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Abstract
How do Large Language Models (LLMs) gener-001
ate explanations? While LLMs are increasingly002
adopted in real-world applications, the princi-003
ples and properties behind their explanatory004
process are still poorly understood. This pa-005
per proposes an interpretability and evaluation006
framework for LLMs’ explanatory reasoning in-007
spired by philosophical accounts on Inference008
to the Best Explanation (IBE). In particular,009
the framework aims to estimate the quality of010
natural language explanations through a com-011
bination of criteria computed on linguistic and012
logical features, including consistency, parsi-013
mony, coherence, and uncertainty. We conduct014
extensive experiments on Causal Question An-015
swering (CQA), instantiating our framework016
to select among competing explanations gen-017
erated by LLMs (i.e., ChatGPT and LLama 2).018
The results reveal that the proposed method-019
ology can successfully identify the best expla-020
nation supporting the correct answers with up021
to 77% accuracy (≈ 27% above random) sug-022
gesting that LLMs indeed conform to features023
of IBE. At the same time, we found notable024
differences across LLMs, with ChatGPT signif-025
icantly outperforming LLama 2. Finally, we an-026
alyze the degree to which different criteria can027
predict the correct answer, suggesting potential028
implications for external verification methods029
for LLM-generated output.030

1 Introduction031

Large Language Models (LLMs) such as OpenAIs032

ChatGPT (Brown et al., 2020) and Llama 2 (Tou-033

vron et al., 2023) have been highly effective across034

a diverse range of language understanding and rea-035

soning tasks (Liang et al., 2023). While LLM036

performances have been thoroughly investigated037

across various benchmarks (Wang et al., 2019; Sri-038

vastava et al., 2023; Gao et al., 2023; Touvron et al.,039

2023), the principles and properties behind their040

step-wise reasoning process are still poorly for-041

malized and understood. LLMs are notoriously042

considered black-box models that are difficult to in- 043

terpret (Chakraborty et al., 2017; Danilevsky et al., 044

2020). Further, the commercialization of LLMs has 045

led to strategic secrecy around model architectures 046

and training details (Xiang, 2023; Knight, 2023). 047

Finally, neural models are susceptible to hallucina- 048

tions and adversarial perturbations (Geirhos et al., 049

2020; Camburu et al., 2020), often producing plau- 050

sible but factually incorrect answers (Ji et al., 2023; 051

Huang et al., 2023). As the size and complexity of 052

LLM architectures increase, the systematic study 053

of the generated explanations become crucial since 054

it can provide efficient and pragmatic mechanisms 055

to better interpret and validate the internal infer- 056

ence processes (Wei et al., 2022b; Lampinen et al., 057

2022; Huang and Chang, 2022). 058

Currently, there is no systematic way to automat- 059

ically evaluate explanations (Valentino et al., 2021). 060

Without resource-intensive annotation methodolo- 061

gies (Wiegreffe and Marasovic, 2021; Thayaparan 062

et al., 2020; Dalvi et al., 2021; Camburu et al., 063

2018), explanation quality methods tend to rely 064

on weak supervision scenarios, where arriving at 065

the correct answer is taken as evidence of good 066

explanation quality. In this paper, we seek to bet- 067

ter understand LLM explanatory process through 068

the investigation of explicit linguistic and logical 069

properties. While explanations are hard to formal- 070

ize due to their open-ended nature, we hypothesize 071

that they can be analyzed as linguistic objects, with 072

observable and measurable features that can serve 073

to define criteria for assessing their quality. These 074

criteria can potentially lead to model selection and 075

safety mechanisms and serve as a critical qualita- 076

tive understanding device – i.e., to determine infer- 077

ence phenomena that are not fully addressed by a 078

given model (e.g., logical consistency). 079

Specifically, this paper investigates the follow- 080

ing overarching research question: “Can linguistic 081

and logical properties associated with LLMs’ gen- 082

erated explanations be used to qualify the models’ 083
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Inference to the Best Explanation
(IBE)

Selection Criteria

Competing Explanations

Competing Hypotheses

Premise 1: I blew into the baloon.
Conclusion: The balloon expanded.

Premise 2: I pricked the baloon.
Conclusion: The balloon expanded.

LLM

Explanation 1 (E1)

Step 1: IF someone blows into a balloon, THEN it can cause the
balloon to inflate.
Assumption: Blowing air into a balloon increases the amount of air
inside it, leading to inflation.
Step 2: IF the balloon inflates, THEN it can cause the balloon to
expand.
Assumption: When a balloon inflates, it stretches and expands in
size.

Therefore, since I blew into the balloon, it caused the balloon to
inflate, which resulted in its expansion.

Explanation 2 (E2)

 Step 1: IF a balloon is pricked, THEN the balloon may deflate.
 Assumption: Pricking a balloon can cause it to lose air and deflate.
 Step 2: IF a balloon deflates, THEN there is a decrease in air   
 pressure inside the balloon.
 Assumption: When a balloon deflates, the air pressure inside the 
 balloon decreases.                                                                         
 Step 3: IF there is a decrease in air pressure inside the balloon, 
 THEN the external air pressure will cause the balloon to expand.       
 Assumption: When the air pressure inside a balloon is lower than 
 the external air pressure, the balloon will expand. 

 Therefore, since the balloon was pricked, it may have deflated, 
 resulting in a decrease in air pressure inside the balloon, 
 causing the external air pressure to make the balloon expand

Causal Question
The balloon expanded. What was the cause?

A) I blew into it. B) I pricked it.

