
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

OLMOE: OPEN MIXTURE-OF-EXPERTS LANGUAGE
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce OLMOE, a fully open, state-of-the-art language model leveraging
sparse Mixture-of-Experts (MoE). OLMOE-1B-7B has 7 billion (B) parameters
but uses only 1B per input token. We pretrain it on 5 trillion tokens and further
adapt it to create OLMOE-1B-7B-INSTRUCT. Our models outperform all available
models with similar active parameters, even surpassing larger ones like Llama2-
13B-Chat and DeepSeekMoE-16B. We present novel findings on MoE training,
define and analyze new routing properties showing high specialization in our model,
and open-source all our work: model weights, training data, code, and logs.

How open are open MoEs?

Model
Data

Code
Logs

#ckpts
Name

Grok-86B-314B
Mixtral-39B-141B

DBRX-36B-132B
Skywork-22B-146B

DeepSeekV2-21B-236B
Arctic-17B-480B
Qwen2-14B-57B
Mixtral-13B-47B
Jamba-12B-52B

DeepSeekMoE-3B-16B
Qwen1.5-3B-14B

OpenMoE-3B-9B
JetMoE-2B-9B
OLMoE-1B-7B

!✓✔✔⤫⛌✔ ⛌ ⛌ ⛌ 1
✔ ⛌ ⛌ ⛌ 1
✔ ⛌ ⛌ ⛌ 1
✔ ⛌ ⛌ ⛌ 1
✔ ⛌ ⛌ ⛌ 1
✔ ⛌ ⛌ ⛌ 1
✔ ⛌ ⛌ ⛌ 1
✔ ⛌ ⛌ ⛌ 1
✔ ⛌ ⛌ ⛌ 1
✔ !! !! !! 1
✔ ⛌ ⛌ ⛌ 1
✔ ✔ ✔ ✔
1

✔
✔
!!
!!
!!
✔
✔
✔
✔
!!
!!
✔
✔
✔

⛌
⛌
⛌
⛌
⛌
!!
⛌
⛌
⛌
⛌
⛌
✔
!!
✔

⛌
⛌
⛌
⛌
⛌
⛌
⛌
⛌
⛌
⛌
⛌
✔
!!
✔

⛌
⛌
⛌
⛌
⛌
⛌
⛌
⛌
⛌
⛌
⛌
⛌
⛌
✔

1
1
1
1
1
1
1
1
1
1
1
6
1
244

Dense LMsMixture-of-Experts

Figure 1: Performance, cost, and degree of openness of open MoE and dense LMs. Model names
contain rounded parameter counts: model-active-total for MoEs and model-total for
dense LMs. #ckpts is the number of intermediate checkpoints available. We highlight MMLU as a
summary of overall performance; see §3 for more results. OLMOE-1B-7B performs best among
models with similar active parameter counts and is the most open MoE.

1 INTRODUCTION

Despite significant advances in Large Language Models (LMs) on various tasks, there remains a clear
trade-off between performance and cost in both training and inference. High-performing LMs are
inaccessible for many academics and open-source developers as they are prohibitively expensive to
build and deploy.1 One approach to improve the cost-performance trade-off lies in using sparsely-
activated Mixture-of-Experts (MoEs) (Shazeer et al., 2017). MoEs have several experts in each layer,
only a subset of which is activated at a time (see Figure C1). This makes MoEs significantly more
efficient than dense models with a similar number of total parameters, which activate all parameters
for every input (Yun et al., 2024). For this reason, industry frontier models use MoEs including
Gemini-1.5 (Team et al., 2024a) and reportedly GPT-4 (Chintala, 2024).

1For example, even with 16 H100 GPUs and several optimizations, Llama 3 405B only achieves a decoding
throughput of around 100 tokens per second (Dubey et al., 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Most MoE models, however, are closed-source: while some have publicly released model
weights (DeepSeek-AI et al., 2024b; Jiang et al., 2024; Shen et al., 2024; Team et al., 2024d;
Team, 2024b), they offer limited to no information about their training data, code, or recipes (see
Figure 1). While there have been prior efforts to make language modeling research fully accessi-
ble (Biderman et al., 2023; Groeneveld et al., 2024; Li et al., 2024a; Liu et al., 2023; Workshop
et al., 2023; Zhang et al., 2024a) discussed in detail in Appendix A, they have been largely limited
to dense LMs. This comes despite MoEs requiring more openness as they add complex new design
questions to LMs, such as how many total versus active parameters to use, whether to use many small
or few large experts, if experts should be shared, and what routing algorithm to use. The lack of open
resources and findings about these details prevents the field from building cost-efficient open MoEs
that approach the capabilities of closed-source frontier models.

To address these issues, we introduce OLMOE, a fully open Mixture-of-Experts language model
with state-of-the-art performance among similarly-sized models. In particular, we pretrain OLMOE-
1B-7B for 5.1 trillion tokens with 6.9B total parameters, of which only 1.3B are activated for each
input token. This leads to a similar inference cost as using dense models with around 1B parameters,
such as OLMo 1B (Groeneveld et al., 2024) or TinyLlama 1B (Zhang et al., 2024b), but requires
more GPU memory to store its 7B total parameters. Our experiments show that MoEs train ∼2×
faster than dense LMs with equivalent active parameters (Figure 2). In Figure 1, we show that
OLMOE-1B-7B significantly outperforms all open 1B models and displays competitive performance
to dense models with significantly higher inference costs and memory storage (e.g., similar MMLU
scores to Llama2-13B, which is ∼10× more costly). Via instruction- and preference tuning, we create
OLMOE-1B-7B-INSTRUCT, which we find exceeds various larger instruct models including Llama2-
13B-Chat (Touvron et al., 2023b), OLMo-7B-Instruct (0724), and DeepSeekMoE-16B (DeepSeek-AI
et al., 2024a) on common benchmarks (MMLU, GSM8k, HumanEval, etc.).

Our comprehensive set of controlled experiments highlights key design choices for MoEs (see
Table 1) and LMs in general. One critical design decision for making MoEs performant is using
fine-grained routing with granular experts (DeepSeek-AI et al., 2024a): we employ 64 small experts
in each layer with 8 being activated. The choice of routing algorithm is also important: we find
dropless (Gale et al., 2022) token-based routing (Shazeer et al., 2017) outperforms expert-based
routing (Zhou et al., 2022). Our findings also include those that challenge prior work, such as the
ineffectiveness of shared experts (DeepSeek-AI et al., 2024a) and the limited benefits of sparsely
upcycling a pretrained dense LM into an MoE (Komatsuzaki et al., 2023) unless under small compute
budgets. Finally, we present novel ways to analyze routing behavior in Mixture-of-Experts finding
that for OLMOE-1B-7B routing saturates early in pretraining, experts are rarely co-activated, and
experts exhibit domain and vocabulary specialization. We intend our fully open MoE to facilitate
more research and analysis to improve our understanding of these models. We will release training
code, intermediate checkpoints (every 5000 steps), training logs, and training data under open-
source licenses (Apache 2.0 http://www.apache.org/licenses/LICENSE-2.0 or ODC-
By 1.0 https://opendatacommons.org/licenses/by/1-0/).

2 PRETRAINING AND ADAPTATION

Pretraining OLMOE is a decoder-only LM consisting of NL transformer (Vaswani et al., 2023)
layers. The feedforward network (FFN) in dense models like OLMo (Groeneveld et al., 2024) is
replaced with an MoE module consisting of NE smaller FFN modules called experts, of which a
subset of k experts is activated for each processed input token x (also see Figure C1):

MoE module(x) = ∑
i∈Top−k(r(x))

softmax (r(x))i Ei(x) (1)

where r, called the router, is a learned linear layer mapping from the input logits to the chosen
k experts. A softmax is applied to the router outputs to compute routing probabilities for all NE

experts. Each selected expert Ei processes the input x, the output of which is then multiplied with
its respective routing probability. The results are then summed across all chosen Top-k experts to
constitute the output of the MoE module for a single layer of the model out of its NL total layers.
Key decisions in designing an MoE model include determining the number of activated and total
parameters, the design of the experts (e.g., granularity, whether or not to include shared experts), and
the choice of the routing algorithm. Moreover, training an MoE model can involve initializing from

2

http://www.apache.org/licenses/LICENSE-2.0
https://opendatacommons.org/licenses/by/1-0/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Table 1: Key MoE design choices and our setup for OLMOE-1B-7B based on our experiments.
Full configuration for OLMOE-1B-7B is in Appendix C.
Design choice Description Exper-

iment
OLMOE-1B-7B

Active params # active parameters per input token §4.1 1.3B active

Total params Total # of parameters in the model §4.1 6.9B total

Expert granularity Using fine-grained small experts vs. a few large
experts (Dai et al., 2024)

§4.2 64 small experts
with 8 activated

Routing algorithm How inputs are assigned to experts, e.g., a per token
basis (e.g., 2 experts per token) or per expert basis
(e.g., 2 tokens per expert), and if all tokens get
assigned or some get dropped

§4.3 Dropless (Gale et al.,
2022) MoE with to-
ken choice

Expert sharing Whether to share experts (Dai et al., 2024) §B.1.1 No shared expert

Sparse upcycling Whether to start from a dense model (Komatsuzaki
et al., 2023; Zhang et al., 2024c)

§B.1.2 Not used

Load balancing loss Auxiliary loss to penalize unequal assignment to
experts harming performance (Shazeer et al., 2017)

§B.1.3 Used with weight
0.01

Router z-loss Auxiliary loss to penalize large router logits that
may cause instabilities (Zoph et al., 2022)

§B.1.4 Used with weight
0.001

a dense model (sparse upcycling) and changing the training objective, such as including auxiliary
load balancing and router z-losses. We run experiments to investigate each of these design choices in
isolation in §4 and §B.1. We summarize our final decisions in Table 1: We use 1.3B active parameters
out of a total of 6.9B, with 8 activated experts out of 64 per layer. We use dropless token choice
routing (Gale et al., 2022): For each input token, the learned router network determines 8 experts
to process it. We train OLMOE-1B-7B from scratch with two auxiliary losses: load balancing
loss (LLB) (Shazeer et al., 2017) and router z-loss (LRZ) (Zoph et al., 2022), which we define and
experiment with in §B.1.3 and §B.1.4, respectively. We multiply them with respective loss weights,
α and β, and sum them linearly with the cross entropy loss (LCE) to arrive at our final training loss:

L = LCE + αLLB + βLRZ (2)

For our pretraining data, we mix data from DCLM (Li et al., 2024a) and Dolma 1.7 (Soldaini et al.,
2024), which includes: (1) a quality-filtered subset of Common Crawl, referred to as DCLM-Baseline,
(2) StarCoder, Algebraic Stack and arXiv, used in both DCLM and Dolma 1.7, and (3) peS2o and
Wikipedia from Dolma 1.7. We refer to our pretraining dataset as OLMOE-MIX. We train for a total
of 5.133T tokens (1.3 epochs following Muennighoff et al. (2023b)) and provide data statistics in
Table C1. Our full pretraining configuration for OLMOE-1B-7B is in Appendix C.

Adaptation We create OLMOE-1B-7B-INSTRUCT by following a standard adaptation recipe
split into instruction tuning (Mishra et al., 2022; Wei et al., 2022; Sanh et al., 2022; Shen et al.,
2023a; Zadouri et al., 2023) followed by preference tuning (Christiano et al., 2023; Bai et al., 2022;
Rafailov et al., 2023) building on prior open models (Tunstall et al., 2023; Ivison et al., 2023; Wang
et al., 2023). In our instruction tuning dataset, we add more code and math data to boost performance
on downstream coding and math applications. Other models, such as GPT-4 (OpenAI et al., 2023)
and Llama 3 (Dubey et al., 2024) similarly include samples from math datasets like GSM8k (Cobbe
et al., 2021) or MATH (Hendrycks et al., 2021b) during pretraining. We also include No Robots and a
subset of Daring Anteater as they are of high quality and add diversity, two key factors for successful
adaptation (Wang et al., 2023; Zhou et al., 2023a; Longpre et al., 2023a; Muennighoff et al., 2023a).
We describe our adaptation datasets in Table C2 and hyperparameters in Appendix C.

3 RESULTS

Our evaluation procedure consists of three parts: During pretraining (Appendix F), After pretrain-
ing, and After adaptation. We detail the setup for each in Appendix D.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Table 2: OLMOE-1B-7B after pretraining. We compare with LMs of similar active parameters
(1B, approximating speed and cost) or total parameters (7B, approximating memory). Model names
include rounded parameter counts: model-active-total for MoEs and model-total for
dense LMs (leading to differences from official names, e.g., “Gemma2-2B” has 2.6B active and total
parameters (Team et al., 2024c)). We run all evaluations ourselves with 5 few-shots (Appendix D).

Active Open MMLU Hella- ARC- ARC- PIQA Wino-
params Data Swag Chall. Easy Grande

LMs with ∼7-9B active parameters

Llama2-7B 6.7B 46.2 78.9 54.2 84.0 77.5 71.7
OLMo-7B (0724) 6.9B 54.9 80.5 68.0 85.7 79.3 73.2
Mistral-7B 7.3B 64.0 83.0 78.6 90.8 82.8 77.9
DCLM-7B 6.9B 64.4 82.3 79.8 92.3 80.1 77.3
Llama3.1-8B 8.0B 66.9 81.6 79.5 91.7 81.1 76.6
Gemma2-9B 9.2B 70.6 87.3 89.5 95.5 86.1 78.8

LMs with ∼2-3B active parameters

OpenMoE-3B-9B 2.6B 27.4 44.4 29.3 50.6 63.3 51.9
StableLM-2B 1.6B 40.4 70.3 50.6 75.3 75.6 65.8
DeepSeek-3B-16B 2.9B 45.5 80.4 53.4 82.7 80.1 73.2
JetMoE-2B-9B 2.2B 49.1 81.7 61.4 81.9 80.3 70.7
Gemma2-3B 2.6B 53.3 74.6 67.5 84.3 78.5 71.8
Qwen1.5-3B-14B 2.7B 62.4 80.0 77.4 91.6 81.0 72.3

LMs with ∼1B active parameters

Pythia-1B 1.1B 31.1 48.0 31.4 63.4 68.9 52.7
OLMo-1B (0724) 1.3B 32.1 67.5 36.4 53.5 74.0 62.9
TinyLlama-1B 1.1B 33.6 60.8 38.1 69.5 71.7 60.1
Llama3.2-1B 1.2B 38.2 67.3 43.5 71.6 73.7 62.5
DCLM-1B 1.4B 48.5 75.1 57.6 79.5 76.6 68.1
OLMOE-1B-7B 1.3B 54.1 80.0 62.1 84.2 79.8 70.2

Table 3: OLMOE-1B-7B after adaptation. Model names contain rounded parameter counts:
model-active-total for MoEs and model-total for dense LMs. We run all evaluations
ourselves (Appendix D). Models use different data mixes and setups for adaptation.

Human- Alpaca-
Task (→) MMLU GSM8k BBH Eval Eval 1.0 XSTest IFEval Avg
Setup (→) 0-shot 8-shot CoT 3-shot 0-shot 0-shot 0-shot 0-shot
Metric (→) EM EM EM Pass@10 %win F1 Loose Acc

OLMo-1B (0724) 25.0 7.0 22.5 16.0 - 67.6 20.5 -
+SFT 36.0 12.5 27.2 21.2 41.5 81.9 26.1 35.9
+DPO 36.7 12.5 30.6 22.0 50.9 79.8 24.2 37.4

OLMo-7B (0724) 50.8 32.5 36.9 32.3 - 80.8 19.6 -
+SFT 54.2 25.0 35.7 38.5 70.9 86.1 39.7 49.3
+DPO 52.8 9.0 16.6 35.0 83.5 87.5 37.9 49.1

JetMoE-2B-9B 45.6 43.0 37.2 54.6 - 68.2 20.0 -
+SFT 46.1 53.5 35.6 64.8 69.3 55.6 30.5 50.4

DeepSeek-3B-16B 37.7 18.5 39.4 48.3 - 65.9 13.5 -
+Chat 48.5 46.5 40.8 70.1 74.8 85.6 32.3 57.0

Qwen1.5-3B-14B 60.4 13.5 27.2 60.2 - 73.4 20.9 -
+Chat 58.9 55.5 21.3 59.7 83.9 85.6 36.2 57.3

OLMOE-1B-7B 49.8 3.0 33.6 22.4 - 59.7 16.6 -
+SFT 51.4 40.5 38.0 51.6 69.2 84.1 43.3 54.0
+DPO 51.9 45.5 37.0 54.8 84.0 82.6 48.1 57.7

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

After pretraining In Table 2 we benchmark OLMOE-1B-7B on common downstream tasks. We
find that OLMOE-1B-7B performs best among models that use less than 2B active parameters,
making it the most economical option for many use cases of LMs. For larger budgets, Qwen1.5-
3B-14B has stronger performance but has more than double the active and total parameters than
OLMOE-1B-7B. We find that despite requiring ∼6–7× less compute per forward pass, OLMOE-1B-
7B outperforms some dense LMs with 7B parameters such as Llama2-7B (Touvron et al., 2023b), but
falls short of others like Llama3.1-8B (Dubey et al., 2024). Figure 1 compares MMLU performance
with active parameters, a proxy for the value of a model given its cost, of OLMOE-1B-7B and other
LMs. OLMOE-1B-7B is the state of the art in its cost regime.

After adaptation In Table 3, we benchmark our instruction (SFT) and preference (DPO) tuning
of OLMOE-1B-7B. SFT improves our model on all tasks measured. We observe a >10× gain
on GSM8k, likely due to our inclusion of additional math data to account for the relatively small
amounts of math data during pretraining (§2). DPO helps on most tasks, especially AlpacaEval. Our
DPO model, which we refer to as OLMOE-1B-7B-INSTRUCT, has the highest average among all
models benchmarked. We find it to outperform the chat version of Qwen1.5-3B-14B despite Qwen
having >2× more parameters and its pretrained model outperforming OLMOE-1B-7B in Table 2.
The 84% score on AlpacaEval also outperforms much larger dense models on the leaderboard,2 such
as Llama2-13B-Chat (Touvron et al., 2023b).

10 40 70 100 130
Tokens (B)

2.4

2.6

2.8

3.0

3.2 Training loss

10 40 70 100 130
Tokens (B)

3.0

3.5

Validation loss (C4)

10 40 70 100 130
Tokens (B)

30

40

50

60

~3x less FLOPs
 or tokens

HellaSwag

1 2 3 4 5 6 7
Training time (h)

2.4

2.6

2.8

3.0

3.2

1 2 3 4 5 6 7
Training time (h)

3.0

3.5

1 2 3 4 5 6 7
Training time (h)

30

40

50

60

~2x faster

MoE
Dense

Figure 2: MoE vs. Dense. We train a 1.3B parameter dense model and a 1.3B active, 6.9B total
parameter MoE model, each on 128 H100 GPUs. Apart from MoE-related changes, we train both
with the same configuration for 130B tokens. The MoE contains 64 experts out of which 8 are
activated with an FFN dimension of 1,024, while the dense model has an FFN dimension of 8,192.
Thus both have the same number of active parameters. Top: The MoE reaches the final dense
performance with ∼3× fewer tokens (or FLOPs, as both have the same active parameters ignoring
the trivial router parameters). Bottom: Due to some memory overhead, this equates to ∼2× faster
training. We will release Weights & Biases reports with more results, logs, and configurations.

4 EXPERIMENTING WITH ALTERNATIVE DESIGN CHOICES

This section contains some experiments that led to OLMOE-1B-7B with many more in Appendix B.

2https://tatsu-lab.github.io/alpaca_eval/

5

https://tatsu-lab.github.io/alpaca_eval/

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

4.1 MIXTURE-OF-EXPERTS VS. DENSE

Prior work reports various speed-ups of MoEs over dense models: Artetxe et al. (2022) report
that MoEs require 2–4× less compute to match dense models, MoMa (Lin et al., 2024b) exhibits
2.6× FLOP savings for language tasks, Arctic (Snowflake, 2024b) yields 4× FLOP savings but for
very different dense and MoE configurations, and Switch Transformers (Fedus et al., 2022) train
2-7× faster with MoEs but for encoder-decoder models while the other works study decoder-only
LMs (Radford et al., 2019).

In Figure 2, we compare MoEs and dense models in a controlled setup. We find that our MoE
reaches the performance of the dense model with ∼3× fewer tokens equivalent to ∼3× less compute
measured in FLOPs. However, due to the additional memory overhead of training the MoE with
its 7B total parameters, it processes fewer tokens per second than the dense model (23,600 tokens
per second per GPU for the MoE vs. 37,500 for dense). Thus, in terms of training time, it reaches
the performance of the dense model only ∼2× faster. There are likely optimizations possible that
would bring the speed-up closer to the 3× token speed-up, which we leave to future work. Based on
these results, we select an MoE configuration with 6.9B total and 1.3B active parameters matching
OLMo-7B in total and OLMo-1B in active parameter count, respectively (Groeneveld et al., 2024).
We provide more reasons for this configuration in Appendix J.

4.2 EXPERT GRANULARITY

Dai et al. (2024) propose to use small fine-grained experts to allow more combinations of experts
and thus make the model more flexible. For example, the Mixtral model (Jiang et al., 2024) uses the
common configuration of 8 experts per layer, 2 of which are activated. This allows for (8

2
) = 28 com-

binations per layer. By halving the size of each expert and therefore doubling the number of experts
to maintain the same compute and parameter budget, we can increase the possible combinations to
(16
4
) = 1, 820. Krajewski et al. (2024) investigate compute-optimal granularity configurations finding

that higher compute budgets warrant more granular experts.

10 40 70 100 130
2.4

2.6

2.8

3.0 Training loss

10 40 70 100 130
2.8

3.0

3.2

3.5
Validation loss (C4)

10 40 70 100 130

40

60

HellaSwag

 # experts
64
32
8

10 40 70 100 130

30

35

MMLU Var

Pe
rf

or
m

an
ce

Tokens (B)

Figure 3: Expert granularity. We vary the number of experts in tandem with the FFN dimension to
ensure that active and total parameters and thus compute cost remain the same. For example, for 64
experts, the FFN dimension is 1,024 and 8 experts are active, while for 32 experts it is 2,048 with 4
active experts. We will release Weights & Biases reports with more results, logs, and configurations.

In Figure 3, we observe that more granular experts improve training loss, validation loss, and
downstream performance. The 8-expert configuration uses 1 active expert, which yields (8

1
) = 8

combinations. By quartering the size of each expert but increasing the number to 32 with 4 active
ones ((32

4
) = 35, 960 combinations), we observe an improvement of around 10% on HellaSwag

and MMLU at around 130 billion tokens. However, we find that there are diminishing returns
to granularity. The additional increase to 64 experts with 8 active ones ((64

8
) = 4, 426, 165, 368

combinations) improves downstream metrics by a smaller amount of 1–2%. For our OLMOE-1B-7B
compute budget3 of 3 × 10

22, Krajewski et al. (2024) predict an optimal number of experts of 256
(G = 32 in their paper). However, their predictions are for compute-optimal models (Hoffmann et al.,
2022; Clark et al., 2022), while we train for 5T tokens, which is orders of magnitude beyond what

3Approximated via 6 ∗N ∗D (Kaplan et al., 2020) with active parameters N (1B) and tokens D (5T).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

would be conventionally considered optimal for our model size. Thus, their predictions may not
extend to our setup, and we stick with 64 experts for OLMOE-1B-7B , also due to the diminishing
returns in Figure 3.

4.3 EXPERT CHOICE VS. TOKEN CHOICE

10 50 100 150 200

2.5

3.0

3.5 Training loss

10 50 100 150 200

3.0

3.5

Validation loss (C4)

10 50 100 150 200
30

40

50

60 HellaSwag

TC
EC

10 50 100 150 200

26

28

30

MMLU Var

Pe
rf

or
m

an
ce

Tokens (B)

Figure 4: Expert choice (EC) vs. token choice (TC). Both models have an 8-expert MoE in every
2nd layer. For TC, 2 experts are activated per token, while for EC the capacity factor is 2. Thus, both
models use the same number of active parameters. We will release Weights & Biases reports with
more results, logs, and configurations.

The MoE router determines which experts process each input token (§2). There are two common
types (Liu et al., 2024b): expert choice (EC) (Zhou et al., 2022) and token choice (TC) (Shazeer
et al., 2017). For EC, each expert selects a fixed number of tokens from the incoming sequence. By
design, this leads to each expert processing the same number of tokens. This is the main benefit of EC
as it ensures perfect load balance, which improves training throughput and removes the need for a load
balancing loss. The main downside of EC is that it is not easily usable for autoregressive generation
where a single token is processed at each step rather than the entire sequence in one (Raposo et al.,
2024). Another potential downside is that EC can lead to token dropping, where some tokens are not
selected by any expert, which can hurt performance (Gale et al., 2022). At the same time, it can lead
to some tokens being processed by multiple experts, which could also be beneficial as it allows the
model to allocate more compute to some tokens (Zhou et al., 2022). For TC, each token selects a
fixed number of experts. This can lead to many tokens choosing the same expert, hurting training
efficiency. Therefore it is common to use TC with a load balancing loss (Shazeer et al., 2017) to
encourage equal distribution.

