
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADAREP: PLUG-AND-PLAY ACCELERATION FOR
WORLD MODEL PREDICTIVE CONTROL USING
ADAPTIVE RE-PLANNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We investigate the integration of model predictive control (MPC) with world mod-
els for robotic control tasks. Existing MPC solvers often replan at every step
or after very few steps, primarily to mitigate the accumulation of world model
prediction errors. However, such frequent replanning incurs substantial computa-
tional costs – especially when using large, complex world models. In this work,
we theoretically characterize the fundamental trade-off between computational
efficiency and control performance in MPC. Our analysis reveals how replanning
frequency, model prediction error, and local dynamics sensitivity jointly influence
MPC performance, as captured by regret bounds. Based on the analysis, we pro-
pose ADAREP, a novel adaptive replanning mechanism for MPC that dynamically
modulates the replanning frequency based on online estimates of world model
prediction error and local dynamics sensitivity. ADAREP is training-free, plug-and-
play, and compatible with various world models and MPC solvers. Experiments on
the VP2 simulation benchmark across diverse tasks, as well as real-world robotic
tasks including door opening and T-block pushing, show that ADAREP achieves
substantial reductions in computation, over 80–90% in the real-world settings while
maintaining or improving task success rates. Code will be made public.

1 INTRODUCTION

This paper studies model predictive control (MPC) combined with learned world models for various
robotic control tasks (Ding et al., 2024; Campbell et al., 2023; Wu et al., 2024; Tian et al., 2023a;
Zhao et al., 2024). Typically, a predictive world model is first trained to forecast future robot and
environment states (e.g., images) based on historical states and robot actions. MPC solvers, such as
the Cross-Entropy Method (CEM) or Model Predictive Path Integral control (MPPI), then sample
multiple action sequences and query the world model to predict their outcomes. Action sequences
that are more likely to achieve the specified goals – based on the predicted future states – are selected
for execution (De Boer et al., 2005; Anderson & Moore, 2007). Fueled by the powerful pretrained
generative models Ho et al. (2020); Rombach et al. (2022), MPC using these generative world models
has been applied to a variety of robotic tasks, including manipulation and navigation Du et al. (2023);
Yang et al. (2023); Wang et al. (2024).

Despite their effectiveness, MPC with learned world models can suffer from computational ineffi-
ciency. As illustrated in Figure 1, to mitigate cumulative prediction errors, many MPC solvers avoid
executing full action plans and instead replan at every step or after only a few steps. This frequent
replanning greatly increases the number of world model queries, leading to higher computational
cost and reduced control frequency due to delays. The use of large, complex world models further
exacerbates this issue.

To this end, we propose ADAREP, a novel adaptive replanning mechanism for MPC. Our key idea is
to dynamically modulate the replanning frequency in MPC. We start by theoretically characterizing
the fundamental trade-off between computation efficiency and control performance in MPC. Our
analysis shows how the MPC regret bounds, which capture the performance, can be jointly affected
by replanning frequency, world model prediction error, and local dynamic sensitivity. We therefore
design an algorithm to adjust the replanning frequency based on online estimates of world model pre-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: An illustration of the computational efficiency–control performance trade-off in MPC and
our ADAREP: Traditional MPC solvers replan frequently to curb cumulative world-model prediction
error, driving up computation. By contrast, ADAREP adjusts replanning frequency on-the-fly
using online estimates of prediction error and local dynamics sensitivity, cutting computation while
preserving control performance.

diction error and local dynamics sensitivity. ADAREP is training-free, plug-and-play, and compatible
with various world models and MPC solvers. An overview of ADAREP can be found in Figure 1.

We conduct an extensive evaluation of our method on both simulated and real-world robotic control,
ranging from the diverse tasks in VP2 simulation benchmark to real-world door opening and T-block
pushing. Overall, when combined with a collection of world models and MPC solvers, ADAREP
demonstrates a substantial reduction of computation – over 80-90% – as measured by number of
function evaluations (NFEs), while maintaining the task success rate. Our additional analysis further
reveals the control scenarios where ADAREP suits better.

To sum up, our contributions are threefold:

• We provide a rigorous regret analysis of MPC replanning strategies, offering theoretical insights
into the computation efficiency-control performance trade-off.

• We develop ADAREP, a practical and efficient plug-and-play adaptive replanning algorithm for
MPC, designed to enhance computational efficiency while maintaining robust control perfor-
mance; unlike prior methods that replan every step, ADAREP decides when to replan.

• We present experimental validation in both simulated and real-world robotic manipulation tasks,
demonstrating the effectiveness and robustness of our proposed adaptive approach compared to
canonical MPC solvers.

2 PRELIMINARIES

Model Predictive Control. We begin by outlining the general formulation for finite-horizon,
discrete-time optimal control, which forms the basis for our discussion. We consider problems
characterized by potentially time-varying costs, dynamics, and constraints. The objective is to
determine state and control trajectories, denoted by x0:T and u0:T−1 respectively, that solve the
following optimization problem:

min
x0:T ,u0:T−1

T−1∑
t=0

ft(xt, ut; ξ
∗
t ) + FT (xT ; ξ

∗
T ) (1)

s.t. xt+1 = gt(xt, ut; ξ
∗
t ), ∀0 ≤ t < T,

st(xt, ut; ξ
∗
t ) ≤ 0, ∀0 ≤ t < T,

x0 = x(0).

Here, xt ∈ Rn represents the system state at time t, and ut ∈ Rm is the control input or action. The
function ft denotes the time-varying stage cost, gt represents the time-varying system dynamics,
and st encapsulates the time-varying constraints. Crucially, these functions are parameterized by ξ∗t ,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

representing unknown ground-truth parameters governing the system’s behavior at time t. FT is a
terminal cost function, parameterized by ξ∗T , applied to the final state xT . The initial state is given by
x(0).

A widely adopted approach for addressing such problems, particularly in online settings where future
parameters ξ∗t are unknown, is Model Predictive Control (MPC). Solving the full-horizon problem
equation 1 directly is often impractical, even if an estimate ξt of the true parameters ξ∗t is available.
Two primary challenges arise:

1. Computational Complexity: Solving the large-scale optimization problem equation 1 can be
computationally prohibitive, especially for long horizons T .

2. Model Mismatch & Error Accumulation: Using an imperfect model (parameterized by ξt
instead of ξ∗t ) over a long horizon can lead to the accumulation of prediction errors, potentially
resulting in significant performance degradation or constraint violations.

To mitigate these issues, MPC employs a receding horizon strategy. At each time step t, given
the current state xt and potentially updated parameter estimates ξt:min(t+k,T )−1, MPC solves a
Finite-Time Optimal Control Problem (FTOCP) over a shorter prediction horizon k.
Definition 2.1 (FTOCP). The Finite-Time Optimal Control Problem (FTOCP) over the horizon
[t1, t2], initialized at state z, using parameters ξt1:t2−1, terminal parameter ζt2 , and terminal cost
function F (·; ·), seeks to find the minimum cost:

ιt2t1(z, ξt1:t2−1, ζt2 ;F ) := min
yt1:t2 ,vt1:t2−1

t2−1∑
t=t1

ft(yt, vt; ξt) + F (yt2 ; ζt2) (2)

s.t. yt+1 = gt(yt, vt; ξt), ∀t1 ≤ t < t2,

st(yt, vt; ξt) ≤ 0, ∀t1 ≤ t < t2,

yt1 = z.

Let ψt2
t1 (z, ξt1:t2−1, ζt2 ;F ) denote a corresponding optimal trajectory solution (yt1:t2 , vt1:t2−1).

The FTOCP equation 2 is solved at the current time t over the horizon [t,min(t+ k, T )] using the
current state xt as the initial state z. From the resulting optimal control sequence vt:min(t+k,T )−1,
only the first control action, ut = vt, is applied to the actual system dynamics gt(·, ·; ξ∗t ). The system
transitions to the next state xt+1, and the process repeats at time t+ 1. A typical implementation is
described in MPC1

k (Algorithm 2).

Measuring Control Performance of MPC. We evaluate online control algorithms (ALG) by
comparing their executed trajectories against the offline optimal trajectory (OPT), which assumes
perfect foresight of ground-truth parameters ξ∗0:T .
Definition 2.2 (Trajectories). Given initial state x0 and parameters ξ∗0:T :

• Executed Trajectory (obtained from ALG): x0
u0−→ · · · uT−1−−−→ xT , where ut is chosen by ALG

and xt+1 = gt(xt, ut; ξ
∗
t ).

• Offline Optimal Trajectory (OPT): x∗0
u∗
0−→ · · ·

u∗
T−1−−−→ x∗T , solving equation 1 with known ξ∗0:T .

Our primary performance metric is dynamic regret (Li et al., 2020; Gandhi et al., 2021; Dogan et al.,
2023; Goel et al., 2019; Fiacco & Ishizuka, 1990), quantifying the cumulative cost difference between
the executed and optimal trajectories due to the online nature of the algorithm:

Regret(ALG) := cost(ALG)− cost(OPT) , (3)

where cost(·) is the total trajectory cost calculated using true parameters ξ∗t :

cost(ALG) :=
T−1∑
t=0

ft(xt, ut; ξ
∗
t ) + FT (xT ; ξ

∗
T ) cost(OPT) :=

T−1∑
t=0

ft(x
∗
t , u

∗
t ; ξ

∗
t ) + FT (x

∗
T ; ξ

∗
T ) .

Measuring Computation Efficiency of MPC. To assess computational efficiency, especially
crucial when using learned world models, we choose Number of Function Evaluations (NFEs): The

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

total number of predictive world model queries made by the MPC solver (e.g., CEM, MPPI) during
one episode (t = 0 to T ). NFE directly reflects the computation cost and potential for acceleration.
Using NFE or similar query counts as a measure of computational efficiency is common practice in
related fields, including optimization (ten Eikelder & van Amerongen, 2023), generative modeling
(Prasad et al., 2024), and large language model planning (Sun et al., 2023).

3 METHODOLOGY

The core objective of our methodology is to enhance the computational efficiency of MPC when using
learned world models, specifically by minimizing the Number of Function Evaluations (NFE), without
significantly compromising control performance, as measured by dynamic regret. More specifically,
we aim to minimize the NFE conditioned on the overall regret is no more than (ε+Regret(MPC1

k))We
achieve this by developing adaptive replanning strategies and analyzing their theoretical properties
and practical effectiveness.

3.1 THEORETICAL ANALYSIS

Standard Model Predictive Control can be computationally demanding. This is particularly true when
employing complex predictive models (e.g., learned world models) and sampling-based optimizers
(e.g., Model Predictive Path Integral control (MPPI)(Williams et al., 2017), Cross-Entropy Method
(CEM)(De Boer et al., 2005)), which may require hundreds or thousands of model queries per control
step.

Natural approaches to accelerate the planning process involve reducing the replanning frequency.
Two such strategies are considered:

• MPCm
k : Execute a fixed number, m ≥ 1, of actions from the computed plan before replanning

(Algorithm 3).

• MPCk,ϵ: Replan only when the system state deviates significantly (by more than a threshold ϵ)
from the previously planned trajectory (Algorithm 4).

Intuitively, reducing the replanning frequency may degrade control performance compared to standard
MPC1

k. We aim to characterize this trade-off between computational savings and performance,
measured by dynamic regret, both theoretically and empirically.

Our theoretical analysis builds upon perturbation analysis techniques (Shin et al., 2020; Lin et al.,
2021; Shin & Zavala, 2021; Xu & Anitescu, 2019; Na & Anitescu, 2022) and adapts the 3-step
analytical pipeline proposed by Lin et al. (2022). Detailed derivations are deferred to Appendices C
and D, while the main theoretical results on dynamic regret are summarized in Table 1.

