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ABSTRACT

We investigate the integration of model predictive control (MPC) with world mod-
els for robotic control tasks. Existing MPC solvers often replan at every step
or after very few steps, primarily to mitigate the accumulation of world model
prediction errors. However, such frequent replanning incurs substantial computa-
tional costs — especially when using large, complex world models. In this work,
we theoretically characterize the fundamental trade-off between computational
efficiency and control performance in MPC. Our analysis reveals how replanning
frequency, model prediction error, and local dynamics sensitivity jointly influence
MPC performance, as captured by regret bounds. Based on the analysis, we pro-
pose ADAREP, a novel adaptive replanning mechanism for MPC that dynamically
modulates the replanning frequency based on online estimates of world model
prediction error and local dynamics sensitivity. ADAREP is training-free, plug-and-
play, and compatible with various world models and MPC solvers. Experiments on
the VP2 simulation benchmark across diverse tasks, as well as real-world robotic
tasks including door opening and T-block pushing, show that ADAREP achieves
substantial reductions in computation, over 80-90% in the real-world settings while
maintaining or improving task success rates. Code will be made public.

1 INTRODUCTION

This paper studies model predictive control (MPC) combined with learned world models for various
robotic control tasks (Ding et al.,[2024; |Campbell et al., 2023; [Wu et al., [2024; [Tian et al., [2023a}
Zhao et al., [2024])). Typically, a predictive world model is first trained to forecast future robot and
environment states (e.g., images) based on historical states and robot actions. MPC solvers, such as
the Cross-Entropy Method (CEM) or Model Predictive Path Integral control (MPPI), then sample
multiple action sequences and query the world model to predict their outcomes. Action sequences
that are more likely to achieve the specified goals — based on the predicted future states — are selected
for execution (De Boer et al., 2005; | Anderson & Moore, [2007). Fueled by the powerful pretrained
generative models|Ho et al.|(2020); [Rombach et al.| (2022)), MPC using these generative world models
has been applied to a variety of robotic tasks, including manipulation and navigation |Du et al.|(2023);
Yang et al.[(2023)); [Wang et al.|(2024).

Despite their effectiveness, MPC with learned world models can suffer from computational ineffi-
ciency. As illustrated in Figure[I] to mitigate cumulative prediction errors, many MPC solvers avoid
executing full action plans and instead replan at every step or after only a few steps. This frequent
replanning greatly increases the number of world model queries, leading to higher computational
cost and reduced control frequency due to delays. The use of large, complex world models further
exacerbates this issue.

To this end, we propose ADAREP, a novel adaptive replanning mechanism for MPC. Our key idea is
to dynamically modulate the replanning frequency in MPC. We start by theoretically characterizing
the fundamental trade-off between computation efficiency and control performance in MPC. Our
analysis shows how the MPC regret bounds, which capture the performance, can be jointly affected
by replanning frequency, world model prediction error, and local dynamic sensitivity. We therefore
design an algorithm to adjust the replanning frequency based on online estimates of world model pre-
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Figure 1: An illustration of the computational efficiency—control performance trade-off in MPC and
our ADAREP: Traditional MPC solvers replan frequently to curb cumulative world-model prediction
error, driving up computation. By contrast, ADAREP adjusts replanning frequency on-the-fly
using online estimates of prediction error and local dynamics sensitivity, cutting computation while
preserving control performance.

diction error and local dynamics sensitivity. ADAREP is training-free, plug-and-play, and compatible
with various world models and MPC solvers. An overview of ADAREP can be found in Figure

We conduct an extensive evaluation of our method on both simulated and real-world robotic control,
ranging from the diverse tasks in VP2 simulation benchmark to real-world door opening and T-block
pushing. Overall, when combined with a collection of world models and MPC solvers, ADAREP
demonstrates a substantial reduction of computation — over 80-90% — as measured by number of
function evaluations (NFEs), while maintaining the task success rate. Our additional analysis further
reveals the control scenarios where ADAREP suits better.

To sum up, our contributions are threefold:

* We provide a rigorous regret analysis of MPC replanning strategies, offering theoretical insights
into the computation efficiency-control performance trade-off.

* We develop ADAREDP, a practical and efficient plug-and-play adaptive replanning algorithm for
MPC, designed to enhance computational efficiency while maintaining robust control perfor-
mance; unlike prior methods that replan every step, ADAREP decides when to replan.