In Figure 4, we benchmark EC and TC. We find that TC outperforms EC for the same token budget
for all tasks depicted. While Zhou et al. (2022) find EC to be better, our configuration slightly differs
in that we use dropless MoEs (Gale et al., 2022) with a load balancing loss. Thus, our TC variant is
expected to perform better than the TC variant in Zhou et al. (2022). We confirm findings that EC runs
around 20% faster at 29,400 tokens per second per device versus 24,400 for TC (Zhou et al., 2022).
EC may be more beneficial in a multimodal setup (Lin et al., 2024b) as dropping noisy image tokens
is likely less harmful than text tokens. Thus, while we stick with TC for this release of OLMOE ,
we may revisit EC for future multimodal models.

5 MOE ANALYSIS

By advancing open and cost-efficient models (§1), OLMOE-1B-7B enables new research into LMs
and MoEs. Making use of our released intermediate checkpoints, data, and code, we define and
analyze four properties specific to MoEs: Router saturation (§5.1), Expert co-activation (§5.2),
Domain specialization (§5.3), and Vocabulary specialization (§5.4).

5.1 ROUTER SATURATION

Router saturation, as a function of time t, represents the proportion of overlapping activated experts
between the final checkpoint and an intermediary checkpoint at time t. Router saturation thus
corresponds to whether the router weights are still learning which expert will process certain data. A

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

1 10 20 40

20

40

60

80

Top-k=1

1 10 20 40

Top-k=8

Layer ID
0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

Pretraining stage (%)

Ro
ut

er
 s

at
ur

at
io

n
(%

)

Figure 5: Router saturation during pretraining measured on a random 0.5% of the C4 validation
data. We compute saturation by comparing the routing to the top-k experts at four intermediate
checkpoints (1, 10, 20, and 40% of pretraining) to the final pretraining checkpoint (Equation 5).

value of 100% indicates that the router at the intermediate checkpoint will route to the same experts
as the final checkpoint router. See §H.1 for the detailed formula used to calculate the value.

Figure 5 shows that, after 1% of pretraining, up to ∼60% of routing to the top-8 activated experts
has already saturated (right). Thus the model already uses the same 8 experts for given input data
as it will at the end of pretraining. This early saturation aligns with prior work (Xue et al., 2024).
At 40% of pretraining, saturation reaches up to ∼80%. However, which top-1 expert has the highest
routing probability saturates slower (left). We find that routing in later layers saturates earlier during
pretraining. Layer 0 is an outlier saturating significantly more slowly than other layers. Dai et al.
(2024) do not use an MoE in the first layer as they find that load balancing converges more slowly for
the first layer. This is likely linked to our findings on saturation. Because routing in the first layer
saturates slower, the experts that certain input data get routed to frequently change. These changes
may lead to one expert suddenly getting significantly more data than others thereby impairing load
balancing. We are excited about future work further investigating what happens in the first layer by
building on our open release.

5.2 EXPERT CO-ACTIVATION

23 48 56 5 46 52 19 49 31 41 26 45 39 42 59 18

23
48
56

5
46
52
19
49
31
41
26
45
39
42
59
18

Layer 7

0

15

30

45

60

Figure 6: Co-activation among
experts of OLMOE-1B-7B on a
random 0.5% of the C4 valida-
tion data. We display the 32 ex-
perts with the highest maximum co-
activation score via their expert IDs
on the x- and y-axis. See Figure H1
for Layer 0 and 15.

We define expert co-activation as the proportion of times two
specific experts, Ei and Ej , are simultaneously activated out of
the total number of activations of one of them. A co-activation
of 100% indicates that if Ei is activated, Ej is also always
activated. A value of 0% indicates that the experts never co-
occur. See §H.1 for the formula used to calculate the value.

Figure 6 shows that there is no strong co-activation among ex-
perts in layer 7, with only few exceptions. This may indicate
that there is little redundancy across different experts. Lay-
ers 7 and 15 (Figure H1) show similar co-activation patterns
with several groups of 3 or 2 experts that tend to get activated
together. We investigate tokens that activate these experts in
§5.4. Further, in §H.2 (Figure H8), we investigate whether ex-
perts across layers, rather than within one layer, tend to process
tokens together.

5.3 DOMAIN SPECIALIZATION

We define domain specialization as the specialization of expert Ei to domain D, specifically the
proportion of tokens from a particular domain D that get routed to a particular expert Ei (see §H.1
for the formula). A value of 100% indicates that all data from that domain is routed to Ei, whereas
0% indicates the expert is never used for that domain and can be removed from the model without
affecting performance in that domain.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

0

100 OLMoE Layer 0 OLMoE Layer 7

0

100

0

100

0 8 16 24 32 40 48 56
0

100

0 8 16 24 32 40 48 56

D
om

ai
n

sp
ec

ia
liz

at
io

n
(%

)

Expert ID

GitHub arXiv

0

100 Mixtral Layer 0 Mixtral Layer 7

0

100

0

100

0 2 4 6
0

100

0 2 4 6

D
om

ai
n

sp
ec

ia
liz

at
io

n
(%

)

Expert ID

Books C4

Figure 7: Domain specialization of OLMOE-1B-7B (left) vs. Mixtral-8x7B (right). We visualize
how often tokens from different domains get routed to the 64 (OLMOE) or 8 (Mixtral) experts after
pretraining. We consider tokens routed to any of the k = 8 (OLMOE) or k = 2 (Mixtral) active
experts (Equation 7). Horizontal gray lines are random chance or uniform routing (8/64=12.5% per
expert for OLMOE-1B-7B with 8 active out of 64 total experts per layer and 2/8=25% for Mixtral
with 2 active out of 8 total experts per layer). See Figure H7 for k = 1 results.

Figure 7 (left) shows many examples of experts that are activated significantly above or below random
chance for specific domains. E.g., for arXiv, which has a very specific distribution with lots of
scientific text, the first expert in layer 0 is nearly 100% specialized. This suggests that there is little
redundancy in the knowledge of the experts in OLMOE-1B-7B, as they specialize in different kinds
of data. GitHub and arXiv are often activated together in layer 7, which we explore further in §5.4.
For generic domains, such as C4 (Raffel et al., 2023), which is a web crawl containing various
kinds of data, expert activations in OLMOE-1B-7B are much more balanced. This highlights that
the load balancing (§B.1.3) works as intended and the model makes proper use of all experts for
generic data. Mixtral-8x7B (Jiang et al., 2024) in Figure 7 (right), however, exhibits little domain
specialization across both unique and generic domains. Experts are activated close to the uniform
routing baseline for all layers and domains. Thus, there may be more redundancy across experts in
Mixtral, as they likely contain similar knowledge. We hypothesize that this is due to Mixtral being
upcycled from Mistral (Cai, 2023). The initialization from a dense model may limit the amount of
possible specialization in the experts as they all start from the same local optimum. This is likely why
training from scratch eventually outperforms upcycling in our pretraining experiments (§B.1.2).

5.4 VOCABULARY SPECIALIZATION

Vocabulary specialization refers to how specialized a particular expert is on a token ID x (also called
a vocabulary element), defined as the proportion of tokens with a token ID x that are routed to
one particular expert Ei out of all experts in that layer. We distinguish input and output variants
of this specialization, where x is either the input token ID or the next output token ID (either the
ground-truth next token ID or the token ID predicted by the model). A value of 100% indicates that
for all occurrences of that vocabulary element, input data is routed to Ei, whereas 0% indicates an
expert that is fully irrelevant for that vocabulary element and can be effectively removed from the
model without affecting performance whenever the token ID appears.

In Figure H2 we find that vocabulary specialization is higher in later layers, similar to how later layers
saturate earlier (§5.1). Later layers also specialize more on predicted output token IDs rather than
input token IDs, i.e., the routing is decided more by the token the model is about to predict rather than
the original input token. This is intuitive as in earlier layers there is more uncertainty about which
token the model will predict. At ∼90%, expert 27 specializes the most, which we find in Table 4 to
activate for many non-alphabetic tokens, such as Cyrillic and Devanagari letters. Expert 43 shows
specialization on geographic terms in both input and output tokens. Experts 48 and 23 both focus on
connector words, such as Then and Therefore . This is likely because they commonly process

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 4: Vocabulary specialization in the 7th layer of OLMOE-1B-7B. We use k = 1 (Equation 8)
and a random 0.5% of the C4 validation data excluding token IDs with <10 appearances.
Expert ID Input token IDs Predicted output token IDs

27 (100%) (100%) 3 (100%) (100%)

(100%) (100%) (100%) (100%)

(100%) (100%) (100%)

(100%) § (100%) (100%) (100%)

(100%) (100%) (100%) (100%)

(100%) (100%) (100%)

43 Armenian (100%) ijan (100%) enia (96%)

Iraq (95%) Iranian (92%) Iran (92%)

Saudi (90%) northern (90%) Lebanon
(90%) Singapore (88%) Turkey (88%)

enia (90%) invasion (80%) Arabia (76%)
irregular (66%) regions (64%) border

(63%) Kong (61%) ians (61%) bases

(60%) Republic (59%) Ireland (58%)

4 sq (89%) Main (70%) reversal (69%)

YR (63%) GC (56%) Overall (50%) 79
(50%) main (50%) RE (46%) PCR (46%)

YR (90%) Character (88%) sq (77%) Os

(76%) GHz (71%) fluence (60%) amycin

(60%) pixels (56%) = (53%)

48 compared (42%) !) (41%) Then (41%) ’,

(40%)), (35%) ”, (35%) instead (33%)

except (60%) tennis (41%) Marks (40%)

Dunn (33%) tears (30%) Arizona (30%)

23 (58%) Therefore (55%) So (46%) !!!
(46%) And (44%) According (41%) .”

(41%) !! (40%) ?” (38%) But (38%)

(53%) Republican (50%) Jack

(47%) THIS (40%) Democratic (40%)
according (39%) So (38%) Step (33%)

3 grandmother (92%) brother (91%) Daisy

(83%) daughter (78%) mum (75%)

hood (36%) mother (35%) inde (31%)
boy (29%) girl (28%) married (27%)

tokens together with a high co-activation of 60% in Figure 6. Based on our findings in §5.3 that for
GitHub and arXiv often the same experts in layer 7 activate, we display one such expert (expert ID 4)
in Table 4. It seems to specialize in measurements, such as sq , YR (year), and GHz . These are
common terms in scientific papers corresponding to the arXiv domain and likely also in GitHub code
for computations related to measurements. They are less likely to appear in books, which explains the
low activation of expert ID 4 in layer 7 for book data in Figure 7. Expert 3 is among the three most
active experts of layer 7 for book data in Figure 7 (fourth yellow bar for layer 7). This resonates when
looking at its specialization on family terms in Table 4 (final row), which are far more common in
books than scientific papers or code. Overall, domain specialization and vocabulary specialization are
closely linked to one another, as domains are usually characterized by their distinct word distribution.
In Figure H5, we link them more closely by comparing the extent of vocabulary specialization across
domains and expert IDs. In Figure H3 and Figure H4 we also find that OLMOE-1B-7B exhibits
stronger vocabulary specialization than Mixtral-8x7B.

6 CONCLUSION

We open-source OLMOE-1B-7B and OLMOE-1B-7B-INSTRUCT including model, data, code, and
logs. At 1B active and 7B total parameters, our models yield state-of-the-art performance among
models with a similar amount of active parameters even outperforming larger models including
DeepSeekMoE-16B and Llama2-13B-Chat. We share ∼20 training experiments yielding novel
insights into Mixture-of-Experts. Further, we define and analyze new properties of MoEs showing
that OLMOE-1B-7B exhibits early router saturation, weak expert co-activation, and some evidence
of domain and vocabulary specialization. We intend our fully open release to serve as a basis for
more research into MoEs given their critical importance (§1). We are excited about more iterations of
OLMOE to close the gap between frontier models and fully open models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REPRODUCIBILITY STATEMENT

All aspects of our work will be fully open-source with detailed instructions to ensure reproducibility.

Models All our model weights will be released under the open-source Apache 2.0 license. This
includes pretraining checkpoints every 5,000 steps, the final annealed checkpoint, the checkpoints
from instruction, and preference tuning including the different experiments. In total, we will be
releasing around 250 model checkpoints.

Data Our pretraining, instruction, and preference tuning datasets will be released under open-source
licenses (ODC-By 1.0 and MIT).

Code We will release the code used for all aspects of this work including model training, data
creation, and visualizations used in this paper. Our code will be accompanied by detailed instructions
to ensure exact reproducibility.

Logs In addition to the above, we will be opening up our Weights & Biases which include training
logs for all experiments. The logs cover training and validation losses, downstream performance,
routing statistics, system metrics, and other model weight and hyperparameter statistics reported
throughout training. The data can also be downloaded via the programmatic Weights & Biases API.
For pretraining experiments, we additionally compiled a report comparing these metrics across the
runs that will be accessible.

Due to the size restrictions of the supplementary material, we are unable to provide all these resources
in this anonymous submission. We will provide them once anonymization is no longer needed.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko,
Johan Bjorck, Sébastien Bubeck, Qin Cai, Martin Cai, Caio César Teodoro Mendes, Weizhu Chen, Vishrav
Chaudhary, Dong Chen, Dongdong Chen, Yen-Chun Chen, Yi-Ling Chen, Parul Chopra, Xiyang Dai,
Allie Del Giorno, Gustavo de Rosa, Matthew Dixon, Ronen Eldan, Victor Fragoso, Dan Iter, Mei Gao,
Min Gao, Jianfeng Gao, Amit Garg, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng
Hao, Russell J. Hewett, Jamie Huynh, Mojan Javaheripi, Xin Jin, Piero Kauffmann, Nikos Karampatziakis,
Dongwoo Kim, Mahoud Khademi, Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li,
Chen Liang, Lars Liden, Ce Liu, Mengchen Liu, Weishung Liu, Eric Lin, Zeqi Lin, Chong Luo, Piyush
Madan, Matt Mazzola, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel
Perez-Becker, Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Corby Rosset, Sambudha Roy,
Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang,
Hiteshi Sharma, Swadheen Shukla, Xia Song, Masahiro Tanaka, Andrea Tupini, Xin Wang, Lijuan Wang,
Chunyu Wang, Yu Wang, Rachel Ward, Guanhua Wang, Philipp Witte, Haiping Wu, Michael Wyatt, Bin Xiao,
Can Xu, Jiahang Xu, Weijian Xu, Sonali Yadav, Fan Yang, Jianwei Yang, Ziyi Yang, Yifan Yang, Donghan
Yu, Lu Yuan, Chengruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang,
Yunan Zhang, and Xiren Zhou. Phi-3 technical report: A highly capable language model locally on your
phone, 2024. URL https://arxiv.org/abs/2404.14219.

01. AI, :, Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
Zhu, Jianqun Chen, Jing Chang, Kaidong Yu, Peng Liu, Qiang Liu, Shawn Yue, Senbin Yang, Shiming Yang,
Tao Yu, Wen Xie, Wenhao Huang, Xiaohui Hu, Xiaoyi Ren, Xinyao Niu, Pengcheng Nie, Yuchi Xu, Yudong
Liu, Yue Wang, Yuxuan Cai, Zhenyu Gu, Zhiyuan Liu, and Zonghong Dai. Yi: Open foundation models by
01.ai, 2024. URL https://arxiv.org/abs/2403.04652.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit Sanghai.
Gqa: Training generalized multi-query transformer models from multi-head checkpoints, 2023. URL
https://arxiv.org/abs/2305.13245.

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang, Niklas
Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, Colin Raffel, Shiyu Chang, Tatsunori Hashimoto,
and William Yang Wang. A survey on data selection for language models, 2024. URL https://arxiv.
org/abs/2402.16827.

Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis,
Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, et al. Santacoder: don’t reach for the stars!,
2023.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Leandro von Werra, and Thomas Wolf. Smollm - blazingly
fast and remarkably powerful, 2024. URL https://huggingface.co/blog/smollm.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity scaling laws,
2024.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien Launay, Quentin Malartic, Daniele Mazzotta,
Badreddine Noune, Baptiste Pannier, and Guilherme Penedo. The falcon series of open language models,
2023.

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos, Siamak Shakeri,
Emanuel Taropa, Paige Bailey, Zhifeng Chen, Eric Chu, Jonathan H. Clark, Laurent El Shafey, Yanping Huang,
Kathy Meier-Hellstern, Gaurav Mishra, Erica Moreira, Mark Omernick, Kevin Robinson, Sebastian Ruder,
Yi Tay, Kefan Xiao, Yuanzhong Xu, Yujing Zhang, Gustavo Hernandez Abrego, Junwhan Ahn, Jacob Austin,
Paul Barham, Jan Botha, James Bradbury, Siddhartha Brahma, Kevin Brooks, Michele Catasta, Yong Cheng,
Colin Cherry, Christopher A. Choquette-Choo, Aakanksha Chowdhery, Clément Crepy, Shachi Dave, Mostafa
Dehghani, Sunipa Dev, Jacob Devlin, Mark Dı́az, Nan Du, Ethan Dyer, Vlad Feinberg, Fangxiaoyu Feng,
Vlad Fienber, Markus Freitag, Xavier Garcia, Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-Ari, Steven
Hand, Hadi Hashemi, Le Hou, Joshua Howland, Andrea Hu, Jeffrey Hui, Jeremy Hurwitz, Michael Isard, Abe
Ittycheriah, Matthew Jagielski, Wenhao Jia, Kathleen Kenealy, Maxim Krikun, Sneha Kudugunta, Chang Lan,
Katherine Lee, Benjamin Lee, Eric Li, Music Li, Wei Li, YaGuang Li, Jian Li, Hyeontaek Lim, Hanzhao Lin,
Zhongtao Liu, Frederick Liu, Marcello Maggioni, Aroma Mahendru, Joshua Maynez, Vedant Misra, Maysam
Moussalem, Zachary Nado, John Nham, Eric Ni, Andrew Nystrom, Alicia Parrish, Marie Pellat, Martin
Polacek, Alex Polozov, Reiner Pope, Siyuan Qiao, Emily Reif, Bryan Richter, Parker Riley, Alex Castro
Ros, Aurko Roy, Brennan Saeta, Rajkumar Samuel, Renee Shelby, Ambrose Slone, Daniel Smilkov, David R.
So, Daniel Sohn, Simon Tokumine, Dasha Valter, Vijay Vasudevan, Kiran Vodrahalli, Xuezhi Wang, Pidong

12

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2403.04652
https://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2402.16827
https://arxiv.org/abs/2402.16827
https://huggingface.co/blog/smollm

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Wang, Zirui Wang, Tao Wang, John Wieting, Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting Xue, Pengcheng
Yin, Jiahui Yu, Qiao Zhang, Steven Zheng, Ce Zheng, Weikang Zhou, Denny Zhou, Slav Petrov, and Yonghui
Wu. Palm 2 technical report, 2023. URL https://arxiv.org/abs/2305.10403.

Quentin Anthony, Stella Biderman, and Hailey Schoelkopf. Transformer math 101. https://blog.
eleuther.ai/transformer-math/, 2023.

Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle Ott, Sam Shleifer, Xi Victoria Lin, Jingfei
Du, Srinivasan Iyer, Ramakanth Pasunuru, Giri Anantharaman, Xian Li, Shuohui Chen, Halil Akin, Mandeep
Baines, Louis Martin, Xing Zhou, Punit Singh Koura, Brian O’Horo, Jeff Wang, Luke Zettlemoyer, Mona
Diab, Zornitsa Kozareva, and Ves Stoyanov. Efficient large scale language modeling with mixtures of experts,
2022. URL https://arxiv.org/abs/2112.10684.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Albert Q. Jiang, Jia
Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model for mathematics, 2023.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu,
Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang,
Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang
Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical
report, 2023a.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and
Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization, text reading, and
beyond, 2023b. URL https://arxiv.org/abs/2308.12966.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen,
Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson, Christopher Olah,
Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr,
Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosuite, Liane Lovitt, Michael
Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado, Nova DasSarma, Robert Lasenby, Robin Larson,
Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy
Telleen-Lawton, Tom Conerly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben
Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional ai:
Harmlessness from ai feedback, 2022. URL https://arxiv.org/abs/2212.08073.

Marco Bellagente, Jonathan Tow, Dakota Mahan, Duy Phung, Maksym Zhuravinskyi, Reshinth Adithyan, James
Baicoianu, Ben Brooks, Nathan Cooper, Ashish Datta, Meng Lee, Emad Mostaque, Michael Pieler, Nikhil
Pinnaparju, Paulo Rocha, Harry Saini, Hannah Teufel, Niccolo Zanichelli, and Carlos Riquelme. Stable lm 2
1.6b technical report, 2024. URL https://arxiv.org/abs/2402.17834.

Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional computation in neural
networks for faster models, 2016. URL https://arxiv.org/abs/1511.06297.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hallahan, Moham-
mad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya Skowron, Lintang Sutawika,
and Oskar van der Wal. Pythia: A suite for analyzing large language models across training and scaling, 2023.
URL https://arxiv.org/abs/2304.01373.

Stella Biderman, Hailey Schoelkopf, Lintang Sutawika, Leo Gao, Jonathan Tow, Baber Abbasi, Alham Fikri
Aji, Pawan Sasanka Ammanamanchi, Sidney Black, Jordan Clive, Anthony DiPofi, Julen Etxaniz, Benjamin
Fattori, Jessica Zosa Forde, Charles Foster, Jeffrey Hsu, Mimansa Jaiswal, Wilson Y. Lee, Haonan Li,
Charles Lovering, Niklas Muennighoff, Ellie Pavlick, Jason Phang, Aviya Skowron, Samson Tan, Xiangru
Tang, Kevin A. Wang, Genta Indra Winata, François Yvon, and Andy Zou. Lessons from the trenches on
reproducible evaluation of language models, 2024.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about physical
commonsense in natural language, 2019. URL https://arxiv.org/abs/1911.11641.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. Gpt-neo: Large scale autoregressive lan-
guage modeling with mesh-tensorflow, 2021. URL https://doi.org/10.5281/zenodo.5297715.

13

https://arxiv.org/abs/2305.10403
https://blog.eleuther.ai/transformer-math/
https://blog.eleuther.ai/transformer-math/
https://arxiv.org/abs/2112.10684
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2402.17834
https://arxiv.org/abs/1511.06297
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/1911.11641
https://doi.org/10.5281/zenodo.5297715

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor
Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria
Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. Gpt-neox-20b: An open-source autoregressive
language model, 2022.

Rishi Bommasani, Kevin Klyman, Shayne Longpre, Sayash Kapoor, Nestor Maslej, Betty Xiong, Daniel Zhang,
and Percy Liang. The foundation model transparency index, 2023. URL https://arxiv.org/abs/
2310.12941.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners,
2020.

Tianle Cai. Mixtral from mistral, 2023. URL https://x.com/tianle_cai/status/
1734188749117153684.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui Chen, Zhi Chen,
Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan, Zhaoye Fei, Yang Gao, Jiaye Ge, Chenya Gu, Yuzhe Gu, Tao
Gui, Aijia Guo, Qipeng Guo, Conghui He, Yingfan Hu, Ting Huang, Tao Jiang, Penglong Jiao, Zhenjiang
Jin, Zhikai Lei, Jiaxing Li, Jingwen Li, Linyang Li, Shuaibin Li, Wei Li, Yining Li, Hongwei Liu, Jiangning
Liu, Jiawei Hong, Kaiwen Liu, Kuikun Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv, Kai Lv, Li Ma, Runyuan
Ma, Zerun Ma, Wenchang Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai Shang, Yunfan Shao, Demin
Song, Zifan Song, Zhihao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang, Guoteng Wang, Jiaqi Wang,
Jiayu Wang, Rui Wang, Yudong Wang, Ziyi Wang, Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong Xiong,
Chao Xu, Ruiliang Xu, Hang Yan, Yirong Yan, Xiaogui Yang, Haochen Ye, Huaiyuan Ying, Jia Yu, Jing Yu,
Yuhang Zang, Chuyu Zhang, Li Zhang, Pan Zhang, Peng Zhang, Ruijie Zhang, Shuo Zhang, Songyang Zhang,
Wenjian Zhang, Wenwei Zhang, Xingcheng Zhang, Xinyue Zhang, Hui Zhao, Qian Zhao, Xiaomeng Zhao,
Fengzhe Zhou, Zaida Zhou, Jingming Zhuo, Yicheng Zou, Xipeng Qiu, Yu Qiao, and Dahua Lin. Internlm2
technical report, 2024.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever. Gen-
erative pretraining from pixels, 2020. URL https://cdn.openai.com/papers/Generative_
Pretraining_from_Pixels_V2.pdf.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,
Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such,
Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code, 2021.

Soumith Chintala. Gpt-4 moe, 2024. URL https://x.com/soumithchintala/status/
1671267150101721090.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language modeling
with pathways, 2022.

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement
learning from human preferences, 2023.

Aidan Clark, Diego de las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan Hoffmann, Bogdan
Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, George van den Driessche, Eliza Rutherford,
Tom Hennigan, Matthew Johnson, Katie Millican, Albin Cassirer, Chris Jones, Elena Buchatskaya, David
Budden, Laurent Sifre, Simon Osindero, Oriol Vinyals, Jack Rae, Erich Elsen, Koray Kavukcuoglu, and
Karen Simonyan. Unified scaling laws for routed language models, 2022. URL https://arxiv.org/
abs/2202.01169.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova.
Boolq: Exploring the surprising difficulty of natural yes/no questions, 2019. URL https://arxiv.org/
abs/1905.10044.