Table 1: Overview of theoretical regret bounds. Here, L = max0≤t<T Lt and L∗ =

max0≤t≤T max0≤i≤m−1

∏t+i
s=t Ls characterize the sensitivity (Lipschitz constants) of the dynamics

over single and multiple steps, respectively. E represent cumulative prediction errors of the underly-
ing model. Note that when m = 1 or ϵ = 0, our results recover (Lin et al., 2022). NFEs decreases as
m, ϵ, αL and αδ increases. Full table on the characterization of NFE details can be found in Table 2.

Algorithm Reference Regret Bound

MPC1
k Lin et al. (2022) O

(√
L2cost(OPT) · E + L2E

)
MPCm

k Theorem C.4 O
(√

mL2
∗cost(OPT) · E +mL2

∗E
)

MPCk,ϵ Theorem C.6 O
(√

L2cost(OPT) · (E + ϵE + ϵ2T ) + L2(E + ϵE + ϵ2T )
)

MPCAR Theorem C.7 O

(√
cost(OPT)(L2E + ϵ0

α2
L
(ϵ0 +

1
αδ

)T ) + L2E + ϵ0
α2
L
(ϵ0 +

1
αδ

)T

)

Our theoretical analysis reveals that the major additional regret in MPCk,ϵ is ϵL2E + ϵ2L2T , high-
lighting the tradeoff between computational efficiency and control performance. This suggests
choosing more aggressive ϵ when both prediction error E and dynamics sensitivity L are small.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Theoretically, we can set ϵ ∝ exp(−αLL) · exp(−αδE), leveraging the exponential decay property
x exp(−αx) ≤ 1

eα to control regret through parameter α.

However, fixed strategies are suboptimal in practice since both prediction error and dynamics
sensitivity vary significantly over time. We therefore introduce MPCAR (Algorithm 5), which
adaptively adjusts the threshold online, as detailed in the following subsection.

3.2 ADAREP: AN ADAPTIVE REPLANNING MECHANISM

The core idea of ADAREP is to dynamically adjust the replanning strategy based on real-time
performance metrics, specifically model prediction accuracy and local dynamics sensitivity. The
goal is to replan less frequently (saving computation) when the model performs well and the system
behaves predictably, but increase replanning frequency when prediction errors rise or the system
exhibits higher sensitivity. The detailed procedure is implemented in Algorithm 1 and Algorithm 5.

The adaptation relies on metrics computed at each time step. Let (yt:..., vt:...) be the plan computed at
time step t. After applying the first action ut = vt and observing the actual next state xt+1 resulting
from the true dynamics gt(·, ·; ξ∗t ), we calculate:

1. Prediction Error: The deviation between the observed state and the state predicted by the model
gt(·, ·; ξt) used for planning (denoted yt+1 in the plan starting from xt).

δot+1 = ∥xt+1 − yt+1∥ , (4)

where yt+1 = gt(xt, ut; ξt) according to the internal model.

2. Local Dynamics Sensitivity Estimator: An estimate of how much the state changes relative to
the control input magnitude, which provides an empirical measure of the system’s local sensitivity.

L̂t =
∥xt+1 − xt∥
∥ut∥

, (5)

A higher L̂t suggests greater state change per unit control, indicating higher local sensitivity.

3. Threshold Update: Based on the estimators, we update the threshold inversely to the estimators.
Here we simply apply exponential descay.

ϵt = ϵ0 · exp (−αLL̂t) · exp (−αδδ
o
t ) . (6)

Algorithm 1 ADAREP: Adaptive Re-Planning Threshold Update (theoretical version)
Require: action ut, prediction yt+1, base threshold ϵt

1: Calculate prediction error δot using Equation (4)
2: Estimate local dynamics sensitivity L̂t by Equation (5)
3: Update the threshold ϵt by Equation (6)

We also provide theoretical regret analysis for this algorithm in Theorem C.7, which reveals how we
can manipulate the additional regret by simply setting different values of ϵ0, αL, and αδ, with no
reliance on L or E, which is not supported by non-adaptive methods like MPCm

k or MPCk,ϵ.

Implementation Details Practical implementation of our algorithm involves several key details:

1. Sliding Window: The estimators calculated by Equation (4) and Equation (5) are quite noisy.
To achieve more stable update, we apply sliding window to stabilize the adaptation against noisy
single-step measurements. Our sensitive analysis in Section 4.3 demonstrate that sliding window
method are crucial for practical implementations.

2. State Distance Calculation: The method for calculating distances, particularly the prediction
error δot+1 = ∥xt+1 − yt+1∥2 (Equation (4)), depends on the nature of the predictive world
model:

• For state-based world models that directly output predicted state vectors, we compute the
L2-norm (∥·∥2) between the actual and predicted state vectors.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

• For vision-based world models that output predicted images, calculating distances directly
in pixel space is often ineffective. Instead, we first extract semantic features from both
the actual observed image (I(xt+1)) and the predicted image (I(yt+1)) using a pre-trained
feature extractor, such as DINO (Caron et al., 2021). Let ϕ(·) denote this feature extraction
function. The prediction error is then computed in the feature space:

δot+1 = ∥ϕ(I(xt+1))− ϕ(I(yt+1))∥2 . (7)

3. Hyper-parameters Tuning: Our tuning is an upfront and efficient process as it builds upon
the baseline. A practitioner can start with a reasonable fixed threshold ϵ and then simply tune
αL and αδ , which control the adaptation’s sensitivity. Note that we do not need to tune the
algorithm again if we switch the MPC planners (eg. MPPI,CEM).

Finally we remark that ADAREP is a training-free, plug-and-play module that can seamlessly be
adapted to any world models and MPC planners. It can be adapted to any tasks that standard MPC1

k
can handle.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Our experiments are designed to address the following key questions regarding our proposed adaptive
replanning algorithm:

1. Efficiency and Performance: Does our proposed algorithm significantly accelerate the planning
process compared to canonical MPC solvers while maintaining comparable or achieving even
better task performance ? (Figure 2)

2. Generalization: Does the adaptive replanning mechanism generalize effectively across different
predictive world models and diverse manipulation tasks within the simulated environment?
(Figure 2)

3. Real-World Applicability: Can the benefits observed in simulation translate to challenging
real-world robotic planning scenarios using learned world models? (Figure 3)

Simulated Experiments. We conduct simulated experiments using the VP2 benchmark (Tian et al.,
2023b), a control-centric benchmark designed for evaluating video prediction models in manipulation
tasks. This allows us to assess our algorithm’s effectiveness and adaptability across various world
models and tasks in a controlled setting. VP2 utilizes the RoboDesk simulation environment (Kannan
et al., 2021) and provides pre-trained predictive world models relevant to this environment.

The RoboDesk environment features a Franka Emika Panda robot arm situated before a desk with
various objects. We evaluate on the following 7 tasks defined within RoboDesk: pushing buttons (red,
green, blue), opening a slide, opening a drawer, and pushing blocks (upright, flat) off the table.

We test our adaptive replanning approach with two distinct open-source video predictive world models
provided by the VP2 benchmark: SVG (Villegas et al., 2019) and Struct-VRNN (Minderer et al.,
2019). These models represent different architectural choices for video prediction.Here we compare
our adaptive method MPCAR against standard MPC1

k and other non-adaptive method MPCm
k and

MPCk,ϵ.

Real-World Experiments. To assess performance beyond simulation, we conduct real-world
experiments with a Franka Emika Panda robotic arm, as detailed in Appendix E.2. we utilize
state-based world models trained as described in Appendix E.3. We selected two challenging task
categories representing different manipulation types prevalent in real-world scenarios:

1. Open Door: An articulation task requiring precise interaction with a hinged object. We evaluate
on sub-tasks of opening the door to 90◦ and 180◦.

2. Push T-Block: A representative long-horizon rearrangement task. We define three sub-tasks: (i)
translating the T-block to a target position, (ii) rotating the T-block to a target orientation, and
(iii) a combined task of translating and then rotating the T-block.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 2: Results in Simulated Experiments. Here we tune the hyperparameter of the algorithms such
that the performance are almost the same. It is demonstrated that our adaptive method enjoys most
significant compuational savings.

4.2 MAIN RESULTS

Results in Simulated Experiments For all the algorithms, we tune their hyperparameters such
the success rates of all the accelerating methods drop no more than 0.02 compared with standard
MPC1

k. From Appendix F.1 we can see that both MPCm
k and MPCk,ϵ cannot significantly accelerate

compuation and guarantee performance simultaneously. MPCAR, which adopts adaptive re-planning
schedule, have much advantages as shown in Figure 2.

Results in Real-World Experiments Visual demonstrations are detailed in Appendix F.2. Here we
only provide quantitative results. As shown in Figure 3, our adaptive approach MPCAR demonstrates
significant NFE reduction while maintaining or improving success rates across various sub-tasks. It
has much better performance compared with that in the simulator because state-based planning is
more explicit than vision-based planning.

4.3 ANAYLSIS AND DISCUSSIONS

ADAREP achieves greater acceleration with accurate predictions. To investigate the impact
of prediction accuracy on our adaptive algorithm, we conducted additional experiments using a
“disturbed simulator" as the predictive world model which allowed us to directly control the magnitude
of prediction errors introduced into the system. Specifically, we added varying levels of Gaussian
noise to the true simulated state components (robot position/velocity, object position/velocity, and
end-effector position) before feeding them to the planner. We evaluated three distinct levels of
disturbance, with further details provided in Appendix E.6 and results are summarized in Figure 7.

ADAREP achieves greater acceleration when system dynamics are smoother. The effective sen-
sitivity of system dynamics can vary considerably, even within a single manipulation task. Consider
the “open door" task: the dynamics are often highly sensitive when the end-effector interacts with

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Results in Real-World Experiments. MPCAR can maintain strong performance and enjoy
compuational savings simultaneously.

the door near its axis of rotation, as small end-effector movements can induce large angular changes.
Figure 4 illustrates this concept. ADAREP can reduce re-planning frequency more aggressively,
leading to greater computational savings.

Figure 4: Illustration of varying dynamics sensitivity in the "open door" task. Left: Pushing the door far from
its axis often results in more predictable, smoother changes in the door’s state per unit of end-effector motion.
Right: Pushing very close to the axis can lead to more abrupt or sensitive changes. Different colors represent
controls from different plans.

ADAREP maintains performance even in worst-case scenarios. Real-world applications often
present challenges such as large, unexpected prediction errors from the world model or highly
sensitive, difficult-to-control system dynamics. In such adverse conditions, a key strength of MPCAR

is its ability to adapt and prioritize task performance. By continuously monitoring metrics like
prediction error (see Figure 5) and estimated local dynamics sensitivity (Figure 6), our algorithm
automatically reduces its replanning threshold ϵt. This leads to more frequent replanning, effectively
causing MPCAR to behave more like standard MPC1

k, thereby ensuring robustness and maintaining
performance, albeit with reduced computational savings in these demanding situations.

Figure 5: Visualization of prediction error monitoring. The first row shows observed images from the
environment. The second row displays the corresponding images predicted by the world model. The third row
quantifies the prediction error, likely computed in a feature space as Equation (4) using features from DINO
Equation (7). Large discrepancies trigger more frequent replanning.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 6: Visualization of local dynamics sensitivity estimation. The top row shows a sequence of observed
frames. The bottom row displays the corresponding local dynamics sensitivity estimator L̂t, computed using
Equation (8). Higher values indicate more sensitive dynamics, prompting more frequent replanning.

Figure 7: Impact of different levels of state component disturbance,
visual noise, and visual blurriness on the NFE Drop of ADAREP (relative
to standard MPC1

k). Success rates were maintained at almost the same
across all tests. Disturbance and corruption parameters are detailed in
Appendix E.6 and Appendix E.7.