* We present experimental validation in both simulated and real-world robotic manipulation tasks,
demonstrating the effectiveness and robustness of our proposed adaptive approach compared to
canonical MPC solvers.

2 PRELIMINARIES

Model Predictive Control. We begin by outlining the general formulation for finite-horizon,
discrete-time optimal control, which forms the basis for our discussion. We consider problems
characterized by potentially time-varying costs, dynamics, and constraints. The objective is to
determine state and control trajectories, denoted by xg.7 and ug.7—1 respectively, that solve the
following optimization problem:

T-1
min th(xnut;ff)‘*‘FT(ﬂ?T;%) ey
Zo:T,U0:T—1 —0
st w1 = ge(@e, s &), VO<t<T,
se(e, ugs &) <0, Vo<t<T,
To = (E(O)

Here, ; € R"™ represents the system state at time ¢, and u; € R™ is the control input or action. The
function f; denotes the time-varying stage cost, g; represents the time-varying system dynamics,
and s; encapsulates the time-varying constraints. Crucially, these functions are parameterized by &7,
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representing unknown ground-truth parameters governing the system’s behavior at time ¢. Fr is a
terminal cost function, parameterized by {7, applied to the final state 7. The initial state is given by
x(0).

A widely adopted approach for addressing such problems, particularly in online settings where future
parameters &; are unknown, is Model Predictive Control (MPC). Solving the full-horizon problem
equation |l directly is often impractical, even if an estimate &; of the true parameters &; is available.
Two primary challenges arise:

1. Computational Complexity: Solving the large-scale optimization problem equation [I]can be
computationally prohibitive, especially for long horizons 7.

2. Model Mismatch & Error Accumulation: Using an imperfect model (parameterized by &;
instead of &) over a long horizon can lead to the accumulation of prediction errors, potentially
resulting in significant performance degradation or constraint violations.

To mitigate these issues, MPC employs a receding horizon strategy. At each time step ¢, given
the current state z; and potentially updated parameter estimates &;.imin(¢+k,7)—1, MPC solves a
Finite-Time Optimal Control Problem (FTOCP) over a shorter prediction horizon k.

Definition 2.1 (FTOCP). The Finite-Time Optimal Control Problem (FTOCP) over the horizon
[t1, to), initialized at state z, using parameters &, .+, 1, terminal parameter (;,,, and terminal cost
Sfunction F'(-; ), seeks to find the minimum cost:

to—1
Lif(z,ftl;tz_thQ;F) = » fH}Jitnf . Z Je(We, ve56e) + F (Y25 Cry) 2)
R
st yi1 = Ge(Ye, ve; &), Vi1 <t < to,
st(yt;vt;gt) Soa th §t<t2,
Y, = 2.

Let Y2 (2, &1, :45—1, (i3 F) denote a corresponding optimal trajectory solution (yy, ., , Vt, :t,—1)-

The FTOCP equation [2]is solved at the current time ¢ over the horizon [t, min(t + &, T')] using the
current state x; as the initial state z. From the resulting optimal control sequence vy.min(t4+k,7)—1
only the first control action, u; = v, is applied to the actual system dynamics g:(+, -; &'). The system
transitions to the next state x;1, and the process repeats at time ¢ 4+ 1. A typical implementation is
described in MPC}. (Algorithm 2).

Measuring Control Performance of MPC. We evaluate online control algorithms (ALG) by
comparing their executed trajectories against the offline optimal trajectory (OPT), which assumes
perfect foresight of ground-truth parameters ;..

Definition 2.2 (Trajectories). Given initial state xo and parameters &5 p:

¢ Executed Trajectory (obtained from ALG): xg Jo, ... 2T 7, where uy is chosen by ALG
and xy 1 = gy (24, ug; & ).

* Offline Optimal Trajectory (OPT): xj Lo, .. 1Ty x7, solving equationwith known &5.p.

