. UCE offers a unified bio-20

logical latent space that can represent any cell, regardless of tissue or species. This universal21

cell embedding captures important biological variation despite the presence of experimental22

noise across diverse datasets. An important aspect of UCE’s universality is that any new cell23

from any organism can be mapped to this embedding space with no additional data labeling,24
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model training or fine-tuning. We applied UCE to create the Integrated Mega-scale Atlas,25

embedding 36 million cells, with more than 1,000 uniquely named cell types, from hundreds26

of experiments, dozens of tissues and eight species. We uncovered new insights about the or-27

ganization of cell types and tissues within this universal cell embedding space, and leveraged28

it to infer function of newly discovered cell types. UCE’s embedding space exhibits emergent29

behavior, uncovering new biology that it was never explicitly trained for, such as identifying30

developmental lineages and embedding data from novel species not included in the train-31

ing set. Overall, by enabling a universal representation for every cell state and type, UCE32

provides a valuable tool for analysis, annotation and hypothesis generation as the scale and33

diversity of single cell datasets continues to grow.34
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Introduction35

Cells are the fundamental unit of life and biologists have long conceptualized cells as members36

of different universal landscapes [1–4]. A notable example of this is the Waddington landscape,37

which presents a theoretical framework for the developmental lineages of cells as they transition38

from pluripotent stages such as stem cells to more terminally differentiated end points [5]. Broadly,39

the field of cell biology has sought to map the range of phenotypes that cells might exhibit, their40

interrelationships, and the shifts between these states during development and disease [6–10].41

The substantial growth in the size of single-cell RNA sequencing (scRNA-seq) datasets42

presents a fresh opportunity to revisit these questions. Detailed transcriptomic snapshots of cells43

are now widely available from a range of timepoints, tissues, donors, and species [11–13]. These44

rich, high-dimensional states are typically distilled into low-dimensional vectors or embeddings45

to facilitate computational analysis [14, 15]. However, existing computational approaches strug-46

gle to jointly analyze these diverse datasets. The unified representations they produce are often47

unable to extend to new datasets due to species-specific constraints in their construction or the48

presence of dataset-specific artifacts (or batch effects) which can obscure the underlying biologi-49

cal signal [16, 17].50

Some computational methods for scRNA-seq data have managed to overcome these limita-51

tions, but at the cost of requiring model tuning for each new dataset, thus rendering the represen-52

tations non-universal [15, 18, 19]. As a result, whenever a new experiment is performed and new53

data is collected, it requires dedicated, resource-intensive data labeling and model training to per-54

form even the most standard analyses, such as clustering or annotation. This process is both time55

consuming and inefficient, and results in sub-optimal analyses based on small, limited and private56

datasets.57

Recent advances in the field of artificial intelligence have enabled general-purpose founda-58

tion models (such as ChatGPT [20, 21], PaLM [22], Llama [23] and SAM [24]) that can learn59

universal representations that are then applied to diverse downstream tasks and analyses. These60

foundation models are not specifically trained for these downstream tasks, thus presenting clear61

instances of emergent capabilities [25]. This foundation model strategy has also found valu-62

able applications in biological contexts such as learning representations of protein and DNA se-63

quences [26,27]. While some recent work has applied foundation model architectures to single-cell64

genomics data, the unique characteristics of these datasets necessitate a specialized modeling ap-65

proach to fully realize their potential [28, 29]. Directly modeling gene expression as text in the66
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form of a sequence of genes is both inefficient from a learning perspective and often relies on67

inaccurate biological assumptions.68

Here, we present Universal Cell Embedding (UCE), a foundation model for single-cell gene69

expression that is designed to address questions in cell and molecular biology. UCE is uniquely70

able to generate representations of new single-cell gene expression datasets with no model fine-71

tuning or retraining while still remaining robust to dataset and batch-specific artifacts. Moreover,72

it does so while requiring no cell type annotation and no input dataset preprocessing, such as73

gene selection. UCE can be applied to any set of genes from any species, even if they aren’t74

homologs of genes seen during training. UCE learns a universal representation of cell biology that75

is intrinsically meaningful and can extend insights beyond the data that has been experimentally76

observed. The representations learned by UCE display an emergent organization of cell types that77

is consistent with known biology. These cell embeddings can be used to accurately predict cell78

types with no additional model retraining, showing improved performance in dataset integration79

against existing atlas-scale integration methods.80

UCE presents a novel approach to analyzing cell states. It enables the mapping of new81

data into a universal embedding space, already populated with annotated reference states. This82

strategy addresses issues such as noisy measurements that limit data alignment across different83

experiments, and reduces reliance on small sets of marker genes to translate insights across studies84

[30]. UCE empowers researchers to utilize existing models on new data without needing data85

labeling or model retraining. This can foster novel cross-dataset discoveries and overcome the86

limitations currently faced when working with small, isolated datasets. For instance, a cell type87

classifier trained to predict specific immune cell types can be seamlessly applied to a completely88

new dataset. Thus, UCE offers a versatile, efficient, and broadly applicable framework for the89

analysis of cell states.90

Results91

A biologically-informed foundation model for single cell gene expression.92

Integrating single-cell RNA sequencing (scRNA-seq) datasets is challenging for two primary93

reasons: scRNA-seq data does not always contain the same genes, or features, and those features94

are plagued by dataset-specific experimental artifacts or batch effects, which means models have95

to be built separately for each dataset. UCE overcomes these challenges by abstracting cells as96
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‘bags of RNA’ [31]. UCE (Fig. 1a) converts the RNA gene expression of a single cell into an97

expression weighted sample of its corresponding genes. Next, UCE represents the sample’s genes98

by their protein products, using a large protein language model. This allows UCE to meaningfully99

represent any gene, from any species, regardless of whether the species had appeared in the training100

data. Finally, after incorporating additional metadata about genes’ chromosomal locations, this101

representation is fed into a large transformer model [32]. UCE is able to map any cell, from any102

tissue, or any species, into one shared universal space, with no additional training.103