Figure 8: Sensitive Analysis on the
window size.Small W (e.g., 1-5) re-
sults in poor performance while Large
W (e.g., >15) makes performance
plateaus.

ADAREP performs better with more explicit state representations; robust visual features remain
a challenge. As observed in Section 4, ADAREP demonstrates significantly better effectiveness
when coupled with state-based world models compared to vision-based ones. To investigate the
impact of visual input quality on ADAREP when using vision-based world models, we simulated a
scenario with a ‘perfect’ underlying state predictor but introduced various visual corruptions to the
image outputs. This was achieved by adding different levels of Gaussian noise or applying Gaussian
blur to the images generated by an otherwise accurate simulator (details in Appendix E.7). The
results in Figure 7 indicate that even when the underlying state information provided to the planner
is perfectly accurate (from the simulator), the performance of ADAREP (when relying on features
extracted by DINO from these visually corrupted images) degrades significantly in terms of NFE
reduction. This highlights the sensitivity to visual features and suggests that developing more robust
visual feature extractors, or methods to better integrate them with adaptive MPC, is a crucial direction
for future work.

ADAREP is robust to the choice of window size. We conduct additional experiments on the
sensitive analysis of the window size, using the VRNN model. The result in Figure 8 reveals a clear
and intuitive trade-off. Small W results in poor performance. We conjecture that the estimates are too
unstable and noisy, leading to erratic replanning. Large W makes performance plateaus. The system
becomes less responsive, averaging over too much history to react to recent changes. Crucially, the
key takeaway is that ADAREP is robust to the choice of W. There is a wide range of values (W from
8 to 16) that yield strong and stable performance.

5 CONCLUSION

This research addressed the computational demands of Model Predictive Control (MPC) with learned
world models by introducing ADAREP, an adaptive replanning strategy. Our theoretical analysis
elucidated the interplay between replanning frequency, model prediction error, and local dynamics
sensitivity, guiding the design of ADAREP which dynamically adjusts its planning effort based on
online estimates. This training-free, plug-and-play approach demonstrated significant efficiency gains
while preserving or enhancing task success rates. These findings underscore the potential of adaptive
replanning for practical robotic control. Future work should focus on developing more robust visual
features for vision-based models to broaden its applicability.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT AND REPRODUCIBILITY STATEMENT

Ethics Statement We acknowledge and adhere to the ICLR Code of Ethics. This research focuses
on improving computational efficiency in robotic control systems, which has broadly positive societal
implications by making robotic automation more accessible and energy-efficient. Our work does not
involve human subjects, and all experiments were conducted in controlled simulation environments
and with standard robotic hardware. The datasets used (VP2 benchmark, RoboDesk) are publicly
available research benchmarks with appropriate licenses. We do not foresee any direct harmful
applications of our adaptive replanning methodology, as it is a general computational optimization
technique. However, as with any robotics research, we acknowledge that improved robotic capabilities
could potentially be misused in harmful applications, though this is far removed from our specific
technical contributions. We have no conflicts of interest to declare, and this research was conducted
with standard academic integrity practices.

Reproducibility Statement We have made significant efforts to ensure the reproducibility of our
work. Our adaptive replanning algorithm (ADAREP) is described in detail in Algorithm 1 with
complete implementation details provided in Section 3. All experimental settings are specified
in Section 4 and the appendix. The theoretical analysis is complete with full proofs provided in
Appendix D. For the simulated experiments, we used the publicly available VP2 benchmark with
standard evaluation protocols, and all experimental details are provided in Appendix E. The real-world
experimental setup is thoroughly documented in Appendix E.2, including hardware specifications and
data collection procedures. We plan to release our implementation code upon acceptance to facilitate
reproduction of our results. The baseline methods are implemented using established algorithms from
the literature with references provided.

REFERENCES

Brian DO Anderson and John B Moore. Optimal control: linear quadratic methods. Courier
Corporation, 2007.

Andrew Campbell, William Harvey, Christian Weilbach, Valentin De Bortoli, Thomas Rainforth, and
Arnaud Doucet. Trans-dimensional generative modeling via jump diffusion models. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 42217–42257. Curran Associates, Inc., 2023.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial on the
cross-entropy method. Annals of operations research, 134:19–67, 2005.

Jingtao Ding, Yunke Zhang, Yu Shang, Yuheng Zhang, Zefang Zong, Jie Feng, Yuan Yuan, Hongyuan
Su, Nian Li, Nicholas Sukiennik, Fengli Xu, and Yong Li. Understanding world or predicting
future? a comprehensive survey of world models, November 2024.

Ilgin Dogan, Zuo-Jun Max Shen, and Anil Aswani. Regret analysis of learning-based mpc with
partially-unknown cost function, January 2023.

Yilun Du, Sherry Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Josh Tenenbaum, Dale Schuurmans, and
Pieter Abbeel. Learning universal policies via text-guided video generation. Advances in neural
information processing systems, 36:9156–9172, 2023.

Anthony V Fiacco and Yo Ishizuka. Sensitivity and stability analysis for nonlinear programming.
Annals of Operations Research, 27(1):215–235, 1990.

Manan Gandhi, Bogdan Vlahov, Jason Gibson, Grady Williams, and Evangelos A. Theodorou.
Robust model predictive path integral control: Analysis and performance guarantees. IEEE
Robotics and Automation Letters, 6(2):1423–1430, April 2021. ISSN 2377-3766, 2377-3774. doi:
10.1109/LRA.2021.3057563.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Gautam Goel, Yiheng Lin, Haoyuan Sun, and Adam Wierman. Beyond online balanced descent: An
optimal algorithm for smoothed online optimization. Advances in Neural Information Processing
Systems, 32, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Harini Kannan, Danijar Hafner, Chelsea Finn, and Dumitru Erhan. Robodesk: A multi-task reinforce-
ment learning benchmark, 2021.

Yingying Li, Guannan Qu, and Na Li. Online optimization with predictions and switching costs:
Fast algorithms and the fundamental limit. IEEE Transactions on Automatic Control, 66(10):
4761–4768, 2020.

Yiheng Lin, Yang Hu, Guanya Shi, Haoyuan Sun, Guannan Qu, and Adam Wierman. Perturbation-
based regret analysis of predictive control in linear time varying systems. Advances in Neural
Information Processing Systems, 34:5174–5185, 2021.

Yiheng Lin, Yang Hu, Guannan Qu, Tongxin Li, and Adam Wierman. Bounded-regret mpc via per-
turbation analysis: Prediction error, constraints, and nonlinearity. Advances in Neural Information
Processing Systems, 35:36174–36187, 2022.

Matthias Minderer, Chen Sun, Ruben Villegas, Forrester Cole, Kevin P Murphy, and Honglak
Lee. Unsupervised learning of object structure and dynamics from videos. Advances in Neural
Information Processing Systems, 32, 2019.

Sen Na and Mihai Anitescu. Superconvergence of online optimization for model predictive control.
IEEE Transactions on Automatic Control, 68(3):1383–1398, 2022.

Aaditya Prasad, Kevin Lin, Jimmy Wu, Linqi Zhou, and Jeannette Bohg. Consistency policy:
Accelerated visuomotor policies via consistency distillation. arXiv preprint arXiv:2405.07503,
2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Sungho Shin and Victor M Zavala. Controllability and observability imply exponential decay of
sensitivity in dynamic optimization. IFAC-PapersOnLine, 54(6):179–184, 2021.

Sungho Shin, Victor M Zavala, and Mihai Anitescu. Decentralized schemes with overlap for solving
graph-structured optimization problems. IEEE Transactions on Control of Network Systems, 7(3):
1225–1236, 2020.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. Adaplanner: Adaptive
planning from feedback with language models. Advances in neural information processing systems,
36:58202–58245, 2023.

Stefan CM ten Eikelder and Jacobus HM van Amerongen. Resource allocation problems with
expensive function evaluations. European Journal of Operational Research, 306(3):1170–1185,
2023.

Stephen Tian, Yancheng Cai, Hong-Xing Yu, Sergey Zakharov, Katherine Liu, Adrien Gaidon,
Yunzhu Li, and Jiajun Wu. Multi-object manipulation via object-centric neural scattering functions.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 9021–9031, June 2023a.

Stephen Tian, Chelsea Finn, and Jiajun Wu. A control-centric benchmark for video prediction. In
International Conference on Learning Representations, 2023b.

Ruben Villegas, Arkanath Pathak, Harini Kannan, Dumitru Erhan, Quoc V Le, and Honglak Lee.
High fidelity video prediction with large stochastic recurrent neural networks. Advances in Neural
Information Processing Systems, 32, 2019.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xiaofeng Wang, Zheng Zhu, Guan Huang, Xinze Chen, Jiagang Zhu, and Jiwen Lu. Drivedreamer:
Towards real-world-drive world models for autonomous driving. In European Conference on
Computer Vision, pp. 55–72. Springer, 2024.

Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M. Rehg, Byron Boots, and
Evangelos A. Theodorou. Information theoretic MPC for model-based reinforcement learning. In
2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1714–1721, May
2017. doi: 10.1109/ICRA.2017.7989202.

Jialong Wu, Shaofeng Yin, Ningya Feng, Xu He, Dong Li, Jianye Hao, and Mingsheng Long.
ivideogpt: Interactive videogpts are scalable world models. Advances in Neural Information
Processing Systems, 37:68082–68119, 2024.

Wanting Xu and Mihai Anitescu. Exponentially convergent receding horizon strategy for constrained
optimal control. Vietnam Journal of Mathematics, 47(4):897–929, 2019.

Mengjiao Yang, Yilun Du, Kamyar Ghasemipour, Jonathan Tompson, Dale Schuurmans, and Pieter
Abbeel. Learning interactive real-world simulators. arXiv preprint arXiv:2310.06114, 1(2):6,
2023.

Wentao Zhao, Jiaming Chen, Ziyu Meng, Donghui Mao, Ran Song, and Wei Zhang. Vlmpc: Vision-
language model predictive control for robotic manipulation. In Robotics: Science and Systems,
2024.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We acknowledge the use of Large Language Models (LLMs) in this work for the following specific
tasks:

• Writing assistance: Grammar checking, sentence restructuring, and improving clarity of
exposition.

• Code implementation: Implementing well-established baseline methods (CEM, MPPI) based
on existing literature.

• Visualization: Generating and refining figures for data presentation.

Importantly, all core contributions of this work were conceived and developed entirely by the
authors: the adaptive replanning idea, theoretical analysis and proofs, experimental design, novel
algorithmic contributions, interpretation of results, and all scientific insights and conclusions. LLMs
were not used for any creative, analytical, or decision-making aspects of the research.

B ALGORITHM PSEUDOCODES

Algorithm 2 Model Predictive Control (MPC1
k)

Require: Prediction horizon k, initial state x(0), access to predictions ξτ :τ ′|τ , terminal cost function
FT . (Specify intermediate terminal costs Ft for k ≤ t < T if needed for stability/performance).

1: for t = 0, 1, . . . , T − 1 do
2: t′ ← min{t+ k, T}
3: Observe current state xt and obtain predictions ξt:t′|t.
4: Define terminal cost for subproblem: Fterm = Ft′ if t′ < T else FT .
5: Define terminal parameter for subproblem: ζterm = ξt′|t.
6: Solve for (yt:t′ , vt:t′−1) = ψt′

t (xt, ξt:t′−1|t, ζterm;Fterm).
7: Commit the first control action: ut := vt.

C THEORETICAL ANALYSIS

This section provides the detailed theoretical analysis underpinning our results, including assumptions,
key technical lemmas, and regret bounds.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Algorithm 3 Model Predictive Control with Fixed Replan Frequency (MPCm
k )

Require: Prediction horizon k, replan frequency m (1 ≤ m ≤ k), initial state x(0), access to
predictions ξτ :τ ′|τ , terminal cost function FT . (Specify intermediate terminal costs Ft for
k ≤ t < T if needed).