Our primary performance metric is dynamic regret (L1 et al.,|2020; |Gandhi et al., 2021} Dogan et al.,
2023} |Goel et al.L[2019} [Fiacco & Ishizukal [1990), quantifying the cumulative cost difference between
the executed and optimal trajectories due to the online nature of the algorithm:

Regret(ALG) := cost(ALG) — cost(OPT) , ©)

where cost(+) is the total trajectory cost calculated using true parameters &;':

T-1 T—1
cost(ALG) := Z fi(xs,u; &) + Fr(xr; &) cost(OPT) = Z fe(ay, uf; &) + Fr(zh; &) .
t=0 t=0

Measuring Computation Efficiency of MPC. To assess computational efficiency, especially
crucial when using learned world models, we choose Number of Function Evaluations (NFEs): The
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total number of predictive world model queries made by the MPC solver (e.g., CEM, MPPI) during
one episode (¢ = 0 to T'). NFE directly reflects the computation cost and potential for acceleration.
Using NFE or similar query counts as a measure of computational efficiency is common practice in
related fields, including optimization (ten Eikelder & van Amerongen, |2023)), generative modeling
(Prasad et al.| 2024), and large language model planning (Sun et al.||2023).

3 METHODOLOGY

The core objective of our methodology is to enhance the computational efficiency of MPC when using
learned world models, specifically by minimizing the Number of Function Evaluations (NFE), without
significantly compromising control performance, as measured by dynamic regret. More specifically,
we aim to minimize the NFE conditioned on the overall regret is no more than (¢ +Regret(MPC},))We
achieve this by developing adaptive replanning strategies and analyzing their theoretical properties
and practical effectiveness.

3.1 THEORETICAL ANALYSIS

Standard Model Predictive Control can be computationally demanding. This is particularly true when
employing complex predictive models (e.g., learned world models) and sampling-based optimizers
(e.g., Model Predictive Path Integral control (MPPI)(Williams et al.,|2017), Cross-Entropy Method
(CEM)(De Boer et al.| [2005))), which may require hundreds or thousands of model queries per control
step.

Natural approaches to accelerate the planning process involve reducing the replanning frequency.
Two such strategies are considered:

o MPC}": Execute a fixed number, m > 1, of actions from the computed plan before replanning
(Algorithm [3).

* MPCj : Replan only when the system state deviates significantly (by more than a threshold €)
from the previously planned trajectory (Algorithm [)).

Intuitively, reducing the replanning frequency may degrade control performance compared to standard
MPC}C. We aim to characterize this trade-off between computational savings and performance,
measured by dynamic regret, both theoretically and empirically.

Our theoretical analysis builds upon perturbation analysis techniques (Shin et al., 20205 |Lin et al.,
20215 Shin & Zavalal 2021} | Xu & Anitescul 2019; [Na & Anitescul, [2022)) and adapts the 3-step
analytical pipeline proposed by Lin et al. (2022). Detailed derivations are deferred to Appendices [C]
and [D} while the main theoretical results on dynamic regret are summarized in Table

Table 1: Overview of theoretical regret bounds. Here, L = maxo<i«7L; and L, =

maxo< <7 Maxo<i<m—1 Hz:t L characterize the sensitivity (Lipschitz constants) of the dynamics

over single and multiple steps, respectively. E represent cumulative prediction errors of the underly-
ing model. Note that when m = 1 or € = 0, our results recover (Lin et al.,2022)). NFEs decreases as
m, €, oy, and o5 increases. Full table on the characterization of NFE details can be found in Table 2}

Algorithm |  Reference | Regret Bound
MPCL | LLin et al. (2022) 0 ( L2cost(OPT) - E + LQE)
MPC} | Theorem|c.4 @) (\/mLicost(OPT) B+ mLfE)
MPCy. | Theorem|C.6 0 (\/L%ost(OPT) (E + ¢E + 1) + L*(E + ¢E + EQT))
MPCar Theorem|C.7 o) <\/cost(OPT)(L2E + ;—%(eo + a%;)T) +I?E + ;—%(eo + a—i)T)

Our theoretical analysis reveals that the major additional regret in MPCy, . is eL?E + €2L2T, high-
lighting the tradeoff between computational efficiency and control performance. This suggests
choosing more aggressive ¢ when both prediction error £ and dynamics sensitivity L are small.



Under review as a conference paper at ICLR 2026

Theoretically, we can set € < exp(—ay L) - exp(—asE), leveraging the exponential decay property
zexp(—az) < —= to control regret through parameter .