In particular, UCE takes as an input (1) scRNA-seq count data and (2) the corresponding104

protein embeddings, generated by a large protein language model, ESM2 [33], for the genes in the105

dataset. The ESM2 protein language model takes amino acid sequences as an input and produces106

a numerical representation called a protein embedding. Given the expression count data for a cell,107

UCE takes a weighted and normalized sample, with replacement, of the cell’s genes. This sample108

can only contain genes which had non-zero expression, and can contain multiple copies of each109

gene. These genes are then tokenized by converting them to the protein embedding representation110

of the protein that they code for [34]. Genes belonging to the same chromosome are grouped111

together by placing them in between special tokens and are then sorted by genomic location. A112

special token representing the entire cell, the ‘CLS’ token, is appended to the beginning of the cell113

representation [35]. This combined representation is passed into a transformer neural network. The114

embedding of a cell is taken as the embedding of the CLS token at the final layer of the transformer115

(Fig. 1a).116

UCE is trained in a completely self-supervised manner, and thus does not make use of any117

cell type or dataset-based annotations. In particular, during training, a random subset (20%) of118

genes that were expressed are masked before sampling. These expressed genes are combined119

with a random subset of genes which had zero expression (non-expressed genes) to form a set of120

query genes. Each of these query genes’ protein embedding tokens is combined with the UCE121

embedding of the cell they were generated from, and this joint embedding is passed into a fully122

connected neural network that predicts if that gene was expressed.123

UCE is a 33 layer model consisting of over 650 million parameters. UCE was trained across124

more than 300 datasets that are largely collected from the CellXGene corpus [36] consisting of125

over 36 million cells, for 40 days across 24 A100 80GB GPUs (Methods, Extended Data Table126
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2, Supplementary Table 2). The model’s weights and implementation are freely available and the127

model will be hosted as an openly available resource for the research community to run inference128

on new datasets.129

UCE creates an Integrated Mega-scale Atlas (IMA) of 36 million cells.130

We apply UCE to generate an Integrated Mega-scale Atlas (IMA) of 36 million cells sam-131

pled from diverse biological conditions, demonstrating the emergent organization of UCE cell132

representations (Fig. 1b). We find that cells within the UCE space naturally cluster by biological133

conditions like cell type, while mixing among experimental conditions like batch (Fig. 1b). Since134

UCE is trained in a self-supervised manner, this organization represents an emergent behavior of135

the model. The IMA contains numerous cell type alignments, across tissues and species.136

To investigate the emergent organization of the IMA, we inspect how tissue residency can137

influence the state of cell types. Although macrophages found in different tissues are characterized138

by diverse transcriptional identities [37], they align closely in the UCE space (Extended Data Table139

1). For the purpose of our analysis below, we first determine the central location of each cell type140

and tissue combination in the IMA space, by averaging the UCE embeddings of the cells from that141

combination, creating a tissue and cell type ‘centroid’.142

Cells in the IMA have been pre-labeled by their cell type. As these labels were never used143

for training the UCE model, we use them to validate the quality of the learned representation.144

For example, in the IMA, human macrophages are found in 73 different tissues and among these145

tissues, 72% (53) of tissue-specific macrophage centroids were embedded closest to a macrophage146

centroid from another tissue. Considering the 3 nearest centroids increases this percentage to 93%147

(Extended Data Table 1). Similar cross-tissue homogeneity can also be identified in other prolific148
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cell types, like endothelial cells or neurons. This demonstrates that UCE, without any explicit149

training or labels, identifies that macrophages have a unique cellular identity that is shared across150

tissues. More broadly, it is an example of UCE’s emergent organization that is consistent with151

known biology even though not explicitly trained for.152

UCE embeds new datasets without additional model training.153

We evaluated the universality of UCE representations by directly mapping new datasets154

which were not part of the training set into the embedding, without any additional training or155

refinement of the UCE model. This is referred to as a ‘zero-shot’ capability, since the model was156

never trained on any samples from the new dataset (Fig. 2a) . While a variety of deep learning157

models have been proposed for this task, we choose to compare the performance of UCE to other158

self-supervised transformer-based methods. This is because they do not rely on cell type annota-159

tion, are trained on large datasets, have high model capacity, and can be run in a zero-shot setting.160

In particular, we compare against Geneformer [28] and scGPT [29], both of which represent cells161

using ordered lists of gene tokens.162

We assess the performance of these methods on a completely new and yet unreleased dataset163

(as of the publication of this manuscript), Tabula Sapiens v2, which contains diverse human data164

from 581,430 cells, 27 tissues, 167 batches and 162 unique cell types. We use established metrics165

for embedding quality that measure the conservation of cell type information and the correction166

of batch effects (Methods). We compared several methods and found that UCE substantially out-167

performs the next best method Geneformer by 9.0% on overall score, 10.6% on biological conser-168

vation score, and 7.4% on batch correction score (Supplementary Table 1). To comprehensively169

assess the value of these zero-shot embeddings, we also compare UCE to fine-tuned methods that170
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are conventionally used for this task. Notably, UCE even performs slightly better than non-zero-171

shot methods that require dataset-specific training: scVI [15] and scArches [18].172