14

https://arxiv.org/abs/2310.12941
https://arxiv.org/abs/2310.12941
https://x.com/tianle_cai/status/1734188749117153684
https://x.com/tianle_cai/status/1734188749117153684
https://cdn.openai.com/papers/Generative_Pretraining_from_Pixels_V2.pdf
https://cdn.openai.com/papers/Generative_Pretraining_from_Pixels_V2.pdf
https://x.com/soumithchintala/status/1671267150101721090
https://x.com/soumithchintala/status/1671267150101721090
https://arxiv.org/abs/2202.01169
https://arxiv.org/abs/2202.01169
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1905.10044

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge, 2018. URL
https://arxiv.org/abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to
solve math word problems, 2021.

Together Computer. Redpajama: An open source recipe to reproduce llama training dataset, 2023. URL
https://github.com/togethercomputer/RedPajama-Data.

Róbert Csordás, Kazuki Irie, Jürgen Schmidhuber, Christopher Potts, and Christopher D. Manning. Moeut:
Mixture-of-experts universal transformers, 2024.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and Maosong
Sun. Ultrafeedback: Boosting language models with high-quality feedback, 2023.

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding Zeng,
Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui, and Wenfeng
Liang. Deepseekmoe: Towards ultimate expert specialization in mixture-of-experts language models, 2024.
URL https://arxiv.org/abs/2401.06066.

Databricks. Dbrx, 2024. URL https://www.databricks.com/blog/
introducing-dbrx-new-state-art-open-llm.

Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated convolutional
networks, 2017. URL https://arxiv.org/abs/1612.08083.

DeepSeek-AI, :, Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui
Ding, Kai Dong, Qiushi Du, Zhe Fu, Huazuo Gao, Kaige Gao, Wenjun Gao, Ruiqi Ge, Kang Guan, Daya
Guo, Jianzhong Guo, Guangbo Hao, Zhewen Hao, Ying He, Wenjie Hu, Panpan Huang, Erhang Li, Guowei
Li, Jiashi Li, Yao Li, Y. K. Li, Wenfeng Liang, Fangyun Lin, A. X. Liu, Bo Liu, Wen Liu, Xiaodong Liu, Xin
Liu, Yiyuan Liu, Haoyu Lu, Shanghao Lu, Fuli Luo, Shirong Ma, Xiaotao Nie, Tian Pei, Yishi Piao, Junjie
Qiu, Hui Qu, Tongzheng Ren, Zehui Ren, Chong Ruan, Zhangli Sha, Zhihong Shao, Junxiao Song, Xuecheng
Su, Jingxiang Sun, Yaofeng Sun, Minghui Tang, Bingxuan Wang, Peiyi Wang, Shiyu Wang, Yaohui Wang,
Yongji Wang, Tong Wu, Y. Wu, Xin Xie, Zhenda Xie, Ziwei Xie, Yiliang Xiong, Hanwei Xu, R. X. Xu,
Yanhong Xu, Dejian Yang, Yuxiang You, Shuiping Yu, Xingkai Yu, B. Zhang, Haowei Zhang, Lecong Zhang,
Liyue Zhang, Mingchuan Zhang, Minghua Zhang, Wentao Zhang, Yichao Zhang, Chenggang Zhao, Yao
Zhao, Shangyan Zhou, Shunfeng Zhou, Qihao Zhu, and Yuheng Zou. Deepseek llm: Scaling open-source
language models with longtermism, 2024a.

DeepSeek-AI, Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr,
Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fuli Luo,
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Hanwei Xu, Hao Yang, Haowei Zhang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jin
Chen, Jingyang Yuan, Junjie Qiu, Junxiao Song, Kai Dong, Kaige Gao, Kang Guan, Lean Wang, Lecong
Zhang, Lei Xu, Leyi Xia, Liang Zhao, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua
Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Qihao Zhu, Qinyu
Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge, Ruizhe Pan, Runxin Xu, Ruyi Chen, S. S. Li, Shanghao
Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang
Zhou, Shuiping Yu, Shunfeng Zhou, Size Zheng, T. Wang, Tian Pei, Tian Yuan, Tianyu Sun, W. L. Xiao,
Wangding Zeng, Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wentao Zhang, X. Q. Li, Xiangyue Jin,
Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaosha Chen, Xiaotao
Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Liu, Xin Xie, Xingkai Yu, Xinnan Song, Xinyi Zhou, Xinyu Yang,
Xuan Lu, Xuecheng Su, Y. Wu, Y. K. Li, Y. X. Wei, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yao Li, Yao
Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Zheng, Yichao Zhang, Yiliang Xiong, Yilong Zhao, Ying
He, Ying Tang, Yishi Piao, Yixin Dong, Yixuan Tan, Yiyuan Liu, Yongji Wang, Yongqiang Guo, Yuchen
Zhu, Yuduan Wang, Yuheng Zou, Yukun Zha, Yunxian Ma, Yuting Yan, Yuxiang You, Yuxuan Liu, Z. Z.
Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhewen Hao, Zhihong Shao,
Zhiniu Wen, Zhipeng Xu, Zhongyu Zhang, Zhuoshu Li, Zihan Wang, Zihui Gu, Zilin Li, and Ziwei Xie.
Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model, 2024b.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal transformers,
2019. URL https://arxiv.org/abs/1807.03819.

15

https://arxiv.org/abs/1803.05457
https://github.com/togethercomputer/RedPajama-Data
https://arxiv.org/abs/2401.06066
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://arxiv.org/abs/1612.08083
https://arxiv.org/abs/1807.03819

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer, Andreas
Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, Rodolphe Jenatton, Lucas Beyer, Michael
Tschannen, Anurag Arnab, Xiao Wang, Carlos Riquelme, Matthias Minderer, Joan Puigcerver, Utku Evci,
Manoj Kumar, Sjoerd van Steenkiste, Gamaleldin F. Elsayed, Aravindh Mahendran, Fisher Yu, Avital
Oliver, Fantine Huot, Jasmijn Bastings, Mark Patrick Collier, Alexey Gritsenko, Vighnesh Birodkar, Cristina
Vasconcelos, Yi Tay, Thomas Mensink, Alexander Kolesnikov, Filip Pavetić, Dustin Tran, Thomas Kipf, Mario
Lučić, Xiaohua Zhai, Daniel Keysers, Jeremiah Harmsen, and Neil Houlsby. Scaling vision transformers to
22 billion parameters, 2023.

Nolan Dey, Gurpreet Gosal, Zhiming, Chen, Hemant Khachane, William Marshall, Ribhu Pathria, Marvin Tom,
and Joel Hestness. Cerebras-gpt: Open compute-optimal language models trained on the cerebras wafer-scale
cluster, 2023. URL https://arxiv.org/abs/2304.03208.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar, Pierre Sermanet,
Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc Toussaint, Klaus Greff, Andy
Zeng, Igor Mordatch, and Pete Florence. Palm-e: An embodied multimodal language model, 2023. URL
https://arxiv.org/abs/2303.03378.

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun, Yanqi
Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten Bosma, Zongwei Zhou, Tao Wang,
Yu Emma Wang, Kellie Webster, Marie Pellat, Kevin Robinson, Kathleen Meier-Hellstern, Toju Duke, Lucas
Dixon, Kun Zhang, Quoc V Le, Yonghui Wu, Zhifeng Chen, and Claire Cui. Glam: Efficient scaling of
language models with mixture-of-experts, 2022.

Dheeru Dua, Shruti Bhosale, Vedanuj Goswami, James Cross, Mike Lewis, and Angela Fan. Tricks for training
sparse translation models, 2021. URL https://arxiv.org/abs/2110.08246.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil
Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra,
Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen
Gregerson, et al. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B. Hashimoto. Length-controlled alpacaeval: A
simple way to debias automatic evaluators, 2024. URL https://arxiv.org/abs/2404.04475.

David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. Learning factored representations in a deep mixture of
experts, 2014. URL https://arxiv.org/abs/1312.4314.

Kenneth Enevoldsen, Márton Kardos, Niklas Muennighoff, and Kristoffer Laigaard Nielbo. The scandinavian
embedding benchmarks: Comprehensive assessment of multilingual and monolingual text embedding, 2024.
URL https://arxiv.org/abs/2406.02396.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model alignment as
prospect theoretic optimization, 2024.

Manuel Faysse, Patrick Fernandes, Nuno M. Guerreiro, António Loison, Duarte M. Alves, Caio Corro, Nicolas
Boizard, João Alves, Ricardo Rei, Pedro H. Martins, Antoni Bigata Casademunt, François Yvon, André F. T.
Martins, Gautier Viaud, Céline Hudelot, and Pierre Colombo. Croissantllm: A truly bilingual french-english
language model, 2024. URL https://arxiv.org/abs/2402.00786.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter models with
simple and efficient sparsity, 2022.

Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal Shankar, Suchin Gururangan, Mitchell Wortsman, Rulin Shao,
Jean Mercat, Alex Fang, Jeffrey Li, Sedrick Keh, Rui Xin, Marianna Nezhurina, Igor Vasiljevic, Jenia Jitsev,
Luca Soldaini, Alexandros G. Dimakis, Gabriel Ilharco, Pang Wei Koh, Shuran Song, Thomas Kollar, Yair
Carmon, Achal Dave, Reinhard Heckel, Niklas Muennighoff, and Ludwig Schmidt. Language models scale
reliably with over-training and on downstream tasks, 2024.

Trevor Gale, Deepak Narayanan, Cliff Young, and Matei Zaharia. Megablocks: Efficient sparse training with
mixture-of-experts, 2022. URL https://arxiv.org/abs/2211.15841.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace
He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile: An 800gb dataset of diverse
text for language modeling, 2020. URL https://arxiv.org/abs/2101.00027.

16

https://arxiv.org/abs/2304.03208
https://arxiv.org/abs/2303.03378
https://arxiv.org/abs/2110.08246
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/1312.4314
https://arxiv.org/abs/2406.02396
https://arxiv.org/abs/2402.00786
https://arxiv.org/abs/2211.15841
https://arxiv.org/abs/2101.00027

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Golding, Jeffrey
Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric Tang, Anish Thite, Ben Wang,
Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation, September 2021. URL
https://doi.org/10.5281/zenodo.5371628.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu Feng, Hanlin
Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie Tang, Jing
Zhang, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu, Minlie Huang, Peng Zhang, Qinkai
Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao, Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao
Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song,
Xunkai Zhang, Yifan An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan
Qi, Zhaoyu Wang, Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang. Chatglm: A family of large
language models from glm-130b to glm-4 all tools, 2024.

Paolo Glorioso, Quentin Anthony, Yury Tokpanov, James Whittington, Jonathan Pilault, Adam Ibrahim, and
Beren Millidge. Zamba: A compact 7b ssm hybrid model, 2024. URL https://arxiv.org/abs/
2405.16712.

Andrew Gordon, Zornitsa Kozareva, and Melissa Roemmele. SemEval-2012 task 7: Choice of plausible
alternatives: An evaluation of commonsense causal reasoning, 2012. URL https://aclanthology.
org/S12-1052.

Dirk Groeneveld, Anas Awadalla, Iz Beltagy, Akshita Bhagia, Ian Magnusson, Hao Peng, Oyvind Tafjord, Pete
Walsh, Kyle Richardson, and Jesse Dodge. Catwalk: A unified language model evaluation framework for
many datasets, 2023. URL https://arxiv.org/abs/2312.10253.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya Harsh
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson, Russell Authur, Khy-
athi Raghavi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack Hessel, Tushar Khot,
William Merrill, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters,
Valentina Pyatkin, Abhilasha Ravichander, Dustin Schwenk, Saurabh Shah, Will Smith, Emma Strubell, Nis-
hant Subramani, Mitchell Wortsman, Pradeep Dasigi, Nathan Lambert, Kyle Richardson, Luke Zettlemoyer,
Jesse Dodge, Kyle Lo, Luca Soldaini, Noah A. Smith, and Hannaneh Hajishirzi. Olmo: Accelerating the
science of language models, 2024.

Sam Gross, Marc’Aurelio Ranzato, and Arthur Szlam. Hard mixtures of experts for large scale weakly supervised
vision, 2017. URL https://arxiv.org/abs/1704.06363.

Yuling Gu, Oyvind Tafjord, Bailey Kuehl, Dany Haddad, Jesse Dodge, and Hannaneh Hajishirzi. Olmes: A
standard for language model evaluations, 2024. URL https://arxiv.org/abs/2406.08446.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan
Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl,
Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee, and Yuanzhi Li. Textbooks
are all you need, 2023. URL https://arxiv.org/abs/2306.11644.

Xu Owen He. Mixture of a million experts, 2024. URL https://arxiv.org/abs/2407.04153.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
Measuring massive multitask language understanding, 2021a. URL https://arxiv.org/abs/2009.
03300.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021b. URL https:
//arxiv.org/abs/2103.03874.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katie
Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan, Erich
Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre. Training compute-optimal large language models, 2022.
URL https://arxiv.org/abs/2203.15556.

Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without reference model,
2024. URL https://arxiv.org/abs/2403.07691.

17

https://doi.org/10.5281/zenodo.5371628
https://arxiv.org/abs/2405.16712
https://arxiv.org/abs/2405.16712
https://aclanthology.org/S12-1052
https://aclanthology.org/S12-1052
https://arxiv.org/abs/2312.10253
https://arxiv.org/abs/1704.06363
https://arxiv.org/abs/2406.08446
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2407.04153
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2403.07691

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang, Yuxiang
Huang, Weilin Zhao, Xinrong Zhang, Zheng Leng Thai, Kaihuo Zhang, Chongyi Wang, Yuan Yao, Chenyang
Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, Chao Jia, Guoyang Zeng, Dahai Li, Zhiyuan Liu, and
Maosong Sun. Minicpm: Unveiling the potential of small language models with scalable training strategies,
2024.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis Hawthorne,
Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck. Music transformer, 2018. URL
https://arxiv.org/abs/1809.04281.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew Peters, Pradeep Dasigi, Joel
Jang, David Wadden, Noah A. Smith, Iz Beltagy, and Hannaneh Hajishirzi. Camels in a changing climate:
Enhancing lm adaptation with tulu 2, 2023.

Sebastian Jaszczur, Aakanksha Chowdhery, Afroz Mohiuddin, Łukasz Kaiser, Wojciech Gajewski, Henryk
Michalewski, and Jonni Kanerva. Sparse is enough in scaling transformers, 2021. URL https://arxiv.
org/abs/2111.12763.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mistral 7b, 2023.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford, Deven-
dra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume
Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Sandeep
Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mixtral of experts, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models, 2020. URL
https://arxiv.org/abs/2001.08361.

Andrej Karpathy. Llm model size competition is intensifying. . . backwards!, 2024. URL https://x.com/
karpathy/status/1814038096218083497.

Douwe Kiela, Hamed Firooz, Aravind Mohan, Vedanuj Goswami, Amanpreet Singh, Casey A Fitzpatrick, Peter
Bull, Greg Lipstein, Tony Nelli, Ron Zhu, et al. The hateful memes challenge: Competition report, 2021.
URL https://proceedings.mlr.press/v133/kiela21a.html.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferrandis, Yacine
Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro von Werra, and Harm
de Vries. The stack: 3 tb of permissively licensed source code, 2022. URL https://arxiv.org/abs/
2211.15533.

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme Ruiz, Basil Mustafa, Joshua Ainslie,
Yi Tay, Mostafa Dehghani, and Neil Houlsby. Sparse upcycling: Training mixture-of-experts from dense
checkpoints, 2023.

Jakub Krajewski, Jan Ludziejewski, Kamil Adamczewski, Maciej Pióro, Michał Krutul, Szymon Antoniak,
Kamil Ciebiera, Krystian Król, Tomasz Odrzygóźdź, Piotr Sankowski, Marek Cygan, and Sebastian Jaszczur.
Scaling laws for fine-grained mixture of experts, 2024.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional computation and automatic
sharding, 2020. URL https://arxiv.org/abs/2006.16668.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base layers: Simplifying
training of large, sparse models, 2021. URL https://arxiv.org/abs/2103.16716.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal, Etash Guha,
Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff, Reinhard Heckel, Jean Mercat,
Mayee Chen, Suchin Gururangan, Mitchell Wortsman, Alon Albalak, Yonatan Bitton, Marianna Nezhurina,
Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh, Josh Gardner, Maciej Kilian, Hanlin Zhang, Rulin Shao,
Sarah Pratt, Sunny Sanyal, Gabriel Ilharco, Giannis Daras, Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang,
Khyathi Chandu, Thao Nguyen, Igor Vasiljevic, Sham Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri,

18

https://arxiv.org/abs/1809.04281
https://arxiv.org/abs/2111.12763
https://arxiv.org/abs/2111.12763
https://arxiv.org/abs/2001.08361
https://x.com/karpathy/status/1814038096218083497
https://x.com/karpathy/status/1814038096218083497
https://proceedings.mlr.press/v133/kiela21a.html
https://arxiv.org/abs/2211.15533
https://arxiv.org/abs/2211.15533
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2103.16716

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Sewoong Oh, Luke Zettlemoyer, Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev, Stephanie
Wang, Dirk Groeneveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kollar, Alexandros G. Dimakis,
Yair Carmon, Achal Dave, Ludwig Schmidt, and Vaishaal Shankar. Datacomp-lm: In search of the next
generation of training sets for language models, 2024a.

Margaret Li, Suchin Gururangan, Tim Dettmers, Mike Lewis, Tim Althoff, Noah A. Smith, and Luke Zettlemoyer.
Branch-train-merge: Embarrassingly parallel training of expert language models, 2022. URL https:
//arxiv.org/abs/2208.03306.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with you!, 2023a.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following models, 2023b. URL
https://github.com/tatsu-lab/alpaca_eval.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee. Textbooks
are all you need ii: phi-1.5 technical report, 2023c. URL https://arxiv.org/abs/2309.05463.

Yunxin Li, Shenyuan Jiang, Baotian Hu, Longyue Wang, Wanqi Zhong, Wenhan Luo, Lin Ma, and Min Zhang.
Uni-moe: Scaling unified multimodal llms with mixture of experts, 2024b. URL https://arxiv.org/
abs/2405.11273.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian Zhang,
Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan, Bobby Yan, Ce Zhang,
Christian Cosgrove, Christopher D. Manning, Christopher Ré, Diana Acosta-Navas, Drew A. Hudson,
Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue Wang, Keshav
Santhanam, Laurel Orr, Lucia Zheng, Mert Yuksekgonul, Mirac Suzgun, Nathan Kim, Neel Guha, Niladri
Chatterji, Omar Khattab, Peter Henderson, Qian Huang, Ryan Chi, Sang Michael Xie, Shibani Santurkar,
Surya Ganguli, Tatsunori Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary, William Wang,
Xuechen Li, Yifan Mai, Yuhui Zhang, and Yuta Koreeda. Holistic evaluation of language models, 2023. URL
https://arxiv.org/abs/2211.09110.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi, Shaked
Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, Omri Abend, Raz Alon, Tomer Asida, Amir Bergman,
Roman Glozman, Michael Gokhman, Avashalom Manevich, Nir Ratner, Noam Rozen, Erez Shwartz, Mor
Zusman, and Yoav Shoham. Jamba: A hybrid transformer-mamba language model, 2024. URL https:
//arxiv.org/abs/2403.19887.

Bin Lin, Zhenyu Tang, Yang Ye, Jiaxi Cui, Bin Zhu, Peng Jin, Jinfa Huang, Junwu Zhang, Yatian Pang,
Munan Ning, and Li Yuan. Moe-llava: Mixture of experts for large vision-language models, 2024a. URL
https://arxiv.org/abs/2401.15947.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human falsehoods,
2022.

Xi Victoria Lin, Akshat Shrivastava, Liang Luo, Srinivasan Iyer, Mike Lewis, Gargi Gosh, Luke Zettlemoyer,
and Armen Aghajanyan. Moma: Efficient early-fusion pre-training with mixture of modality-aware experts,
2024b. URL https://arxiv.org/abs/2407.21770.

Qian Liu, Xiaosen Zheng, Niklas Muennighoff, Guangtao Zeng, Longxu Dou, Tianyu Pang, Jing Jiang, and
Min Lin. Regmix: Data mixture as regression for language model pre-training, 2024a. URL https:
//arxiv.org/abs/2407.01492.

Tianlin Liu, Mathieu Blondel, Carlos Riquelme, and Joan Puigcerver. Routers in vision mixture of experts: An
empirical study, 2024b. URL https://arxiv.org/abs/2401.15969.

Zhengzhong Liu, Aurick Qiao, Willie Neiswanger, Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo Li, Yuqi
Wang, Suqi Sun, Omkar Pangarkar, Richard Fan, Yi Gu, Victor Miller, Yonghao Zhuang, Guowei He, Haonan
Li, Fajri Koto, Liping Tang, Nikhil Ranjan, Zhiqiang Shen, Xuguang Ren, Roberto Iriondo, Cun Mu, Zhiting
Hu, Mark Schulze, Preslav Nakov, Tim Baldwin, and Eric P. Xing. Llm360: Towards fully transparent
open-source llms, 2023.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le, Barret
Zoph, Jason Wei, and Adam Roberts. The flan collection: Designing data and methods for effective instruction
tuning, 2023a. URL https://arxiv.org/abs/2301.13688.

19

https://arxiv.org/abs/2208.03306
https://arxiv.org/abs/2208.03306
https://github.com/tatsu-lab/alpaca_eval
https://arxiv.org/abs/2309.05463
https://arxiv.org/abs/2405.11273
https://arxiv.org/abs/2405.11273
https://arxiv.org/abs/2211.09110
https://arxiv.org/abs/2403.19887
https://arxiv.org/abs/2403.19887
https://arxiv.org/abs/2401.15947
https://arxiv.org/abs/2407.21770
https://arxiv.org/abs/2407.01492
https://arxiv.org/abs/2407.01492
https://arxiv.org/abs/2401.15969
https://arxiv.org/abs/2301.13688

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Shayne Longpre, Robert Mahari, Anthony Chen, Naana Obeng-Marnu, Damien Sileo, William Brannon, Niklas
Muennighoff, Nathan Khazam, Jad Kabbara, Kartik Perisetla, Xinyi Wu, Enrico Shippole, Kurt Bollacker,
Tongshuang Wu, Luis Villa, Sandy Pentland, and Sara Hooker. The data provenance initiative: A large scale
audit of dataset licensing & attribution in ai, 2023b. URL https://arxiv.org/abs/2310.16787.

Shayne Longpre, Robert Mahari, Ariel Lee, Campbell Lund, Hamidah Oderinwale, William Brannon, Nayan
Saxena, Naana Obeng-Marnu, Tobin South, Cole Hunter, Kevin Klyman, Christopher Klamm, Hailey
Schoelkopf, Nikhil Singh, Manuel Cherep, Ahmad Anis, An Dinh, Caroline Chitongo, Da Yin, Damien Sileo,
Deividas Mataciunas, Diganta Misra, Emad Alghamdi, Enrico Shippole, Jianguo Zhang, Joanna Materzynska,
Kun Qian, Kush Tiwary, Lester Miranda, Manan Dey, Minnie Liang, Mohammed Hamdy, Niklas Muennighoff,
Seonghyeon Ye, Seungone Kim, Shrestha Mohanty, Vipul Gupta, Vivek Sharma, Vu Minh Chien, Xuhui
Zhou, Yizhi Li, Caiming Xiong, Luis Villa, Stella Biderman, Hanlin Li, Daphne Ippolito, Sara Hooker, Jad
Kabbara, and Sandy Pentland. Consent in crisis: The rapid decline of the ai data commons, 2024. URL
https://arxiv.org/abs/2407.14933.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Holy Lovenia, Rahmad Mahendra, Salsabil Maulana Akbar, Lester James V. Miranda, Jennifer Santoso, Elyanah
Aco, Akhdan Fadhilah, Jonibek Mansurov, Joseph Marvin Imperial, Onno P. Kampman, Joel Ruben Antony
Moniz, Muhammad Ravi Shulthan Habibi, Frederikus Hudi, Railey Montalan, Ryan Ignatius, Joanito Agili
Lopo, William Nixon, Börje F. Karlsson, James Jaya, Ryandito Diandaru, Yuze Gao, Patrick Amadeus,
Bin Wang, Jan Christian Blaise Cruz, Chenxi Whitehouse, Ivan Halim Parmonangan, Maria Khelli, Wenyu
Zhang, Lucky Susanto, Reynard Adha Ryanda, Sonny Lazuardi Hermawan, Dan John Velasco, Muhammad
Dehan Al Kautsar, Willy Fitra Hendria, Yasmin Moslem, Noah Flynn, Muhammad Farid Adilazuarda,
Haochen Li, Johanes Lee, R. Damanhuri, Shuo Sun, Muhammad Reza Qorib, Amirbek Djanibekov, Wei Qi
Leong, Quyet V. Do, Niklas Muennighoff, Tanrada Pansuwan, Ilham Firdausi Putra, Yan Xu, Ngee Chia
Tai, Ayu Purwarianti, Sebastian Ruder, William Tjhi, Peerat Limkonchotiwat, Alham Fikri Aji, Sedrick Keh,
Genta Indra Winata, Ruochen Zhang, Fajri Koto, Zheng-Xin Yong, and Samuel Cahyawijaya. Seacrowd: A
multilingual multimodal data hub and benchmark suite for southeast asian languages, 2024. URL https:
//arxiv.org/abs/2406.10118.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang,
Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes
Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal,
Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß,
Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru
Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu,
Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu,
Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa
Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas
Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder 2 and the stack v2: The next generation,
2024. URL https://arxiv.org/abs/2402.19173.