1: t← 0
2: while t < T do
3: t′ ← min{t+ k, T}
4: Observe current state xt and obtain predictions ξt:t′|t.
5: Define terminal cost for subproblem: Fterm = Ft′ if t′ < T else FT .
6: Define terminal parameter for subproblem: ζterm = ξt′|t.
7: Solve for (yt:t′ , vt:t′−1) = ψt′

t (xt, ξt:t′−1|t, ζterm;Fterm).
8: Determine number of steps to commit: mcommit = min(m,T − t).
9: Commit the first mcommit control actions: uτ := vτ for τ = t, . . . , t+mcommit − 1.

10: t← t+mcommit

Algorithm 4 Model Predictive Control with Fixed Threshhold (MPCk,ϵ)
Require: Prediction horizon k, threshold ϵ, initial state x(0), access to predictions ξτ :τ ′|τ , terminal

cost function FT . (Specify intermediate terminal costs Ft for k ≤ t < T if needed).
1: t← 0
2: tplan ← 0
3: while t < T do
4: if t == tplan then
5: t′ ← min{t+ k, T}
6: Observe current state xt and obtain predictions ξt:t′|t.
7: Define terminal cost Fterm = Ft′ if t′ < T else FT .
8: Define terminal parameter ζterm = ξt′|t.
9: Solve for: (yt:t′ , vt:t′−1) = ψt′

t (xt, ξt:t′−1|t, ζterm;Fterm).
10: ut := vt.
11: Execute action ut in environment.
12: Observe next state xt+1.
13: if ∥xt+1 − yt+1∥ > ϵ then
14: tplan ← t+ 1
15: else
16: if t+ 1 == t′ then
17: tplan ← t+ 1

18: t← t+ 1

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 5 Model Predictive Control with Adaptive Re-Planning (ADAREP) (MPCAR)
Require: Prediction horizon k, threshold ϵ, initial state x(0), access to predictions ξτ :τ ′|τ , terminal

cost function FT . (Specify intermediate terminal costs Ft for k ≤ t < T if needed).
1: t← 0
2: tplan ← 0
3: while t < T do
4: if t == tplan then
5: t′ ← min{t+ k, T}
6: Observe current state xt and obtain predictions ξt:t′|t.
7: Define terminal cost Fterm = Ft′ if t′ < T else FT .
8: Define terminal parameter ζterm = ξt′|t.
9: Solve for: (yt:t′ , vt:t′−1) = ψt′

t (xt, ξt:t′−1|t, ζterm;Fterm).
10: ut := vt.
11: Execute action ut in environment.
12: Observe next state xt+1.
13: Update threshold ϵt+1 using Algorithm 1
14: if ∥xt+1 − yt+1∥ > ϵt+1 then
15: tplan ← t+ 1
16: else
17: if t+ 1 == t′ then
18: tplan ← t+ 1

19: t← t+ 1

Algorithm 6 ADAREP: Adaptive Re-Planning Threshold Update (practical version)
Require: Buffers Dδ,DL, action ut, prediction yt+1, base threshold ϵt

1: Calculate prediction error δot using Eq. equation 4
2: Estimate local dynamics sensitivity L̂t by

L̂t =
∥xt+1 − xt∥
∥ut∥+ ε

, (8)

3: Update buffer Dδ ← UPDATEBUF(Dδ, δ,W ), DL ← UPDATEBUF(DL, L̂,W )
4: Update the threshold ϵt ← ϵ0 · exp (−αδmean(Dδ)) · exp (−αLmean(DL))

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 2: Summary of theoretical regret bounds and NFE. Here, L = max0≤t<T Lt and L∗ =

max0≤t≤T max0≤i≤m−1

∏t+i
s=t Ls characterize the sensitivity (Lipschitz constants) of the dynamics

over single and multiple steps, respectively. E represent cumulative prediction errors of the underlying
model; they have slightly different forms but are conceptually similar for comparison purposes. Note
that when m = 1 or ϵ = 0, our results recover (Lin et al., 2022). And S is the sample size of the
planner at each step. Nϵ, Nϵ,α ≤ T is the total number of plans that decreases as ϵ, αL and αδ

increases.
Algorithm Regret Bound NFE

MPC1
k O

(√
L2cost(OPT) · E + L2E

)
TkS

MPCm
k O

(√
mL2

∗cost(OPT) · E +mL2
∗E

)
⌈T/m⌉kS

MPCk,ϵ O
(√

L2cost(OPT) · (E + ϵE + ϵ2T ) + L2(E + ϵE + ϵ2T )
)

NϵkS

MPCAR O

(√
cost(OPT)(L2E + ϵ0

α2
L
(ϵ0 +

1
αδ

)T ) + L2E + ϵ0
α2
L
(ϵ0 +

1
αδ

)T

)
Nϵ,αkS

C.1 ASSUMPTIONS AND NOTATIONS

Our analysis largely follows the framework established by Lin et al. (2022). We impose the following
standard assumptions throughout this section:

• Stability of OPT: The offline optimal trajectory (x∗0:T , u
∗
0:T−1) is bounded. There exists a

constant Dx∗ > 0 such that ∥x∗t ∥ ≤ Dx∗ for all states x∗t on the optimal trajectory (0 ≤ t ≤ T ).

• Lipschitz Dynamics: The ground-truth dynamics function gt(·, ·; ξ∗t ) is Lipschitz continuous
with respect to both state and action. There exists a constant Lt such that for any feasible states
xt, x

′
t and actions ut, u′t:

∥gt(xt, ut; ξ∗t )− gt(x′t, u′t; ξ∗t )∥ ≤ Lt(∥xt − x′t∥+ ∥ut − u′t∥). (9)

• Cost Function Regularity: Every stage cost ft(·, ·; ξ∗t ) and the terminal cost FT (·; ξ∗T ) are
non-negative, convex, and ℓ-smooth with respect to (xt, ut) and xT , respectively, for some
ℓ > 0.

We note a slight strengthening compared to Lin et al. (2022), who only required the dynamics
gt(·, ·; ξ∗t ) to be Lipschitz continuous with respect to the action ut. Our stronger assumption (Lipschitz
continuity w.r.t. both state xt and action ut) is utilized specifically in the analysis of MPCm

k
(Algorithm 3). The analysis for MPCk,ϵ (Algorithm 4) does not require this modification and holds
under the weaker assumption.

When the context is clear, we use the shorthand gt(·, ·) := gt(·, ·; ξ∗t ), ft(·, ·) := ft(·, ·; ξ∗t ), and
FT (·) := FT (·; ξ∗T ) to simplify notation.

C.2 PERTURBATION ANALYSIS

Our analysis relies heavily on perturbation bounds for the Finite-Time Optimal Control Problem
(FTOCP, see Definition 2.1), which characterize how the optimal solution changes in response to
perturbations in parameters or initial states. Prior works (Shin et al., 2020; Lin et al., 2021; Shin
& Zavala, 2021; Xu & Anitescu, 2019; Na & Anitescu, 2022) have established such bounds, often
locally, for various FTOCP instances. We adopt the generalized forms presented by Lin et al. (2022):

(a) Parameter Perturbations (fixed initial state z): Let ψt2
t1 (z, ξ;F )v denote the optimal control

sequence from the FTOCP solution. Then,∥∥∥ψt2
t1 (z, ξt1:t2 ;F )vt − ψ

t2
t1

(
z, ξ′t1:t2 ;F

)
vt

∥∥∥ ≤ ( t2∑
s=t1

q1(s− t1)δs

)
∥z∥+

t2∑
s=t1

q2(s− t1)δs,

(10)
where δs := ∥ξs − ξ′s∥ for s ∈ [t1, t2]. The scalar functions q1, q2 represent sensitivity decay
and satisfy limt→∞ qi(t) = 0 and

∑∞
t=0 qi(t) ≤ Ci for constants Ci ≥ 1, i = 1, 2.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(b) Initial State Perturbation (fixed parameters ξ): Let ψt2
t1 (z, ξ;F )yt/vt

denote the state or control
component at time t of the optimal solution. Then,∥∥∥ψt2

t1 (z, ξt1:t2 ;F )yt/vt
− ψt2

t1 (z
′, ξt1:t2 ;F )yt/vt

∥∥∥ ≤ q3(t−t1) ∥z − z′∥ , for t ∈ [t1, t2], (11)

where the sensitivity decay function q3 satisfies
∑∞

t=0 q3(t) ≤ C3 for some constant C3 ≥ 1.

Intuitively, bound equation 10 suggests that errors in parameter predictions further in the future have
a diminishing impact on the current optimal action. Bound equation 11 implies a form of stability:
the effect of an initial state perturbation decays over time within the planned trajectory.

While these perturbation bounds are powerful, proving they hold globally can be challenging; often,
they are established locally around a nominal trajectory. For a practical predictive control system
designed to track an optimal trajectory, it is reasonable to expect the executed trajectory to remain
relatively close to the (unknown) optimal one. Building on this, we adopt the following property,
similar to Lin et al. (2022), which posits that these bounds hold within a certain region around the
optimal trajectory OPT. Let B(x,R) denote the closed ball of radius R centered at x.
Property C.1. There exists a constant R1 > 0 such that the perturbation bounds equation 10 and
equation 11 hold under the following specifications, assuming the underlying parameter sets Ξt

contain the relevant parameters:

• Bound equation 10 holds for t1 = t, t2 = t + k (where t < T − k) with terminal function
F = I (identity), initial state z ∈ B(x∗t , R1), parameters ξ′t:t+k−1 = ξ∗t:t+k−1 (ground truth),
and ξt:t+k being any valid parameters within the family.

• Bound equation 10 holds for t1 = t, t2 = T (where t ≥ T − k) with terminal function F = FT ,
initial state z ∈ B(x∗t , R1), parameters ξ′t:T = ξ∗t:T , and ξt:T being any valid parameters.

• Bound equation 11 holds for any t1, t2, any initial states z, z′ ∈ B(x∗t1 , R1), and ground-truth
parameters ξt1:t2 = ξ∗t1:t2 .

We quantify the quality of the parameter predictions ξt+τ |t (prediction of ξ∗t+τ made at time t)
available to the online controller.
Definition C.1 (Prediction Error). The prediction error at time t for lead time τ ≥ 0 is ρt,τ :=∥∥ξt+τ |t − ξ∗t+τ

∥∥.

A key challenge in analyzing online algorithms via regret is the state mismatch: the online algorithm’s
state xt generally differs from the offline optimal state x∗t . Directly comparing the online action ut
to the offline optimal action u∗t is therefore insufficient. Inspired by techniques in reinforcement
learning (Lin et al., 2021), Lin et al. (2022) utilized a per-step error comparing the online action ut to
the optimal action u∗t|t from the current state xt. For analyzing MPCm

k , where actions are based on
plans made at earlier times t′, we introduce a conditional variant.
Definition C.2 (Per-Step Error). The per-step error et incurred by a predictive online controller
ALG at time step t is defined as the distance between its actual action ut and the clairvoyant optimal
action, i.e.,

et :=
∥∥∥ut − u∗t|t∥∥∥ =

∥∥ut − ψT
t (xt, ξ

∗
t:T ;FT )vt

∥∥ , where ut = ALG(xt, ξt:t+k|t)vt .

The clairvoyant optimal trajectory starting from xt is defined as x∗t:T |t := ψT
t (xt, ξ

∗
t:T ;FT )yt:T

.

Definition C.3 (Conditional Per-Step Error). The conditional per-step error et incurred by a pre-
dictive online controller ALG at time step t given time step t′ is defined as the distance between its
actual action ut and the clairvoyant optimal action given t′

et|t′ :=
∥∥∥ut − u∗t|t′∥∥∥ =

∥∥ut − ψT
t′ (xt′ , ξ

∗
t′:T ;FT )vt

∥∥ , where ut = ALG(xt′ , ξt′:t′+k|t′)vt
.