We also investigate the Tabula Sapiens v1 [11] (which was part of the training set) and v2173

embeddings of each model visually by creating UMAP embeddings (Fig. 2b). UCE embeddings174

distinctly separate cell types more effectively than other methods tested in zero-shot. Even though175

UCE is not trained on the Tabula Sapiens v2 dataset, its embeddings more closely resemble those of176

fine-tuned methods, which are directly trained on it. Moreover, cell types align correctly regardless177

of whether the data was drawn from new donors or previously seen ones (Supplementary Fig. 1).178

For all cell types in Tabula Sapiens v2, we calculate the silhouette width score of each zero-179

shot embedding method. For 67% of cell types, UCE has the highest silhouette score of any180

method. UCE outperforms Geneformer on 80% of cell types, tGPT on 73% of cell types, and181

scGPT on 83% of cell types. Notably, UCE accurately embeds B cells, while Geneformer and182

scGPT fail to do so (Supplementary Fig. 2a). In Tabula Sapiens v2, the silhouette width score of183

B cells is 93% higher in UCE versus scGPT and 25% higher versus Geneformer. Additionally, B184

cells within the UCE embedding space can be accurately mapped to an existing reference. We train185

a simple logistic classifier on the UCE embeddings of the Immune Cell Atlas [38], and then apply186

the classifier to B cell embeddings from Tabula Sapiens v2. This classifier accurately classifies the187

Tabula Sapiens v2 cells as memory and naive B cells (Supplementary Fig. 2b), which is confirmed188

with marker gene analysis (Supplementary Fig. 2c). Overall, these results illustrate that UCE has189

the unique capability to meaningfully integrate new, previously unseen datasets into a universal190

cell representation space with no additional model training.191

UCE embeds diverse cell types from organisms that were not part of the training data.192
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UCE is also able to align datasets from novel species without additional model training. This193

is due to the fact that UCE is not dependent on any particular genome—each gene of interest is194

translated to a corresponding protein sequence, which is then embedded in a universal protein195

space. The representation in this space is independent of species and importantly does not require196

any judgment about whether particular pairs of genes are homologs or not. Since UCE can analyze197

cell atlas data from distinct species that were not part of the training set, the extent to which it198

succeeds in this task is a stringent test of whether UCE displays emergent behavior.199

UCE’s training data is composed of datasets from eight species: human, mouse, mouse200

lemur, zebrafish, pig, rhesus macaque, crab eating macaque and western clawed frog. We apply201

UCE to embed datasets from three novel species that were not included in the training set. For each202

species, we generate a zero-shot embedding and then determine the nearest cell type centroid from203

the IMA for each of the dataset’s existing annotated cell types. For all three species we observed204

very high agreement between independent annotations of the novel species’ data and the nearest205

cell type centroids in the IMA.206

Within a dataset of green monkey lymph node and lung cells [39], for 13 of the 17 cell207

type centroids, the closest centroid from another species corresponds to the same cell type in the208

green monkey. This match extends to all 17 centroids when considering the three nearest centroids209

(Extended Data Table 1, Fig. 2c, 2d). Moreover, a population of lymph node cells that were210

originally labelled as B cells, form a distinct cluster in UCE space (Supplementary Fig. 3b).211

Differential expression analysis revealed that this cluster predominantly expresses a T cell marker,212

Cd3d (Supplementary Fig. 3a, 3c).213

In the case of naked mole rat spleen and circulating immune cells [40], for 17 out of 24 cell214
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types, the nearest cross species centroid matches the naked mole rat cell type (Extended Data Table215

1, Supplementary Fig. 4b). In the case of chicken, we embed two distinct chicken datasets, chick216

retina [41] and developing chick heart [42] (Supplementary Fig. 5a, 5b). Different eye-specific217

neurons within the chick retina map to mouse lemur neurons, such as chick oligodendrocytes,218

which are closest to mouse lemur oligodendrocytes (Extended Data Table 1). In chicken heart, 12219

of 15 cell type centroids are matched within the nearest two cross species centroids (Extended Data220

Table 1). No bird species were included when training UCE. Altogether, these results highlight that221

UCE can be directly applied to investigate new and diverse datasets from previously unobserved222

species.223

UCE learns a meaningful organization of cell types in previously unseen data.224

Moving beyond metrics focused on individual cell type clusters, we also examined the struc-225

ture of the universal embedding space as a whole, through the relative positioning of different cells226

within it. A meaningful arrangement of cell types emerges upon embedding all the cells from the227