However, fixed strategies are suboptimal in practice since both prediction error and dynamics
sensitivity vary significantly over time. We therefore introduce MPC 4 (Algorithm [3), which
adaptively adjusts the threshold online, as detailed in the following subsection.

3.2 ADAREP: AN ADAPTIVE REPLANNING MECHANISM

The core idea of ADAREP is to dynamically adjust the replanning strategy based on real-time
performance metrics, specifically model prediction accuracy and local dynamics sensitivity. The
goal is to replan less frequently (saving computation) when the model performs well and the system
behaves predictably, but increase replanning frequency when prediction errors rise or the system
exhibits higher sensitivity. The detailed procedure is implemented in Algorithm [T]and Algorithm 3]

The adaptation relies on metrics computed at each time step. Let (y;...., v+....) be the plan computed at
time step ¢. After applying the first action u; = v; and observing the actual next state x4 resulting
from the true dynamics g¢;(-, -; &), we calculate:

1. Prediction Error: The deviation between the observed state and the state predicted by the model
9¢(+, ;&) used for planning (denoted ;1 in the plan starting from ;).

07r1 = lzee1 — yerall @)
where y;+1 = g¢(x¢, us; &) according to the internal model.

2. Local Dynamics Sensitivity Estimator: An estimate of how much the state changes relative to
the control input magnitude, which provides an empirical measure of the system’s local sensitivity.

T o_ [Z1+1 — 24|

Ly = ; (&)
e

A higher ft suggests greater state change per unit control, indicating higher local sensitivity.

3. Threshold Update: Based on the estimators, we update the threshold inversely to the estimators.
Here we simply apply exponential descay.

€t = €0 * €XP (—aLft) -exp (—asdy) . (6)

Algorithm 1 ADAREP: Adaptive Re-Planning Threshold Update (theoretical version)
Require: action uy, prediction y; 1, base threshold €,

1: Calculate prediction error J; using Equation

2: Estimate local dynamics sensitivity Zt by Equation H

3: Update the threshold ¢, by Equation (6)

We also provide theoretical regret analysis for this algorithm in Theorem [C.7] which reveals how we
can manipulate the additional regret by simply setting different values of €y, o1, and a5, with no
reliance on L or E, which is not supported by non-adaptive methods like MPC}" or MPC, .

Implementation Details Practical implementation of our algorithm involves several key details:

1. Sliding Window: The estimators calculated by Equation () and Equation (3] are quite noisy.
To achieve more stable update, we apply sliding window to stabilize the adaptation against noisy
single-step measurements. Our sensitive analysis in Section[#.3]demonstrate that sliding window
method are crucial for practical implementations.

2. State Distance Calculation: The method for calculating distances, particularly the prediction
error 67,y = [[#¢11 — ye11 ||, (Equation (@), depends on the nature of the predictive world
model:

* For state-based world models that directly output predicted state vectors, we compute the
L2-norm (||-||) between the actual and predicted state vectors.
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* For vision-based world models that output predicted images, calculating distances directly
in pixel space is often ineffective. Instead, we first extract semantic features from both
the actual observed image (I (z;+1)) and the predicted image (I (y:41)) using a pre-trained
feature extractor, such as DINO (Caron et al.; 2021). Let ¢(-) denote this feature extraction
function. The prediction error is then computed in the feature space:

1 = [l (@e41)) = 6 (Y1)l - ©)

3. Hyper-parameters Tuning: Our tuning is an upfront and efficient process as it builds upon
the baseline. A practitioner can start with a reasonable fixed threshold € and then simply tune
oy and a5 , which control the adaptation’s sensitivity. Note that we do not need to tune the
algorithm again if we switch the MPC planners (eg. MPPL,CEM).

Finally we remark that ADAREP is a training-free, plug-and-play module that can seamlessly be
adapted to any world models and MPC planners. It can be adapted to any tasks that standard M PC,lC
can handle.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Our experiments are designed to address the following key questions regarding our proposed adaptive
replanning algorithm:

1. Efficiency and Performance: Does our proposed algorithm significantly accelerate the planning
process compared to canonical MPC solvers while maintaining comparable or achieving even
better task performance ? (Figure [2))

2. Generalization: Does the adaptive replanning mechanism generalize effectively across different
predictive world models and diverse manipulation tasks within the simulated environment?
(Figure[2)

3. Real-World Applicability: Can the benefits observed in simulation translate to challenging
real-world robotic planning scenarios using learned world models? (Figure[3)

Simulated Experiments. We conduct simulated experiments using the VP2 benchmark (Tian et al.|
2023b)), a control-centric benchmark designed for evaluating video prediction models in manipulation
tasks. This allows us to assess our algorithm’s effectiveness and adaptability across various world
models and tasks in a controlled setting. VP2 utilizes the RoboDesk simulation environment (Kannan
et al.| 2021) and provides pre-trained predictive world models relevant to this environment.