The clairvoyant optimal trajectory starting from xt is defined as x∗t:T |t := ψT
t (xt, ξ

∗
t:T ;FT )yt:T

.

What’s described above are adequate to analyze the regret of MPCm
k (Algorithm 3) and MPCk,ϵ

(Algorithm 4). However, when it comes to the analysis of MPCAR (Algorithm 5), additional
assumptions have to be made.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The core idea of ADAREP is to monitor and estimate local dynamic sensitivity and prediction error
based on observation. Previous assumptions only characterize how performance or deviation can be
upper bounder by local dynamic sensitivity and prediction error, but do not reveal how local dynamic
sensitivity and prediction error can be estimated by ground-truth observation. In the light of this, we
introduce the following properties, which gives the inequalities on the opposite direction of eq. (9)
and Equation (10).

• Lipschitz Dynamics: For all ∥ut∥ > 0, there exist 0 < λ < 0 such that

λLt ∥ut∥ ≤ ∥gt(xt, ut; ξ∗t )− xt∥ ≤ Lt ∥ut∥ .

• Parameter Perturbations: There exist 0 < µ < 0 such that∥∥∥ψt2
t1 (z, ξt1:t2 ;F )yt

− ψt2
t1

(
z, ξ′t1:t2 ;F

)
yt

∥∥∥ ≥ µ( t2∑
s=t1

q1(s− t1)δs

)
∥z∥+µ

t2∑
s=t1

q2(s−t1)δs,

(12)

Now we are ready to provide the regret analysis for all the algorithms.

C.3 REGRET ANALYSIS FOR MPCm
k

We first bound the conditional per-step error for the MPCm
k algorithm.

Lemma C.1 (Conditional Per-Step Error Bound). Assume Property C.1 holds. Let t′ = mn ≤ t <
m(n+ 1). Assume the state at the last replanning time satisfies xt′ ∈ B(x∗t′ , R1). Further assume
the (potentially hypothetical) terminal cost used within the FTOCP solved at time t′ implies a target
terminal state ȳ(ξt′+k|t′) ∈ B(x∗t′+k, R2) for some constant R2 ≥ R1 > 0. Then, the conditional
per-step error et|t′ of MPCm

k is bounded by:

et|t′ ≤
k∑

τ=0

((R1 +Dx∗) · q1(τ) + q2(τ)) ρt′,τ + 2R2 ((R1 +Dx∗) · q1(k) + q2(k)) . (13)

Next, we relate the deviation from the clairvoyant optimal trajectory (starting from xt′) to these
conditional errors.

Lemma C.2 (State Deviation Bound). Let t′ = mn ≤ t < m(n+1) and let x∗τ |t′ denote the state at
time τ on the clairvoyant optimal trajectory starting from xt′ at time t′. Under the Lipschitz dynamics
assumption, we have: ∥∥∥xt − x∗t|t′∥∥∥ ≤ t−1∑

τ=t′

eτ |t′

(
t−1∏

s=τ+1

Ls

)
. (14)

The following lemma connects the cumulative conditional per-step errors to the dynamic regret,
analogous to Lemma 3.2 in Lin et al. (2022).

Lemma C.3 (Regret Bound via Conditional Errors). Assume T = mN for integer N . Let L∗ =

max0≤t≤T−k

∏t+k−1
s=t Ls. Under the assumptions on cost function regularity and the applicability of

perturbation bound equation 11 (Property C.1), the dynamic regret of MPCm
k is upper bounded by:

cost(MPCm
k )− cost(OPT)

≤

√√√√√( ℓ
2
· 2mL2

∗C
2
3

)
· cost(OPT) ·

N−1∑
i=0

m(i+1)−1∑
τ=mi

e2τ |mi


+
ℓ

2
· 2mL2

∗C
2
3

N−1∑
i=0

m(i+1)−1∑
τ=mi

e2τ |mi

 . (15)

Combining these results yields the main regret theorem for MPCm
k .

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Theorem C.4 (Regret Bound for MPCm
k ). Let Property C.1 hold. Suppose the terminal cost Ft+k

of MPCm
k is set to be the indicator function of some state ȳ(ξt+k|t) that satisfies ȳ(ξt+k|t) ∈

B(x∗t+k, R2) for all time steps t < T − k. Further, suppose the prediction errors ρt,τ are sufficiently
small and the prediction horizon k is sufficiently large, such that

k∑
τ=0

((R1 +Dx∗) · q1(τ) + q2(τ)) ρmn,τ + 2R2 ((R1 +Dx∗) · q1(k) + q2(k)) ≤
R1

mC3L∗
.

Then, the trajectory of MPCm
k will remain close to OPT, i.e. xt ∈ B(x∗t , R1) for all time steps t, and

the dynamic regret of MPCm
k is upper bounded by

cost(MPCm
k )− cost(OPT) = O

(√
mL2

∗cost(OPT) · E1 +mL2
∗E1

)
, (16)

where E1 = O
(∑k−1

τ=0 (R0 · q1(τ) + q2(τ))
∑N

n=0mρ
2
mn,τ +

(
q1(k)

2 + q2(k)
2
)
T
)

.

C.4 REGRET ANALYSIS FOR MPCk,ϵ .

We first bound the per-step error of MPCk,ϵ.
Lemma C.5. Let Property C.1 hold. Suppose the current state xt satisfies xt ∈ B(x∗t , R1) and the
terminal cost Ft+k of MPCk,ϵ is set to be the indicator function of some state ȳ(ξt+k|t) that satisfies
ȳ(ξt+k|t) ∈ B(x∗t+k, R2) for t < T − k. Further, suppose the last planned time step is t′. Then, the
per-step error of MPCk,ϵ and MPCAR is bounded by

et ≤ q3(0)ϵ+
k∑

τ=0

((R1 +Dx∗) · q1(τ) + q2(τ)) ρt′,τ +2R2 ((R1 +Dx∗) · q1(k) + q2(k)) . (17)

This yields the final regret bonud for MPCk,ϵ.
Theorem C.6 (Regret Bound for MPCk,ϵ). Let Property C.1 hold. Suppose the terminal cost
Ft+k of MPCm

k is set to be the indicator function of some state ȳ(ξt+k|t) that satisfies ȳ(ξt+k|t) ∈
B(x∗t+k, R1) for all time steps t < T − k. Let L = max0≤t≤T Lt Further, suppose the prediction
errors ρt,τ and threshold ϵ are sufficiently small and the prediction horizon k is sufficiently large,
such that

q3(0)ϵ+

k∑
τ=0

((R1 +Dx∗) · q1(τ) + q2(τ)) ρt,τ + 2R2 ((R1 +Dx∗) · q1(k) + q2(k)) ≤
R1

C3L
.

Then, the trajectory of MPCk,ϵ will remain close to OPT, i.e. xt ∈ B(x∗t , R1) for all time steps t,
and the dynamic regret of MPCk,ϵ is upper bounded by

cost(MPCk,ϵ)−cost(OPT) = O
(√

L2cost(OPT) · (E2 + ϵE2 + ϵ2T ) +mL2
∗(E2 + ϵE2 + ϵ2T )

)
,

(18)
where E2 = O

(∑k−1
τ=0 (R0 · q1(τ) + q2(τ))

∑T
t=0 ρ

2
p(t),τ +

(
q1(k)

2 + q2(k)
2
)
T
)

, p(t) denotes
the last time step that plans before t.

C.5 REGRET ANALYSIS FOR MPCAR .

Theorem C.7 (Regret Bound for MPCAR). Let Property C.1 hold. Suppose the terminal cost
Ft+k of MPCm

k is set to be the indicator function of some state ȳ(ξt+k|t) that satisfies ȳ(ξt+k|t) ∈
B(x∗t+k, R1) for all time steps t < T − k. Let L = max0≤t≤T Lt Further, suppose the prediction
errors ρt,τ and threshold ϵ are sufficiently small and the prediction horizon k is sufficiently large,
such that

q3(0)ϵ+

k∑
τ=0

((R1 +Dx∗) · q1(τ) + q2(τ)) ρt,τ + 2R2 ((R1 +Dx∗) · q1(k) + q2(k)) ≤
R1

C3L
.

Then, the trajectory of MPCk,ϵ will remain close to OPT, i.e. xt ∈ B(x∗t , R1) for all time steps t,
and the dynamic regret of MPCk,ϵ is upper bounded by

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

cost(MPCk,ϵ)− cost(OPT) (19)

= O

(
min

{
Regret(MPCk,ϵ0),

√
cost(OPT)(L2E +

ϵ0
α2
L

(ϵ0 +
1

αδ
)T ) + L2E +

ϵ0
α2
L

(ϵ0 +
1

αδ
)T

})
,

where E2 = O
(∑k−1

τ=0 (R0 · q1(τ) + q2(τ))
∑T

t=0 ρ
2
p(t),τ +

(
q1(k)

2 + q2(k)
2
)
T
)

, p(t) denotes
the last time step that plans before t.

D TECHNICAL PROOF

D.1 PROOF FOR MPCm
k

Proof of Lemma C.1. Lemma 20 is a straight-forward implication of perturbation bound equation 10
To see this, for t′ = mn ≤ t < m(n+ 1), note that the per-step error et can be bounded by

et|t′ =
∥∥∥ψt′+k

t′ (xt′ , ξt′:t′+k−1|t′ , ȳ(ξt′+k|t′); I)vt − ψT
t (xt, ξ

∗
t:T ;FT )vt

∥∥∥ (20a)

=
∥∥∥ψt′+k

t′ (xt′ , ξt′:t′+k−1|t′ , ȳ(ξt′+k|t′); I)vt − ψt′+k
t′ (xt′ , ξ

∗
t′:t′+k−1, x

∗
t′+k|t′ ; I)vt

∥∥∥ (20b)

≤
k−1∑
τ=0

(
∥xt′∥ · q1(τ) + q2(τ)

)
ρt′,τ +

(
∥xt′∥ · q1(k) + q2(k)

) ∥∥∥ȳ(ξt′+k|t′)− x∗t′+k|t′

∥∥∥ .
(20c)

Here, we apply the principle of optimality to conclude that the optimal trajectory from xt′ to x∗t′+k|t′

(i.e., ψt′+k
t′ (xt′ , ξ

∗
t′:t′+k−1, x

∗
t′+k|t′ ; I) in equation 20b) is a sub-trajectory of the clairvoyant optimal

trajectory from xt (i.e., ψT
t (xt, ξ

∗
t:T ;FT ) in equation 20a), and equation 20c is obtained by directly

applying perturbation bound equation 10. Note that ∥xt′∥ ≤ R1 +Dx∗ , and that both ȳ(ξt′+k|t′)
and x∗t′+k|t′ are in B(x∗t+k;R) by assumption and by perturbation bound equation 11 specified in
Property C.1, we conclude that equation 13 hold for t < T − k. The case t ≥ T − k can be shown
similarly.

Proof of Lemma C.2. We use mathematical induction to show how state deviations accumulate when
executing multiple actions from a single plan. The key insight is that each action error compounds
through the system dynamics.

We prove by induction for the first part. When t = t′ + 1 (i.e., the first step after planning):∥∥∥xt′+1 − x∗t′+1|t′

∥∥∥ =
∥∥∥gt′(xt′ , ut′)− gt′(xt′ , u∗t′|t′)∥∥∥
≤Lt′

∥∥∥ut′ − u∗t′|t′∥∥∥
≤Lt′et′|t′ .