Risto Luukkonen, Ville Komulainen, Jouni Luoma, Anni Eskelinen, Jenna Kanerva, Hanna-Mari Kupari, Filip
Ginter, Veronika Laippala, Niklas Muennighoff, Aleksandra Piktus, Thomas Wang, Nouamane Tazi, Teven Le
Scao, Thomas Wolf, Osma Suominen, Samuli Sairanen, Mikko Merioksa, Jyrki Heinonen, Aija Vahtola,
Samuel Antao, and Sampo Pyysalo. Fingpt: Large generative models for a small language, 2023.

Ian Magnusson, Akshita Bhagia, Valentin Hofmann, Luca Soldaini, Ananya Harsh Jha, Oyvind Tafjord, Dustin
Schwenk, Evan Pete Walsh, Yanai Elazar, Kyle Lo, Dirk Groeneveld, Iz Beltagy, Hannaneh Hajishirzi,
Noah A. Smith, Kyle Richardson, and Jesse Dodge. Paloma: A benchmark for evaluating language model fit,
2023. URL https://arxiv.org/abs/2312.10523.

Brandon McKinzie, Zhe Gan, Jean-Philippe Fauconnier, Sam Dodge, Bowen Zhang, Philipp Dufter, Dhruti
Shah, Xianzhi Du, Futang Peng, Floris Weers, Anton Belyi, Haotian Zhang, Karanjeet Singh, Doug Kang,
Ankur Jain, Hongyu Hè, Max Schwarzer, Tom Gunter, Xiang Kong, Aonan Zhang, Jianyu Wang, Chong
Wang, Nan Du, Tao Lei, Sam Wiseman, Guoli Yin, Mark Lee, Zirui Wang, Ruoming Pang, Peter Grasch,
Alexander Toshev, and Yinfei Yang. Mm1: Methods, analysis & insights from multimodal llm pre-training,
2024. URL https://arxiv.org/abs/2403.09611.

Sachin Mehta, Mohammad Hossein Sekhavat, Qingqing Cao, Maxwell Horton, Yanzi Jin, Chenfan Sun, Iman
Mirzadeh, Mahyar Najibi, Dmitry Belenko, Peter Zatloukal, and Mohammad Rastegari. Openelm: An
efficient language model family with open training and inference framework, 2024.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-free reward,
2024. URL https://arxiv.org/abs/2405.14734.

20

https://arxiv.org/abs/2310.16787
https://arxiv.org/abs/2407.14933
https://arxiv.org/abs/2406.10118
https://arxiv.org/abs/2406.10118
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2312.10523
https://arxiv.org/abs/2403.09611
https://arxiv.org/abs/2405.14734

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models, 2016.
URL https://arxiv.org/abs/1609.07843.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia, Boris Ginsburg,
Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed precision training, 2018.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity? a
new dataset for open book question answering, 2018. URL https://arxiv.org/abs/1809.02789.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization via natural
language crowdsourcing instructions, 2022.

Niklas Muennighoff. Vilio: State-of-the-art visio-linguistic models applied to hateful memes, 2020.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam Singh,
Xiangru Tang, Leandro von Werra, and Shayne Longpre. Octopack: Instruction tuning code large language
models, 2023a.

Niklas Muennighoff, Alexander M. Rush, Boaz Barak, Teven Le Scao, Aleksandra Piktus, Nouamane Tazi,
Sampo Pyysalo, Thomas Wolf, and Colin Raffel. Scaling data-constrained language models, 2023b.

Niklas Muennighoff, Thomas Wang, Lintang Sutawika, Adam Roberts, Stella Biderman, Teven Le Scao,
M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hailey Schoelkopf, Xiangru Tang, Dragomir Radev, Alham Fikri
Aji, Khalid Almubarak, Samuel Albanie, Zaid Alyafeai, Albert Webson, Edward Raff, and Colin Raffel.
Crosslingual generalization through multitask finetuning, 2023c.

Niklas Muennighoff, Hongjin Su, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh, and Douwe Kiela.
Generative representational instruction tuning, 2024. URL https://arxiv.org/abs/2402.09906.

Mohammed Muqeeth, Haokun Liu, and Colin Raffel. Soft merging of experts with adaptive routing, 2024. URL
https://arxiv.org/abs/2306.03745.

Basil Mustafa, Carlos Riquelme, Joan Puigcerver, Rodolphe Jenatton, and Neil Houlsby. Multimodal contrastive
learning with limoe: the language-image mixture of experts, 2022. URL https://arxiv.org/abs/
2206.02770.

Nvidia, :, Bo Adler, Niket Agarwal, Ashwath Aithal, Dong H. Anh, Pallab Bhattacharya, Annika Brundyn,
Jared Casper, Bryan Catanzaro, Sharon Clay, Jonathan Cohen, Sirshak Das, Ayush Dattagupta, Olivier
Delalleau, Leon Derczynski, Yi Dong, Daniel Egert, Ellie Evans, Aleksander Ficek, Denys Fridman, Shaona
Ghosh, Boris Ginsburg, Igor Gitman, Tomasz Grzegorzek, Robert Hero, Jining Huang, Vibhu Jawa, Joseph
Jennings, Aastha Jhunjhunwala, John Kamalu, Sadaf Khan, Oleksii Kuchaiev, Patrick LeGresley, Hui Li,
Jiwei Liu, Zihan Liu, Eileen Long, Ameya Sunil Mahabaleshwarkar, Somshubra Majumdar, James Maki,
Miguel Martinez, Maer Rodrigues de Melo, Ivan Moshkov, Deepak Narayanan, Sean Narenthiran, Jesus
Navarro, Phong Nguyen, Osvald Nitski, Vahid Noroozi, Guruprasad Nutheti, Christopher Parisien, Jupinder
Parmar, Mostofa Patwary, Krzysztof Pawelec, Wei Ping, Shrimai Prabhumoye, Rajarshi Roy, Trisha Saar,
Vasanth Rao Naik Sabavat, Sanjeev Satheesh, Jane Polak Scowcroft, Jason Sewall, Pavel Shamis, Gerald
Shen, Mohammad Shoeybi, Dave Sizer, Misha Smelyanskiy, Felipe Soares, Makesh Narsimhan Sreedhar,
Dan Su, Sandeep Subramanian, Shengyang Sun, Shubham Toshniwal, Hao Wang, Zhilin Wang, Jiaxuan
You, Jiaqi Zeng, Jimmy Zhang, Jing Zhang, Vivienne Zhang, Yian Zhang, and Chen Zhu. Nemotron-4 340b
technical report, 2024. URL https://arxiv.org/abs/2406.11704.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, et al. Gpt-4 technical report, 2023.

Bowen Pan, Yikang Shen, Haokun Liu, Mayank Mishra, Gaoyuan Zhang, Aude Oliva, Colin Raffel, and
Rameswar Panda. Dense training, sparse inference: Rethinking training of mixture-of-experts language
models, 2024. URL https://arxiv.org/abs/2404.05567.

Jupinder Parmar, Shrimai Prabhumoye, Joseph Jennings, Mostofa Patwary, Sandeep Subramanian, Dan Su,
Chen Zhu, Deepak Narayanan, Aastha Jhunjhunwala, Ayush Dattagupta, Vibhu Jawa, Jiwei Liu, Ameya
Mahabaleshwarkar, Osvald Nitski, Annika Brundyn, James Maki, Miguel Martinez, Jiaxuan You, John
Kamalu, Patrick LeGresley, Denys Fridman, Jared Casper, Ashwath Aithal, Oleksii Kuchaiev, Mohammad
Shoeybi, Jonathan Cohen, and Bryan Catanzaro. Nemotron-4 15b technical report, 2024. URL https:
//arxiv.org/abs/2402.16819.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. Openwebmath: An open dataset of
high-quality mathematical web text, 2023.

21

https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/2402.09906
https://arxiv.org/abs/2306.03745
https://arxiv.org/abs/2206.02770
https://arxiv.org/abs/2206.02770
https://arxiv.org/abs/2406.11704
https://arxiv.org/abs/2404.05567
https://arxiv.org/abs/2402.16819
https://arxiv.org/abs/2402.16819

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb dataset for falcon llm:
Outperforming curated corpora with web data, and web data only, 2023. URL https://arxiv.org/
abs/2306.01116.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi Cao, Xin
Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, Xuzheng He, Haowen Hou, Jiaju Lin, Przemyslaw
Kazienko, Jan Kocon, Jiaming Kong, Bartlomiej Koptyra, Hayden Lau, Krishna Sri Ipsit Mantri, Ferdinand
Mom, Atsushi Saito, Guangyu Song, Xiangru Tang, Bolun Wang, Johan S. Wind, Stanislaw Wozniak,
Ruichong Zhang, Zhenyuan Zhang, Qihang Zhao, Peng Zhou, Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu.
Rwkv: Reinventing rnns for the transformer era, 2023.

Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman, Eugene Cheah,
Xingjian Du, Teddy Ferdinan, Haowen Hou, Przemysław Kazienko, Kranthi Kiran GV, Jan Kocoń, Bartłomiej
Koptyra, Satyapriya Krishna, Ronald McClelland Jr. au2, Niklas Muennighoff, Fares Obeid, Atsushi Saito,
Guangyu Song, Haoqin Tu, Stanisław Woźniak, Ruichong Zhang, Bingchen Zhao, Qihang Zhao, Peng Zhou,
Jian Zhu, and Rui-Jie Zhu. Eagle and finch: Rwkv with matrix-valued states and dynamic recurrence, 2024.

Ofir Press and Lior Wolf. Using the output embedding to improve language models, 2017. URL https:
//arxiv.org/abs/1608.05859.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners, 2019. URL https://d4mucfpksywv.cloudfront.
net/better-language-models/language_models_are_unsupervised_multitask_
learners.pdf.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever. Robust speech
recognition via large-scale weak supervision, 2022. URL https://arxiv.org/abs/2212.04356.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea Finn.
Direct preference optimization: Your language model is secretly a reward model, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer, 2023.

Nazneen Rajani, Lewis Tunstall, Edward Beeching, Nathan Lambert, Alexander M. Rush, and Thomas Wolf.
No robots, 2023. URL https://huggingface.co/datasets/HuggingFaceH4/no_robots.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations toward
training trillion parameter models, 2020.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Ammar Ahmad
Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts inference and training to
power next-generation ai scale, 2022. URL https://arxiv.org/abs/2201.05596.

David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and Adam Santoro.
Mixture-of-depths: Dynamically allocating compute in transformer-based language models, 2024. URL
https://arxiv.org/abs/2404.02258.

Machel Reid, Victor Zhong, Suchin Gururangan, and Luke Zettlemoyer. M2d2: A massively multi-domain
language modeling dataset, 2022. URL https://arxiv.org/abs/2210.07370.

Xiaozhe Ren, Pingyi Zhou, Xinfan Meng, Xinjing Huang, Yadao Wang, Weichao Wang, Pengfei Li, Xiaoda
Zhang, Alexander Podolskiy, Grigory Arshinov, Andrey Bout, Irina Piontkovskaya, Jiansheng Wei, Xin
Jiang, Teng Su, Qun Liu, and Jun Yao. Pangu-sigma: Towards trillion parameter language model with sparse
heterogeneous computing, 2023. URL https://arxiv.org/abs/2303.10845.

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam, and Jason Weston. Hash layers for large sparse models,
2021. URL https://arxiv.org/abs/2106.04426.

Paul Röttger, Hannah Rose Kirk, Bertie Vidgen, Giuseppe Attanasio, Federico Bianchi, and Dirk Hovy. Xstest:
A test suite for identifying exaggerated safety behaviours in large language models, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial
winograd schema challenge at scale, 2019. URL https://arxiv.org/abs/1907.10641.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin,
Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted training enables zero-shot task
generalization, 2022.

22

https://arxiv.org/abs/2306.01116
https://arxiv.org/abs/2306.01116
https://arxiv.org/abs/1608.05859
https://arxiv.org/abs/1608.05859
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2212.04356
https://huggingface.co/datasets/HuggingFaceH4/no_robots
https://arxiv.org/abs/2201.05596
https://arxiv.org/abs/2404.02258
https://arxiv.org/abs/2210.07370
https://arxiv.org/abs/2303.10845
https://arxiv.org/abs/2106.04426
https://arxiv.org/abs/1907.10641

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Commonsense reasoning
about social interactions, 2019. URL https://arxiv.org/abs/1904.09728.

Teven Le Scao, Thomas Wang, Daniel Hesslow, Lucile Saulnier, Stas Bekman, M Saiful Bari, Stella Biderman,
Hady Elsahar, Niklas Muennighoff, Jason Phang, Ofir Press, Colin Raffel, Victor Sanh, Sheng Shen, Lintang
Sutawika, Jaesung Tae, Zheng Xin Yong, Julien Launay, and Iz Beltagy. What language model to train if you
have one million gpu hours?, 2022.

Noam Shazeer. Fast transformer decoding: One write-head is all you need, 2019. URL https://arxiv.
org/abs/1911.02150.

Noam Shazeer. Glu variants improve transformer, 2020.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost, 2018. URL
https://arxiv.org/abs/1804.04235.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean.
Outrageously large neural networks: The sparsely-gated mixture-of-experts layer, 2017.

Sheng Shen, Le Hou, Yanqi Zhou, Nan Du, Shayne Longpre, Jason Wei, Hyung Won Chung, Barret Zoph,
William Fedus, Xinyun Chen, Tu Vu, Yuexin Wu, Wuyang Chen, Albert Webson, Yunxuan Li, Vincent Zhao,
Hongkun Yu, Kurt Keutzer, Trevor Darrell, and Denny Zhou. Mixture-of-experts meets instruction tuning:a
winning combination for large language models, 2023a.

Sheng Shen, Zhewei Yao, Chunyuan Li, Trevor Darrell, Kurt Keutzer, and Yuxiong He. Scaling vision-language
models with sparse mixture of experts, 2023b. URL https://arxiv.org/abs/2303.07226.

Yikang Shen, Zhen Guo, Tianle Cai, and Zengyi Qin. Jetmoe: Reaching llama2 performance with 0.1m dollars,
2024.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language models using model parallelism, 2020. URL
https://arxiv.org/abs/1909.08053.

Shivalika Singh, Freddie Vargus, Daniel Dsouza, Börje F. Karlsson, Abinaya Mahendiran, Wei-Yin Ko, Herumb
Shandilya, Jay Patel, Deividas Mataciunas, Laura OMahony, Mike Zhang, Ramith Hettiarachchi, Joseph Wil-
son, Marina Machado, Luisa Souza Moura, Dominik Krzemiński, Hakimeh Fadaei, Irem Ergün, Ifeoma Okoh,
Aisha Alaagib, Oshan Mudannayake, Zaid Alyafeai, Vu Minh Chien, Sebastian Ruder, Surya Guthikonda,
Emad A. Alghamdi, Sebastian Gehrmann, Niklas Muennighoff, Max Bartolo, Julia Kreutzer, Ahmet Üstün,
Marzieh Fadaee, and Sara Hooker. Aya dataset: An open-access collection for multilingual instruction tuning,
2024.

Snowflake. Snowflake arctic: The best llm for enterprise ai — efficiently in-
telligent, truly open, 2024a. URL https://www.snowflake.com/blog/
arctic-open-efficient-foundation-language-models-snowflake/.

Snowflake. Snowflake arctic cookbook series: Exploring mixture of ex-
perts (moe), 2024b. URL https://medium.com/snowflake/
snowflake-arctic-cookbook-series-exploring-mixture-of-experts-moe-c7d6b8f14d16.

Luca Soldaini and Kyle Lo. peS2o (Pretraining Efficiently on S2ORC) Dataset, 2023. URL https://
github.com/allenai/pes2o.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur, Ben Bogin,
Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Harsh Jha, Sachin Kumar,
Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik,
Crystal Nam, Matthew E. Peters, Abhilasha Ravichander, Kyle Richardson, Zejiang Shen, Emma Strubell,
Nishant Subramani, Oyvind Tafjord, Pete Walsh, Luke Zettlemoyer, Noah A. Smith, Hannaneh Hajishirzi,
Iz Beltagy, Dirk Groeneveld, Jesse Dodge, and Kyle Lo. Dolma: an open corpus of three trillion tokens for
language model pretraining research, 2024.

Guijin Son, Hanwool Lee, Sungdong Kim, Seungone Kim, Niklas Muennighoff, Taekyoon Choi, Cheonbok
Park, Kang Min Yoo, and Stella Biderman. Kmmlu: Measuring massive multitask language understanding in
korean, 2024. URL https://arxiv.org/abs/2402.11548.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/2104.09864.

23

https://arxiv.org/abs/1904.09728
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1804.04235
https://arxiv.org/abs/2303.07226
https://arxiv.org/abs/1909.08053
https://www.snowflake.com/blog/arctic-open-efficient-foundation-language-models-snowflake/
https://www.snowflake.com/blog/arctic-open-efficient-foundation-language-models-snowflake/
https://medium.com/snowflake/snowflake-arctic-cookbook-series-exploring-mixture-of-experts-moe-c7d6b8f14d16
https://medium.com/snowflake/snowflake-arctic-cookbook-series-exploring-mixture-of-experts-moe-c7d6b8f14d16
https://github.com/allenai/pes2o
https://github.com/allenai/pes2o
https://arxiv.org/abs/2402.11548
https://arxiv.org/abs/2104.09864

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng Dai. Vl-bert: Pre-training of generic
visual-linguistic representations, 2020. URL https://arxiv.org/abs/1908.08530.

Sainbayar Sukhbaatar, Olga Golovneva, Vasu Sharma, Hu Xu, Xi Victoria Lin, Baptiste Rozière, Jacob Kahn,
Daniel Li, Wen tau Yih, Jason Weston, and Xian Li. Branch-train-mix: Mixing expert llms into a mixture-of-
experts llm, 2024. URL https://arxiv.org/abs/2403.07816.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha
Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging big-bench tasks and whether
chain-of-thought can solve them, 2022.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question answering
challenge targeting commonsense knowledge, 2019. URL https://arxiv.org/abs/1811.00937.

Shawn Tan, Yikang Shen, Zhenfang Chen, Aaron Courville, and Chuang Gan. Sparse universal transformer,
2023.

Chaofan Tao, Qian Liu, Longxu Dou, Niklas Muennighoff, Zhongwei Wan, Ping Luo, Min Lin, and Ngai
Wong. Scaling laws with vocabulary: Larger models deserve larger vocabularies, 2024. URL https:
//arxiv.org/abs/2407.13623.

Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models, 2024a.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M. Dai, Anja Hauth, et al. Gemini: A family of highly capable multimodal models,
2023.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer, Damien
Vincent, Zhufeng Pan, Shibo Wang, Soroosh Mariooryad, Yifan Ding, Xinyang Geng, Fred Alcober, Roy
Frostig, Mark Omernick, Lexi Walker, Cosmin Paduraru, Christina Sorokin, Andrea Tacchetti, Colin Gaffney,
Samira Daruki, Olcan Sercinoglu, Zach Gleicher, Juliette Love, Paul Voigtlaender, Rohan Jain, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context, 2024a.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent
Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot, Pier Giuseppe Sessa,
Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex Botev, Alex Castro-Ros, Ambrose Slone, Amélie
Héliou, Andrea Tacchetti, Anna Bulanova, Antonia Paterson, Beth Tsai, Bobak Shahriari, Charline Le Lan,
Christopher A. Choquette-Choo, Clément Crepy, Daniel Cer, Daphne Ippolito, David Reid, Elena Buchatskaya,
Eric Ni, Eric Noland, Geng Yan, George Tucker, George-Christian Muraru, Grigory Rozhdestvenskiy, Henryk
Michalewski, Ian Tenney, Ivan Grishchenko, Jacob Austin, James Keeling, Jane Labanowski, Jean-Baptiste
Lespiau, Jeff Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu, Justin Mao-Jones, Katherine
Lee, Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa Lee, Lucas Dixon, Machel Reid, Maciej Mikuła,
Mateo Wirth, Michael Sharman, Nikolai Chinaev, Nithum Thain, Olivier Bachem, Oscar Chang, Oscar
Wahltinez, Paige Bailey, Paul Michel, Petko Yotov, Rahma Chaabouni, Ramona Comanescu, Reena Jana,
Rohan Anil, Ross McIlroy, Ruibo Liu, Ryan Mullins, Samuel L Smith, Sebastian Borgeaud, Sertan Girgin,
Sholto Douglas, Shree Pandya, Siamak Shakeri, Soham De, Ted Klimenko, Tom Hennigan, Vlad Feinberg,
Wojciech Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao Gong, Tris Warkentin, Ludovic Peran, Minh
Giang, Clément Farabet, Oriol Vinyals, Jeff Dean, Koray Kavukcuoglu, Demis Hassabis, Zoubin Ghahramani,
Douglas Eck, Joelle Barral, Fernando Pereira, Eli Collins, Armand Joulin, Noah Fiedel, Evan Senter, Alek
Andreev, and Kathleen Kenealy. Gemma: Open models based on gemini research and technology, 2024b.
URL https://arxiv.org/abs/2403.08295.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju,
Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan Ferret, Peter Liu, Pouya
Tafti, Abe Friesen, et al. Gemma 2: Improving open language models at a practical size, 2024c. URL
https://arxiv.org/abs/2408.00118.

Jamba Team, Barak Lenz, Alan Arazi, Amir Bergman, Avshalom Manevich, Barak Peleg, Ben Aviram, Chen
Almagor, Clara Fridman, Dan Padnos, Daniel Gissin, Daniel Jannai, Dor Muhlgay, Dor Zimberg, Edden M
Gerber, Elad Dolev, Eran Krakovsky, Erez Safahi, Erez Schwartz, Gal Cohen, Gal Shachaf, Haim Rozenblum,
Hofit Bata, Ido Blass, Inbal Magar, Itay Dalmedigos, Jhonathan Osin, Julie Fadlon, Maria Rozman, Matan
Danos, Michael Gokhman, Mor Zusman, Naama Gidron, Nir Ratner, Noam Gat, Noam Rozen, Oded Fried,
Ohad Leshno, Omer Antverg, Omri Abend, Opher Lieber, Or Dagan, Orit Cohavi, Raz Alon, Ro’i Belson,
Roi Cohen, Rom Gilad, Roman Glozman, Shahar Lev, Shaked Meirom, Tal Delbari, Tal Ness, Tomer
Asida, Tom Ben Gal, Tom Braude, Uriya Pumerantz, Yehoshua Cohen, Yonatan Belinkov, Yuval Globerson,
Yuval Peleg Levy, and Yoav Shoham. Jamba-1.5: Hybrid transformer-mamba models at scale, 2024d. URL
https://arxiv.org/abs/2408.12570.

24

https://arxiv.org/abs/1908.08530
https://arxiv.org/abs/2403.07816
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/2407.13623
https://arxiv.org/abs/2407.13623
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.12570

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

MosaicML NLP Team. Introducing mpt-7b: A new standard for open-source, commercially usable llms, 2023.
URL https://mosaicml.com/blog/mpt-7b.

Qwen Team. Qwen1.5-moe: Matching 7b model performance with 1/3 activated parameters”, February 2024b.
URL https://qwenlm.github.io/blog/qwen-moe/.

Reka Team, Aitor Ormazabal, Che Zheng, Cyprien de Masson d’Autume, Dani Yogatama, Deyu Fu, Donovan
Ong, Eric Chen, Eugenie Lamprecht, Hai Pham, Isaac Ong, Kaloyan Aleksiev, Lei Li, Matthew Henderson,
Max Bain, Mikel Artetxe, Nishant Relan, Piotr Padlewski, Qi Liu, Ren Chen, Samuel Phua, Yazheng Yang,
Yi Tay, Yuqi Wang, Zhongkai Zhu, and Zhihui Xie. Reka core, flash, and edge: A series of powerful
multimodal language models, 2024e. URL https://arxiv.org/abs/2404.12387.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. Llama: Open and efficient foundation language models, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya
Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao,
Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin
Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-
Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet,
Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi
Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen
Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov,
Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey
Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models, 2023b. URL
https://arxiv.org/abs/2307.09288.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada, Shengyi
Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, Nathan Sarrazin, Omar Sanseviero, Alexan-
der M. Rush, and Thomas Wolf. Zephyr: Direct distillation of lm alignment, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need, 2023.