Explanation Prompt
For the provided scenario, identify which option is the
most plausible cause of the context. Let's think step-
by-step and generate an explanation for each option.
Treat each option as the premise and the provided

context as the conclusion. Generate a short step-by-
step logical proof that explains how the premise can
result in the conclusion. For each step provide an IF-

THEN rule and the underlying causal or
commonsense assumption. 

Consistency

Parsimony

Uncertainty

IBE

1.0

-2.0

2.0

E2

E1

Coherence .51

Selection Criteria

Consistency

Parsimony

Uncertainty

1.0

-3.0

3.0

Coherence .28

Figure 1: The IBE framework qualifies LLM-generated explanations with a set of logical and linguistic selection
criteria to identify the most plausible hypothesis.

reasoning process?”. To this end, we propose an084

interpretable framework inspired by philosophical085

accounts on Inference to the Best Explanation (IBE)086

– i.e., the process of selecting among competing ex-087

planatory theories (Lipton, 2017). In particular,088

the framework is designed to estimate the quality089

of natural language explanations according to a090

combination of metrics computed on a set of in-091

terpretable features, namely logical consistency,092

parsimony, coherence, and linguistic uncertainty.093

To evaluate the proposed framework, we conduct094

extensive experiments on Causal Question Answer-095

ing (CQA) tasks, implementing each metric with096

external models to select among competing expla-097

nations generated by LLMs (i.e., ChatGPT and098

LLama 2). The results reveal that the proposed099

methodology can successfully identify the best ex-100

planation supporting the correct answers with up to101

77% accuracy (≈ 27% above random) confirming102

that the proposed criteria possess complementary103

features. At the same time, however, we found104

notable differences across metrics and LLMs, with105

ChatGPT significantly outperforming LLama.106

In summary, this paper provides the following107

contributions:108

1. To the best of our knowledge, we are the109

first to propose an interpretable framework110

inspired by philosophical accounts on Infer-111

ence to the Best Explanation (IBE) to automat-112

ically assess the quality of natural language113

explanations.114

2. We demonstrate how the framework can be in-115

stantiated for Large Language Models (LLMs)116

with the use of external tools, performing an 117

extensive empirical evaluation of LLM expla- 118

nations on CQA tasks. 119

3. We found that the IBE criteria are predictors 120

of the correct answer with degrees of statisti- 121

cal significance, with uncertainty, parsimony 122

and coherence being the best predictors. This 123

is evidence that LLMs indeed conform to fea- 124

tures of IBE. At the same time, however, we 125

found that LLMs are strong rationalizers and 126

can produce consistent explanations even for 127

less plausible candidates, making the consis- 128

tency metric less effective in practice. 129

The entire experimental code is available online1 130

to encourage future research in the field. 131

2 Inference to the Best Explanation (IBE) 132

Explanatory reasoning is a distinctive feature of 133

human rationality underpinning problem-solving 134

and knowledge creation in both science and every- 135

day scenarios (Lombrozo, 2012). Accepted epis- 136

temological accounts characterize the creation of 137

an explanation as composed of two distinct phases: 138

conjecturing and criticism (Popper, 2014; Deutsch, 139

2011). According to this view, the explanatory pro- 140

cess always involves a conflict between plausible 141

explanations, which is typically resolved through 142

the criticism phase via a selection process, where 143

competing explanations are assessed according to a 144

set of criteria. The criticism phase is often referred 145
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to as Inference to the Best Explanation (IBE) (Lip-146