Now suppose eq. (14) holds for t− 1 (i.e.,
∥∥∥xt − x∗t−1|t′

∥∥∥ ≤∑t−2
τ=t′ eτ |t′

∏t−2
s=τ Ls). This means we

assume the state deviation bound holds up to time t− 1. We now show it holds for time t:

∥∥∥xt − x∗t|t′∥∥∥ =
∥∥∥gt−1(xt−1, ut−1)− g(x∗t−1|t′ , u

∗
t−1|t′)

∥∥∥
≤Lt−1(

∥∥∥ut−1 − u∗t−1|t′

∥∥∥+ (
∥∥∥xt−1 − x∗t−1|t′

∥∥∥)
≤Lt−1et−1|t′ + Lt−1

t−2∑
τ=t′

eτ |t′
t−2∏
s=τ

Ls

=

t−1∑
τ=t′

eτ |t′
t−1∏
s=τ

Ls .

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Proof of Lemma C.3. First we bound ∥xt − x∗t ∥ and ∥ut − u∗t ∥

∥xt − x∗t ∥ =
∥∥∥xt − x∗t|mn

∥∥∥+ ∥∥∥x∗t|mn − x
∗
t

∥∥∥
≤
∥∥∥xt − x∗t|mn

∥∥∥+ n−1∑
i=0

∥∥∥x∗t|m(i+1) − x
∗
t|mi

∥∥∥
≤
∥∥∥xt − x∗t|mn

∥∥∥+ n−1∑
i=0

q3(t− (i+ 1)m)
∥∥∥xm(i+1) − x∗m(i+1)|mi

∥∥∥
≤

t−1∑
τ=mn

eτ |mn

t−1∏
s=τ

Ls +

n−1∑
i=0

q3(t− (i+ 1)m)

m(i+1)−1∑
τ=mi

eτ |mi

m(i+1)−1∏
s=τ

Ls .

∥ut − u∗t ∥ =
∥∥∥ut − u∗t|mn

∥∥∥+ ∥∥∥u∗t|mn − u
∗
t

∥∥∥
≤
∥∥∥ut − u∗t|mn

∥∥∥+ n−1∑
i=0

∥∥∥u∗t|m(i+1) − u
∗
t|mi

∥∥∥
≤
∥∥∥ut − u∗t|mn

∥∥∥+ n−1∑
i=0

q3(t− (i+ 1)m)
∥∥∥xm(i+1) − x∗m(i+1)|mi

∥∥∥
≤et|mn +

n−1∑
i=0

q3(t− (i+ 1)m)

m(i+1)−1∑
τ=mi

eτ |mi

m(i+1)−1∏
s=τ

Ls .

Without loss of generality, we define q3(k) = 0 for k < 0. For simplicity of notation, we denote
L∗ = max0≤t≤T max0≤i≤m−1

∏t+i
s=t Ls, which captures the maximum compounding effect of

Lipschitz constants over m steps. So we arrive at

∥xt − x∗t ∥ , ∥ut − u∗t ∥ ≤ L∗

n∑
i=0

q3(t− (i+ 1)m)

m(i+1)−1∑
τ=mi

eτ |mi . (21)

To bound the squared deviations (which will be needed for the cost analysis), we use the Cauchy-
Schwarz inequality:

∥xt − x∗t ∥
2 ≤L2

∗

 n∑
i=0

q3(t− (i+ 1)m)

m(i+1)−1∑
τ=mi

eτ |mi

2

≤L2
∗

n∑
i=0

q3(t− (i+ 1)m))

 n∑
i=0

q3(t− (i+ 1)m)

m(i+1)−1∑
τ=mi

eτ |mi

2


≤mL2
∗C3

 n∑
i=0

q3(t− (i+ 1)m)

m(i+1)−1∑
τ=mi

e2τ |mi

 .

This bound also holds for ∥ut − u∗t ∥
2, so we have

∥xt − x∗t ∥
2
+ ∥ut − u∗t ∥

2 ≤2mL2
∗C3

 n∑
i=0

q3(t− (i+ 1)m)

m(i+1)−1∑
τ=mi

e2τ |mi

 .

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Without loss of generality, we assue T = Nm, we have

T∑
t=1

∥xt − x∗t ∥
2
+

T∑
t=1

∥ut − u∗t ∥
2 ≤2mL2

∗C3

N−1∑
n=0

(n+1)m−1∑
t=nm

n∑
i=0

q3(t− (i+ 1)m)

m(i+1)−1∑
τ=mi

e2τ |mi


≤2mL2

∗C3

N−1∑
i=0

m(i+1)−1∑
τ=mi

e2τ |mi

N−1∑
n=i

(n+1)m−1∑
t=nm

q3(t− (i+ 1)m)


≤2mL2

∗C
2
3

N−1∑
i=0

m(i+1)−1∑
τ=mi

e2τ |mi

 (22)

Since the cost function ft(·, ·; ξ∗t ) and FT (·; ξ∗T ) are nonnegative, convex, and ℓ-smooth in their
inputs, by Lemma F.2 in Lin et al. (2021), we see that the following inequality holds for arbitrary
η > 0:

cost(ALG)− cost(OPT)

≤

(
T−1∑
t=0

ft(xt, ut; ξ
∗
t ) + FT (xT ; ξ

∗
T )

)
−

(
T−1∑
t=0

ft(x
∗
t , u

∗
t ; ξ

∗
t ) + FT (x

∗
T ; ξ

∗
T )

)

≤ η

(
T−1∑
t=0

ft(x
∗
t , u

∗
t ; ξ

∗
t ) + FT (x

∗
T ; ξ

∗
T )

)

+
ℓ

2

(
1 +

1

η

)( T∑
t=1

∥xt − x∗t ∥
2
+

T−1∑
t=0

∥ut − u∗t ∥
2

)
(23a)

≤ η · cost(OPT) +
(
1 +

1

η

)
· ℓ
2
· 2mL2

∗C
2
3

N−1∑
i=0

m(i+1)−1∑
τ=mi

e2τ |mi

 (23b)

= η · cost(OPT) + 1

η
· ℓ
2
· 2mL2

∗C
2
3

N−1∑
i=0

m(i+1)−1∑
τ=mi

e2τ |mi


+
ℓ

2
· 2mL2

∗C
2
3

N−1∑
i=0

m(i+1)−1∑
τ=mi

e2τ |mi

 , (23c)

where we apply Lemma F.2 in Lin et al. (2021) in equation 23a, and we use equation 22 in equa-
tion 23b. Setting the tunable weight η in equation 23c to be

η =

 ℓ
2 · 2mL

2
∗C

2
3

(∑N−1
i=0

∑m(i+1)−1
τ=mi e2τ |mi

)
cost(OPT)


1
2

gives that

cost(ALG)− cost(OPT)

≤

√√√√√( ℓ
2
· 2mL2

∗C
2
3

)
· cost(OPT) ·

N−1∑
i=0

m(i+1)−1∑
τ=mi

e2τ |mi


+
ℓ

2
· 2mL2

∗C
2
3

N−1∑
i=0

m(i+1)−1∑
τ=mi

e2τ |mi

 . (24)

This finishes the proof.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Proof of Theorem C.4. We first use induction to show that the following two conditions holds for all
time steps t < T :

xt ∈ B (x∗t , R) , (25a)

et|mn ≤
k∑

τ=0

((R1 +Dx∗) · q1(τ) + q2(τ)) ρmn,τ + 2R2 ((R1 +Dx∗) · q1(k) + q2(k)) . (25b)

At time step 0, equation 25a holds because x0 = x∗0, and equation 25b holds by lemma C.1 and the
assumption on the terminal cost Fk of MPCk.

Suppose equation 25a and equation 25b hold for all time steps τ < t. For time step t, by the
assumption on the prediction errors ρt,τ and prediction horizon k in Theorem C.4, we know that
eτ ≤ R

C2
3Lg

holds for all τ < t because equation 25b holds for all τ < t. Thus, we know that
equation 25a holds for time step t by Equation (21) since

∥xt − x∗t ∥ ≤L∗

n∑
i=0

q3(t− (i+ 1)m)

m(i+1)−1∑
τ=mi

eτ |mi

≤mL∗
R1

mC3L∗

n∑
i=0

q3(t− (i+ 1)m)

≤R1

C3
· C3 = R1

Then, since equation 25a holds for time step t, and the terminal cost Ft+k of MPCk is set to be the
indicator function of some state ȳ(ξt+k|t) that satisfies ȳ(ξt+k|t) ∈ B(x∗t+k, R1) if t < T − k, we
know equation 25b also holds for time step t by Lemma C.1. This finishes the induction proof of
equation 25.

To simplify the notation, let R0 := R1 +Dx∗ . Note that equation 25b implies that

e2t|mn ≤

(
k∑

τ=0

(R0 · q1(τ) + q2(τ)) + 2R2 (R0 + 1)

)

·

(
k∑

τ=0

(R0 · q1(τ) + q2(τ)) ρ
2
mn,τ + 2R2

(
R0 · q1(k)2 + q2(k)

2
))

(26a)

≤ (R0C1 + C2 + 2R2(R0 + 1))

·

(
k−1∑
τ=0

(R0 · q1(τ) + q2(τ)) ρ
2
mn,τ + (2R2 + 1)

(
R0 · q1(k)2 + q2(k)

2
))

, (26b)

where we use the Cauchy-Schwarz inequality in equation 26a; we use the bounds
∑k

τ=0 q1(τ) ≤ C1

and
∑k

τ=0 q2(τ) ≤ C2 in equation 26b.

N∑
n=0

m(n−1)−1∑
t=mn

e2t|mn (27a)

≤ (R0C1 + C2 + 2R2(R0 + 1))

·

k−1∑
τ=0

(R0 · q1(τ) + q2(τ))

N∑
n=0

m(n−1)−1∑
t=mn

ρ2mn,τ + (2R2 + 1)
(
R0 · q1(k)2 + q2(k)

2
)
T


(27b)

≤ (R0C1 + C2 + 2R2(R0 + 1))

·

(
k−1∑
τ=0

(R0 · q1(τ) + q2(τ))

N∑
n=0

mρ2mn,τ + (2R2 + 1)
(
R0 · q1(k)2 + q2(k)

2
)
T

)
(27c)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Since equation 25 and equation 29 holds for all time steps t < T , we can apply Lemma C.3 to obtain
that

cost(MPCm
k )− cost(OPT) = O

(
mL2

∗
√
cost(OPT) · E1 +mL2

∗E1

)
,

where

E1 := (R0C1 + C2 + 2R2(R0 + 1))

·

(
k−1∑
τ=0

(R0 · q1(τ) + q2(τ))

N∑
n=0

mρ2mn,τ + (2R2 + 1)
(
R0 · q1(k)2 + q2(k)

2
)
T

)

This finishes the proof of Theorem C.4.

D.2 PROOF FOR MPCk,ϵ

Proof of Lemma C.5. We bound the per-step error by decomposing it into two parts: the error due to
state deviation from the planned trajectory, and the error due to parameter uncertainty.