Ben Wang and Aran Komatsuzaki. Gpt-j-6b: A 6 billion parameter autoregressive language model, 2021. URL
https://github.com/kingoflolz/mesh-transformer-jax.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi Song,
Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng, Bill Qian, Yanjun Shao,
Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert Brennan, Hao Peng, Heng Ji, and
Graham Neubig. Opendevin: An open platform for ai software developers as generalist agents, 2024a. URL
https://arxiv.org/abs/2407.16741.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Raghavi Chandu, David
Wadden, Kelsey MacMillan, Noah A. Smith, Iz Beltagy, and Hannaneh Hajishirzi. How far can camels go?
exploring the state of instruction tuning on open resources, 2023.

Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi Zeng, Gerald Shen, Daniel Egert, Jimmy J. Zhang, Makesh Nar-
simhan Sreedhar, and Oleksii Kuchaiev. Helpsteer2: Open-source dataset for training top-performing reward
models, 2024b. URL https://arxiv.org/abs/2406.08673.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V. Le. Finetuned language models are zero-shot learners, 2022.

Tianwen Wei, Bo Zhu, Liang Zhao, Cheng Cheng, Biye Li, Weiwei Lü, Peng Cheng, Jianhao Zhang, Xiaoyu
Zhang, Liang Zeng, Xiaokun Wang, Yutuan Ma, Rui Hu, Shuicheng Yan, Han Fang, and Yahui Zhou.
Skywork-moe: A deep dive into training techniques for mixture-of-experts language models, 2024.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science questions, 2017. URL
https://arxiv.org/abs/1707.06209.

BigScience Workshop, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow,
Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, Jonathan Tow, Alexander M.
Rush, Stella Biderman, Albert Webson, Pawan Sasanka Ammanamanchi, Thomas Wang, Benoı̂t Sagot, Niklas
Muennighoff, et al. Bloom: A 176b-parameter open-access multilingual language model, 2023.

25

https://mosaicml.com/blog/mpt-7b
https://qwenlm.github.io/blog/qwen-moe/
https://arxiv.org/abs/2404.12387
https://arxiv.org/abs/2307.09288
https://github.com/kingoflolz/mesh-transformer-jax
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2406.08673
https://arxiv.org/abs/1707.06209

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Jialin Wu, Xia Hu, Yaqing Wang, Bo Pang, and Radu Soricut. Omni-smola: Boosting generalist multimodal
models with soft mixture of low-rank experts, 2024a. URL https://arxiv.org/abs/2312.00968.

Shaohua Wu, Jiangang Luo, Xi Chen, Lingjun Li, Xudong Zhao, Tong Yu, Chao Wang, Yue Wang, Fei Wang,
Weixu Qiao, Houbo He, Zeru Zhang, Zeyu Sun, Junxiong Mao, and Chong Shen. Yuan 2.0-m32: Mixture of
experts with attention router, 2024b. URL https://arxiv.org/abs/2405.17976.

xAI. Open release of grok-1, 2024. URL https://x.ai/blog/grok-os.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged resources to advance
general chinese embedding, 2023.

Cheng Xu, Shuhao Guan, Derek Greene, and M-Tahar Kechadi. Benchmark data contamination of large language
models: A survey, 2024. URL https://arxiv.org/abs/2406.04244.

Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei Zheng, Wangchunshu Zhou, and Yang You. Openmoe: An
early effort on open mixture-of-experts language models, 2024.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang,
Dong Yan, Fan Yang, Fei Deng, Feng Wang, Feng Liu, Guangwei Ai, Guosheng Dong, Haizhou Zhao, Hang
Xu, Haoze Sun, Hongda Zhang, Hui Liu, Jiaming Ji, Jian Xie, JunTao Dai, Kun Fang, Lei Su, Liang Song,
Lifeng Liu, Liyun Ru, Luyao Ma, Mang Wang, Mickel Liu, MingAn Lin, Nuolan Nie, Peidong Guo, Ruiyang
Sun, Tao Zhang, Tianpeng Li, Tianyu Li, Wei Cheng, Weipeng Chen, Xiangrong Zeng, Xiaochuan Wang,
Xiaoxi Chen, Xin Men, Xin Yu, Xuehai Pan, Yanjun Shen, Yiding Wang, Yiyu Li, Youxin Jiang, Yuchen Gao,
Yupeng Zhang, Zenan Zhou, and Zhiying Wu. Baichuan 2: Open large-scale language models, 2023. URL
https://arxiv.org/abs/2309.10305.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li,
Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang,
Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He,
Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang,
Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang
Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang,
Xipin Wei, Xuancheng Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024a. URL
https://arxiv.org/abs/2407.10671.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir
Press. Swe-agent: Agent-computer interfaces enable automated software engineering, 2024b. URL https:
//arxiv.org/abs/2405.15793.

Zheng-Xin Yong, Hailey Schoelkopf, Niklas Muennighoff, Alham Fikri Aji, David Ifeoluwa Adelani, Khalid
Almubarak, M Saiful Bari, Lintang Sutawika, Jungo Kasai, Ahmed Baruwa, Genta Indra Winata, Stella
Biderman, Edward Raff, Dragomir Radev, and Vassilina Nikoulina. Bloom+1: Adding language support to
bloom for zero-shot prompting, 2023. URL https://arxiv.org/abs/2212.09535.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok, Zhenguo Li,
Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for large language
models, 2024. URL https://arxiv.org/abs/2309.12284.

Longfei Yun, Yonghao Zhuang, Yao Fu, Eric P Xing, and Hao Zhang. Toward inference-optimal mixture-of-
expert large language models, 2024. URL https://arxiv.org/abs/2404.02852.

Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza Ermiş, Acyr Locatelli, and Sara Hooker. Pushing
mixture of experts to the limit: Extremely parameter efficient moe for instruction tuning, 2023. URL
https://arxiv.org/abs/2309.05444.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really
finish your sentence?, 2019. URL https://arxiv.org/abs/1905.07830.

Biao Zhang and Rico Sennrich. Root mean square layer normalization, 2019. URL https://arxiv.org/
abs/1910.07467.

Ge Zhang, Scott Qu, Jiaheng Liu, Chenchen Zhang, Chenghua Lin, Chou Leuang Yu, Danny Pan, Esther Cheng,
Jie Liu, Qunshu Lin, Raven Yuan, Tuney Zheng, Wei Pang, Xinrun Du, Yiming Liang, Yinghao Ma, Yizhi Li,
Ziyang Ma, Bill Lin, Emmanouil Benetos, Huan Yang, Junting Zhou, Kaijing Ma, Minghao Liu, Morry Niu,
Noah Wang, Quehry Que, Ruibo Liu, Sine Liu, Shawn Guo, Soren Gao, Wangchunshu Zhou, Xinyue Zhang,
Yizhi Zhou, Yubo Wang, Yuelin Bai, Yuhan Zhang, Yuxiang Zhang, Zenith Wang, Zhenzhu Yang, Zijian Zhao,
Jiajun Zhang, Wanli Ouyang, Wenhao Huang, and Wenhu Chen. Map-neo: Highly capable and transparent
bilingual large language model series, 2024a. URL https://arxiv.org/abs/2405.19327.

26

https://arxiv.org/abs/2312.00968
https://arxiv.org/abs/2405.17976
https://x.ai/blog/grok-os
https://arxiv.org/abs/2406.04244
https://arxiv.org/abs/2309.10305
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2212.09535
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2404.02852
https://arxiv.org/abs/2309.05444
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/2405.19327

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small language model,
2024b. URL https://arxiv.org/abs/2401.02385.

Qizhen Zhang, Nikolas Gritsch, Dwaraknath Gnaneshwar, Simon Guo, David Cairuz, Bharat Venkitesh, Jakob
Foerster, Phil Blunsom, Sebastian Ruder, Ahmet Ustun, and Acyr Locatelli. Bam! just like that: Simple and
efficient parameter upcycling for mixture of experts, 2024c. URL https://arxiv.org/abs/2408.
08274.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan,
Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig,
Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer. Opt: Open pre-trained transformer
language models, 2022. URL https://arxiv.org/abs/2205.01068.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid Shojanazeri,
Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania, Bernard Nguyen, Geeta Chauhan,
Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch fsdp: Experiences on scaling fully sharded data parallel,
2023.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang
Yue. Opencodeinterpreter: Integrating code generation with execution and refinement. arXiv preprint
arXiv:2402.14658, 2024.

Zexuan Zhong, Mengzhou Xia, Danqi Chen, and Mike Lewis. Lory: Fully differentiable mixture-of-experts for
autoregressive language model pre-training, 2024.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu, Lili
Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy. Lima: Less is more for
alignment, 2023a.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and Le Hou.
Instruction-following evaluation for large language models, 2023b. URL https://arxiv.org/abs/
2311.07911.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew Dai, Zhifeng Chen, Quoc
Le, and James Laudon. Mixture-of-experts with expert choice routing, 2022.

Yanqi Zhou, Nan Du, Yanping Huang, Daiyi Peng, Chang Lan, Da Huang, Siamak Shakeri, David So, Andrew
Dai, Yifeng Lu, Zhifeng Chen, Quoc Le, Claire Cui, James Laudon, and Jeff Dean. Brainformers: Trading
simplicity for efficiency, 2024. URL https://arxiv.org/abs/2306.00008.

Terry Yue Zhuo, Armel Zebaze, Nitchakarn Suppattarachai, Leandro von Werra, Harm de Vries, Qian Liu, and
Niklas Muennighoff. Astraios: Parameter-efficient instruction tuning code large language models, 2024.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and William
Fedus. St-moe: Designing stable and transferable sparse expert models, 2022.

Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim, Hany Hassan, Ruofei Zhang, Tuo Zhao, and Jianfeng Gao.
Taming sparsely activated transformer with stochastic experts, 2022. URL https://arxiv.org/abs/
2110.04260.

Ahmet Üstün, Viraat Aryabumi, Zheng-Xin Yong, Wei-Yin Ko, Daniel D’souza, Gbemileke Onilude, Neel
Bhandari, Shivalika Singh, Hui-Lee Ooi, Amr Kayid, Freddie Vargus, Phil Blunsom, Shayne Longpre, Niklas
Muennighoff, Marzieh Fadaee, Julia Kreutzer, and Sara Hooker. Aya model: An instruction finetuned
open-access multilingual language model, 2024.

27

https://arxiv.org/abs/2401.02385
https://arxiv.org/abs/2408.08274
https://arxiv.org/abs/2408.08274
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2306.00008
https://arxiv.org/abs/2110.04260
https://arxiv.org/abs/2110.04260

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

1 Introduction 1

2 Pretraining and adaptation 2

3 Results 3

4 Experimenting with alternative design choices 5
4.1 Mixture-of-Experts vs. dense . 6

4.2 Expert granularity . 6

4.3 Expert choice vs. token choice . 7

5 MoE analysis 7
5.1 Router saturation . 7
5.2 Expert co-activation . 8

5.3 Domain specialization . 8

5.4 Vocabulary specialization . 9

6 Conclusion 10

A Related work 30

B Additional experiments on alternative design choices 30
B.1 MoE-specific pretraining settings . 31

B.1.1 Shared experts . 31

B.1.2 Sparse upcycling . 31

B.1.3 Load balancing loss . 32

B.1.4 Router z-loss . 33
B.2 General pretraining settings . 34

B.2.1 Dataset experiments . 34

B.2.2 Initialization . 34
B.2.3 RMSNorm . 35
B.2.4 Decaying embedding parameters . 36

B.2.5 QK-Norm . 36

B.2.6 AdamW epsilon . 37

B.3 Adaptation settings . 37

C Training configuration 38

D Evaluation setup 42

E Openness of models 43

F Additional evaluation 45

G Other experiments 49

H Analysis 51
H.1 Details of analysis in §5 . 51

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

H.2 Additional Analysis . 52

I Artifacts 60

J Selecting the number of total and active parameters 60

K Limitations and future work 61

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

A RELATED WORK

Advances in MoEs Current LMs still largely follow the transformer architecture (Vaswani et al.,
2023) with only few architectural changes that have been widely adopted, such as decoder-only
training (Radford et al., 2019), SwiGLU activations (Shazeer, 2020; Dauphin et al., 2017), RoPE (Su
et al., 2023), MQA/GQA (Shazeer, 2019; Ainslie et al., 2023) and RMSNorm (Zhang & Sennrich,
2019). Model sparsity via Mixture-of-Experts is one modification still under active exploration with
some early adoption but most LMs, including Llama 3 (Dubey et al., 2024), still rely on a dense
architecture. There has been a lot of progress in improving the sparsely-gated MoE layer since
its introduction (Shazeer et al., 2017): New routing techniques (Lewis et al., 2021; Roller et al.,
2021; Zuo et al., 2022; Gross et al., 2017; Jaszczur et al., 2021; Dua et al., 2021; Zhong et al., 2024;
Wu et al., 2024b; Muqeeth et al., 2024), fine-grained expert segmentation (Dai et al., 2024; He,
2024), stability (Zoph et al., 2022) and efficiency (Lepikhin et al., 2020; Rajbhandari et al., 2022; Du
et al., 2022; Zhou et al., 2024; Li et al., 2022; Sukhbaatar et al., 2024; Pan et al., 2024; Ren et al.,
2023) improvements. In this work, we perform many experiments to provide insights into training
Mixture-of-Experts LMs. Subsequently, we train OLMOE-1B-7B for 5T tokens. No prior MoE has
been overtrained (Gadre et al., 2024) to this extent to our knowledge making OLMOE-1B-7B the
best testbed to research performance saturation of MoEs vs. dense models. With OLMOE we hope
to facilitate such and other research to help the field uncover whether MoEs should make it into all
future LMs and with what precise configuration.

Open LMs A variety of model families have been proposed under varying degrees of openness
commonly categorized based on whether model weights are available. Closed-weight models include
GPT (Brown et al., 2020; OpenAI et al., 2023), Gemini (Team et al., 2023; 2024a), PaLM (Chowdhery
et al., 2022; Anil et al., 2023), Reka (Team et al., 2024e), and open-weight ones include Llama (Tou-
vron et al., 2023a;b; Dubey et al., 2024), Mistral (Jiang et al., 2023; 2024), Gemma (Team et al.,
2024b;c), Falcon (Almazrouei et al., 2023; Penedo et al., 2023), MPT (Team, 2023), Qwen (Bai et al.,
2023a; Yang et al., 2024a), GLM (GLM et al., 2024), Yi (AI et al., 2024), DeepSeek (DeepSeek-AI
et al., 2024a;b; Dai et al., 2024), Nemotron (Parmar et al., 2024; Nvidia et al., 2024; Wang et al.,
2024b), InternLM (Cai et al., 2024), Baichuan (Yang et al., 2023), Phi (Gunasekar et al., 2023; Li
et al., 2023c; Abdin et al., 2024), StableLM (Bellagente et al., 2024), OPT (Zhang et al., 2022),
Zamba (Glorioso et al., 2024). However, besides model weights, training data and code are key
to enabling scientific research of these models (Longpre et al., 2023b; 2024) and distributing their
benefits broadly (Bommasani et al., 2023). There have been few releases also including data and
code in addition to model weights which we refer to as “fully open-source”: BLOOM (Workshop
et al., 2023; Scao et al., 2022; Muennighoff et al., 2023c; Yong et al., 2023), GPT-NeoX (Black
et al., 2022; 2021; Wang & Komatsuzaki, 2021), StarCoder (Li et al., 2023a; Lozhkov et al., 2024;
Allal et al., 2023; Muennighoff et al., 2023a; Zhuo et al., 2024), Pythia (Biderman et al., 2023),
OLMo (Groeneveld et al., 2024), LLM360 (Liu et al., 2023), Cerebras-GPT (Dey et al., 2023),
DCLM (Li et al., 2024a), MAP-Neo (Zhang et al., 2024a), RWKV (Peng et al., 2023; 2024), and
SmolLM (Allal et al., 2024). For Mixture-of-Experts only OpenMoE (Xue et al., 2024) aims to be
fully open-source, however, its poor performance limits its usefulness. We release OLMOE-1B-7B
as the first state-of-the-art Mixture-of-Experts LM that is fully open-source: model weights, data,
code, and logs.

B ADDITIONAL EXPERIMENTS ON ALTERNATIVE DESIGN CHOICES

In this section, we present an extension of pretraining and adaptation experiments that have led to
OLMOE-1B-7B (also see §4). We group them into experiments on settings specific to Mixture-
of-Experts (§B.1), experiments on settings applicable to both dense LMs and MoEs (§B.2), and
adaptation experiments (§B.3). In pretraining experiments, we often use MMLU Var, a version of
MMLU (Hendrycks et al., 2021a) with varying few-shots and a different format that provides signal
earlier during training. We describe our full evaluation setup in Appendix D and provide additional
experiments in Appendix G. Each experiment links to a Weights & Biases report with more validation
and downstream results, and the full configurations of the runs. To isolate the impact of changes and
minimize confounders, we vary only one hyperparameter for each experiment. Nevertheless, due to
the large number of hyperparameters, some results may change under different configurations and we

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

cannot guarantee the correctness of each of our hyperparameter choices. Models are not comparable
across different experiments, as we vary the base model to incorporate successful findings.

B.1 MOE-SPECIFIC PRETRAINING SETTINGS

B.1.1 SHARED EXPERTS

10 40 70 100130
2.4

2.6

2.8

3.0 Training loss

10 40 70 100130
2.75

3.00

3.25

3.50
Validation loss (C4)

10 40 70 100130

40

60

HellaSwag

 # experts
32 routed
31 routed,
1 shared

10 40 70 100130

30

35

MMLU Var

Pe
rf

or
m

an
ce

Tokens (B)

Figure B1: Shared experts. Both setups have the same number of active and total parameters and
use the same number of FLOPs. 4 of the 32 routed experts are activated, while it is 3 for the 31 routed
experts of the other model, as it has 1 always-active shared expert. We will release Weights & Biases
reports with more results, logs, and configurations.

Dai et al. (2024) propose training with a shared/fixed expert that is always used in addition to the
routed experts. The intuition is to encourage the shared expert to learn common information and
allow the other routed experts to learn more specialized knowledge. This should reduce redundancy
among experts and thus lead to a better model as it can store more total information.

In Figure B1, we benchmark having a single shared and a single routed expert versus two routed
experts. While both settings lead to similar performance, sharing an expert performs slightly worse.
Sharing an expert removes flexibility from the model and thus goes against the findings in §4.2
suggesting that allowing for more expert combinations improves performance. Specifically, the two
models in Figure B1 have (32

4
) = 35, 960 and (31

3
) = 4, 495 possible combinations per layer. Thus,

removing one of the routed experts and turning it into a shared one eliminates almost 90% of possible
combinations. This likely acts as a counterforce to the potential benefits of isolating common knowl-
edge in a shared expert. Based on these results, we do not use shared experts in OLMOE-1B-7B ,
but we do think that there is merit to the idea of experts that are activated more often or even always.
However, rather than enforcing this behavior via a shared expert, we believe that it should be learned
by the model. This is difficult with current setups due to the necessity of a load balancing loss (§B.1.3)
penalizing the model if tokens are not distributed equally among experts. Potential future work can
explore removing the load balancing loss to allow for more flexible usage of experts.

B.1.2 SPARSE UPCYCLING

Komatsuzaki et al. (2023) propose turning a dense model into a Mixture-of-Experts model via sparse
upcycling: (1) The dense MLP is cloned for each desired expert to constitute MoE layers. (2) A newly
initialized router is added in front of each MoE layer. (3) Pretraining continues with the new model so
that the cloned MLPs can gradually specialize in different things and the router can be learned. They
find that the upcycling approach maintains a performance advantage over a language model trained
from scratch for up to 120% of the compute budget of the original dense checkpoint that the sparse
model was upcycled from. For example, if sparsely upcycling a 1.3B parameter model at 2 trillion
tokens then only at 2.4 trillion tokens should an MoE trained from scratch catch up with the upcycled
model. That is, the sparsely upcycled model would have been trained for another 400 billion tokens,
thereby saving the equivalent of up to 2T tokens of compute. Other works such as MiniCPM (Hu
et al., 2024), Qwen2 (Yang et al., 2024a) and reportedly Mixtral (Cai, 2023; Jiang et al., 2024) have
adopted sparse upcycling but only share limited information about their configuration.

In Figure B2, we compare sparse upcycling OLMo-1B (0724) (Groeneveld et al., 2024) with training
an MoE from scratch. We find that after 500B tokens, an otherwise equivalent MoE trained from

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

50 250 450 650
2.5

5.0

7.5

10.0
Training loss

50 250 450 650

3

4

Validation loss (C4)

50 250 450 650

40

60

HellaSwag

Scratch
Upcycle

50 250 450 650
25

30

35
MMLU Var

Pe
rf

or
m

an
ce

Tokens (B)

Figure B2: Sparse upcycling. We upcycle OLMo-1B (0724) at 2T tokens into an MoE with 8 total
experts of which 2 are activated and train it for an additional 610 billion tokens. We compare it to a
model trained from scratch for 610 billion tokens. Except for this difference, both models use the
same config, which includes some suboptimal settings that contribute to the instability, such as no
QK-Norm (§B.2.5) and no truncated normal init (§B.2.2). We will release Weights & Biases reports
with more results, logs, and configurations.

scratch already catches up with the upcycled model on the metrics in Figure B2. At around 600B
tokens, the MoE from scratch starts outperforming the upcycled MoE. Thus, it only requires 25%
of the compute budget of the original dense model to catch up as opposed to the 120% reported
in Komatsuzaki et al. (2023). However, they use expert choice routing and study encoder-decoder
models (Raffel et al., 2023). Meanwhile, we use token choice routing (§4.3) and decoder-only models
(§2). Further, we upcycle a model that has already been significantly overtrained (Gadre et al., 2024),
i.e., a 1B model trained for 2T tokens. Its parameters are likely already in a very optimal range for a
dense model, which may limit the amount of additional exploration possible after upcycling. This
motivates us to experiment with adding noise to the upcycled weights outlined in Appendix G, but
we do not find it to lead to better performance. A large disadvantage of upcycling is that the upcycled
MoE is constrained by some hyperparameters of the dense model. Specifically, OLMo-1B (0724) was
trained without QK-Norm and normal initialization, both of which hurt stability in our experiments
(§B.2.5, §B.2.2). While it may be possible to simply add new QK-Norms and train them from scratch
similar to the new router layer trained from scratch, it is impossible to change the initialization of
the original dense model when upcycling it. Thus, as we want to change these hyperparameters and
also train OLMOE-1B-7B for around 250% of the compute budget of the dense model (5T vs. 2T
tokens), we do not use upcycling.

B.1.3 LOAD BALANCING LOSS

1 5 10

3.5

4.0

4.5

Training loss

1 5 10
0.1

0.2

0.3

0.4
Load balancing loss

1 5 10

4.0

4.5

Validation loss (C4)

1 5 10
3.5

4.0

4.5

Validation loss (Pile)
LBL
No LBL

Pe
rf

or
m

an
ce

Tokens (B)

Figure B3: Impact of applying a load balancing loss (LBL). The training loss plot excludes the
load balancing loss for both models. We will release Weights & Biases reports with more results,
logs, and configurations.

Shazeer et al. (2017) propose the load balancing loss to penalize the model if it is unbalanced, i.e., if
it routes all tokens to only a few experts. This is based on the observation that without such penalty,
models tend to update only a select few experts in each layer (Eigen et al., 2014; Bengio et al., 2016).
To compute the load balancing loss (LLB) we multiply the fraction of tokens fi routed to one expert
Ei with the total routing probability Pi allocated to Ei for one batch and sum it across the number of

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

1 5 10
Tokens (B)

0

50

100

%
 o

f t
ok

en
s

in
 b

at
ch

as
si

gn
ed

 t
o

ex
pe

rt No load balancing

1 5 10
Tokens (B)

Load balancing
Expert 0
Expert 1
Expert 2
Expert 3

Expert 4
Expert 5
Expert 6
Expert 7

Figure B4: Expert assignment during training when using or not using a load balancing loss
for the first MoE layer. We will release Weights & Biases reports with more results, logs, and
configurations.

experts NE :

LLB = NE ⋅
NE

∑
i=1

fi ⋅ Pi (3)

The loss is further scaled by NE and a loss weight α (see Equation 2), which is an optional weight to
determine the magnitude of the loss commonly set to 0.01 (Zoph et al., 2022; Xue et al., 2024). We
do not experiment with changing the weight of 0.01.

In Figure B3 we investigate the performance impact of using the auxiliary load balancing loss. We
find that across training loss and validation losses, using the load balancing loss leads to better
performance even after only a few billion tokens. We still measure the load balancing loss even
when it is not used (“No LBL”) and find that while it spikes initially, it slowly decreases over
the next few billion tokens. This behavior is also visible in Figure B4 (left), where initially all
tokens in the first layer are assigned to the 6th expert (pink). Eventually, the model also starts
assigning some tokens to the 1st expert (yellow). However, all other experts remain largely flat
and are thus “dead weights” that take up GPU memory but are not used. Given these results,
we use the auxiliary load balancing loss with a weight of 0.01 following prior work (Shazeer et al.,

2017; Shen et al., 2024). However, getting rid of the load balancing loss is an important direction for
future research as it constrains the flexibility of the model by forcing it to use all experts approximately
equally. This could prevent the experts from specializing in certain data domains and may be a reason
prior work has failed to find strong evidence of expert specialization (Jiang et al., 2024; Zoph et al.,
2022).