ton, 2017; Harman, 1965). While the conjecturing147

phase is hard to formalize due to its open-ended148

nature, the criteria according to which an expla-149

nation has to be preferred among competing ones150

are more easily definable. Therefore, philosophers151

have attempted to identify what characterizes a152

good explanation, defining criteria such as parsi-153

mony, coherence, unification power, and hardness154

to variation (Mackonis, 2013; Thagard, 1978, 1989;155

Kitcher, 1989; Valentino and Freitas, 2022).156

As LLMs become interfaces for natural language157

explanations, epistemological frameworks offer an158

opportunity for developing criticism mechanisms159

to better understand the explanatory process un-160

derlying state-of-the-art models. To this end, this161

paper considers an LLM as a conjecture device162

producing linguistic objects that can be subject to163

criticism. In particular, we focus on a subset of cri-164

teria that can be automatically computed on explicit165

linguistic and logical features, namely: consistency,166

parsimony, coherence, and uncertainty.167

To assess LLMs’ alignment to such criteria,168

we focus on the task of selecting among compet-169

ing explanations in a Multiple Choice Question170

Answering (MCQA) setting (Figure 1). Specifi-171

cally, given a set of competing hypotheses H =172

{h1, h2, . . . , hn} (each corresponding to a possible173

cause-effect relation between a premise and a con-174

clusion), we prompt an LLM to generate plausible175

explanations supporting each hypothesis (Section176

3). Subsequently, we adopt the selection criteria177

to assess the quality of the generated explanations178

(Section 4). The explanation with the highest qual-179

ity score is then selected to predict the final an-180

swer and assessed as the extent to which observ-181

able explanatory features are correlated with QA182

accuracy. Specifically, we hypothesize that the183

quality of LLMs’ explanations for the correct an-184

swers should be higher than the ones generated for185

alternative hypotheses and that higher-quality ex-186

planations can be explicitly identified via the IBE187

selection criteria.188

3 Explanation Prompting189

The first stage in our methodology consists of190

prompting LLMs to generate competing explana-191

tions for different hypotheses. To this end, we192

employ a variation of Chain-of-Thoughts (CoT)193

prompting (Wei et al., 2022a). Specifically, the194

original CoT method is modified to instruct the195

LLM to produce an explanation for each hypothe- 196

sis (see Figure 1). To this end, we adopt a method- 197

ology similar to Valentino et al. (2021) to constrain 198

the generated explanations into an entailment form 199

for the downstream IBE evaluation. In line with 200

Valentino et al. (2021), we posit that a valid expla- 201

nation should demonstrate an entailment relation- 202

ship between the premise and conclusion. 203

To elicit logical connections between statements 204

and facilitate subsequent analysis, each generated 205

explanation is constrained to use weak syllogisms 206

expressed as IF-THEN statements for each expla- 207

nation step. Additionally, the LLM is instructed 208

to produce the associated causal or commonsense 209

assumption underlying each explanation step. This 210

output is then post-processed to extract the relevant 211

supporting knowledge for evaluation via the selec- 212

tion criteria. Additional details and examples of 213

prompts are reported in Appendix A.1. 214

4 Selection Criteria 215

To perform IBE, we investigate a set of criteria 216

that can be automatically computed on explicit lin- 217

guistic and logical features, namely: consistency, 218

parsimony, coherence, and uncertainty. 219

4.1 Consistency 220

The first criterion adopted for assessing explanation 221

quality is logical consistency. Given a hypothesis, 222

composed of a premise pi, a conclusion ci, and 223

an explanation consisting of a set of statements 224

E = s1, ..., si, we define E to be logically con- 225

sistent if pi ∪ E ⊨ ci. An explanation, therefore, 226

is logically consistent if it is possible to build a 227

complete deductive proof linking premise and con- 228

clusion. To implement the logical consistency met- 229

ric, we leverage external symbolic solvers along 230

with autoformalization – i.e., the translation of nat- 231

ural language into a formal language (Wu et al., 232

2022). Specifically, hypotheses and explanations 233

are formalized into a Prolog program which will 234

attempt to generate a deductive proof via backward 235

chaining (Weber et al., 2019). 236

To perform autoformalization, we leverage 237

the translation capabilities of ChatGPT-3.5-Turbo. 238

Specifically, we instruct the model to convert each 239

IF-Then implication from the generated expla- 240

nation steps into an implication rule, while the 241

premise statement is converted into grounding 242

atoms. On the other end, the entailment condi- 243

tion and the conclusion are used to create a Prolog 244
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query. Further details about the autoformalization245