The RoboDesk environment features a Franka Emika Panda robot arm situated before a desk with
various objects. We evaluate on the following 7 tasks defined within RoboDesk: pushing buttons (red,
green, blue), opening a slide, opening a drawer, and pushing blocks (upright, flat) off the table.

We test our adaptive replanning approach with two distinct open-source video predictive world models
provided by the VP2 benchmark: SVG (Villegas et al.,2019) and Struct-VRNN (Minderer et al.,
2019). These models represent different architectural choices for video prediction.Here we compare
our adaptive method MPC 4 p against standard MPC,lC and other non-adaptive method MPC}" and
MPCy, .

Real-World Experiments. To assess performance beyond simulation, we conduct real-world
experiments with a Franka Emika Panda robotic arm, as detailed in Appendix [E.2] we utilize
state-based world models trained as described in Appendix [E.3] We selected two challenging task
categories representing different manipulation types prevalent in real-world scenarios:

1. Open Door: An articulation task requiring precise interaction with a hinged object. We evaluate
on sub-tasks of opening the door to 90° and 180°.

2. Push T-Block: A representative long-horizon rearrangement task. We define three sub-tasks: (i)
translating the T-block to a target position, (ii) rotating the T-block to a target orientation, and
(iii) a combined task of translating and then rotating the T-block.
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Figure 2: Results in Simulated Experiments. Here we tune the hyperparameter of the algorithms such
that the performance are almost the same. It is demonstrated that our adaptive method enjoys most
significant compuational savings.

4.2 MAIN RESULTS

Results in Simulated Experiments For all the algorithms, we tune their hyperparameters such
the success rates of all the accelerating methods drop no more than 0.02 compared with standard
MPC}.. From Appendix we can see that both MPC}" and MPC,, . cannot significantly accelerate
compuation and guarantee performance simultaneously. MPC 4 r, which adopts adaptive re-planning
schedule, have much advantages as shown in Figure[2]

Results in Real-World Experiments  Visual demonstrations are detailed in Appendix [F.2] Here we
only provide quantitative results. As shown in Figure[3] our adaptive approach MPC 4z demonstrates
significant NFE reduction while maintaining or improving success rates across various sub-tasks. It
has much better performance compared with that in the simulator because state-based planning is
more explicit than vision-based planning.

4.3 ANAYLSIS AND DISCUSSIONS

ADAREP achieves greater acceleration with accurate predictions. To investigate the impact
of prediction accuracy on our adaptive algorithm, we conducted additional experiments using a
“disturbed simulator" as the predictive world model which allowed us to directly control the magnitude
of prediction errors introduced into the system. Specifically, we added varying levels of Gaussian
noise to the true simulated state components (robot position/velocity, object position/velocity, and
end-effector position) before feeding them to the planner. We evaluated three distinct levels of
disturbance, with further details provided in Appendix [E.6|and results are summarized in Figure[7]

ADAREP achieves greater acceleration when system dynamics are smoother. The effective sen-
sitivity of system dynamics can vary considerably, even within a single manipulation task. Consider
the “open door" task: the dynamics are often highly sensitive when the end-effector interacts with
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Figure 3: Results in Real-World Experiments. MPC 4 p can maintain strong performance and enjoy
compuational savings simultaneously.

the door near its axis of rotation, as small end-effector movements can induce large angular changes.
Figure [] illustrates this concept. ADAREP can reduce re-planning frequency more aggressively,
leading to greater computational savings.
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Figure 4: Illustration of varying dynamics sensitivity in the "open door" task. Left: Pushing the door far from
its axis often results in more predictable, smoother changes in the door’s state per unit of end-effector motion.

Right: Pushing very close to the axis can lead to more abrupt or sensitive changes. Different colors represent
controls from different plans.