B.1.4 ROUTER Z-LOSS

10 250 500 750

2.5

3.0

3.5

4.0 Training loss

10 250 500 7502.5

3.0

3.5

4.0
Validation loss (C4)

10 250 500 750

40

60

HellaSwag

Z-loss
No
z-loss

10 250 500 750
25

30

35
MMLU Var

Pe
rf

or
m

an
ce

Tokens (B)

Figure B5: Router z-loss. We compare adding router z-loss with a loss weight of 0.001 versus no
additional z-loss. We will release Weights & Biases reports with more results, logs, and configurations.

Zoph et al. (2022) propose the router z-loss to improve both the stability and quality of MoE models.
This auxiliary loss penalizes large logits coming into the gating network. Such large logits can lead
to numeric overflows in the large matrix multiplications happening in the MoE layer. It is computed

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

by exponentiating the logits xj right before the router layer summed across the number of experts
NE and averaged across the batch B, thereby making larger logits lead to a larger loss:

LRZ(x) =
1

B
⋅

B

∑
i=1

(log
NE

∑
j=1

exp(x(i)
j))

2

(4)

The loss is further multiplied with an optional loss weight, β (see Equation 2), to determine the
magnitude of the loss commonly set to 0.001 (Zoph et al., 2022; Shen et al., 2024). We do not
experiment with changing the weight of 0.001.

In Figure B5, we confirm that across training loss, validation loss, and downstream per-
formance adding the router z-loss improves stability (less spikes) and quality (lower loss
and higher downstream performance). Thus, despite it reducing throughput by ∼2%
we use the router z-loss for OLMOE-1B-7B with a weight of 0.001 as in Zoph et al. (2022).

B.2 GENERAL PRETRAINING SETTINGS

B.2.1 DATASET EXPERIMENTS

10 40 70 100 130
2.5

3.0

3.5

4.0
Training loss

10 40 70 100 130

0.3

0.4

0.5

HellaSwag

OLMoE-Mix
Dolma 1.7

10 40 70 100 130

28

30

32
MMLU Var

10 40 70 100 130
20

25

30

ARC-Challenge

Pe
rf

or
m

an
ce

Tokens (B)

Figure B6: OLMOE-MIX vs. Dolma 1.7. We compare our data mix described in §2 with Dolma
1.7 used to train prior OLMo models. Lower training loss does not mean that one dataset is better,
but rather suggests which dataset is easier for the model to learn. We will release Weights & Biases
reports with more results, logs, and configurations.

Li et al. (2024a) release the DCLM-Baseline dataset and establish that it leads to better language mod-
els than Dolma 1.7 and other datasets as measured on common benchmarks like MMLU (Hendrycks
et al., 2021a). This motivates us to mix their DCLM dataset with some components from Dolma 1.7
that we deem to be high-quality; see §2. In Figure B6, we compare our mix, OLMOE-MIX, with
Dolma 1.7 in a controlled setup. We find that OLMOE-MIX leads to clear gains on all three down-
stream metrics, especially MMLU. DCLM-Baseline has been created through a series of dataset abla-
tions targeting MMLU and other downstream metrics, which explains these results. We also compare
adding Reddit and FLAN to our mix as detailed in Appendix G, but do not find consistent performance
gains. We do not have a strong intuition for why adding these datasets does not help and a more auto-
matic approach to dataset mixing may be desirable for future iterations (Liu et al., 2024a; Albalak et al.,
2024). We pretrain using our mix of DCLM-Baseline and Dolma 1.7 dubbed OLMOE-MIX.

B.2.2 INITIALIZATION

Few prior works on Mixture-of-Experts share their initialization strategy. Even the most open MoEs
prior to this work, JetMoE (Shen et al., 2024) and OpenMoE (Xue et al., 2024), do not mention their
initialization scheme. For DeepSeekMoE (Dai et al., 2024) and DeepSeekV2 (DeepSeek-AI et al.,
2024b), the authors share that they use a normal initialization with a standard deviation (std) of 0.006.
For dense language models, a normal initialization with an std of 0.02 has been commonly used as
popularized by Shoeybi et al. (2020).

In Figure B7, we find a truncated normal initialization leads to more stable training and bet-
ter performance than a regular normal initialization. The difference between the two initializa-
tions only becomes clear at around 450 billion tokens, where the model with the normal initial-
ization starts to diverge. This is despite both models using the same configuration except for

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

10 200 400 600

4.0

6.0

8.0 Training loss

10 200 400 6002.5

3.0

3.5

Validation loss (C4)

10 200 400 600

40

60
HellaSwag

Trunc
normal
Normal

10 200 400 600
25

30

MMLU Var

Pe
rf

or
m

an
ce

Tokens (B)

Figure B7: Initialization. We compare a normal initialization with a standard deviation (std) of
0.02 with a truncated normal initialization with a maximum (minimum) cut-off of 0.06 (–0.06)
corresponding to three stds (3×0.02). We will release Weights & Biases reports with more results,
logs, and configurations.

20 40 60 80100
2.2

2.4

2.6

2.8
Training loss

20 40 60 80100

2.8

3.0

3.2

3.4Validation loss (C4)

20 40 60 8010030

40

50

60
HellaSwag

RMS
Non-
para-
metric

20 40 60 80100
26

28

30

MMLU Var

Pe
rf

or
m

an
ce

Tokens (B)

Figure B8: Non-parametric layer normalization vs. RMSNorm. We will release Weights & Biases
reports with more results, logs, and configurations.

the difference in weight initialization. Having to train for hundreds of billions of tokens un-
til an experiment provides a clear signal is one of the key challenges of pretraining ablations.
We use the truncated normal initialization for OLMOE-1B-7B.

B.2.3 RMSNORM

20 40 60 80 100
Tokens (B)

1

2

3 Total gradient norm

RMS
Non-
para-
metric

Figure B10: Total norm of the gra-
dients when training with RMS
or non-parametric normalization.
We increase the logging interval of
the RMS run at 75B tokens, hence
its change in thickness.

OLMo (Groeneveld et al., 2024) uses non-parametric layer nor-
malization (Ba et al., 2016), mainly as it is significantly faster
than the commonly used RMSNorm (Zhang & Sennrich, 2019;
Mehta et al., 2024). This is an unusual choice as most LMs use
RMSNorm, such as the Llama (Touvron et al., 2023a;b; Dubey
et al., 2024), Gemma (Team et al., 2024b;c), and Qwen (Bai
et al., 2023a; Yang et al., 2024a) model families.

In Figure B8, we observe that replacing the non-parametric
layer normalization in OLMo with a parametric RMSNorm
leads to better performance. This is likely because the non-
parametric layer normalization leads to a large number of
spikes in the gradients as seen in Figure B10. We clip gra-
dients at 1.0, which prevents these spikes from leading to very
large and potentially disruptive parameter updates. However,
the clipped gradients may still harm the performance of the
model as they are no longer the true gradients. Thus, de-
spite RMSNorm lowering our training throughput by 15%,
we train our final model with RMSNorm. We include the RMSNorm parameters in weight decay

as we find that it performs slightly better (Figure B9) even though it is common practice to exclude
them.4

4https://github.com/karpathy/minGPT/pull/24#issuecomment-679316025

35

https://github.com/karpathy/minGPT/pull/24#issuecomment-679316025

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

1 10 20 302.2

2.4

2.6

2.8

3.0 Training loss

1 10 20 30

2.8

2.9

Validation loss (C4)

1 10 20 3045

50

55

HellaSwag (Acc %)
Decay
No
decay

1 10 20 30

29

30

MMLU Var (Acc %)

Pe
rf

or
m

an
ce

Tokens (B)

Figure B9: Decaying the RMSNorm parameters. We will release Weights & Biases reports with
more results, logs, and configurations.

5 20 40 60
2.4

2.6

2.8

3.0 Training loss

5 20 40 60
2.8

3.0

3.2

3.4Validation loss (C4)

5 20 40 6030

40

50

HellaSwag

Decay
No
decay

5 20 40 6026

27

28

29

MMLU Var

Pe
rf

or
m

an
ce

Tokens (B)

Figure B11: Decaying the embedding parameters. We will release Weights & Biases reports with
more results, logs, and configurations.

B.2.4 DECAYING EMBEDDING PARAMETERS

Similar to the RMSNorm parameters (§B.2.3), embedding parameters are commonly excluded
from weight decay.5 In Figure B11 we find that whether or not they are decayed has only
a minor impact on performance, with decaying being slightly better. Thus for simplicity,
we weight decay all parameters in OLMOE-1B-7B including embedding and RMSNorm.

B.2.5 QK-NORM

Some works have reported stability improvements from adding layer normalization after the query and
key projections (“QK-Norm”) (Team, 2024a; Mehta et al., 2024; Dehghani et al., 2023). QK-Norm
can prevent the subsequent attention operation from leading to very large logits that may lead to
numeric overflows and destabilize the network, especially when training in low precision. Like
layer normalization at other places in the model, the QK-Norm could be non-parametric or use the
parametric RMSNorm (§B.2.3).

In Figure B12, we compare using QK-Norm with no normalization after the query and key pro-
jections. We find that QK-Norm leads to some stability and performance improvements. We
perform this experiment with non-parametric layer normalization as used in OLMo (Groeneveld
et al., 2024), while we used parametric RMS layer normalization (Zhang & Sennrich, 2019) for
OLMOE-1B-7B (§B.2.3). To ensure the benefit of QK-Norm is not an artifact of comparing with
non-parametric layer normalization, we run another experiment with RMS layer normalization and
still find QK-Norm to lead to slightly better training loss and to prevent a large grad norm spike.6

Thus, we use QK-Norm for OLMOE-1B-7B despite it reducing throughput by almost 10%.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

50 150 250 350

2.5

3.0

3.5

Training loss

50 150 250 350

2.7

2.8

Validation loss (C4)

50 150 250 350

40

60
HellaSwag

QK-Norm
No QK-Norm

50 150 250 350
25

28

30

32
MMLU Var

Pe
rf

or
m

an
ce

Tokens (B)

Figure B12: Query-Key layer normalization (QK-Norm). Both models use non-parametric
layer normalization. QK-Norm corresponds to additional layer normalization of the query and key
projections. We will release Weights & Biases reports with more results, logs, and configurations.

10 20 302

4

6

Training loss

10 20 30
2.8

3.0

3.2

3.4Validation loss (C4)

10 20 3030

40

50

HellaSwag

1E-08
1E-05

10 20 3026

28

30
MMLU Var

Pe
rf

or
m

an
ce

Tokens (B)

Figure B13: AdamW epsilon. We will release Weights & Biases reports with more results, logs, and
configurations.

B.2.6 ADAMW EPSILON

Groeneveld et al. (2024) use an epsilon (“eps”) value of 1E-05 in the AdamW optimizer for training
OLMo. A larger eps value leads to smaller steps of the optimizer but can be more stable (Kingma &
Ba, 2017).

In Figure B13, we find that decreasing eps to the recommended default of 1E-08 (Kingma & Ba,
2017) significantly improves performance while the run remains stable. Thus, we set eps to 1E-08
for our final run.

B.3 ADAPTATION SETTINGS

Table B1: Load balancing loss (Equation 3) over
a subset of the respective corpora prior to scal-
ing with the load balancing loss weight α. While
we use load balancing loss during pretraining, we
do not use it during SFT.

Data (↓) OLMOE-1B-7B
After pretraining After SFT

Wikipedia 8.331 8.367
C4 8.073 8.076
SFT data 8.249 8.250

We experiment with small design choices for
adaptation using our evaluation setup described
in Appendix D. (1) Auxiliary losses: Zoph et al.
(2022) find that using the auxiliary load balanc-
ing loss (§B.1.3) during regular finetuning leads
to small performance gains. For instruction tun-
ing, however, Shen et al. (2023a) do not find
conclusive evidence in favor of using the load
balancing or router z-loss with only small dif-
ferences in performance, both in support of and
against the auxiliary losses. In Table B2 we dis-
play experiments with the load balancing loss
during adaptation and find that not using it leads
to better performance (54.0 vs. 52.8 after in-
struction tuning (SFT) and 57.7 vs. 57.1 after

5https://github.com/karpathy/minGPT/pull/24#issuecomment-679316025
6We will release a Weights & Biases report for this run in our non-anonymized version.

37

https://github.com/karpathy/minGPT/pull/24#issuecomment-679316025

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

preference tuning (DPO)). One potential problem of deactivating the load balancing loss is that it may
harm balance among experts and turn some into dead weights as observed during pretraining in §B.1.3.
However, when measuring the load balancing loss in Table B1 on our SFT data (§2), we find that the
loss only increases by around 0.01% after SFT (8.250 vs. 8.249). This is likely because which experts
certain tokens get routed to is determined early during pretraining, as we find later in the analysis
section (§5.1). We also visualize the activation patterns of experts of the model after pretraining, and
the models after SFT and DPO trained without load balancing in §H.2 (Figure H6) finding that the dis-
tribution remains around the same. Thus, as our models adapted without load balancing perform better
and we find it not to impact routing substantially, we do not use load balancing during adaptation .
(2) Annealing checkpoint: We also experiment with using the checkpoint pre-annealing (§2) for
adaptation and find the checkpoint post-annealing leads to better performance (53.8 vs. 54.0 af-
ter SFT and 56.3 vs 57.7 after DPO), thus we use the post-annealing checkpoint. (3) Preference
algorithm: Since the release of DPO (Direct Preference Optimization) (Rafailov et al., 2023), a
variety of preference algorithms have been proposed (Ethayarajh et al., 2024; Hong et al., 2024;
Meng et al., 2024). We experiment with KTO (Ethayarajh et al., 2024) and find that it matches DPO
in Table B2 for our setup (Appendix C). While we release both models, we use DPO for our final
OLMOE-1B-7B-INSTRUCT model, as it scores higher on AlpacaEval, which has a smaller chance
of data contamination than our other benchmarks (Xu et al., 2024).

Human- Alpaca-
Task (→) MMLU GSM8k BBH Eval Eval 1.0 XSTest IFEval Avg
Setup (→) 0-shot 8-shot CoT 0-shot 0-shot 0-shot 0-shot 0-shot 0-shot

Metric (→) EM EM EM Pass@10 %win F1 Loose Acc

OLMOE-1B-7B
w/o annealing 49.0 2.0 31.5 18.9 - 62.1 18.5 -

+SFT 50.2 43.0 35.6 55.5 68.9 83.8 39.7 53.8
+DPO 50.9 36.0 35.8 58.8 81.7 83.2 47.9 56.3

OLMOE-1B-7B 49.8 3.0 33.6 22.4 - 59.7 16.6 -
+SFT 51.4 40.5 38.0 51.6 69.2 84.1 43.3 54.0
+DPO 51.9 45.5 37.0 54.8 84.0 82.6 48.1 57.7
+KTO 51.2 45.5 34.1 57.1 81.6 86.6 47.5 57.7
+SFT
(load balancing) 50.9 36.5 35.7 52.4 66.9 84.8 42.3 52.8

+DPO
(load balancing) 51.1 42.5 39.3 55.6 82.9 82.1 46.0 57.1

Table B2: Adaptation experiments of OLMOE-1B-7B. We compare using the pretrained checkpoint
prior to annealing for adaptation, using the checkpoint after the additional 100B tokens of annealing,
and using the checkpoint after the additional 100B tokens of annealing and with load balancing loss
(§B.1.3) during adaptation. We apply DPO/KTO to the respective SFT model.

C TRAINING CONFIGURATION

Pretraining We display the pretraining hyperparameter configuration of OLMOE-1B-7B in Ap-
pendix C comparing with other relevant models. We follow Groeneveld et al. (2024) using the
AdamW optimizer (Loshchilov & Hutter, 2019) with ZeRO (Rajbhandari et al., 2020) via PyTorch
FSDP (Zhao et al., 2023) and mixed-precision training (Micikevicius et al., 2018). Our main model
settings differing from Groeneveld et al. (2024) are: (1) MoE-related changes: OLMOE-1B-7B
is a sparsely activated decoder-only transformer (Vaswani et al., 2023) using dropless Mixture-of-
Experts (Gale et al., 2022). Unlike most prior MoEs, we use a high granularity (Dai et al., 2024;
Krajewski et al., 2024) with 64 small experts with an FFN dimension of just 1,024 rather than a few
large experts. We further use two auxiliary losses: router z-loss (Zoph et al., 2022) and load balancing
loss (Shazeer et al., 2017). (2) Stability improvements: (a) We use a truncated normal initialization
with a standard deviation of 0.02 and a minimum (maximum) cut-off of -0.06 (0.06) corresponding
to three standard deviations. (b) We use QK normalization (Team, 2024a; Mehta et al., 2024; De-

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

E6E3E1 ...

...
MoE

Module

Input

 NL x

OLMoE

Norm

+

+

Multi-head Attention

Input

 NL x

Output

Dense LMs (OLMo, Llama...)

Norm

Norm

Feedforward

Network

(FFN)

+

+

Multi-head Attention

Output

Router

Norm

+

Figure C1: Comparison of the architecture of dense LMs and MoE models like OLMOE. The
figure excludes some details, e.g., OLMOE-1B-7B also uses QK-Norm (§B.2.5).

Table C1: Composition of the pretraining data for OLMOE-1B-7B. StarCoder (Li et al., 2023a;
Kocetkov et al., 2022), peS2o (Soldaini & Lo, 2023), and Wiki come from Dolma 1.7 (Soldaini et al.,
2024). arXiv from Red-Pajama (Computer, 2023), OpenWebMath (Paster et al., 2023) and Algebraic
Stack from ProofPile II (Azerbayev et al., 2023). We will make our data publicly available.

Source Doc Type
GPT-NeoX Words

(billions)

UTF-8 Documents
(millions)tokens bytes

(billions) (GB)

DCLM-Baseline web pages 3,860 3,380 16,700 2,950
StarCoder code 101 63.9 325 78.7
peS2o STEM papers 57.2 51.3 268 38.8
arXiv STEM papers 21.1 23.5 88.8 1.55
OpenWebMath math web pages 12.7 10.2 42.4 2.91
Algebraic Stack math proofs code 12.6 9.6 39.3 2.83
English Wikipedia

& Wikibooks encyclopedic 3.69 3.16 16.2 6.17

Total 4,060 3,530 17,400 3,080

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Table C2: Adaptation training data for OLMOE-1B-7B. We mix Tulu 2 (Ivison et al., 2023), No
Robots (Rajani et al., 2023), CodeFeedback (Zheng et al., 2024), MetaMathQA (Yu et al., 2024) and
Daring Anteater (Wang et al., 2024b) for SFT and use a filtered UltraFeedback (Cui et al., 2023; Lin
et al., 2022) for preference tuning. We will make our data publicly available.

Source Domain Samples
Instruction Tuning

Tulu 2 SFT Mix Various 326,154
No Robots Various 9,500
CodeFeedback-Filtered-Instruction Coding 156,526
MetaMathQA Math 98,750
Advanced (non-chat) subset of Daring Anteater Various 17,082

Preference Tuning (DPO (Rafailov et al., 2023))

UltraFeedback binarized and filtered for TruthfulQA contamination Various 60,800

hghani et al., 2023). (c) We use RMSNorm (Zhang & Sennrich, 2019) instead of the non-parametric
LayerNorm used in Groeneveld et al. (2024). (3) Performance improvements: Besides some of
the stability improvements which also impact performance, we also reduce the AdamW epsilon to
1.0E-08 from the 1.0E-05 used in Groeneveld et al. (2024) to speed up convergence. Finally, we train
OLMOE-1B-7B for significantly longer than all prior OLMo models amounting to 5T tokens and
thus more than one epoch (1.3) following Muennighoff et al. (2023b). We shuffle the pretraining
dataset before starting the second epoch. To all data sources (Table C1), we apply a filter that removes
all documents with a sequence of 32 or more repeated n-grams, where an n-gram is any span of 1 to
13 tokens. For the StarCoder subset, we also remove any document from a repository with fewer than
2 stars on GitHub, whose most frequent word constitutes over 30% of the document, or whose top-2
most frequent words constitute over 50% of the document. We shuffle all samples randomly at the
beginning of each epoch and train for a total of 5.133T tokens. During our annealing phase (final
100B tokens), we reshuffle the entire dataset and then linearly decay the learning rate from 5.0E-04
to 0, following prior work (Groeneveld et al., 2024; Li et al., 2024a).

Adaptation For finetuning we use Open Instruct (Wang et al., 2023; Ivison et al., 2023). We
filter all SFT samples to a length of fewer than 4096 tokens to match the sequence length of the
model. Following Muennighoff et al. (2024), we aggregate loss at the token level during SFT to
improve performance on long generative tasks, such as AlpacaEval. We finetune in BF16 with a
global batch size of 128 (4 H100 nodes with 8 GPUs each, a per device batch size of 2, and 2 gradient
accumulation steps). We train for 2 epochs with a constant learning rate of 2.0E-5. For DPO (Rafailov
et al., 2023), we reduce the global batch size to 32 (4 H100 nodes with 8 GPUs each and a per device
batch size of 1). We train for 3 epochs with a learning rate of 5.0E-7 and a DPO beta of 0.1. Our
adapted models are built on top of our annealed checkpoint, and we include the load balancing loss
during both SFT and DPO based on our experiments in §B.3. Our preference tuning recipe is heavily
optimized for DPO based on extensive experiments by Ivison et al. (2023), thus for KTO (Ethayarajh
et al., 2024) we experiment with a few settings in Appendix G. Our final KTO adaptation uses the
same hyperparameters as DPO, except that we use the RMSProp optimizer instead of Adam, which
we use for SFT and DPO, and that we reduce the training duration to 1.3 epochs (5,000 steps) for
KTO instead of the 3 epochs used for DPO.

Hardware We pretrain OLMOE-1B-7B on 256 H100 GPUs for approximately 10 days with
NV-link interconnect across GPUs and InfiniBand interconnect across nodes. We also use H100
GPUs for all our experiments but some use a cluster with GCP TCPx interconnect across nodes
instead. For adaptation, we use 32 H100 GPUs for 33 hours to instruction tune and for another 14
hours to preference tune via DPO. For KTO adaptation we use 8 H100 GPUs for 30 hours instead.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Table C3: Pretraining hyperparameters of OLMOE-1B-7B and comparable models trained
from scratch. We highlight rows where OLMOE-1B-7B differs from OLMo-1B. Active params
include vocab params. “?” = undisclosed settings, FFN = feed-forward network, Attn = Attention,
LR = learning rate, WSD = Weight-Stable-Decay (Hu et al., 2024), LBL = load balancing loss, Inv
Sq Root = Inverse Square Root decay (Shazeer & Stern, 2018), trunc = truncation, std = standard
deviation, “varies” = stds that are layer or weight-dependent.

OLMOE-1B-7B JetMoE OpenMoE OLMo-1B (0724)
Dimension 2,048 2,048 2,048 2,048
Activation SwiGLU SwiGLU SwiGLU SwiGLU
FFN dimension 1,024 5,632 8,192 8,192
Vocab size 50,304 32,000 256,384 50,304
Attn heads 16 16 24 16
Num layers 16 24 32 16
Layer norm type RMSNorm RMSNorm RMSNorm non-parametric
Layer norm eps 1.0E-05 1.0E-05 1.0E-06 1.0E-05
QK-Norm yes no no no
Pos emb. RoPE RoPE RoPE RoPE
RoPE θ 10,000 10,000 10,000 10,000
Attention variant full MoA full full
Biases - MLP & Attn - -
Weight tying no yes no no
Init dist trunc normal ? ? normal
Init std 0.02 0.02 varies varies
Init trunc 3×std - - -
MoE layers Every Every Every 6th -
MoE layer type dMoE dMoE ST-MoE -
Experts 64 8 32 1
Activated 8 2 2 1

Vocab params 103M 66M 525M 103M
Active params 1.3B 2.2B 2.6B 1.3B
Total params 6.9B 8.5B 8.7B 1.3B

Sequence length 4,096 4,096 2,048 4,096
Batch size (samples) 1,024 1,024 2,048 512
Batch size (tokens) ∼4M ∼4M ∼4M ∼2M
warmup steps 2,500 2,500 10,000 2,000
peak LR 4.0E-04 5.0E-04 0.01 4.0E-04
minimum LR 4.0E-05 5.0E-05 - 4.0E-05
optimizer AdamW AdamW Adafactor AdamW
weight decay 0.1 0.1 0.0 0.1
beta1 0.9 ? 0.9 0.9
beta2 0.95 ? - 0.95
AdamW epsilon 1.0E-08 ? - 1.0E-05
LR schedule cosine WSD Inv Sq Root cosine
gradient clipping global 1.0 global 1.0 global 1.0 global 1.0
gradient reduce dtype FP32 ? ? FP32
optimizer state dtype FP32 ? ? FP32
LBL weight 0.01 0.01 0.01 -
Router z-loss weight 0.001 0.001 0.0001 -
Pretraining tokens 5,033B 1,000B 1,100B 2,000B
Annealing tokens 100B 250B - 50B
Annealing schedule linear - - linear
Annealing min LR 0 - - 0

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

D EVALUATION SETUP

Table D1: Summary of downstream evaluation during and after pretraining (OLMES). ARC-C
and ARC-E refer to ARC-Challenge and -Easy (Clark et al., 2018), CSQA=CommonsenseQA (Talmor
et al., 2019), OBQA=OpenBookQA (Mihaylov et al., 2018), other benchmarks are named as in their
original works (Clark et al., 2019; Gordon et al., 2012; Zellers et al., 2019; Hendrycks et al., 2021a;
Bisk et al., 2019; Welbl et al., 2017; Sap et al., 2019; Sakaguchi et al., 2019). CF=Completion/Cloze
formulation, MCF=Multiple-choice formulation, pmi=pointwise-mutual-information, Var=variants
referring to the use of few-shots varying from 0-5.