Let x̂t|t′ := ψt′+k
t′ (xt′ , ξt′:t′+k−1|t′ , ȳ(ξt′+k|t′)yt

be the planned state at time t from the plan com-
puted at time t′. We have

et =
∥∥∥ψt′+k

t′ (xt′ , ξt′:t′+k−1|t, ȳ(ξt′+k|t′); I)vt − ψT
t (xt, ξ

∗
t:T ;FT )vt

∥∥∥
=
∥∥∥ψt′+k

t (x̂t|t′ , ξt:t′+k−1|t′ , ȳ(ξt′+k|t); I)vt − ψt′+k
t (xt, ξ

∗
t:t′+k−1, x

∗
t′+k|t; I)vt

∥∥∥ (28a)

≤
∥∥∥ψt′+k

t (x̂t|t′ , ξt:t′+k−1|t′ , ȳ(ξt′+k|t′); I)vt − ψt′+k
t (xt, ξt:t′+k−1|t′ , ȳ(ξt′+k|t′); I)vt

∥∥∥
+
∥∥∥ψt′+k

t (xt, ξt:t′+k−1|t′ , ȳ(ξt′+k|t′); I)vt − ψt′+k
t (xt, ξ

∗
t:t′+k−1, x

∗
t+k|t; I)vt

∥∥∥
≤q3(0)

∥∥x̂t|t′ − xt∥∥ (28b)

+

t′+k−t−1∑
τ=t−t′

(
∥xt∥ · q1(τ) + q2(τ)

)
ρt′,τ +

(
∥xt∥ · q1(k) + q2(k)

) ∥∥∥ȳ(ξt+k|t)− x∗t+k|t

∥∥∥
(28c)

≤q3(0)ϵ+
k−1∑
τ=0

(
(Dx∗ +R1) · q1(τ) + q2(τ)

)
ρt′,τ + 2R2

(
∥xt∥ · q1(k) + q2(k)

)
. (28d)

In equation 28a, we use the fact that the imagined optimal trajectory starting from imagined state
x̂t|t′ (i.e. ψt′+k

t (x̂t|t′ , ξt:t′+k−1|t′ , ȳ(ξt′+k|t); I)yt:t′+k,vt:t′+k
) is sub-trajectory of the imagined op-

timal trajectory starting from state xt′(i.e. ψt′+k
t′ (xt′ , ξt′:t′+k−1|t, ȳ(ξt′+k|t′); I)yt′:t′+k,vt′:t′+k

). In
equation 28b we apply perturbation bound equation 10 and in equation 28c we apply perturbation
bound equation 11. Equation (28d) comes from the assumption that xt ∈ B(x∗t , R1).

Proof of Theorem C.6. This proof is a simple extension of the proof of Theorem C.4 and Theorem
3.3 in (Lin et al., 2022).

By Lemma 3.2 in (Lin et al., 2022), we have

∥xt − x∗t ∥ ≤ L
t−1∑
i=0

q3(i)et−i−1 ≤ L ·
R1

C3L

t−1∑
i=0

q3(i) ≤ R1 .

With the same induction as Theorem C.4 we can see xt ∈ B(x∗t , R1) so the perturbation bounds hold.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

To simplify the notation, let R0 := R1 +Dx∗ . Note that equation 17 implies that

e2t ≤ (q3(0)ϵ)
2

+

(
k∑

τ=0

(R0 · q1(τ) + q2(τ)) ρp(t),τ + 2R2 (R0 · q1(k) + q2(k))

)2

+ 2q3(0)ϵ

(
k∑

τ=0

(R0 · q1(τ) + q2(τ)) ρp(t),τ + 2R2 (R0 · q1(k) + q2(k))

)
(29a)

≤q3(0)2ϵ2

+

(
k∑

τ=0

(R0 · q1(τ) + q2(τ)) + 2R2 (R0 + 1)

)

·

(
k∑

τ=0

(R0 · q1(τ) + q2(τ)) ρ
2
p(t),τ + 2R2

(
R0 · q1(k)2 + q2(k)

2
))

+ 2q3(0)ϵ

(
k∑

τ=0

(R0 · q1(τ) + q2(τ)) ρp(t),τ + 2R2 (R0 · q1(k) + q2(k))

)
(29b)

≤O

(
ϵ2 + ϵ

(
k∑

τ=0

(R0 · q1(τ) + q2(τ)) ρp(t),τ + 2R2 (R0 · q1(k) + q2(k))

))
+O (R0C1 + C2 + 2R2(R0 + 1))

·

(
k−1∑
τ=0

(R0 · q1(τ) + q2(τ)) ρ
2
p(t),τ + (2R2 + 1)

(
R0 · q1(k)2 + q2(k)

2
))

, (29c)

where p(t) denotes the last time step that plans before t. We use the Cauchy-Schwarz inequality in
equation 29b; we use the bounds

∑k
τ=0 q1(τ) ≤ C1,

∑k
τ=0 q2(τ) ≤ C2 in equation 29c.

Finally, we apply Lemma 3.2 in (Lin et al., 2022) and Lemma F.2 in Lin et al. (2021) to connect the
per-step errors to overall performance:

cost(MPCk,ϵ)− cost(OPT)

≤

√√√√( ℓ
2
· (1 + 2C3L2) · (1 + C3)

)
· cost(OPT) ·

T−1∑
t=0

e2t

+
ℓ

2
·
(
1 + 2C3L

2
)
· (1 + C3) ·

T−1∑
t=0

e2t . (30a)

=O
(√

L2cost(OPT) · (E2 ++ϵE + ϵ2T ) + L2(E2 + ϵE + ϵ2T )
)
, (30b)

where

E2 := (R0C1 + C2 + 2R2(R0 + 1))

·

(
k−1∑
τ=0

(R0 · q1(τ) + q2(τ))

T∑
t=0

ρ2p(t),τ + (2R2 + 1)
(
R0 · q1(k)2 + q2(k)

2
)
T

)
.

D.3 PROOF FOR MPCAR

Proof. We extend the analysis of MPCk,ϵ to handle time-varying thresholds. The key insight is that
our adaptive threshold choice allows us to bound the additional regret terms more tightly.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

First we introduce an adaptation of Equation (29) for time-varying thresholds.

e2t ≤

(
q3(0)ϵt +

k∑
τ=0

(R0 · q1(τ) + q2(τ)) ρp(t),τ + 2R2 (R0 · q1(k) + q2(k))

)2

(31a)

≤

(
q3(0)

2ϵt +

k∑
τ=0

(R0 · q1(τ) + q2(τ)) + 2R2 (R0 + 1)

)

·

(
ϵt +

k∑
τ=0

(R0 · q1(τ) + q2(τ)) ρ
2
p(t),τ + 2R2

(
R0 · q1(k)2 + q2(k)

2
))

(31b)

≤ (R0C1 + C2 + 2R2(R0 + 1))

·

(
k−1∑
τ=0

(R0 · q1(τ) + q2(τ)) ρ
2
p(t),τ + (2R2 + 1)

(
R0 · q1(k)2 + q2(k)

2
))

+O

(
ϵ2t + ϵt

(
k−1∑
τ=0

(R0 · q1(τ) + q2(τ)) ρ
2
p(t),τ + (2R2 + 1)

(
R0 · q1(k)2 + q2(k)

2
)))

,

(31c)

where we use Cauchy-Schwarz inequality in Equation (31b).

Then we bound ∥xt − x∗t ∥ in a more fine-grained way to account for the adaptive nature of our
algorithm:

∥xt − x∗t ∥ =
∥∥xt − ψT

0 (x0)yt

∥∥
≤
∥∥xt − ψT

t−1(xt−1)yt

∥∥+ t−1∑
i=1

∥∥ψT
t−i(xt−i)yt

− ψT
t−i−1(xt−i−1)yt

∥∥
≤
∥∥xt − ψT

t−1(xt−1)yt

∥∥+ t−1∑
i=1

q3(i)
∥∥xt−i − ψT

t−i−1(xt−i−1)yt−i

∥∥ (32)

≤
t−1∑
i=0

q3(i)
∥∥xt−i − ψT

t−i−1(xt−i−1)yt−i

∥∥ (33)

≤
t−1∑
i=0

q3(i)Lt−i−1et−i−1, (34)

Taking squares and applying Cauchy-Schwarz:

∥xt − x∗t ∥
2 ≤

(
t−1∑
i=0

q3(i)Lt−i−1et−i−1

)2

≤

(
t−1∑
i=0

q3(i)

)
·

(
t−1∑
i=0

q3(i)L
2
t−i−1e

2
t−i−1

)
(35a)

≤ C3

(
t−1∑
i=0

q3(i)L
2
t−i−1e

2
t−i−1

)
. (35b)

Similarly, we can bound the control deviations:

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

∥ut − u∗t ∥
2 ≤

(
et +

t−1∑
i=0

q3(i)Lt−i−1et−i−1

)2

≤

(
1 +

t−1∑
i=0

q3(i)

)
·

(
e2t +

t−1∑
i=0

q3(i)L
2
t−i−1e

2
t−i−1

)
(36a)

≤ (1 + C3) ·

(
t∑

i=0

q3(i)L
2
t−i−1e

2
t−i−1

)
, (36b)

Summing equation 35 and equation 36 over time steps t gives that

T∑
t=1

∥xt − x∗t ∥
2
+

T−1∑
t=0

∥ut − u∗t ∥
2

≤ C3

T∑
t=1

(
t−1∑
i=0

q3(i)L
2
t−i−1e

2
t−i−1

)
+ (1 + C3) ·

T−1∑
t=0

(
t−1∑
i=0

q3(i)L
2
t−i−1e

2
t−i−1

)

≤ (1 + 2C3)

T−1∑
t=0

L2
t e

2
t , (37)

where we rearrange the terms and use
∑∞

j=0 q3(j) ≤ C3 in the last inequality.

By Lemma F.2 in Lin et al. (2021) with similar analysis in previous theorem, we arrive at

cost(MPCk,ϵ)− cost(OPT)

≤

√√√√( ℓ
2
· (1 + 2C3)

)
· cost(OPT) ·

T−1∑
t=0

L2
t e

2
t +

ℓ

2
· (1 + 2C3) ·

T−1∑
t=0

L2
t e

2
t .

Now we focus on L2
t e

2
t and the three terms in Equation (31c). The first term corresponds to the regret

of standard MPC1
k. The second term captures the effect of our adaptive threshold, which we show is

well-controlled. To see this, we have

Ltϵt ≤ ϵ0Lt exp(−αLL̂t) ≤ ϵ0
Lt

e · αL · L̂t

≤ ϵ0
Lt

e · αL · λLt
=

ϵ0
eλαL

, (38a)

where we use the inequality exp(−x) ≤ 1
ex for x > 0 in the second step. This gives us

L2
t ϵ

2
t ≤

ϵ20
e2λ2α2

L

. (38b)

For the third term, we denote st :=
∑k−1

τ=0 (R0 · q1(τ) + q2(τ)) ρ
2
p(t),τ + (2R2 +

1)
(
R0 · q1(k)2 + q2(k)

2
)

for the simplicity of notation, thus

L2
t ϵtst ≤ ϵ0 ·

(
L2
t exp(−αLLt)

)
· (exp(−αδδ

o
t )st) (38c)

≤ ϵ0 ·

(
4L2

t

e2α2
LL̂

2
t

)
·
(

st
eαδδot

)
(38d)

≤ ϵ0 ·
(

4

e2α2
Lλ

2

)
·
(

1

eαδµ

)
=

4ϵ0
e3λ2µα2

Lαδ
, (38e)

where we use the fact that exp(−x) ≤ 1
ex and exp(−x) ≤ 4

e2x2 in the second inequality. Combining
everything together, we have our final regret bound

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

cost(MPCk,ϵ)− cost(OPT)

≤ O

(√
cost(OPT)(L2E +

ϵ0
α2
L

(ϵ0 +
1

αδ
)T ) + L2E +

ϵ0
α2
L

(ϵ0 +
1

αδ
)T

)
.

where

E2 := (R0C1 + C2 + 2R2(R0 + 1))

·

(
k−1∑
τ=0

(R0 · q1(τ) + q2(τ))

T∑
t=0

ρ2p(t),τ + (2R2 + 1)
(
R0 · q1(k)2 + q2(k)

2
)
T

)
.

The above result may not recover to previous results when αL = αδ = 0. To mitigate this, we
not need to apply the inequality exp(−x) ≤ 1

1+x2 and exp(−x) ≤ 1
1+x2 in Equation (38a) and

Equation (38d) when x are extremely small. So it can still be proved that the regret of MPCAR is no
more than regret of MPCk,ϵ

E EXPERIMENT DETAILS

This appendix provides further details on the experimental setup described in Section 4.