ADAREP maintains performance even in worst-case scenarios. Real-world applications often
present challenges such as large, unexpected prediction errors from the world model or highly
sensitive, difficult-to-control system dynamics. In such adverse conditions, a key strength of MPC 4
is its ability to adapt and prioritize task performance. By continuously monitoring metrics like
prediction error (see Figure[5) and estimated local dynamics sensitivity (Figure [6), our algorithm
automatically reduces its replanning threshold €;. This leads to more frequent replanning, effectively
causing MPC 4 i to behave more like standard M PC,lc, thereby ensuring robustness and maintaining
performance, albeit with reduced computational savings in these demanding situations.

‘o ‘ §
diff 0.089 0.06 0.078

!
. i o | S e
0.129 0.104 0.159 0.107 0.1 0.133
step
Figure 5: Visualization of prediction error monitoring. The first row shows observed images from the
environment. The second row displays the corresponding images predicted by the world model. The third row

quantifies the prediction error, likely computed in a feature space as Equation (@) using features from DINO
Equation (7). Large discrepancies trigger more frequent replanning.
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Figure 7: Impact of different levels of state component disturbance,win dow size.Small W (e.g., 1-5) re-

visual noise, and visual blurriness on the NFE Drop of ADAREP (relative . .
to standard MPCL). Success rates were maintained at almost the same SUtS in poor performance while Large
across all tests. Disturbance and corruption parameters are detailed in W (e.g., >15) makes performance
Appendix [E-6|and Appendix [E-7] plateaus.

ADAREP performs better with more explicit state representations; robust visual features remain
a challenge. As observed in Section[d] ADAREP demonstrates significantly better effectiveness
when coupled with state-based world models compared to vision-based ones. To investigate the
impact of visual input quality on ADAREP when using vision-based world models, we simulated a
scenario with a ‘perfect’ underlying state predictor but introduced various visual corruptions to the
image outputs. This was achieved by adding different levels of Gaussian noise or applying Gaussian
blur to the images generated by an otherwise accurate simulator (details in Appendix [E7). The
results in Figure[7]indicate that even when the underlying state information provided to the planner
is perfectly accurate (from the simulator), the performance of ADAREP (when relying on features
extracted by DINO from these visually corrupted images) degrades significantly in terms of NFE
reduction. This highlights the sensitivity to visual features and suggests that developing more robust
visual feature extractors, or methods to better integrate them with adaptive MPC, is a crucial direction
for future work.

ADAREP is robust to the choice of window size. We conduct additional experiments on the
sensitive analysis of the window size, using the VRNN model. The result in Figure[§]reveals a clear
and intuitive trade-off. Small W results in poor performance. We conjecture that the estimates are too
unstable and noisy, leading to erratic replanning. Large W makes performance plateaus. The system
becomes less responsive, averaging over too much history to react to recent changes. Crucially, the
key takeaway is that ADAREP is robust to the choice of W. There is a wide range of values (W from
8 to 16) that yield strong and stable performance.

5 CONCLUSION

This research addressed the computational demands of Model Predictive Control (MPC) with learned
world models by introducing ADAREP, an adaptive replanning strategy. Our theoretical analysis
elucidated the interplay between replanning frequency, model prediction error, and local dynamics
sensitivity, guiding the design of ADAREP which dynamically adjusts its planning effort based on
online estimates. This training-free, plug-and-play approach demonstrated significant efficiency gains
while preserving or enhancing task success rates. These findings underscore the potential of adaptive
replanning for practical robotic control. Future work should focus on developing more robust visual
features for vision-based models to broaden its applicability.
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algorithmic contributions, interpretation of results, and all scientific insights and conclusions. LLMs
were not used for any creative, analytical, or decision-making aspects of the research.

B ALGORITHM PSEUDOCODES

Algorithm 2 Model Predictive Control (M PC,:E)

Require: Prediction horizon £, initial state 2:(0), access to predictions &.,|,, terminal cost function
Fr. (Specify intermediate terminal costs Fy for k < t < T if needed for stability/performance).
1: fort=0,1,..., 7T —1do
2: t' « min{t + k, T}
3: Observe current state x4 and obtain predictions &,/
4: Define terminal cost for subproblem: Fie,..,, = Fy if t' < T else Fr.
5.
6
7

Define terminal parameter for subproblem: Cierm = &/t

Solve for (yt:t’7 Ut:t’—l) = w; (xtv gt:t’71|ta Cterm; Fterm)~
Commit the first control action: u; := v;.