Dataset (↓)
During pretraining After pretraining (OLMES)

Format Shot Norm Split Format Shot CF Norm Split

ARC-C CF 0 token val max(MCF,CF) 5 pmi test
ARC-E CF 0 none val max(MCF,CF) 5 character test
BoolQ CF 0 none val max(MCF,CF) 5 none val
COPA CF 0 none val - - - -
CSQA CF 0 token val max(MCF,CF) 5 pmi val
HellaSwag CF 0 token val max(MCF,CF) 5 character val
MMLU MCF 5 none val max(MCF,CF) 5 character test
MMLU Var CF 0-5 token val - - - -
OBQA CF 0 token val max(MCF,CF) 5 pmi test
PIQA CF 0 token val max(MCF,CF) 5 character val
SciQ CF 0 none val - - - -
SocialIQA CF 0 token val max(MCF,CF) 5 character val
Winogrande CF 0 none val max(MCF,CF) 5 none val

During pretraining We evaluate using a similar in-loop evaluation setup as Groeneveld et al. (2024),
with the addition of more tasks such as CommonsenseQA, PIQA, and different implementations
of MMLU. Following Groeneveld et al. (2024), for the majority of the tasks, we perform 0-shot
evaluation using the Completion/Cloze formulation (CF), ranking each answer string using language
model probabilities. In terms of probability normalization, there is either no normalization (none) or
normalization by the number of tokens in the answer (token) when ranking solely based on probability
may heavily favor shorter answers (Brown et al., 2020). For MMLU, the in-loop evaluation also
includes a setup where we increase the total number of instances by including a range of 0-shot to
5-shot setups together as we found this provides smoother trends as the training proceeds (“MMLU
Var”). We also include the Multiple-choice formulation (MCF) version of MMLU, scoring prediction
of answer labels like A/B/C/D, which generally starts to rise only later in training as models only
gain the multiple-choice capability later (at around 1T tokens for OLMOE-1B-7B in Figure F3). We
also evaluate perplexity on selected validation sets from Paloma (Magnusson et al., 2023; Reid et al.,
2022; Gao et al., 2020; Soldaini et al., 2024; Liang et al., 2023; Merity et al., 2016). All code used
for evaluation during pretraining will be made available.

After pretraining - OLMES We perform evaluations following the OLMES evaluation stan-
dard (Gu et al., 2024), with the suite of tasks in the original paper. OLMES (Open Language Model
Evaluation Standard) is a standard for reproducible LM evaluations that is open, practical, and docu-
mented, providing recommendations guided by experiments and results from the literature (Biderman
et al., 2024; Gao et al., 2021; Groeneveld et al., 2023). It is designed to support comparisons between
smaller base models that require the Cloze formulation of multiple-choice questions against larger
models that can utilize the Multiple-choice formulation. To make our evaluations reproducible, we
follow OLMES in prompt formatting, choice of in-context examples, probability normalization, task
formulation, as well as all other details. We summarize this setup in Table 2 and refer to Gu et al.
(2024) for more details.

After pretraining - DCLM For results on the DCLM tasks (Li et al., 2024a) in Table F2, we
precisely follow their setup using the evaluation code released by the authors at https://github.
com/mlfoundations/dclm. “Core” results are the low variance tasks in their evaluation
code, while “Extended” corresponds to the heavy tasks.

42

https://github.com/mlfoundations/dclm
https://github.com/mlfoundations/dclm

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

After adaptation After supervised finetuning and direct preference optimization, we evaluate
models using a subset of the evaluations and the same overall setup used in Ivison et al. (2023) and
Wang et al. (2023). We cover a wide range of model capabilities in our evaluation suite including
coding (HumanEval Chen et al. (2021)), general and mathematical reasoning (Big Bench Hard
Suzgun et al. (2022), GSM8k Cobbe et al. (2021)), world knowledge (MMLU), general instruction
following (AlpacaEval 1.0 Li et al. (2023b), not the length-controlled variant (Dubois et al., 2024)),
precise instruction following (IFEval Zhou et al. (2023b)) and safety (XSTest Röttger et al. (2024)).
We refer to Wang et al. (2023) for more details on each benchmark.

E OPENNESS OF MODELS

We list the openness of various models summarized in Figure 1. We exclude Switch Transform-
ers (Fedus et al., 2022), as it was published over three years ago and is very different from more
recent MoE models (MLM objective, Encoder-decoder, etc.).

Grok-86B-314B (xAI, 2024)

• Model: Their model is licensed under the open-source Apache 2.0 license.

• Data: Unavailable.

• Code: Unavailable.

• Logs: Unavailable.

Mixtral-39B-141B and Mixtral-13B-42B (Jiang et al., 2024)

• Model: Their model is licensed under the open-source Apache 2.0 license.

• Data: Unavailable.

• Code: Unavailable.

• Logs: Unavailable.

DBRX-36B-132B (Databricks, 2024)

• Model: The model is licensed under a custom non-open-source license7 with additional
use-case restrictions.8

• Data: Unavailable.

• Code: They use closed-source custom adaptations of their public libraries LLM-foundry,
composer, and megablocks.9

• Logs: Unavailable.

Skywork-MoE-22B-146B (Wei et al., 2024)

• Model: The model is licensed under a custom non-open-source license.10

• Data: Unavailable.

• Code: Unavailable.

• Logs: Unavailable.

7https://www.databricks.com/legal/open-model-license
8https://www.databricks.com/legal/acceptable-use-policy-open-model
9https://github.com/databricks/dbrx

10https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20Community%
20License.pdf

43

https://www.databricks.com/legal/open-model-license
https://www.databricks.com/legal/acceptable-use-policy-open-model
https://github.com/databricks/dbrx
https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20Community%20License.pdf
https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20Community%20License.pdf

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

DeepSeekV2-21B-236B (DeepSeek-AI et al., 2024b) and DeepSeekMoE-3B-14B (Dai et al., 2024)

• Model: The models are licensed under custom non-open-source licenses.11

• Data: Unavailable.

• Code: Unavailable.

• Logs: Unavailable.

Arctic-17B-480B (Snowflake, 2024a)

• Model: The model is licensed under the open-source Apache 2.0 license.

• Data: They describe their mixture but do not release it.12

• Code: Unavailable.

• Logs: Unavailable.

Qwen2-14B-57B (Team, 2024b)

• Model: The model is licensed under the open-source Apache 2.0 license.

• Data: Unavailable.

• Code: Unavailable.

• Logs: Unavailable.

Jamba-12B-52B (Lieber et al., 2024)

• Model: The model is licensed under the open-source Apache 2.0 license.

• Data: Unavailable.

• Code: Unavailable.

• Logs: Unavailable.

Qwen1.5-3B-14B (Team, 2024b)

• Model: The model is licensed under a custom non-open-source license.13

• Data: Unavailable.

• Code: Unavailable.

• Logs: Unavailable.

JetMoE-2B-9B (Shen et al., 2024)

• Model: The model is licensed under the open-source Apache 2.0 license.

• Data: They describe their mixture but do not release it.

• Code: They make their fork of megablocks publicly available,14 however, their Megatron-
LM training code is not available.15

• Logs: Unavailable.
11https://github.com/deepseek-ai/DeepSeek-MoE/blob/main/LICENSE-MODEL and

https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-MODEL
12https://medium.com/snowflake/snowflake-arctic-cookbook-series-arctics-approach-to-data-b81a8a0958bd
13https://hf.co/Qwen/Qwen1.5-MoE-A2.7B/blob/main/LICENSE
14https://github.com/yikangshen/megablocks
15https://hf.co/jetmoe/jetmoe-8b/discussions/5#661ee52c03251697a0b155cc

44

https://github.com/deepseek-ai/DeepSeek-MoE/blob/main/LICENSE-MODEL
https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-MODEL
https://medium.com/snowflake/snowflake-arctic-cookbook-series-arctics-approach-to-data-b81a8a0958bd
https://hf.co/Qwen/Qwen1.5-MoE-A2.7B/blob/main/LICENSE
https://github.com/yikangshen/megablocks
https://hf.co/jetmoe/jetmoe-8b/discussions/5#661ee52c03251697a0b155cc

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

OpenMoE-2B-9B (Xue et al., 2024)

• Model: The model is licensed under the open-source Apache 2.0 license.

• Data: They make scripts for recreating their data available.

• Code: They make their code available.16

• Logs: Unavailable.

OLMOE-1B-7B

• Model: The model is licensed under the open-source Apache 2.0 license.

• Data: The data is licensed under the open-source ODC-By 1.0 license.

• Code: The code is licensed under the open-source Apache 2.0 license.

• Logs: Logs are available with the same open-source license as the code (Apache 2.0).

F ADDITIONAL EVALUATION

30
40
50
60
70

HellaSwag

30

40

50
MMLU

25

30

35

40

45

ARC-Challenge

1×1022 4×1022 7×1022 1×1023

60

70

80
PIQA

1×1022 4×1022 7×1022 1×1023

60

70

80

COPA

1×1022 4×1022 7×1022 1×1023
50

55

60

65

70 WinoGrande

OLMoE-1B-7B
OLMo-1B (0724)
OLMo-7B (0724)

D
ow

ns
tr

ea
m

 a
cc

ur
ac

y
(%

)

Training FLOPs

Figure F1: Evaluation of OLMOE-1B-7B and the current best OLMo models during pretraining.
OLMOE-1B-7B differs from the OLMo models in its MoE architecture, several training hyperpa-
rameters, and its training dataset, see §2. A version of this plot with tokens as the x-axis and markers
where annealing starts is in Appendix F. We will release Weights & Biases reports with more results,
logs, and configurations.

During pretraining In Figure F1 we benchmark the performance of OLMOE-1B-7B during pre-
training with the current best OLMo models (Groeneveld et al., 2024) on commonly used downstream
tasks. We find that across all tasks OLMOE-1B-7B reaches better performance with less compute
(FLOPs) than the dense OLMo models. OLMOE-1B-7B matches or outperforms OLMo-7B at the
end of training despite OLMOE-1B-7B having used less than half as many FLOPs for training and
using only 1B active parameters. This is likely a result of the dataset and modeling changes we
make to the OLMo setup including MoE-related changes, stability, and performance improvements,
outlined in Appendix C. Appendix F contains training and validation loss plots showing very smooth
loss curves without major loss spikes during the 5T tokens of our pretraining.

16https://github.com/XueFuzhao/OpenMoE/tree/main?tab=readme-ov-file#
training-with-tpugpu

45

https://github.com/XueFuzhao/OpenMoE/tree/main?tab=readme-ov-file#training-with-tpugpu
https://github.com/XueFuzhao/OpenMoE/tree/main?tab=readme-ov-file#training-with-tpugpu

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

2.0

3.0

4.0

5.0 Training loss

2.6

2.8

3.0
Validation loss (C4)

2.0

2.2

2.4
Validation loss (The Pile)

0.1 1 2 3 4 5
2.4

2.6

2.8

3.0
Validation loss (Books)

0.1 1 2 3 4 5
2.8

3.0

3.2
Validation loss (Reddit)

0.1 1 2 3 4 5

1.0

1.2

Validation loss (Stack)

Pe
rf

or
m

an
ce

Training tokens (T)

Figure F2: Losses of OLMOE-1B-7B during training. The Books, Reddit, and Stack (Kocetkov
et al., 2022) datasets are from Dolma 1.7 (Soldaini et al., 2024) via Paloma (Magnusson et al., 2023).
We will release Weights & Biases reports with more results, logs, and configurations.

30
40
50
60
70

HellaSwag

30

40

50
MMLU

25

30

35

40

45

ARC-Challenge

0.1 1 2 3 4 5

60

70

80
PIQA

0.1 1 2 3 4 5

60

70

80

COPA

0.1 1 2 3 4 5
50

55

60

65

70 WinoGrande

OLMoE-1B-7B
OLMo-1B (0724)
OLMo-7B (0724)

D
ow

ns
tr

ea
m

 a
cc

ur
ac

y
(%

)

Training tokens (T)

Figure F3: Evaluation of OLMOE-1B-7B and the current best OLMo models during pretraining.
Grey vertical lines correspond to where the respective run enters annealing with the 1st line being for
OLMo-7B, the 2nd for OLMo-1B, and the third for OLMOE-1B-7B. Figure F1 is a version of this
plot with training FLOPs as the x-axis. We will release Weights & Biases reports with more results,
logs, and configurations.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Table F1: More results on OLMES. † indicates use of the MCF score, see Appendix D. See Table 2
for details on naming and a summary of these results.
Model ARC C ARC E BoolQ CSQA HSwag MMLU OBQA PIQA SIQA WinoG Avg

LMs with ∼7-9B active parameters

Mistral-7B 78.6† 90.8† 89.3 72.4† 83.0 64.0† 80.6† 82.8 71.3† 77.9 79.1
OLMo-7B (0724) 68.0† 85.7† 85.3 85.4† 80.5 54.9† 67.6† 79.3 76.1† 73.2 75.6
DCLM-7B 79.8† 92.3† 87.0 77.0 82.3 64.4† 79.6† 80.1 71.2

† 77.3 79.1
Llama2-7B 54.2 84.0 86.1 74.2 78.9 46.2† 57.8 77.5 59.6 71.7 69.0
Llama3.1-8B 79.5† 91.7† 88.5 74.3† 81.6 66.9† 78.6† 81.1 71.4† 76.6 79.0
Gemma2-9B 89.5† 95.5† 89.4 78.8† 87.3† 70.6† 88.4† 86.1† 76.0† 78.8 84.0

LMs with ∼2-3B active parameters

StableLM-2B 50.6† 75.3 82.3 70.4† 70.3 40.4† 56.6† 75.6 64.3† 65.8 65.1
Gemma2-3B 67.5† 84.3† 83.6 66.4† 74.6 53.3† 68.8† 78.5 64.7† 71.8 71.4
JetMoE-2B-9B 61.4† 81.9† 85.7 75.3† 81.7 49.1† 68.0† 80.3 71.3† 70.7 72.5
OpenMoE-3B-9B 29.3 50.6 63.2 21.5 44.4 27.4 34.6 63.3 42.9 51.9† 42.9
DeepSeek-3B-16B 53.4 82.7 81.9 72.7 80.4 45.5† 58.4 80.1 59.9 73.2 68.8
Llama3.2-3B 69.6† 85.1† 78.3 69.0 77.0 57.8† 67.2† 77.4 64.9† 69.9 71.6
Qwen1.5-3B-14B 77.4† 91.6† 85.0 81.4† 80.0 62.4

† 80.6† 81.0 74.1† 72.3 78.6

LMs with ∼1B active parameters

OLMo-1B (0724) 36.4 53.5 66.8 42.4 67.5 32.1 44.2 74.0 45.2 62.9 52.5
TinyLlama-1B 38.1 69.5 63.6 61.1 60.8 33.6 45.0 71.7 50.4 60.1 55.4
Pythia-1B 31.4 63.4 56.8† 50.9 48.0 31.1 40.4 68.9 46.4 52.7 49.0
Llama3.2-1B 43.5 71.6 69.4 59.6 67.3 38.2 42.0 73.7 52.0 62.5 58.0
Zamba2-1B 55.0† 85.4 76.1 70.1 73.4 44.73† 59.8† 76.6 58.4 67.2 66.7
DCLM-1B 57.6† 79.5 80.9 71.3 75.1 48.5† 60.0† 76.6 60.5† 68.1 67.8
OLMOE-1B-7B 62.1† 84.2 79.2 72.9 80.0 54.1† 65.4† 79.8 63.0† 70.2 71.1

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Table F2: DCLM evaluation metrics on the Core and Extended task subsets (Li et al., 2024a).
∗=Core tasks. “annealed” is the final pretraining checkpoint we use for OLMOE-1B-7B and was
annealed from the checkpoint at step 1,200,000. We left the non-annealing pretraining run train a
little longer resulting in the 1,220,000 checkpoint.

OLMOE-1B-7B checkpoint (→) step 1,200,000 step 1,220,000 annealed OLMo-1B OLMo-7B

AGI Eval LSAT-AR∗ 24.3 26.5 28.7 28.3 28.3
AGI Eval LSAT-LR 40.2 38.6 37.3 30.2 42.9
AGI Eval LSAT-RC 47.4 43.7 46.6 23.5 61.6
AGI Eval SAT-En 55.3 54.9 52.9 28.2 73.8
AGI Eval SAT-Math CoT 5.5 4.1 6.4 1.8 6.8
AQuA CoT 2.4 2.9 2.0 2.9 6.1
ARC Challenge∗ 53.3 53.4 53.8 34.6 48.1
ARC Easy∗ 77.1 78.5 77.7 64.4 75.9
BBQ 49.8 48.3 50.6 45.8 67.2
BigBench CS Algorithms∗ 47.1 50.2 47.2 47.5 53.6
BigBench Conceptual Combinations 51.5 50.5 56.3 31.1 68.0
BigBench Conlang Translation 3.7 6.1 7.3 4.3 7.3
BigBench Dyck Languages∗ 19.3 15.9 21.5 26.6 22.2
BigBench Elementary Math QA 26.2 27.0 26.9 26.2 30.4
BigBench Language Identification∗ 31.9 34.0 31.0 27.0 39.1
BigBench Logical Deduction 26.6 25.3 24.6 23.6 27.3
BigBench Misconceptions 59.8 55.3 62.6 55.7 58.0
BigBench Novel Concepts 62.5 62.5 65.6 43.8 53.1
BigBench Operators∗ 36.2 34.3 33.8 23.8 45.2
BigBench QA Wikidata∗ 68.2 68.8 69.2 67.0 69.9
BigBench Repeat Copy Logic∗ 15.6 15.6 18.8 3.1 9.4
BigBench Strange Stories 66.7 68.4 69.5 53.4 66.1
BigBench Strategy QA 56.2 58.1 57.0 51.5 68.6
BigBench Understanding Fables 47.1 44.4 47.6 28.0 61.4
BoolQ∗ 73.3 72.8 73.2 63.7 83.9
COPA∗ 81.0 80.0 78.0 75.0 77.0
CoQA∗ 43.7 44.4 43.7 3.4 45.4
CommonsenseQA∗ 67.2 67.0 69.3 19.6 86.0
Enterprise PII Classification 52.3 53.7 52.2 57.3 50.6
GPQA Diamond 22.2 21.2 19.7 19.7 20.2
GPQA Main 24.8 22.3 22.5 20.3 23.0
GSM8K CoT 6.4 7.4 7.4 4.9 30.6
HellaSwag 0-shot∗ 76.0 76.0 77.0 65.8 76.7
HellaSwag 10-shot∗ 77.6 77.5 78.6 66.3 78.9
Jeopardy∗ 48.8 48.7 50.3 22.6 46.5
LAMBADA∗ 72.7 72.2 73.3 61.1 71.8
LogiQA 34.9 34.3 34.6 28.7 31.0
MMLU Few-shot 52.2 51.9 53.3 28.4 55.1
MMLU Zero-shot 41.6 42.7 43.3 26.2 50.0
Math QA 26.4 27.1 27.5 24.1 29.8
OpenBookQA∗ 41.4 44.0 44.8 36.6 43.4
PIQA∗ 81.3 81.2 82.0 76.4 81.7
PubMedQA 56.1 46.6 57.9 0.2 57.9
SQuAD∗ 52.9 52.4 52.4 0.0 65.5
SVAMP CoT 30.0 28.0 33.0 14.3 44.7
Simple Arithmetic, no spaces 17.6 18.1 20.1 1.2 15.3
Simple Arithmetic, with spaces 19.5 20.6 22.1 1.8 16.0
Social IQA 71.5 70.7 69.3 69.5 84.4
Trivia QA 54.2 53.0 55.9 25.1 51.8
Winogender Female 50.0 46.7 50.0 41.7 58.3
Winogender Male 55.0 58.3 60.0 63.3 58.3
Winograd∗ 82.8 83.2 84.6 79.9 83.2
Winogrande∗ 68.0 68.5 69.0 61.8 67.6

Core 46.3 46.5 47.2 30.2 49.8
Extended 31.3 30.9 32.5 16.9 37.0

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

G OTHER EXPERIMENTS

2.5

3.0

3.5

4.0
Training loss

3.0

3.5

4.0

Validation loss (C4)

2.5

3.0

3.5
Validation loss (The Pile)

30

40

50

HellaSwag

26

28

30

32

MMLU Var

20

25

30

35
ARC-Challenge

40

50

60

ARC-Easy

55

60

65

70

PIQA

50

52

55

58

WinoGrande

10 40 70 100 130
40

50

60

BoolQ

10 40 70 100 130

60

70

80
COPA

10 40 70 100 130

40

42

44

46

SocialIQA

OLMoE-Mix
+Reddit
+FLAN

Pe
rf

or
m

an
ce

Tokens (B)

Figure G1: Adding Reddit or FLAN to OLMOE-MIX. We will release Weights & Biases reports
with more results, logs, and configurations.

Adding Reddit or FLAN to OLMOE-MIX In Figure G1 we benchmark adding the Reddit or
FLAN (Wei et al., 2022) subsets of Dolma 1.7 (Soldaini et al., 2024) to our pretraining data mix (§2).
Overall, we do not find either one to lead to consistent gains, thus we do not use them in our final
data mix.

Load balancing precision Fedus et al. (2022) selectively perform operations related to routing
in full precision (FP32) to improve stability. In Figure G2, we test whether computing the load
balancing loss in full precision improves stability, but do not find it to reduce spikes. Thus, we stick
with bfloat16 (BF16).

Noise upcycling For the creation of Qwen2-MoE (Yang et al., 2024a; Team, 2024b; Bai et al.,
2023a), the authors add 50% of gaussian noise to feedforward networks before continuing training
in an upcycled setup (Komatsuzaki et al., 2023). Komatsuzaki et al. (2023) also report that they
experimented with adding noise but did not find it beneficial. In Figure G3, we experiment with
regular upcycling versus adding noise by randomly replacing 50% of each MLP with numbers drawn

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

10 40 70 100 130

3.0

4.0

5.0

Training loss

10 40 70 100 130

2.7

2.8

2.9
Validation loss (C4)

10 40 70 100 130
55

60

65 HellaSwag

10 40 70 100 130
28

30

32

34
MMLU Var

BF16
FP32Pe

rf
or

m
an

ce

Tokens (B)

Figure G2: Load balancing precision. We will release Weights & Biases reports with more results,
logs, and configurations.

10 250 500 7502

4

6

8
Training loss

10 250 500 750

2.75

3.00

3.25

Validation loss (C4)

10 250 500 750

40

60

HellaSwag

No
noise
Noise

10 250 500 750

30

35 MMLU Var

Pe
rf

or
m

an
ce

Tokens (B)

Figure G3: Adding noise to the upcycled checkpoint. We will release Weights & Biases reports
with more results, logs, and configurations.

from a normal distribution with a standard deviation of 0.02 following. We find that after 700 billion
tokens, the no noise variant still performs slightly better but both appear to converge to the same
performance. If training further, it is possible that the noise variant eventually outperforms the no
noise variant, but at that point, it may make more sense to just train the MoE from scratch (§B.1.2).

50 150 2502

4

6

8
Training loss

50 150 250

3.0

3.2

3.4
Validation loss (C4)

50 150 250

30

40

50
HellaSwag

Dense
Layer-
shared
MoE

50 150 250

26

28

30
MMLU Var

Pe
rf

or
m

an
ce

Tokens (B)

Figure G4: Sharing the same MoE across layers versus a regular dense LM. The number of
experts in the MoE is equivalent to its number of layers. Thus, because the MoE is shared across
layers, it has the same number of total and active parameters as the dense model. We will release
Weights & Biases reports with more results, logs, and configurations.

Shared Layer Some work has investigated Mixture-of-Experts with weights shared across layers in
the context of Universal Transformers (Tan et al., 2023; Csordás et al., 2024; Dehghani et al., 2019).
We test whether layer-shared Mixture-of-Experts can beat non-shared dense models in Figure G4.
The layer-shared MoE uses a load balancing loss that is applied at the model level rather than at
the layer level. This gives the model more flexibility by allowing it to completely deactivate certain
experts for some layers and even emulate a dense model by always activating one separate expert for
each layer. This makes it a generalization of the dense model which motivated our hypothesis that it
may perform better than the dense model. However, in practice, we find that both perform similarly
with the regular dense models even maintaining a small advantage on validation loss and HellaSwag.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

One possible advantage of layer-shared MoEs is that they can allow for better load balancing at
inference. If prompts come in continuously, then newly incoming prompts can be batched with
previous prompts that have already passed through several layers and sent through the MoE module
together, as the MoE module is the same regardless of whether it is the first or last layer. Sharing also
reduces throughput by around 20% during training, which further motivates our decision not to use it
for OLMOE-1B-7B.