process can be found in Appendix A.2.246

After autoformalization, we adopt an external247

Prolog solver for entailment verification. The ex-248

planation is considered logically consistent if the249

Prolog solver can satisfy the query and successfully250

build a deductive proof. Additional technical on251

proof generation can be found in Appendix A.3.252

4.2 Parsimony253

The parsimony principle, often referred to as Ock-254

ham’s razor, is considered an important criterion255

for choosing among competing explanations. In256

particular, parsimony favors the selection of the257

simplest explanation consisting of the fewest ele-258

ments and assumptions (Sober, 1981). This is be-259

cause an explanation with fewer assumptions tends260

to leave fewer statements unexplained, improving261

specificity and alleviating the infinite regress (Tha-262

gard, 1978). Further, parsimony is an essential263

feature of causal interpretability, as only parsimo-264

nious solutions are guaranteed to reflect causation265

in comparative analysis (Baumgartner, 2015). In266

this paper, we adopt two metrics as a proxy of par-267

simony, namely proof depth, and concept drift.268

Proof depth, denoted as Depth, is defined as269

the cardinality of the set of rules, R, required by270

the Prolog solver to connect the conclusion to the271

premise via backward chaining. Let h be a hy-272

pothesis candidate composed of a premise p and273

a conclusion c, and let E be a formalized expla-274

nation represented as a set of rules R′. The proof275

depth is the number of rules |R|, with R ⊆ R′,276

traversed during backward chaining to connect the277

conclusion c to the premise p:278

Depth(h) = |R|279

Concept drift, denoted as Drift, is defined280

as the number of additional concepts and enti-281

ties, outside the ones appearing in the hypothe-282

sis (i.e., premise and conclusion), that are intro-283

duced by the LLM to support the entailment. For284

simplicity, we consider nouns as concepts. Let285

N = {Nounp, Nounc, NounE} be the unique286

nouns found in the premise, conclusion, and ex-287

planation steps. Concept drift is the cardinality of288

the set difference between the nouns found in the289

explanation and the nouns in the hypothesis:290

Drift(h) = |NounE − (Nounp ∪Nounc)|291

Intuitively, the parsimony principle would pre- 292

dict the most plausible hypothesis as the one sup- 293

ported by the explanation with the smallest ob- 294

served proof depth and concept drift. Implementa- 295

tion details can be found in Appendix A.4. 296

4.3 Coherence 297

An explanation can be formally consistent on the 298

surface while still including implausible or un- 299

grounded intermediate assumptions or implication 300

steps. As these assumptions cannot be reliably 301

identified via external logical solvers, we introduce 302

an additional metric named coherence. Coherence 303

aims to evaluate the quality of each If-then impli- 304

cation in the generated explanation measuring the 305

entailment strength between the clauses. To this 306

end, we employ a fine-tuned Natural Language In- 307

ference (NLI) model. Formally, let S be a set of 308

explanation steps, where each step s consists of an 309

If-then statement, s = (Ifs, Thens). For a given 310

step si, let ES(si) denote the entailment score ob- 311

tained via an NLI model between Ifs and Thens 312

clauses. The step-wise entailment score SWE(S) 313

is then calculated as the averaged sum of the entail- 314

ment scores across all explanation steps |S|: 315

SWE(S) =
1

|S|

|S|∑
i=1

ES(si) 316

We hypothesize that the LLMs should generate 317

a higher step-wise entailment score for the most 318

plausible candidate hypotheses, as such explana- 319

tions should include stronger entailment relations 320

between the If-then clauses. Additional details can 321

be found in Appendix A.5. 322

4.4 Uncertainty 323

Finally, we consider the observed linguistic cer- 324

tainty expressed in the generated explanation as 325

a proxy for plausibility. Hedging words such as 326

probably, might be, could be, etc typically signal 327

ambiguity and are often used when the truth con- 328

dition of a statement is unknown or improbable. 329

For instance, Pei and Jurgens (2021) found that the 330

strength of scientific claims in research papers is 331

strongly correlated with the use of direct language. 332

In contrast, the use of hedging language suggested 333

that the veracity of the claim was weaker or highly 334

contextualized. 335

To measure the linguistic certainty (LC) of an 336

explanation, we consider the explanation’s under- 337

lying assumptions (Ai) and the overall explanation 338

4



summary (S), calculating the linguistic certainty339

score using the fine-tuned sentence-level RoBERTa340

model from Pei and Jurgens (2021). The overall341

linguistic certainty score (LCoverall) is the sum of342

the assumption and explanation summary scores:343

LCoverall = LC(A) + LC(S)344

Where LC(A) is the sum of the linguistic cer-345

tainty scores (LC(A)) across all the assumptions346

|A| associated with each explanation step i:347

LC(A) =

|A|∑
i=1

LC(ai)348

and linguistic certainty of the explanation sum-349

mary LC(S). We hypothesize that the LLM will350

use more hedging language when explaining the351

weaker hypothesis reflecting in a lower linguistic352

certainty score. Further details can be found in353

Appendix A.6.354

4.5 Inference to Best Explanation355

To perform IBE, we define a vanilla linear regres-356

sion model θ(·) fitted on the features extracted from357

the selection criteria to predict the probability that358

an explanation Ei corresponds to the correct an-359

swer. Specifically, we employ the linear model to360

score the explanations generated for each hypothe-361

sis independently and then select the final answer362

a via argmax:363

a = argmax
i

[θ(E1), . . . , θ(En)]364

Additional details can be found in Appendix A.7.365

5 Experimental Setting366

Causal Question-Answering (CQA) requires rea-367

soning about the causes and effects of a hypo-368

thetical or observed event. For our experiments,369

we specifically consider the task of cause and ef-370

fect prediction in a Multiple-Choice Question An-371

swering (MCQA) setting, where given a question372

and two candidate answers, the LLM must decide373

which is the most plausible cause or effect. Causal374

reasoning is a challenging task as the model must375

both possess commonsense knowledge about the376

plausibility of a causal relationship and consider377

the chain of events and context which would make378

one option more plausible than the other. For our379

experiments, we use the Choice of Plausible Alter-380

natives (COPA) (Gordon et al., 2012) and E-CARE381

(Du et al., 2022) datasets.382

COPA. COPA is a multiple choice commonsense 383

causal QA dataset consisting of 500 train and test 384

examples that were manually generated. Each 385

multiple-choice example consists of a question 386

premise and a set of answer candidates which are 387

potential causes or effects of the premise. COPA 388

is a well-established causal reasoning benchmark 389

that is both a part of SuperGlue (Wang et al., 2019) 390

and the CALM-Bench (Dalal et al., 2023). 391

E-CARE. E-CARE is a large-scale multiple- 392

choice causal QA dataset consisting of crowd- 393

sourced 15K train and 2k test examples. Each 394

example is further annotated with a conceptual ex- 395

planation describing the underlying concepts re- 396

quired for reasoning. E-CARE follows the same 397

task format as COPA and can be considered an ex- 398

tension of COPA. We randomly sample 500 exam- 399

ples from the E-CARE test set for our experiments 400

and do not use the associated explanations. 401

LLMs. We consider ChatGPT-Turbo-3.5, 402

LLaMA 2 13B and LLaMA 2 7B for all experi- 403

ments. ChatGPT is a proprietary model based on 404

GPT-3 (Brown et al., 2020) highly effective across 405

a wide range of natural language reasoning tasks 406

(Laskar et al., 2023). We additionally evaluate 407

the open-source LLaMA 2 model (Touvron et al., 408

2023). Here, we consider both the 13B and 7B 409

variants of LLaMa 2 as both are seen as viable 410

commodity ChatGPT alternatives and have been 411

widely adopted by the research community for 412

LLMs benchmarking and evaluation. 413

6 Results 414

To assess LLMs’ alignment with the proposed IBE 415

framework, we run a regression analysis and con- 416

duct a set of ablation studies evaluating the rela- 417

tionship between the selection criteria and question- 418

answering accuracy. The main results are presented 419

in Figure 2 and Table 1. 420

Overall, our empirical evaluation reveals that 421

while feature importance varies across LLMs, 422

the analyzed explanatory features tend to con- 423

form to IBE expectations. This is mostly apparent 424

in ChatGPT, where all criteria are found to be statis- 425

tically significant. At the same time, we found that 426

LLMs can generate plausible explanations for 427

the less plausible answers, making some of the 428

criteria less effective, especially in LLaMa models. 429

A comparison across metrics reveals that linguistic 430

uncertainty is the best indicator across LLMs 431
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Figure 2: The results show that proof depth, concept drift, and linguistic uncertainty have varying levels of statistical
significance in predicting question-answering accuracy. Across all LLMs and datasets, linguistic certainty is the
strongest predictor. ‘***’ p>0.001, ‘**’ p>0.01 ‘*’ p>0.05.