Tabula Sapiens v2 dataset from the lung tissue (Fig. 3a). Not only do distinct cell types like T cells,228

monocytes and endothelial cells cluster together, but higher-level categories, such as immune cells229

and epithelial cells, are also clearly distinguished.230

To systematically assess this organization of cells within the embedding, we compared dis-231

tances between pairs of cell types across all tissues in the embedding space to their distances in232

the Cell Ontology tree [43] (Fig. 3b). We hypothesized that cells that are known to be similar233

based on the cell ontology would likely also be closer together in the embedding space, and that234

the degree of closeness would be correlated with ontological similarity. The results validate this re-235

lationship: at each additional unit of separation between cell types in the cell ontology tree, there is236
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a significant increase in the embedding distance in UCE between those cell types. We consistently237

observed this trend up to a distance of 5 hops in the ontology tree (Fig. 3b). However, beyond that,238

the effect levels off (Supplementary Fig. 6). This is expected due to the curse of dimensionality239

in high-dimensional spaces and the variability in the level of ontological refinement in different240

branches of the ontology (Supplementary Note 3).241

We also noted significant colocalization among cells originating from the same developmen-242

tal lineages, in particular from the mesoderm, endoderm, and ectoderm germ layers. For Tabula243

Sapiens v2, 90 out of 97 of the centroids for mesoderm-derived cell types had other mesoderm-244

derived cell type centroids as their closest neighbors. A similar pattern was observed for 46 of the245

56 endoderm-derived cell types and 22 of the 30 ectoderm-derived cell types (Supplementary Fig.246

7a). A neural network classifier trained to predict the germ layer of origin for individual held-out247

cell types using their universal embeddings showed an accuracy of over 80% (Supplementary Fig.248

7b).249

The accuracy of cell type organization in the Tabula Sapiens v2 lung dataset was evaluated by250

comparing it with other lung datasets in the IMA (Fig. 3c, Supplementary Fig. 8). Four different251

endothelial cell subtypes are observed to map correctly to their corresponding counterparts in the252

IMA. Similarly, lung ciliated cells correctly map to their counterpart in the larger corpus despite253

the presence of four different ciliated cell subtypes (Fig. 3c). Further analysis of the alignment of254

cell type centroids between Tabula Sapiens v2 and the IMA across all tissues showed an average255

correct alignment of 56% for each tissue, as detailed in the Methods section. This alignment, based256

on the three nearest neighbor cell type centroids, is 60% more accurate compared to that measured257

in the original gene expression space (Fig. 3d). When focusing on the single nearest centroid, the258
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alignment accuracy improves by 93%. These results demonstrate that UCE can effectively learn a259

universal representation of cell biology that not only enables discrimination between individual cell260

types but also captures their relative similarities across scales with the potential to reveal deeper261

insights into development and function.262

A workflow for decoding the function of newly discovered cell types.263

UCE’s zero-shot embedding capabilities unlock novel computational analyses of scRNA-264

seq data and aid in hypothesis generation. Beyond identifying novel cell type clusters, UCE differs265

from other methods in that the same cell type can also be easily compared against all previously266

assayed cells across tissues, disease states and species. Moreover, UCE is not biased in this process267

by existing annotations, opening the door for discovery of novel function (Fig. 4a). With existing268

fine tuning based methods, every searched dataset would need to be integrated, requiring repeated269

model retraining. Thus, UCE enables a new workflow for scRNA-seq data analysis that performs270

an unbiased search across the universe of cell biology.271

We present an example of this analysis by using the recently identified kidney Norn cell as272

a case study. The kidney Norn cell is the long-sought erythropoietin (Epo) producing cell in the273

kidney, and is characterized as fibroblast-like. We perform a zero-shot embedding of mouse renal274

cells from [44], which produces a cluster of cells corresponding to Norn cells (Fig. 4b).275

Using a simple logistic classifier trained on the embedding of mouse renal cells, we identify276

Norn cell clusters in many kidney datasets. Since this classifier takes universal cell embeddings277

as an input, we can directly apply it to all 36 million cells in the IMA, in a manner unbiased278

by cell type annotations ascribed by previous studies. We also confirm these cell’s Norn identity279

using marker gene analysis. Cells classified as Norn cells in the top 13 kidney datasets by Norn280
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abundancy demonstrate preferential expression of the Norn markers Dcn, Lpar1, Col1a1, Cxcl12,281

and Cfh (Extended Data Table 3). Notably, Epo transcripts, which are often missing from datasets282

and lowly expressed, are not typically differentially expressed in these cells. Cxcl14, another283

marker of Norn cells, displays mixed expression patterns in these predicted Norn cells (Fig. 4c).284

The same pattern of marker gene expression is also found in cells from other tissues, including lung285

and heart datasets (Fig. 4c). Additionally, these predicted cells also share a common set of genes286

that are lowly expressed in mouse renal Norn cells (Supplementary Fig. 9). The tissues with the287

highest number of predicted Norn cells were gonad, heart and lung. While Epo expression has been288

previously observed in the heart and lung tissue, the mechanisms and cell types associated with289

this expression, and their relation to kidney Norn cells have not been previously determined [45].290

Overall, this demonstrates that UCE can serve as an unbiased tool for predicting the existence of291

novel cell types.292

UCE helps interrogate alternate lung disease outcomes.293

Lastly, we apply UCE and our simple Norn cell classifier to investigate Norn cells in lung294

diseases. We generate an embedding of lung cells sampled from patients with idiopathic pulmonary295

fibrosis (IPF), chronic obstructive pulmonary disease (COPD), or patients from a control group296

[46]. We identify Norn-like lung cells that preferentially express Norn markers in all three groups297

(Fig. 4d).298

For these Norn-like lung cells, we identify differences across disease groups (Fig. 4e). COPD299

and IPF are both associated with elevated bloodstream Epo, but COPD has levels higher than300