KTO experiments In Table G1 we experiment with the number of steps (5,000 vs. 10,000) and the
optimizer (Adam (Kingma & Ba, 2017) vs. RMS) used for KTO (Ethayarajh et al., 2024). Based on
these experiments we use the RMS optimizer and the checkpoint at 5,000 steps in §B.3.

Table G1: KTO adaptation experiments. 5,000 and 10,000 steps correspond to 1.3 and 2.6 epochs
on our adaptation dataset (§2), respectively.

Human- Alpaca-
Task (→) MMLU GSM8k BBH Eval Eval 1.0 XSTest IFEval Avg
Setup (→) 0-shot 8-shot CoT 0-shot 0-shot 0-shot 0-shot 0-shot 0-shot

Metric (→) EM EM EM Pass@10 %win F1 Loose Acc

KTO, 5,000 steps, RMS 51.2 45.5 34.1 57.1 81.6 86.6 47.5 57.7
KTO, 10,000 steps, RMS 51.0 41.0 34.7 53.8 81.0 62.3 47.5 54.2

KTO, 5,000 steps, Adam 51.2 42.0 35.3 55.6 81.0 84.5 46.6 56.0
KTO, 10,000 steps, Adam 51.0 43.0 34.1 54.9 79.7 62.7 47.5 53.3

H ANALYSIS

H.1 DETAILS OF ANALYSIS IN §5

Router saturation We define router saturation as the proportion of expert activations at some
intermediary checkpoint at time t that matches the expert IDs activated at some final checkpoint over
the same dataset:

Router Saturation(t) = 1

N

N

∑
i=1

∣E(t)
i ∩ E(T)

i ∣
k

, (5)

where:

• N : The total number of tokens in the dataset.
• k: The number of top-k experts activated per input token. While we train with k = 8 (§2),

we also analyze k = 1 by only looking at the expert with the highest routing probability.

• E(t)
i : The set of k experts activated for the ith token at the tth checkpoint.

• E(T)
i : The set of k experts activated for the ith token at the final checkpoint T .

• ∣E(t)
i ∩ E(T)

i ∣: The number of common experts activated for the ith token between the tth
and final checkpoints.

Router saturation thus corresponds to whether the router weights are still learning which expert will
process certain data. A value of 100% indicates that the router at the intermediate checkpoint will
route to the same experts as the final checkpoint router. However, even at 100% saturation the router
weight can still change and adapt the exact router probability for each expert. These probabilities
are used to scale the output of the respective expert in the model. For OLMOE-1B-7B with its 64
experts, random routing equals a saturation of 1/64 = 1.6% for k = 1 and 8/64 = 12.5% for k = 8.

Expert co-activation We define expert co-activation as the proportion of times two specific experts,
Ei and Ej , are simultaneously activated out of the total number of activations of one of those experts:

Expert co-activation(Ei, Ej) =
NEi,Ej

NEi

, (6)

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

where:

• Ei: The first expert.
• Ej : The second expert.
• NEi,Ej

: The number of times experts Ei and Ej are activated together.
• NEi

: The total number of times expert Ei is activated.

A co-activation of 100% indicates that if Ei is activated, Ej is also always activated. A value
of 0% indicates that the experts never co-occur. If multiple expert pairs have high co-activation,
it may suggest that these experts could be merged, benefiting less from keeping them separate.
In a distributed setup, we could place highly co-activated experts on the same device to reduce
communication costs during model inference.

Domain specialization We define domain specialization as the proportion of tokens from a particu-
lar domain D that get routed to a particular expert Ei:

Domain specialization(Ei, D) =
N

(k)
Ei,D

ND
, (7)

where:

• Ei: The ith expert in the model.
• D: The domain from which the data originates.
• k: The number of experts considered (e.g., k = 8 means considering the top 8 experts with

the highest routing probabilities).

• N
(k)
Ei,D

: The number of tokens from domain D for which Ei is among the top-k selected
experts.

• ND: The total number of tokens from domain D processed by the MoE.

Domain specialization thus refers to the specialization of expert Ei to domain D. A value of 100%
indicates that all data from that domain is routed to Ei, whereas 0% indicates the expert is never used
for that domain and can be removed from the model without affecting performance in that domain.

Vocabulary specialization We define vocabulary specialization as the proportion of tokens with
a token ID x (also called vocabulary element) that are routed to one particular expert Ei out of all
experts in that layer:

Vocabulary specialization(Ei, x) =
N

(k)
x,Ei

Nx
, (8)

where:

• Ei: The ith expert in the model.
• x: The token ID being analyzed.
• k: The number of experts considered (e.g., k = 8 means considering the top 8 experts with

the highest routing probabilities).
• Nx,Ei

: The number of times input data is routed to Ei for x.
• Nx: The total number of times input data is routed across all experts for x.

Vocabulary specialization thus refers to how specialized a particular expert is on some vocabulary
item. We distinguish input and output variants of this specialization, where x is either the input token
ID or the next output token ID (either the ground-truth next token ID or the token ID predicted by the
model). A value of 100% indicates that for all occurrences of that vocabulary element, input data is
routed to Ei, whereas 0% indicates an expert that is fully irrelevant for that vocabulary element and
can be effectively removed from the model without affecting performance whenever the token ID
appears.

H.2 ADDITIONAL ANALYSIS

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

40 20 43 7 53 5 41 18 31 56 26 4 8 46 50 9

40
20
43

7
53

5
41
18
31
56
26

4
8

46
50

9

Layer 0

0

15

30

45

60

10 13 46 58 60 21 7 62 15 1 29 43 0 31 47 2

10
13
46
58
60
21

7
62
15

1
29
43

0
31
47

2

Layer 15

0

15

30

45

60

Figure H1: Co-activation among experts of OLMOE-1B-7B on a random 0.5% of the C4
validation data. We display the 32 experts with the highest maximum co-activation score via their
expert IDs on the x- and y-axis. See Figure 6 for layer 7.

Table H1: Vocabulary specialization in the 7th layer of OLMOE-1B-7B. We use k = 1 (Equation 8)
and a random 0.5% of the C4 validation data excluding token IDs with <10 appearances. See Table 4
for more.
Expert ID Input token IDs Predicted output token IDs

58 (“ (100%) (” (100%) ‘ (94%) ’ (92%)

“ (92%) ((92%) ” (90%) ’ (89%) “

(88%) $ (87%) [(87%) £ (86%)

such (100%) 486 (100%) see (95%)
which (91%) driving (91%) UK (90%)

who (88%) including (88%) normal (88%)

7 Him (100%) inde (100%) Jesus (98%)
God (90%) pray (81%) Holy (80%)

Quran (80%) God (77%) Lord (76%)

glory (75%) Spirit (66%) Christ (65%)

rella (100%) Him (94%) sin (90%)
prince (80%) glory (72%) Jesus (69%)

Lord (68%) Christ (65%) Spirit (55%)

Holy (53%) God (50%) Prayer (50%)

37 Sunday (100%) Tuesday (100%)

Thursday (100%) Olympic (100%)

Christmas (100%) rugby (100%)

Championship (100%) weekends (100%)

days (91%) anniversary (90%) month

(88%) week (84%) mpi (83%) semester

(81%) mand (80%) Olympics (78%) cent
(76%) season (76%) perm (75%)

0 ESM (100%) icillin (100%) agra (98%)

aust (96%) asa (93%) pills (92%) mg

(85%) uk (82%) login (82%) doc (81%)

generic (81%) cd (81%) Essay (81%)

password (81%) Content (80%)

*, (100%) sil (96%) pills (91%) vi

(90%) xen (87%) pharmacy (87%) gener

(85%) aust (82%) mg (75%) Content

(75%) uk (73%) THAT (73%) dispens

(68%) icillin (68%) generic (66%)

3 grandmother (92%) brother (91%) Daisy

(83%) daughter (78%) mum (75%) father

(72%) wife (70%) husband (70%) lady

(63%) dad (62%) boy (61%)

hood (36%) mother (35%) inde (31%)
boy (29%) girl (28%) married (27%)

tri (21%) Gab (20%) died (18%) taught

(14%) lived (13%) knew (10%)

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

0 1 2 3 4 5 6 7 8 9 101112131415
Layer ID

0

20

40

60

80

Vo
ca

bu
la

ry
 s

pe
ci

al
iz

at
io

n
(%

)

Per layer

0 1 2 3 4 5 6 7 8 27 37 58
Expert ID

Per expert in layer 7

Input token ID
Predicted output token ID
Ground-truth output token ID

Figure H2: Vocabulary specialization of OLMOE-1B-7B across layers and experts. To compute
vocabulary specialization per layer (left) we average the specialization of each expert in that layer.
Dashed lines (right) correspond to the average of layer 7 as depicted left. We display the first 32
experts out of 64. This plot is when k = 1 in Equation 8.

0 1 2 3 4 5 6 7 8 9 101112131415
Layer ID

80

85

90

95

100

Vo
ca

bu
la

ry
 s

pe
ci

al
iz

at
io

n
(%

)

Per layer

0 1 2 3 4 5 6 7 8 27 37 58
Expert ID

0

20

40

60

80

100
Per expert in layer 7

Input token ID
Predicted output token ID
Ground-truth output token ID

Figure H3: Vocabulary specialization for OLMOE-1B-7B when considering all 8 activated
experts. Equivalent to k = 8 in Equation 8.

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031
Layer ID

65

70

75

80

85

90

Vo
ca

bu
la

ry
 s

pe
ci

al
iz

at
io

n
(%

)

Per layer

0 1 2 3 4 5 6 7
Expert ID

0

20

40

60

80

Per expert in layer 7

Input token ID
Predicted output token ID
Ground-truth output token ID

Figure H4: Vocabulary specialization for Mixtral-8x7B when considering all 2 activated experts.
Equivalent to k = 2 in Equation 8.

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

10
20
30
40

GitHub arXiv C4 Books

10
20
30
40

0 50 100

10
20
30
40

0 50 100 0 50 100 0 50 100

Expert 0

Expert 4

Expert 7

Routing Probability (%)

Fr
eq

ue
nc

y
(n

or
m

al
iz

ed
 %

)

10
20
30
40 GitHub arXiv C4 Books

10
20
30
40

0 50 100

10
20
30
40

0 50 100 0 50 100 0 50 100

Expert 0

Expert 4

Expert 7

Routing Probability (%)

Fr
eq

ue
nc

y
(n

or
m

al
iz

ed
 %

)

Figure H5: Vocabulary specialization across domains of OLMOE-1B-7B (top) and Mixtral-8x7B
(bottom). We visualize how often token IDs get routed to specific experts. We only include IDs
that appear at least 8 times in the various corpora. Vertical gray lines correspond to uniform routing
(8/64=12.5% for OLMOE-1B-7B as it has 64 experts, 8 of which are activated; 2/8=25% for Mixtral
as it has 8 experts, 2 of which are activated). For example, among all token IDs in GitHub that
get routed to Expert 0 at least 8 times for OLMOE-1B-7B, ∼40% of them get routed to Expert 0
with a probability of ∼100% (upper left) indicating that Expert 0 is specialized on those token IDs.
For OLMOE-1B-7B there is much frequency at the routing probability extremes (0% or 100%)
indicating that these experts exclusively focus on certain token IDs, especially for specific domains
(§5.3) like GitHub and arXiv.

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

0

100 Layer 0 Layer 7 Layer 15

0

100

0 8 16 24 32 40 48 56
0

100

0 8 16 24 32 40 48 56 0 8 16 24 32 40 48 56

D
om

ai
n

sp
ec

ia
liz

at
io

n
(%

)

Expert ID

OLMoE OLMoE-SFT OLMoE-DPO

Figure H6: Load imbalances in selective layers after adaptation. We visualize how often tokens
from our instruction tuning dataset (§2) get routed to the 8 active experts out of the 64 total experts
(k = 1 in Equation 7). Horizontal gray lines correspond to uniform routing (8/64=12.5% per
expert). Although we run SFT and DPO without loss balancing loss (§B.3), we observe that the load
distribution does not change substantially.

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

0

50
Layer 0 Layer 7 Layer 15

0

50

0

50

0

50

0 8 16 24 32 40 48 56
0

50

0 8 16 24 32 40 48 56 0 8 16 24 32 40 48 56

D
om

ai
n

sp
ec

ia
liz

at
io

n
(%

)

Expert ID

GitHub arXiv Wikipedia Books C4

0

100 Layer 0 Layer 7 Layer 15

0

100

0

100

0

100

0 2 4 6
0

100

0 2 4 6 0 2 4 6

D
om

ai
n

sp
ec

ia
liz

at
io

n
(%

)

Expert ID

Figure H7: Domain specialization of OLMOE-1B-7B (top) vs. Mixtral-8x7B (bottom) of the
top-1 routed expert. We visualize how often tokens from different domains get routed to the 64
(OLMOE) or 8 (Mixtral) experts at the end of pretraining. Unlike in Figure 7, here we only consider
tokens routed to the top-1 expert (k = 1 in Equation 7). Horizontal gray lines correspond to uniform
routing (1/64=1.56% per expert for OLMOE-1B-7B and 1/8=12.5% for Mixtral).

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

2 15 17 21 27 31 36 41 47 49 52 54 other

0 2 4 12 17 21 27 35 42 45 58 other

1 5 8 17 24 30 36 44 57 other

Layer 0

Layer 7

Layer 15
GitHub

0 17 36 38 54 other

2 4 17 35 36 58 other

1 17 34 other

Layer 0

Layer 7

Layer 15
arXiv

3 4 11 17 29 36 42 51 other

27 31 33 42 49 other

1 6 35 41 43 57 63 other

Layer 0

Layer 7

Layer 15
Wikipedia

1 2 5 16 20 28 31 36 38 41 46 49 50 58 59 62 other

3 20 23 28 34 42 48 52 54 55 56 61 62 63 other

1 2 4 13 20 22 23 39 45 47 52 54 55 56 61 62 63 other

Layer 0

Layer 7

Layer 15
Books

Figure H8: OLMOE-1B-7B token routing across layers. We visualize how often tokens from
different domains get routed to a pair of experts across layers under top-1 routing, corresponding to
Figure H7. The size of each rectangle is proportional to the total number of tokens an expert receives,
while the flow between two experts shows the proportion of tokens routed to both experts. We only
show experts that receive tokens 50% above random chance and use stronger coloring for larger flows.
We observe some instances of cross-layer coordination between pairs of experts, e.g., expert 27 in
layer 7 and expert 57 in layer 15 process a substantial fraction of Wikipedia tokens together. The
flows between layers 0 → 7 and 7 → 15 are independent in this visualization.

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Layer 0

Layer 7

Layer 15
GitHub

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Layer 0

Layer 7

Layer 15
arXiv

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Layer 0

Layer 7

Layer 15
Wikipedia

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Layer 0

Layer 7

Layer 15
Books

Figure H9: Mixtral-8x7B token routing across layers. We visualize how often tokens from different
domains get routed to a pair of experts across layers under top-1 routing, corresponding to Figure H7.
The size of each rectangle is proportional to the total number of tokens an expert receives, while the
flow between two experts shows the proportion of tokens routed to both experts. The flows between
layers 0 → 7 and 7 → 15 are independent in this visualization.

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

I ARTIFACTS

Table I1: All artifacts released and used in this work. We point from the name used for a given
artifact in this work (e.g. Figure 1) to the URL where it can be obtained.

Artifact Public link
OLMOE-1B-7B ANONYMIZED
OLMOE-1B-7B-INSTRUCT ANONYMIZED
OLMOE-1B-7B-SFT ANONYMIZED
OLMOE-MIX ANONYMIZED

SFT data ANONYMIZED
ANONYMIZED

KTO/DPO data ANONYMIZED
ANONYMIZED

Code ANONYMIZED

Logs ANONYMIZED
ANONYMIZED

BLOOM-7B https://hf.co/bigscience/bloom-7b1
DeepSeekMoE-3B-16B https://hf.co/deepseek-ai/deepseek-moe-16b-base
DeepSeekMoE-3B-16B+chat https://hf.co/deepseek-ai/deepseek-moe-16b-chat
DCLM-1B https://hf.co/TRI-ML/DCLM-1B
DCLM-7B https://hf.co/TRI-ML/DCLM-7B
Falcon-7B https://hf.co/tiiuae/falcon-7b
Gemma2-3B https://hf.co/google/gemma-2-2b
Gemma2-9B https://hf.co/google/gemma-2-9b
JetMoE-2B-9B https://hf.co/jetmoe/jetmoe-8b
JetMoE-2B-9B+SFT https://hf.co/jetmoe/jetmoe-8b-sft
JetMoE-2B-9B+Chat https://hf.co/jetmoe/jetmoe-8b-chat
Llama-7B https://hf.co/huggyllama/llama-7b
Llama2-7B https://hf.co/meta-llama/Llama-2-7b-hf
Llama3.1-8B https://hf.co/meta-llama/Meta-Llama-3.1-8B
MPT-7B https://hf.co/mosaicml/mpt-7b
Mistral-7B https://hf.co/mistralai/Mistral-7B-v0.1
Mixtral-8x7B https://hf.co/mistralai/Mixtral-8x7B-v0.1
OLMo-1B (0724) https://hf.co/allenai/OLMo-1B-0724-hf
OLMo-7B (0724) https://hf.co/allenai/OLMo-7B-0724-hf
OpenMoE-3B-9B https://hf.co/OrionZheng/openmoe-8b
Pythia-7B https://hf.co/EleutherAI/pythia-6.9b
Qwen1.5-3B-14B https://hf.co/Qwen/Qwen1.5-MoE-A2.7B
Qwen1.5-3B-14B+Chat https://hf.co/Qwen/Qwen1.5-MoE-A2.7B-Chat
StableLM2-2B https://hf.co/stabilityai/stablelm-2-1_6b
TinyLlama-1B https://hf.co/TinyLlama/TinyLlama_v1.1

J SELECTING THE NUMBER OF TOTAL AND ACTIVE PARAMETERS

In addition to what we mention in §4.1, there are three key reasons we select a configuration of 1B
active parameters and 7B total parameters for OLMOE-1B-7B.

Model training 7B total parameters allow for full-parameter training on a single GPU. Specifically,
our model can be trained on one 80GB VRAM GPU (e.g. A100 or H100) as it requires around 70GB
of memory for training the model in 16-bit with an 8-bit optimizer (Anthony et al., 2023). This makes
the model significantly more accessible to researchers who are often constrained by a single GPU and
also bypasses the need for more complicated distributed training across multiple GPUs. A slightly
larger model (e.g. JetMoE-2B-9B) may no longer fit under this setup.

60

ANONYMIZED
ANONYMIZED
ANONYMIZED
ANONYMIZED
ANONYMIZED
https://hf.co/bigscience/bloom-7b1
https://hf.co/deepseek-ai/deepseek-moe-16b-base
https://hf.co/deepseek-ai/deepseek-moe-16b-chat
https://hf.co/TRI-ML/DCLM-1B
https://hf.co/TRI-ML/DCLM-7B
https://hf.co/tiiuae/falcon-7b
https://hf.co/google/gemma-2-2b
https://hf.co/google/gemma-2-9b
https://hf.co/jetmoe/jetmoe-8b
https://hf.co/jetmoe/jetmoe-8b-sft
https://hf.co/jetmoe/jetmoe-8b-chat
https://hf.co/huggyllama/llama-7b
https://hf.co/meta-llama/Llama-2-7b-hf
https://hf.co/meta-llama/Meta-Llama-3.1-8B
https://hf.co/mosaicml/mpt-7b
https://hf.co/mistralai/Mistral-7B-v0.1
https://hf.co/mistralai/Mixtral-8x7B-v0.1
https://hf.co/allenai/OLMo-1B-0724-hf
https://hf.co/allenai/OLMo-7B-0724-hf
https://hf.co/OrionZheng/openmoe-8b
https://hf.co/EleutherAI/pythia-6.9b
https://hf.co/Qwen/Qwen1.5-MoE-A2.7B
https://hf.co/Qwen/Qwen1.5-MoE-A2.7B-Chat
https://hf.co/stabilityai/stablelm-2-1_6b
https://hf.co/TinyLlama/TinyLlama_v1.1

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Model usage on laptops Laptops commonly have around 16GB of RAM, thus 7B parameters
corresponding to 14GB in 16-bit precision perfectly fit into most laptop’s RAM. With the speed of
1B parameters, the configuration of OLMOE-1B-7B could make it an ideal local assistant.

Model usage on phones We have been able to run OLMOE-1B-7B on an iPhone by quantizing
the model to 4-bit after which it requires around 3.5GB (0.5 ∗ 7) of RAM. This is just below the
5GB RAM limit that is commonly imposed for an iOS app17 leaving 1.5GB of RAM for other
functionalities of the app. Thanks to the 1B active params OLMOE-1B-7B runs very fast on
smartphones; we were able to run it at 110 tokens/second on an iPhone 16. This enables applications
that might not make sense with larger and slower models, such as having the model quickly read
multiple long files and summarize them.

K LIMITATIONS AND FUTURE WORK

We highlight four key limitations with this release of OLMOE-1B-7B. We look forward to addressing
these issues in future iterations of OLMOE.

More parameters OLMOE-1B-7B has 7B total parameters out of which 1B are activated for each
input token. This small size makes OLMOE-1B-7B very cheap to use, yet we demonstrate in this
work that it outperforms much more expensive models (Figure 1). We provide further reasons for this
precise configuration in Appendix J. However, using only 1B parameters for each input token also
limits the capabilities of OLMOE-1B-7B as seen by its performance compared to models that use
>7× more parameters, such as Llama3.1-8B in §3. While it may be possible that more parameters are
not needed to match 8B models and beyond (Karpathy, 2024), in the short-term adding parameters is
an easy way to improve the performance of OLMOE. Significantly adding parameters may, however,
make dropless routing (Gale et al., 2022) as used in this work more challenging and may require
expert parallelism (Lepikhin et al., 2020) with token dropping. We note that the DBRX model also
uses dropless routing (Databricks, 2024; Gale et al., 2022) at a scale of 36B active and 132B total
parameters. A different approach to more parameters could be allowing the model to utilize more than
1B parameters per input, possibly via recursion (Dehghani et al., 2019) or agentic workflows (Wang
et al., 2024a; Yang et al., 2024b). Relatedly, changing the allocation of parameters to e.g. vocabulary
versus non-vocabulary parameters is another avenue for improvement (Tao et al., 2024).

More data We train OLMOE-1B-7B for 5 trillion tokens, however, some recent dense models
train significantly longer, such as Llama 3 with 15 trillion tokens (Dubey et al., 2024). To the best
of our knowledge, there has been no large MoE that has been overtrained (Gadre et al., 2024) as
much as OLMOE-1B-7B. Specifically, taking the active parameters of OLMOE-1B-7B, our token
multiplier (Gadre et al., 2024) is around 5,000 (5T / 1B). There are likely benefits to training even
longer, but to what degree overtraining is effective for MoEs and how it differs from dense models
still requires more research (Allen-Zhu & Li, 2024).

Multimodal OLMOE-1B-7B is a text-only large language model, thus it cannot take inputs or
produce outputs in other modalities like images or audio. This limits its utility for the large variety of
multimodal use cases of such models (Huang et al., 2018; Su et al., 2020; Chen et al., 2020; Kiela
et al., 2021; Muennighoff, 2020; Radford et al., 2022; Bai et al., 2023b; Driess et al., 2023; Dubey
et al., 2024). There has been early work on open multimodal MoEs (Mustafa et al., 2022; Lin et al.,
2024a; Li et al., 2024b; Shen et al., 2023b; McKinzie et al., 2024; Wu et al., 2024a) and we look
forward to making future versions of OLMOE a part of that.

Multilingual We pretrain OLMOE-1B-7B on a predominantly English corpus and exclusively
evaluate on English tasks. This may severely limit the usefulness of our model for research on
non-English language models (Lovenia et al., 2024; Singh et al., 2024; Üstün et al., 2024; Enevoldsen
et al., 2024; Son et al., 2024; Xiao et al., 2023). While there has been work on training language-
specific LMs (Luukkonen et al., 2023; Faysse et al., 2024), it is more likely that as we add more
data to build better future iterations of OLMOE we will mix in more non-English data due to data

17https://github.com/thebaselab/codeapp/issues/259

61

https://github.com/thebaselab/codeapp/issues/259

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

constraints (Muennighoff et al., 2023b). This may make future OLMOE models perform better in
non-English languages.

62

	Introduction
	Pretraining and adaptation
	Results
	Experimenting with alternative design choices
	Mixture-of-Experts vs. dense
	Expert granularity
	Expert choice vs. token choice

	MoE analysis
	Router saturation
	Expert co-activation
	Domain specialization
	Vocabulary specialization

	Conclusion
	Related work
	Additional experiments on alternative design choices
	MoE-specific pretraining settings
	Shared experts
	Sparse upcycling
	Load balancing loss
	Router z-loss

	General pretraining settings
	Dataset experiments
	Initialization
	RMSNorm
	Decaying embedding parameters
	QK-Norm
	AdamW epsilon

	Adaptation settings

	Training configuration
	Evaluation setup
	Openness of models
	Additional evaluation
	Other experiments
	Analysis
	Details of analysis in §5
	Additional Analysis

	Artifacts
	Selecting the number of total and active parameters
	Limitations and future work