COPA E-CARE

ChatGPT LlaMA 2 13B LlaAMA 2 7B ChatGPT LlaMA 2 13B LlaAMA 2 7B

Consistency .51 .52 .55 .54 .54 .54
Depth (Parsimony) .67 .53 .63 .66 .56 .54
Drift (Parsimony) .67 .63 .58 .66 .57 .57
Coherence .66 .66 .56 .56 .57 .59
Linguistic Uncertainty .70 .65 .61 .59 .56 .60

Random .50 .50 .50 .50 .50 .50
+ Consistency .51 .52 .55 .54 .54 .54
+ Depth .67 .53 .63 .66 .56 .56
+ Drift .70 .65 .65 .72 .66 .65
+ Coherence .73 .71 .69 .73 .68 .69
+ Uncertainty .77 .74 .70 .74 .70 .73

Table 1: Ablation study of IBE features on question-answering accuracy. While IBE feature importance differs
across LLMs, generated explanations tend to conform to IBE expectations. In the best case, IBE can achieve up to
77% and 74% accuracy considering all the criteria on COPA and E-CARE.

and the feature that is mostly correlated with432

answer accuracy. Next, we explore each explana-433

tion feature in further detail to better understand434

the variances across criteria and LLMs.435

6.1 Consistency436

We found that all the LLMs are surprisingly strong437

conjecture models, being able to generate logically438

consistent explanations across all hypotheses (Fig-439

ure 3). This is confirmed by the high consistency440

scores for both correct and wrong hypotheses,441

with the consistency criteria being able to im-442

prove accuracy only by 6pp over a random base-443

line. Moreover, we observe that consistency tends444

to be statistically insignificant for the Llama mod-445

els. Therefore, we conclude that evidence of logi-446

cal consistency provides a limited signal for plau-447

sibility and is better understood in the context of448

other IBE features. For the incorrect candidate ex-449

Figure 3: Evaluation of explanation consistency. LLMs
are strong rationalizers and can generate logically con-
sistent explanations at equal rates for both correct and
incorrect answers.

planations, we find that LLMs over-rationalize and 450

introduce additional premises to demonstrate en- 451

tailment in their explanations. We further explore 452

this phenomenon in Section 6.2. 453
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Figure 4: Explanation parsimony is evaluated using
proof depth and concept drift. Both metrics are con-
sistently lower for explanations supporting the correct
answers, implying higher parsimony.

6.2 Parsimony454

The results suggest that parsimony has a more con-455

sistent effect and represents a better predictor of456

answer accuracy. We observe a negative corre-457

lation between proof depth, concept drift, and458

question-answering accuracy, suggesting that459

LLMs tend to introduce more concepts and ex-460

planation steps when explaining less plausible461

hypotheses. On average, we found the proof depth462

and concept drift to be 6% and 10% greater for463

the incorrect option across all LMMs (see Figure464

4). Moreover, the results suggest that as the LLM465

size grows, the ability to over-rationalize tends466

to grow linearly. This is attested by the fact that467

the average difference in proof depth and concept468

drift is the greatest in ChatGPT, suggesting that the469

model tends to find the most efficient explanations470

for stronger hypotheses and introduce articulated471

explanation steps for supporting the weaker candi-472

dates. Finally, we found that Llama models tend473

to generate more complex explanations, with474

Llama 2 13B exhibiting the largest concept drift for475

less plausible hypotheses. The parsimony crite-476

rion supports the IBE predictive power with an477

average of 14% improvement over consistency.478

6.3 Coherence479

Similarly to parsimony, we found coherence to be480

a better indicator of explanation quality when481

compared to consistency, being statistically sig-482

nificant for both ChatGPT and Llama 2 13B on483

COPA and both Llama 2 models on E-Care. In484

the ablation studies, coherence tends to improve485

accuracy by 10pp for COPA and 2.5pp for E-Care.486

We found that the average coherence score is con-487

Figure 5: The average coherence score is consistently
higher for explanations corresponding to the correct
hypotheses.

Figure 6: LLMs tend to use more hedging language in
explanations supporting less plausible hypotheses. This
language is mostly classified as epistemic.

sistently greater for the stronger hypothesis across 488

all LLMs and datasets (see Figure 5). Both Chat- 489

GPT and Llama 2 13B exhibit a higher relative 490

difference between the correct and incorrect hy- 491

potheses in contrast to Llama 2 7B. 492

6.4 Uncertainty 493

Finally, the results reveal that linguistic uncer- 494

tainty is the strongest predictor of answer ac- 495

curacy and is statistically significant across all 496

LLMs. This suggests that LLMs use more quali- 497

fying and hedging words when explaining weaker 498

hypotheses (see Figure 6). We found that uncer- 499

tainty can improve accuracy by 13pp on COPA 500

and 4pp on E-CARE. As a further analysis, we 501

examine the uncertainty cues expressed by LLMs 502

by analyzing both the frequency of hedge words 503

and categorizing the observed uncertainty cues. To 504

this end, we use a fine-tuned BERT-based token 505

classification model to classify all the words in 506

the generated explanation with uncertainty cate- 507

gories introduced in the 2010 CoNLL shared task 508

on Hedge Detection (Farkas et al., 2010). Farkas 509

et al. (2010) classify hedge cues into three cate- 510
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Figure 7: Accuracy in predicting the most plausible
causes vs effects on COPA.