E.1 SIMULATED EXPERIMENTS SETUP

Simulated experiments in this work are conducted on the VP2 Tian et al. (2023b) benchmark.
All experiments can be conducted on a single NVIDIA GeForce RTX 4090 GPU. For each run
of the experiments, it takes approximately 2500-3000 MiB of GPU memory for video prediction
models like SVG (Villegas et al., 2019) and Struct-VRNN (Minderer et al., 2019). The simulator
models and associated processes typically consume 20-25 GB of CPU RAM. Evaluating one learned
model on a single task for one seed takes approximately 0.5-1 hour, while evaluations involving
direct interaction with the simulator models (including noisy simulators in Appendix E.6 and visual
vorrupted simulators in Appendix E.7 ) can take 2-3 hours per task per seed due to potentially different
computational characteristics.

E.2 REAL-WORLD EXPERIMENTS SETUP

As shown in Figure 9, our real-world experiments are conducted using a Franka Emika Panda
robotic arm. The arm is equipped with a simple cubic pusher as its end-effector to interact with
the environment and objects. To obtain precise and high-frequency measurements of the keypoints
defining the state , we utilize a Vicon motion capture system. This system provides accurate 3D
coordinate data, which forms the basis for the state representations xt used by our learned world
models and the MPC controller in the real-world tasks.

E.3 STATE-BASED WORLD MODELING FOR REAL-WORLD TASKS

For the real-world experiments utilizing state-based representations (as opposed to vision-based
models used in simulation), we learn task-specific, single-step dynamics models f . These models
predict the next state xt+1 given the current state xt and the action ut applied by the robot’s end-
effector (pusher):

xt+1 = f(xt, ut) . (39)

Here, ut ∈ R2 typically represents the 2D movement command sent to the end-effector. The specific
state representation x ∈ Rd varies depending on the task:

• Open Door Task: The state x ∈ R6 comprises the 2D coordinates of the door hinge (axis)
(x0, y0), the door handle/endpoint (x1, y1), and the robot end-effector (pusher) (xe, ye), as

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 9: Real-World Experiments Setup

illustrated in Figure 10. Note that while the hinge position (x0, y0) is fixed during any single
task execution trial, its location may vary across different trials in the data collection phase. This
variation encourages the learned model f to generalize to different initial door configurations.
We utilize classical 3 layer MLP model structure.

• Push T-Block Task: The state x ∈ R8 includes the 2D coordinates of three key points defining
the T-block’s pose (e.g., top-left (x1, y1), top-right (x2, y2), and bottom-middle (x3, y3)), along
with the end-effector coordinates (xe, ye), illustrated in Figure 11. These points allow tracking
the object’s position and orientation. We utilize classical 6 layer MLP model structure.

Figure 10: State representation for the Open
Door task, showing hinge (x0, y0), endpoint
(x1, y1), and pusher (xe, ye).

Figure 11: State representation for the Push
T-Block task, showing key points (x1, y1),
(x2, y2), (x3, y3) and pusher (xe, ye).

E.4 DATA COLLECTION FOR STATE-BASED MODELS

For each task setting requiring a state-based model, training data for the dynamics model f (Eq. equa-
tion ??) was collected from two primary sources:

1. Expert Demonstrations: A collection of successful task executions providing examples of
effective interactions. Demonstrations were gathered via human teleoperation and potentially
supplemented by trajectories generated using path planning algorithms (like RRT) to reach
specific target configurations.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

2. Random Exploration: Data gathered from trajectories generated by applying random actions
within the operational workspace. This source contributes a significant portion of the dataset to
ensure broad coverage.

Combining targeted expert data with broad exploration data aims to prevent the model f from
overfitting to specific demonstration trajectories. This strategy helps ensure the model captures
dynamics across a wider range of the state-action space, potentially improving prediction accuracy
along near-optimal paths discovered during online planning.

E.5 WORLD MODEL TRAINING

The learned world models are trained as one-step predictors. For models trained from scratch (e.g.,
state-based models), we used the Adam optimizer with a learning rate of 5× 10−6 and a batch size
of 16. These models were trained for a total of 300 epochs. During the inference phase for planning,
multi-step future predictions are generated by recursively applying the learned one-step predictor.
Specifically, to predict k future steps given a sequence of actions from time t to t+ k − 1, the model
autoregressively predicts xt+1, xt+2, . . . , xt+k.

E.6 DETAILS FOR DISTURBED SIMULATORS AS WORLD MODEL

We add gaussian noise with mean 0 and different std for different components with various disturbance
level to construct noisy simulator, with details summarized in Table 3.

Table 3: Standard deviations (std) of Gaussian noise applied to state components for different
disturbance levels in the noisy simulator experiments.

Level 1 Level 2 Level 3

robot position 0.001 0.005 0.010
robot velocity 0.001 0.005 0.010
object position 0.000 0.001 0.005
object velocity 0.000 0.001 0.005

end effector position 0.001 0.005 0.010

E.7 DETAILS FOR VISUAL CORRUPTED SIMULATORS AS WORLD MODEL

To assess the impact of imperfect visual predictions from a world model (distinct from errors in an
underlying state representation), we apply two types of visual corruption to the images generated by
an otherwise accurate simulator before they are processed (e.g., by a feature extractor like DINO):

1. Gaussian Noise: Additive Gaussian noise is applied directly to the pixel values of the predicted
images to make them appear more noisy.

2. Gaussian Blur: A Gaussian filter is applied to the predicted images to make them appear more
blurry.

The parameters for these visual corruptions are detailed in Tables 4 and 5 and visualizations are in
Figures 12 and 13.

Table 4: Parameters for adding Gaussian noise
to predicted images. ‘std’ refers to the standard
deviation of the noise.

Noise Level std

Level 1 0.1
Level 2 0.2
Level 3 0.5

Table 5: Parameters for applying Gaussian blur
to predicted images. ‘sigma’ refers to the stan-
dard deviation (kernel size) of the Gaussian filter.

Blurriness Level sigma

Level 1 0.1
Level 2 0.5
Level 3 1.0

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 12: Visualization of different Noise
Levels.

Figure 13: Visualization of different Blurri-
ness Levels.

F MORE EXPERIMENTAL RESULTS

F.1 EXPERIMENTAL RESULTS FOR MPCm
k AND MPCk,ϵ

We first explore how fixed m (number of steps to execute per plan) and ϵ (deviation threshold for
replanning) influence the performance (success rate) and computational cost (NFE) of world model
planning in simulation. This provides baseline intuition for understanding the trade-offs involved and
motivates the need for adaptive approaches. The results are presented for the SVG and Struct-VRNN
models on the VP2 benchmark tasks.

Figure 14: Performance of SVG model with MPCk,ϵ for different deviation thresholds ϵ.

Figure 15: Performance of Struct-VRNN model with MPCk,ϵ for different deviation thresholds ϵ.

As our theoretical analysis suggests (Section 3.1), both task performance (success rate) and compu-
tational cost (NFE) tend to decrease as m (number of steps per plan) and ϵ (replanning threshold)
increase. However, the rate at which performance degrades varies significantly. This variation is
influenced by factors such as the prediction quality of the specific world model and the sensitivity of
the local dynamics encountered along the trajectories across different tasks. These results highlight
the challenge of selecting a single fixedm or ϵ that performs optimally across all scenarios, motivating
our adaptive approach.

F.2 TRAJECTORY VISUALIZATION OF REAL-WORLD EXPERIMENTS

The trajectory visualizations of our real-world experiments, presented in Figures 18 to 22, demonstrate
the significant advantages of our adaptive replanning algorithm (ADAREP). These figures qualitatively

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Figure 16: Performance of SVG model with MPCm
k for different numbers of executed steps m.

Figure 17: Performance of Struct-VRNN model with MPCm
k for different numbers of executed steps

m.

compare the behavior of ADAREP against the baseline MPC1
k. Different colors along an agent’s

path indicate segments executed from distinct plans; consequently, fewer color changes in the
trajectories generated by ADAREP visually highlight its reduced replanning frequency and the
associated computational savings.

Figure 18: Trajectory of opening door to 90◦. Left: MPC1
k. Right: MPCAR.

G MORE ANALYSIS AND DISCUSSIONS

ADAREP does require additional hyperparameter tuning, how ever we clarify that the tuning for
ADAREP is a modest, one-time, upfront cost that yields substantial, continuous benefits.

Our tuning process is efficient as it builds upon the baseline. A practitioner can start with a reason-
able fixed threshold ϵ and then simply tune ADAREP’s parameters , which intuitively control the
adaptation’s sensitivity. This is significantly faster than exhaustively searching for the "perfect".

We want to further demonstrate that both our adaptive method (ADAREP) and other non-adaptive
method (MPCm

k , MPCk,ϵ) rely on hyperparameter tuning, adaptive method is indeed much better.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 19: Trajectory of opening door to 180◦. Left: MPC1
k. Right: MPCAR. Different colors

represent controls from different plans.

Figure 20: Trajectory of translating T-block. Left: MPC1
k. Right: MPCAR. Different colors represent

controls from different plans.

Figure 21: Trajectory of rotating T-block. Left: MPC1
k. Right: MPCAR. Different colors represent

controls from different plans.

Figure 22: Trajectory of translating and rotating T-block. Left: MPC1
k. Right: MPCAR. Different

colors represent controls from different plans.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 23: Visual demonstration for opening door to 90◦.

Figure 24: Visual demonstration for opening door to 180◦.

Figure 25: Visual demonstration for translating T-block.

Figure 26: Visual demonstration for rotating T-block.

Figure 27: Visual demonstration for translating and rotating T-block.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

This small upfront investment unlocks the key benefits of our method: significant NFE reductions
at runtime, robust performance across diverse tasks without re-tuning, and the ability to adapt to
changing dynamics within a single episode. We believe this favorable trade-off is a core strength of
our approach.

H LIMITATIONS

Despite these promising results, this work has several limitations. A key challenge is the performance
dependency on the quality of sensory input, particularly for vision-based models. As noted, future
work should focus on developing more robust visual features, as the current approach’s effectiveness
can be hampered by visual corruptions or less discriminative features, leading to a performance gap
compared to state-based world models where ADAREP excels. The current adaptive mechanism,
while training-free and broadly applicable, relies on heuristic-driven parameter adjustments based on
online estimates; the accuracy and reliability of these estimates are crucial, and noisy estimates could
lead to suboptimal replanning decisions.

Future work should therefore focus on developing more robust visual features for vision-based
models to broaden ADAREP’s applicability. Additionally, exploring the integration of learning-based
methods to further refine the adaptive parameters of ADAREP presents another promising research
avenue, potentially leading to enhanced generalization and finer-grained adaptation across a wider
array of tasks and conditions.

34


	Introduction
	Preliminaries
	Methodology
	Theoretical Analysis
	AdaReP: an Adaptive Replanning Mechanism

	Experiments
	Experiment settings
	Main Results
	Anaylsis and Discussions

	Conclusion
	Ethics statement and Reproducibility statement
	The Use of Large Language Models (LLMs)
	Algorithm Pseudocodes
	Theoretical Analysis
	Assumptions and Notations
	Perturbation Analysis
	Regret Analysis for MPCkm
	Regret Analysis for MPCk,.
	Regret Analysis for MPCAR.

	Technical Proof
	Proof for MPCkm
	Proof for MPCk,
	Proof for MPCAR

	Experiment Details
	Simulated Experiments Setup
	Real-World Experiments Setup
	State-based World Modeling for Real-World Tasks
	Data Collection for State-based Models
	World Model Training
	Details for Disturbed Simulators as World Model
	Details for Visual Corrupted Simulators as World Model

	More Experimental Results
	Experimental Results for MPCkm and MPCk,
	Trajectory Visualization of Real-World Experiments

	 More Analysis and Discussions
	Limitations