IPF. Additionally, in patients with IPF, secondary erythrocytosis is absent or reduced compared301

to patients with COPD [47–49]. Given the identification of Norn-like cells in the lung, and Norn302
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cell’s production of Epo, it is possible that this difference in disease prognosis could be related to303

disease associated differences in Norn-like cells.304

In COPD predicted Norn cells, there is a significantly greater ratio of Epas1 : Egln1 tran-305

scripts (p=0.035) than in IPF predicted Norn cells (Fig. 4e). Epas1 is a master regulator of Epo306

transcription, which is degraded by the oxygen sensing enzyme encoded by Egln1 [44]. Control307

and COPD predicted Norn cells express genes (Bgn, Crispld2) involved in glycosaminoglycan308

pathways at different levels than IPF predicted Norn cells [50,51]. IPF cells also have significantly309

lower expression of Il6st than cells in control or COPD groups.310

Taken as a whole, these results indicate that Norn-like cells may be found in other tissues311

in the body, and may play a previously unidentified role in disease. UCE greatly facilitates an312

analysis of this scale and diversity because it is a universal model.313

Discussion314

UCE is a single-cell foundation model that is built from the ground up to represent cell biology315

across the wide array of single-cell datasets. We envision UCE as an embedding approach that316

enables researchers to map any new data, including entire atlases, into an accurate, meaningful and317

universal space. The embedding space that emerges from UCE is highly structured and diverse and318

aligns cell types across tissues and species. Additionally, these cell types organize themselves in a319

pattern that reflects existing biological knowledge.320

The UCE model has broad implications for the creation of large foundation models for single321

cell biology. For large foundation models to be truly useful for scientific discovery, they must have322

unique qualities that distinguish them from existing methods. Zero-shot embeddings are one such323

important capability because it enables an intrinsically meaningful representation that can extend324
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insights beyond the data that has already been observed and annotated experimentally. Our results325

demonstrate that UCE can achieve such a generalizable representation across different datasets326

while maintaining accuracy on individual datasets, comparable to methods that require retraining327

for each specific dataset.328

By building UCE, we enable new and novel analyses of scRNA-seq data. However, these329

analyses and corresponding benchmarks are still far from perfect, as they are generally limited by a330

focus on coarse cell type labels. To better understand single-cell foundation models, and especially331

how they scale, new analyses and benchmarks that surpass this resolution limit must be developed.332

For a precise representation of biology, models must incorporate core biological motivation. To333

this end, we recognize that current scRNA-seq foundation models, including UCE, do not account334

for any information contained in the raw RNA transcripts. By aligning these transcripts to the335

reference genome, vital data on genetic variation and crucial RNA-splicing processes are discarded336

[52]. Future single cell foundation models should seek to include this genomic precision at the337

transcript level. As these models adopt more biologically-relevant features, they will increasingly338

be able to simulate the biological processes of cells, leading to the creation of “Virtual Cells”.339

In 2002, Nobel laureate Sydney Brenner identified many of the core motivations for the340

creation of cell atlases and virtual cells. Virtual cells should be the goal of biological foundation341

modeling, because cells are the “real units of function and structure in an organism” [53]. Brenner342

also identified the need for such models to be computationally efficient, predictive, and able to343

generate new cell types. We believe that UCE represents a significant advancement in the progress344

towards a virtual cell. Through learning a universal representation of every cell state and type, we345

expect that UCE will be a valuable tool for analysis, annotation and hypothesis generation as the346
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scale and diversity of single-cell datasets continues to grow.347
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Methods348

Overview of UCE.349

UCE (Universal Cell Embedding) is a machine learning model for mapping single-cell gene350

expression profiles into a universal embedding space, denoted as U . In this space, each cell ci is351

represented as a demb-dimensional vector, where demb = 1280.352

The model takes as input a dataset D with N cells {ci}Ni=1. Cells in D can be drawn from353

one or more distinct scRNA-seq experiments. Each cell ci in D is described by a gene expression354

vector xi ∈NKi , where Ki is the number of genes measured in ci and can differ across D. The gene355

expression vectors xi ∈ NKi are not subset to those with high variance. UCE defines a function356

fu : {NKi → Rdemb}Ni=1 that maps each gene expression vector xi to its cell embedding vector hi.357

Model input: Gene representation.358

The expression of gene g in cell ci is denoted by xi
g, where g represents any protein-coding359

gene. The corresponding token embedding pg is a pretrained embedding for the protein(s) encoded360

by the gene g. These embeddings are derived from a pretrained protein language model that takes361

an amino acid sequence as input and returns a dp-dimensional embedding vector as output. To362

create pg, we take the average of all proteins coded by gene g. In the context of UCE, we can363

formulate this as a dictionary that maps each gene g to a dp-dimensional protein embedding vector.364

Specifically, we employ the ESM2 model, which yields embeddings of size dp = 5120 [33, 34].365

Model input: Cell representation.366

For each cell ci in the input dataset D, we identify two distinct sets of protein-coding genes:367

the expressed genes G+
i and the non-expressed genes G−

i . These sets are defined as follows:368
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G+
i = {g | xi

g > 0} (1)

G−
i = {g | xi

g = 0} (2)

For producing the cell embedding, a multi-set of 1024 non-unique genes Gs
i are sampled369

from the expressed genes G+
i , with replacement. The probability of sampling a gene g ∈ G+

i is370

weighted by the log normalized expression of that gene, which can be formulated as:371