gories: epistemic, doxatic, and conditional. Epis-511

temic cues refer to hedging scenarios where the512

truth value of a proposition can be determined but513

is unknown in the present (e.g. the blocks may514

fall). Doxatic cues refer to beliefs and hypotheses515

that can be held to be true or false by others (e.g.516

the child believed the blocks would fall). Finally,517

conditional cues refer to propositions whose truth518

value is dependent on another proposition’s truth519

value (e.g. if the balloon is pricked it may deflate).520

The results show that the distribution of hedge521

words across LLMs tends to be similar, with522

only minor differences between LLMs ( see Fig-523

ure 6). Epistemic cues were most frequently used524

by all three models, with Llama 2 7B being more525

likely to use conditional cues.526

6.5 Causal Directionality527

When considering the causal directionality (i.e.528

cause vs effect), we observed that accuracy tended529

to differ between LLMs on COPA. In particular,530

we found both ChatGPT and Llama 2 7B to531

be more accurate in predicting the effects in532

causal scenarios (see Figure 7). We hypothesize533

that LLMs may suffer the challenge of causal534

sufficiency as the space of potential causal ex-535

planations can be far greater than the range of536

effects once an event has been observed. This537

hypothesis is partly supported by the fact that Chat-538

GPT and Llama 2 7B express greater linguistic un-539

certainty and produce more complex explanations540

when predicting causes rather than effects.541

7 Related Works542

Explorations of LLM reasoning capabilities across543

various domains (e.g. arithmetic, commonsense,544

planning, symbolic, etc) are an emerging area of545

interest (Xu et al., 2023; Huang and Chang, 2023).546

Prompt-based methods (Wei et al., 2022b; Zhou 547

et al., 2023; Wang et al., 2023), such as CoT, in- 548

vestigate strategies to elicit specific types of rea- 549

soning behavior through direct LLM interaction. 550

Olausson et al. (2023) investigate automatic proof 551

generation and propose a neurosymbolic frame- 552

work with an LLM semantic parser and external 553

solver. Creswell et al. (2022) propose an inference 554

framework where the LLM acts as both a selec- 555

tion and inference module to produce explanations 556

consisting of causal reasoning steps in entailment 557

tasks. This paper primarily draws inspiration from 558

recent work on the evaluation of natural language 559

explanations (Valentino et al., 2021; Wiegreffe and 560

Marasovic, 2021; Thayaparan et al., 2020; Dalvi 561

et al., 2021; Camburu et al., 2018). However, differ- 562

ently from previous methods that require extensive 563

human annotations, we are the first to propose a set 564

of criteria that can be automatically computed on 565

explicit linguistic and logical features. 566

8 Conclusion 567

This paper proposed an interpretable framework for 568

LLM explanation evaluation inspired by philosoph- 569

ical accounts of IBE. Utilizing a range of selection 570

criteria, including logical consistency, parsimony, 571

coherence, and linguistic uncertainty, the frame- 572

work can identify the best explanation with up to 573

77% accuracy in a CQA scenario. Across all LLMs, 574

the IBE features were found to be statistically sig- 575

nificant in general with varying importance. Lin- 576

guistic uncertainty, in particular, represents the best 577

predictor across different LLMs. Our results sug- 578

gest that LLMs tend to be strong conjecture models 579

being able to generate logically consistent expla- 580

nations for less plausible hypotheses. Regarding 581

different models, ChatGPT was found to produce 582

the most parsimonious explanations for correct hy- 583

potheses but also tended to over-rationalize for less 584

plausible examples. In contrast, the Llama 2 mod- 585

els tend to produce more complex explanations, 586

with Llama 2 13B exhibiting the greatest average 587

proof depth and concept drift. In conclusion, we 588

found that the proposed selection criteria repre- 589

sent strong predictors of question-answering ac- 590

curacy when applied in combination, suggesting 591

that LLMs do often conform to IBE expectations. 592

We believe our findings can open new lines of re- 593

search on external evaluation methods for LLMs- 594

generated output, as well as the development of 595

new AI safety mechanisms. 596
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9 Limitations597

IBE offers an interpretable explanation evaluation598

framework utilizing logical and linguistic features.599

Our current instantiation of the framework is pri-600

marily limited in that it does not consider grounded601

truth for factuality. We observe that the model can602

generate factually incorrect but logically consis-603

tent explanations. In some cases, the coherence604

metric can identify those factual errors when the605

step-wise entailment score is comparatively lower.606

However, our reliance on aggregated metrics can607

hide weaker entailment especially when the expla-608

nation is longer or the entailment strength of the609

surrounding steps is stronger. Future work can in-610

troduce metrics to evaluate grounded knowledge or611

perform more granular evaluations of explanations612

to better weight factual inaccuracies.613

Finally, the list of criteria considered in this work614

is not exhaustive and can be extended in future615

work. However, additional criteria for IBE might616

not be straightforward to implement (e.g., unifica-617

tion power, hardness to variation) and would proba-618

bly require further progress in both epistemological619

accounts and existing NLP technology.620
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A Appendix1071

A.1 Explanation Prompting1072

Figure 8: To perform IBE we convert the CQA context
and answer candidates into an entailment form (i.e.,
EEV) (Valentino et al., 2021).