P (g | ci) =
log(xi

g)∑
g∈G+

i
log(xi

g)
(3)

where xi
g is the expression count of gene g in cell ci, and the sum in the denominator is over372

all genes in G+
i .373

Once the multi-set Gs
i is compiled for each cell ci, we arrange the genes within each chro-374

mosome according to their genomic positions. Different chromosomes are specified using special375

chromosome start and end tokens. Start tokens are unique to each chromosome and species. Every376

chromosome group is combined into a single sequence, with chromosome order randomly deter-377

mined. A cell-level CLS token is appended to the start of the sequence. It is designed to capture378

the cell-level embedding upon training the model. The final sequence of genes ordered by genomic379

location and separated by chromosome is referred to as the cell sentence Si for cell ci.380

Transformer Architecture.381

Each cell sentence Si is fed into a transformer that consists of nlay layers. Each layer con-382

tains a multi-head self-attention mechanism with nhead attention heads and a feedforward network383

operating over a hidden space of dimensionality dhid. We also initialize sinusoidally-varying po-384
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sitional embeddings. Gene token embeddings are compressed using a single layer MLP to demb-385

dimensional vectors before passing through the transformer.386

Model output: Cell embedding.387

The final output from the model is the cell embedding vector hi
cell ∈ U which corresponds388

to the demb-dimensional embedding of the CLS token in the final layer of the model following389

decoding with an additional MLP.390

Model training: Cell representation.391

At the time of training, we generate a set GM+
i ⊂ G+

i by randomly selecting a certain392

percentage (rmask) of genes from G+
i , without replacement. This set is used for computing the loss393

during training, and is masked from the cell representation.394

The probability of sampling a gene g ∈ G+
i \GM+

i (Equation 3) is then updated to be:395

P (g | ci) =
log(xi

k)∑
g∈G+

i \GM+
i

log(xi
j)
, (4)

We also establish two additional gene sets to be used for loss computation: GL+
i ∈ G and396

GL−
i ∈ G. GL+

i and GL−
i are randomly selected from the masked set of expressed genes GM+

i and397

the set of unexpressed genes G−
i respectively. Both GL+

i and GL−
i are of equal size, specifically398

Nloss/2. In the case of GL−
i , the sampling is done without replacement unless |G−

i | < Nloss/2.399

Similarly GL−
i , is also sampled without replacement unless |GM+

i | < Nloss/2. In this case, GM+
i400

is used as-is alongwith additional samples drawn with replacement from the full set of expressed401

genes G+
i .402

Model training: Loss Function.403

To calculate the loss function for a given cell ci, the cell embedding vector hi
emb is individu-404
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ally concatenated with every gene g within both GL+
i and GL−

i . These concatenated vectors then405

serve as input to a feedforward multilayer perceptron (MLP), which computes the probability that406

gene g is expressed within cell ci.407

hi
cell represents the embedding vector for cell ci and pg represents the token embedding for408

gene g. Then the concatenated vector zig that serves as input to the MLP for cell ci and gene g is:409

p′g = MLP(pg) (5)

zig = [hi
cell||pg′] (6)

where || denotes the concatenation operation and p′g is the compressed protein embedding.410

The MLP then processes this concatenated input to produce the predicted probability that411

gene g is expressed:412

p(yig) = MLP(zig) (7)

This probability is then used in the binary cross-entropy loss function. The true classification413

labels for each gene’s expression status in cell ci are represented by the vector yi. UCE is trained414

to accurately predict the expression of genes in GL+
i and the lack of expression in GL−

i . The model415

is trained using a binary cross-entropy loss, which is averaged across all Nloss genes and all N416

cells in the minibatch as follows:417

L = − 1

N

N∑
i=1

1

Nloss

Nloss∑
j=1

[
yij log(p(y

i
j)) + (1− yij) log(1− p(yij))

]
(8)

For further details on hyperparmeter choices please see Supplementary Table 2.418
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Creating the IMA and dataset preprocessing.419

The Integrated Mega-scale Atlas (IMA) used to train UCE was created by combining scRNA-420

seq datasets from multiple publicly available sources. The majority of IMA data (33.9 million cells421

and 285 datasets) is human and mouse data downloaded from CZI Cell X Gene (CxG) Census [36]422

version ”2023-07-10” (July 10th, 2023). Duplicate cells were removed by selecting primary cells423

only. The remainder of the IMA is composed of 2.3 million cells from 28 datasets, from eight424

different species: human, mouse, zebrafish, rhesus macaque, crab-eating macaque, mouse lemur,425

frog, and pig.426

For datasets from the CxG Census, preprocessing only involved filtering cells by minimum427

gene counts (200) and genes by a minimum cells count of 10. No highly variable gene selection428

was applied. For datasets collected from other sources, preprocessing was not uniform.429

For visualization of the IMA (Fig. 1b), predicting green monkey cell types (Fig. 2d), match-430

ing new species centroids (Extended Data Table 1), and prediction of Norn-like cells (Fig. 4,431

Supplementary Fig. 9) a representative sample of the IMA was used in place of the full 36 million432

cells. This representative sample was used in order to speed up computationally intensive tasks like433

UMAP calculation. The sample was created by randomly choosing 10,000 cells from each dataset,434

without replacement. For datasets with fewer than 10,000 cells, the entire dataset was included. In435

total, this representative sample has 2,969,114 cells. The average number of cells per dataset in the436

sample is 9486. For visualization and centroid calculation, cell types in the sample were coarsened437

by mapping them to a set of 51 coarse cell types.438

Model Evaluation.439

• Zero-shot embedding quality and clustering For evaluating the quality of embeddings, we440
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used metrics from the single-cell integration benchmark [16].441

• Cell type organization For each cell type dendrogram the Euclidean distance was used to442

perform hierarchical clustering across all cells.443

• Comparison to cell ontology Here, we used the tree distance between any two cell types in444

Cell Ontology [43]. To determine the Euclidean distance distribution, we sampled 100,000445

random pairs of cells from Tabula Sapiens v2.446

• Zero-shot cell type alignment to IMA For each cell type θ, a centroid was identified sepa-447

rately for data from Tabula Sapiens v2 (TSv2) cTθ and from IMA cIθ. For each cell type that448

is present in both TSv2 and the IMA, the 3 nearest neighbor cell type centroids NT
θ to the449

centroid in Tabula Sapiens cTθ were identified. These neighbors could be either from Tabula450

Sapiens or from the IMA.451

If this set of neighbors NT
θ to the anchor centroid from TSv2 data cTθ contains the centroid452

for the same cell type in IMA data cIθ, then this was counted as a correct match.453

This analysis was performed per tissue, both in the UCE embedding space as well as in the454

original expression space (after log-normalization). In case of the original data represen-455

tation, the set of 5704 shared genes across all human datasets were used to represent each456

cell.457

Differential expression analysis of predicted Norn cells.458

A logistic classifier was trained to predict cell types from UCE embeddings on mouse kidney459

cells. This classifier was then applied to UCE embeddings from the representative sample of IMA460

datasets. Datasets were then split by tissue, and the datasets with the most predicted norn cells in461
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each tissue were used for differential expression analysis. The top 13 kidney datasets, top 6 lung462

and top 6 heart datasets were chosen.463

For each individual (full) dataset, RNA counts were log normalized, and then differential ex-464

pression was run using default settings as implemented in Scanpy [54], comparing predicted Norn465

cells to all other cells in the dataset. The results of these differential expression tests were used466

to determine the log fold change of marker genes in predicted Norn cells (Fig. 4c, Supplementary467

Fig. 9).468
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Figure 1: The Universal Cell Embedding Model is a large foundation model for single cell biology (a) Overview
of the Universal Cell Embedding (UCE) model. UCE has a unique, biologically motivated representation of cells (blue)
and training scheme (purple). Given the gene expression for a single cell, UCE samples with replacement genes that
were expressed, weighted by their level of expression. Each gene is represented using a ‘token’ corresponding to its
protein product. Gene tokens are represented numerically by using ESM2 protein embeddings, a 15 billion parameter
protein language model that takes amino acid sequences as an input. The gene tokens are sorted by genomic location
and grouped by chromosome. Chromosome groups are delineated by specific chromosome start tokens and end tokens,
joined, and then passed into a transformer neural network. The embedding of the cell is determined by taking the final
layer output of a special CLS token that is appended before all the other tokens. To train the UCE model, a portion
of genes that were expressed are masked. The model next combines the protein embeddings corresponding to each of
these genes with the embedding of the cell, and passes this joint representation through a neural network that predicts
if a given gene was expressed in the cell or not. This objective function is then used to update the weights of the model.
(b) UMAP visualizations of the universal cell embedding space. We apply UCE to embed 36 million cells, with more
than 1,000 uniquely named cell types, from hundreds of datasets, dozens of tissues and eight species, creating an
Integrated Mega-scale Atlas (IMA) spanning the universe of cell biology.
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Figure 2: Zero-shot cell embedding capabilities of UCE (a) Comparison of zero-shot and fine-tuned single-cell
embedding models. A zero-shot embedding model maps new data directly to the to the representation space, with no
additional model training. In contrast, fine-tuned models must first be retrained on a given dataset, and only then can
be applied on that dataset, fundamentally altering the model’s representation space. (b) UMAP embeddings of UCE
and other methods for Tabula Sapiens v1 and v2, colored by cell type. UCE zero-shot embeddings closely resemble
the embeddings of fine-tuned methods scVI and scArches, demonstrating clusters that correspond to cell types, in
contrast to the other zero-shot methods Geneformer and scGPT. (c) UMAP of cells from a new species, green monkey
colored by cell type. UCE is able to generate high-quality zero-shot embeddings of novel species that were never seen
during training. The UCE embedding for green monkey mediastinal lymph node [39] recaptures cell type clusters.
Notably, a population of B cells (blue) clusters nearby to T cells, potentially due to expression of Cd3 (Supplementary
Fig. 1). (d) Green monkey lymph node cells can be accurately annotated using the IMA. A logistic classifier is first
trained to predict cell types based on UCE embeddings of human lymph node cells. The classifier is then directly
applied on green monkey cells to predict the cell types. Predicted cell types have high agreement with the original cell
type annotations, demonstrating that UCE can be used to transfer cell type annotations to novel species.
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Figure 3: UCE learns meaningful organization of cell types (a) The UCE space generated for new, previously
unseen data shows a meaningful arrangement of cell types. Lung data was used from new donors from the Tabula
Sapiens Consortium. Dendrogram of hierarchical clustering of all annotated cell types in the UCE embedding space.
Closely connected cell types in the dendrogram show meaningful biological relationships both at finer and coarser
scale resolutions. (b) Evaluation of the organization of cell types in the embedding space when compared to Cell
Ontology. The x-axis depicts the density of Euclidean distances between all pairs of cells across all tissues for these
new donors from the Tabula Sapiens Consortium. The y-axis shows the corresponding tree distance between cell
types as found in the Cell Ontology. Stars denote statistical significance, which was established using a one-sided
t-test. (c) Mapping data from new donors to the Integrated Mega-scale Atlas (IMA) across multiple lung datasets. Red
labels correspond to data from new donors, grey are from IMA datasets. All cell type labels from multiple datasets
are displayed as-is, with no modifications or reformatting of text. Accurate alignment between the new dataset and
IMA is observed at finer resolution. Four different subtypes of endothelial cells are shown to correctly map to their
corresponding counterparts in the complete mega-scale atlas. In the case of lung ciliated cells, they map more closely
to their matching counterpart as compared to all other ciliated cell subtypes also present in the IMA. (d) Quantification
of cell type alignment between new dataset and IMA. Accuracy in 3-nearest centroid matches between new dataset and
IMA cell types at the finest level of original annotation. Results are measured across all 27 tissues in Tabula Sapiens
v2 for both the UCE space and the original gene expression space. Tissues are ordered by accuracy in the UCE space.
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Figure 4: Norn Cell Case Study: UCE unlocks new analyses of single cell datasets (a) Overview of a novel single
cell analysis workflow that UCE facilitates. Analysis begins with (1) the identification of a novel cell type (circled)
within the embedding space, using methods such as clustering and confirmation using marker gene analysis. (2) Next,
the novel cell type can be easily identified in other datasets profiled from the same tissue (for example, kidney). A
simple classifier, such as a logistic classifier, is trained to predict cell types from universal cell embeddings, and is
then applied to embeddings from other datasets of the same tissue (kidney), to confirm the cell type’s existence and
improve its characterization. (3) Finally, the same simple classifier can be applied to the embeddings of cells from any
other tissue, to find cell types with similar biological functions or patterns of gene expression. (b) Identification of
novel Norn cells in mouse kidney. UMAP visualization of zero-shot embedding of mouse renal cells from Kragesteen
et al. [44]. Norn cells form a distinct cluster within the embedding space (circled). (c) Identification of Norn cells and
Norn-like cells across tissues. A logistic classifier is trained to predict Norn cells from universal cell embeddings, and
is then applied to other kidney datasets (left) and datasets from lung and heart (right). The log fold change of known
Norn marker genes between cells predicted to be Norn cells and the remaining cells within each dataset is visualized.
Cells which are predicted to be Norn-like preferentially express Norn markers in kidney, as well as in lung and heart.
Notably, Cxcl14 has a mixed pattern of expression among some datasets. (d) Cells predicted to be Norn cells within a
lung disease dataset [46] express known Norn markers, as demonstrated by log fold change (LFC). e Differential gene
expression in predicted Norn cells, grouped by disease status. There are significant differences in gene expression of
important Norn markers and genes involved in the production of erythropoietin (Epo) between cells from IPF, COPD
and control patients. Patients with IPF and COPD are known to have elevated levels of blood stream Epo, with COPD
patients having greater bloodstream Epo levels than patients with IPF.