A modified CoT prompt is used to instruct the1073

LLM to generate explanations. The prompt in-1074

cludes a set of instructions for explanation gen-1075

eration and an in-context example. Appended to1076

the end of the prompt are the CQA context, causal1077

question, and answer candidates. The LLM is in-1078

structed to first convert the options into the EEV1079

format consisting of a premise and conclusion. The1080

EEV format will differ depending on the direction-1081

ality of the causal question (see Figure 8). Cause1082

prediction questions will treat the answer candidate1083

as the premise and the context as the conclusion.1084

In contrast, effect prediction reverses the relation-1085

ship treating the context as the premise and the1086

answer options as the conclusion. After the EEV1087

conversion, the model is instructed to generate a1088

step-by-step explanation consisting of IF-THEN1089

statements and the associated causal or common-1090

sense assumptions. For ease of post-processing, the1091

LLM is instructed to use headers and enumerate1092

steps using the Step # format. A full example of1093

the prompt template is exhibited in Figure 9.1094

Figure 9: An example of the modified CoT prompt
template for explanation generation.

Figure 10: An example of the autoformalization prompt.
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A.2 Autoformalisation1095

Autoformalisation is the process of translating nat-1096

ural language descriptions into formal specifica-1097

tions (Wu et al., 2022). We adopt the translational1098

capabilities of ChatGPT-3.5-Turbo to convert the1099

explanation into a formal entailment hypothesis.1100

The IF-THEN explanation steps are converted into1101

a set of Prolog rules, the entailment description is1102

used to generate Prolog atoms, and the conclusion1103

statement is translated into a Prolog query. We pro-1104

vide an example of the autoformalization prompt in1105

Figure 10 and an example of the formalized output1106

in Figure 11. After autoformalization, we deploy1107

a post-processing script to extract the formalized1108

rules, atoms, and query and generate a Prolog pro-1109

gram for entailment verification.1110

A.3 Logical Consistency1111

Figure 11: An example of the autoformalization prompt.

An explanation hypothesis is considered logi-1112

cally consistent if the external solver can build a1113

deductive proof connecting the conclusion to the1114

premise. We use NLProlog (Weber et al., 2019),1115

a neuro-symbolic Prolog solver integrating back-1116

ward chaining with word embedding models via a1117

weak unification mechanism. NLProlog allows for1118

a level of flexibility and robustness that is neces-1119

sary for NLP use cases (e.g. unification applied to1120

synonyms). We provide the autoformalized query,1121

atoms, and rules to NLProlog. If NLProlog can1122

satisfy the entailment query, it will return the proof1123

consisting of the set of rules traversed, the weak1124

unification score, and the proof depth. For simplic-1125

ity, we assign a score of one if the entailment query1126

is satisfied and zero if it is not. The proof depth1127

score is evaluated as part of the parsimony analysis.1128

An end-to-end example of consistency evaluation1129

can be found in Figure 11.1130

A.4 Parsimony1131

Parsimony measures the complexity of an expla-1132

nation and is represented by the proof depth and1133

concept drift metrics. Proof depth is automatically1134

calculated by NLProlog and reflects the number1135

Algorithm 1: Neuro-symbolic Solver
Input :Symbolic KB kb, Goal goal,

Glove embedding model e(·)
Output :proof chain chain, proof depth

depth

1 threshold← 0.13;

2 depth← 1 ;
3 chain← emptylist ;
4 foreach step t in backward_chaining(kb,

goal) do
5 foreach max_unification(q, qt) do
6 unification_score←

CosineSimilarity(e(q,ms), e(qt,ms));

7 depth← depth ×
unification_score ;

8 end
9 chain← backward_chaining(kb, goal);

10 end

11 if chain is not empty and depth >
threshold then

12 chain← current_proof_chain[0];
13 end
14 else
15 depth← 0 ;
16 end

17 return chain, depth;

of rules traversed by the solver to satisfy the en- 1136

tailment query. If the hypothesis is not logically 1137

consistent, depth is set to zero. The concept drift 1138

metric measures the entropy of novel concepts in- 1139

troduced to bridge the premise and conclusion. To 1140

compute the drift of an explanation, we consider 1141

the nouns found in the premise, conclusion, and ex- 1142

planation steps. We use Spacy (Honnibal and Mon- 1143

tani, 2017) to tokenize and extract part-of-speech 1144

(POS) tags. All tokens with the ’NOUN’ POS tag 1145

extracted. For normalization purposes, we consider 1146

the lemma of the tokens. Concept drift then is cal- 1147

culated as the set difference between the unique 1148

nouns found across all explanation steps and those 1149

found in the premise and conclusion. 1150

A.5 Coherence 1151

Coherence evaluates the plausibility of the interme- 1152

diate explanation. We propose stepwise entailment 1153

as a metric to measure the entailment strength of 1154

the If-then implications. We employ a RoBERTa- 1155
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Algorithm 2: Concept Drift
Input :Premise, Conclusion, Explanation,