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.28.568918doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.568918
http://creativecommons.org/licenses/by-nc-nd/4.0/


Data availability469

The full list of datasets used to train UCE are in Extended Data Table 2. Most of these datasets are470

available to download from CellXGene [36]. Tabula Sapiens v2, used for model evaluation, will471

be made available upon publication.472

Datasets analyzed in the paper are publicly available to download. The green monkey lung473

and lymph node dataset is available with accession code GSE156755. The naked mole rat dataset474

is available with accession code GSE132642. The chicken retina dataset is available with acces-475

sion code GSE159107. The chicken heart dataset is available with accession code GSE149457.476

The mouse kidney dataset is available with accession code GSE193321. The human lung disease477

dataset is available with acccesion code GSE136831.478

Code availability479

UCE was written in Python using the PyTorch library. The source code is available on Github at480

https://github.com/snap-stanford/uce.481
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26. Avsec, Ž. et al. Effective gene expression prediction from sequence by integrating long-range546

interactions. Nature methods 18, 1196–1203 (2021).547

27. Rives, A. et al. Biological structure and function emerge from scaling unsupervised learning548

to 250 million protein sequences. Proceedings of the National Academy of Sciences 118,549

e2016239118 (2021).550

28. Theodoris, C. V. et al. Transfer learning enables predictions in network biology. Nature 1–9551

(2023).552

29. Cui, H. et al. scgpt: Towards building a foundation model for single-cell multi-omics using553

generative ai. bioRxiv 2023–04 (2023).554

30. Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges in555

single-cell transcriptomics. Nature Reviews Genetics 16, 133–145 (2015).556

31. Quake, S. R. The cell as a bag of rna. Trends in Genetics 37, 1064–1068 (2021).557

32. Vaswani, A. et al. Attention is all you need. Advances in neural information processing558

systems 30 (2017).559

33. Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language560

model. Science 379, 1123–1130 (2023).561

34. Rosen, Y. et al. Towards universal cell embeddings: Integrating single-cell rna-seq datasets562

across species with saturn. bioRxiv (2023).563

35. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional564

transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).565

36. Biology, C. S.-C. et al. Cz cellxgene discover: A single-cell data platform for scalable explo-566

ration, analysis and modeling of aggregated data. bioRxiv 2023–10 (2023).567
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