Spacy model spacy(·)
Output :Drift Score drift

1 Nounp ← spacy(Premise);
2 Nounc ← spacy(Conclusion);
3 NounE ← spacy(Explanation);
4 N ← {Nounp, Nounc, NounE};
5 drift← length(set(NounE)−

set(Nounp ∪Nounc));
6 return drift;

based NLI model (Nie et al., 2020) that has been1156

finetuned on a range of NLI and fact verification1157

datasets consisting of SNLI (Bowman et al., 2015),1158

aNLI (Nie et al., 2020), multilingual NLI (Williams1159

et al., 2018)), and FEVER-NLI (Nie et al., 2019).1160

To compute the stepwise entailment score, we first1161

measure the entailment strength between the If and1162

Then propositions. For example, to calculate the1163

score of the statement “IF a balloon is pricked,1164

THEN the balloon may deflate” we consider “a1165

balloon is pricked” and “the balloon may deflate”1166

as input sentences for the NLI model. The NLI will1167

produce independent scores for the entailment and1168

contradiction labels. We compute the entailment1169

strength by subtracting the contraction label score1170

from the entailment label score. An entailment1171

strength of one indicates the If-then implication is1172

strongly plausible whereas a score of zero suggests1173

that it is likely implausible. The overall stepwise en-1174

tailment score is the average of entailment strength1175

measures across all explanation steps.1176

A.6 Linguistic Uncertainty1177

Linguistic uncertainty measures the confidence1178

of a statement where hedging cues and indirect1179

language suggest ambiguity around the proposi-1180

tion. To measure sentence-level uncertainty, we1181

employ a finetuned RoBERTa model provided by1182

(Pei and Jurgens, 2021). The model was trained on1183

a sentence-level dataset consisting of findings and1184

statements extracted from new articles and scien-1185

tific publications and human annotated evaluation1186

of sentence certainty. A scale from one to six was1187

used to annotate sentences where one corresponds1188

to the lowest degree of certainty and six is the high-1189

est expressed by the sentence. We invert the scale1190

to retrieve the uncertainty scores. To compute the1191

overall linguistic uncertainty of an explanation, we1192

Algorithm 3: Stepwise Entailment
Input :Explanation E, NLI Model nli(·)
Output :Average Entailment Strength

strength

1 EntailmentStrengthScores← empty
list;

2 foreach Step (Ifs, Thens) in E do

3 EntailmentScore← nli(Ifs,
Thens);

4 ContradictionScore← nli(Ifs,
Thens);

5 EntailmentStrength←
EntailmentScore−
ContradictionScore;

6 Append EntailmentStrength to
EntailmentStrengthScores;

7 end

8 strength←
Avg(EntailmentStrengthScores);

9 return strength;

first compute the uncertainty for each assumption 1193

and the explanation summary and then average all 1194

the scores. 1195

A.7 Inference to Best Explanation 1196

To perform IBE, we first fit a linear regression 1197

model over the extracted explanation features from 1198

the COPA train set and 500 random sample train 1199

examples from the E-CARE train set. We con- 1200

sider all explanations independently and annotate 1201

each explanation with a 1 if it corresponds to a 1202

correct answer or 0 if corresponds to an incorrect 1203

answer. After the linear model is fitted, we eval- 1204

uate the COPA and E-CARE test sets. For each 1205

example, we use the trained linear model to score 1206

each answer candidate explanation and then select 1207

a candidate with the highest score. We use the 1208

linear regression implementation from scikit-learn 1209

(Buitinck et al., 2013) for the IBE model. We ad- 1210

ditionally use the R stats package (R Core Team, 1211

2013) for conducting our regression analysis. 1212

A.8 E-CARE Results 1213

A.8.1 E-CARE Consistency 1214

See Figure 12. 1215

A.8.2 E-CARE Proof Depth 1216

See Figure 13. 1217

15



Algorithm 4: Linguistic Uncertainty
Input :Assumptions, Explanation

Summary, Uncertainty Estimator
Model uc(·)

Output :Overall Uncertainty

1 AssumptionUncertaintyList← empty
list;

2 foreach Assumption in Assumptions do

3 UncertaintyScore←
uc(UncertaintyModel,
Assumption);

4 Append UncertaintyScore to
AssumptionUncertaintyList;

5 end

6 AverageAssumptionUncertainty ←
Avg(AssumptionUncertaintyList);

7 ExplanationUncertainty ←
uc(UncertaintyModel,
ExplanationSummary);

8 OverallExplanationUncertainty ←
AverageAssumptionUncertainty +
ExplanationUncertainty;

9 return
OverallExplanationUncertainty;

A.8.3 E-CARE Concept Drift1218

See Figure 13.1219

A.8.4 E-CARE Coherence1220

See Figure 15.1221

A.8.5 E-CARE Uncertainty1222

See Figure 16.1223

A.8.6 E-CARE Hedge Ratio1224

See Figure 17.1225

A.8.7 E-CARE Hedge Distribution1226

See Figure 18.1227

A.9 Dataset Details1228

COPA is released under a BSD-2 license and made1229

available for broad research usage with copyright1230

notification restrictions 2. We do not modify or use1231

COPA outside of its intended use which is primar-1232

ily open-domain commonsense causal reasoning.1233

E-CARE is released under the MIT license and1234

2people.ict.usc.edu/ gordon/copa.html

Figure 12: Average consistency comparison between
correct and incorrect options for the E-CARE dataset.

Figure 13: Comparison of average proof depth between
correct and incorrect options.

Figure 14: Comparison of average concept drift between
correct and incorrect options.

can be used for broad purposes with copyright no- 1235

tification restrictions 3. We do not modify or use 1236

E-CARE outside of its intended use which is causal 1237

reasoning evaluation of language models. 1238

3github.com/Waste-Wood/e-CARE?tab=MIT-1-ov-
file#readme
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Figure 15: Comparison of average coherence scores
between correct and incorrect options.

Figure 16: Comparison of average uncertainty scores
between correct and incorrect options.

Figure 17: Comparison of the average ratio of hedge
cues between correct and incorrect options.

Figure 18: Distribution of hedge cues across incorrect
explanations.
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