C THEORETICAL ANALYSIS

This section provides the detailed theoretical analysis underpinning our results, including assumptions,
key technical lemmas, and regret bounds.
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Algorithm 3 Model Predictive Control with Fixed Replan Frequency (MPC}")

Require: Prediction horizon k, replan frequency m (1 < m < k), initial state 2(0), access to

—

A A A S e

predictions &.../|, terminal cost function Fr. (Specify intermediate terminal costs F; for
k <t < T if needed).
t<+<0
while ¢t < T do
t' < min{t + k, T}
Observe current state x4 and obtain predictions &;.,|;.
Define terminal cost for subproblem: Fie,..,, = Fy if t' < T else Fr.
Define terminal parameter for subproblem: Cyerm = &4/

Solve for (yt:t’» Ut:t’—l) = d}f (xtv ft:t’71|ta Cterm; Fterm)~

Determine number of steps to commit: Mcommst = min(m, T — t).

Commit the first mcomamse control actions: u, := v, form =1t,...,t + Meommir — 1.
t<—t+ Mcommit

Algorithm 4 Model Predictive Control with Fixed Threshhold (MPCy, )

Require: Prediction horizon , threshold e, initial state 2(0), access to predictions ;.. |,, terminal

9

I e T e S S e e ey
A ol A Tl

—
o]

RN

cost function F7. (Specify intermediate terminal costs Fy for k < ¢t < T if needed).
t+<0
tpian < 0
while ¢t < T do
if t == %4, then
t' < min{t + k, T}
Observe current state z; and obtain predictions ;.4
Define terminal cost Fye,p, = Fy if t < T else Frp.
Define terminal parameter Crerm = &t
Solve for: (yt:t/v Ut:t’fl) = ¢€,(xt7 ft:t’—l\ta Cterm; Fterm)~
Ut = V.
Execute action u; in environment.
Observe next state x4 1.
if ||.Z‘t+1 — Yt+1 || > ¢ then
tplan —t+1
else
if t + 1 == ¢’ then
tplan —t+1
t—t+1

13
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Algorithm 5 Model Predictive Control with Adaptive Re-Planning (ADAREP) (MPC4R)

Require: Prediction horizon , threshold e, initial state 2(0), access to predictions ;.. |, terminal
cost function Frr. (Specify intermediate terminal costs F; for £ < ¢ < T if needed).

1:t<+0

2: tpign <0

3: whilet < T do

4: if t == %4, then

5: t' < min{t+ k,T}

6: Observe current state 4 and obtain predictions &,
7: Define terminal cost Fyepy, = Fy if ¢/ < T else Fr.
8: Define terminal parameter Crerm = & |¢-

9: SO]VC fOI': (yt:t’7 ’Ut:t’fl) = 1/1€/ (xh ft:t’—l\ta Cterm§ Fterm)~
10: Ut 1= V¢.
11: Execute action u; in environment.
12: Observe next state x4 1.
13: Update threshold €, 1 using Algorithm|[]
14: if ||(Et+1 — yt+1|| > €441 then
15: tplan < T+ 1
16: else
17: if £t + 1 ==t then
18: tplan < T+ 1
19: tt+1

Algorithm 6 ADAREP: Adaptive Re-Planning Threshold Update (practical version)

Require: Buffers Ds, Dy, action u,, prediction y.1, base threshold ¢;
1: Calculate prediction error d7 using Eq. equation 4]

2: Estimate local dynamics sensitivity L; by

7 lZt41 — 24|
— k7l 8
t ||Ut|| +€ 9 ( )

3: Update buffer Ds <— UPDATEBUEF(Ds, d, W), Dy, < UPDATEBUF(Dy, f, W)
4: Update the threshold e; < € - exp (—agmean(Ds)) - exp (—agmean(Dyr))
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Table 2: Summary of theoretical regret bounds and NFE. Here, L = maxo<<7 L; and L, =

maxXg<t<T MaXg<i<m—1 sz L characterize the sensitivity (Lipschitz constants) of the dynamics
over single and multiple steps, respectively. E represent cumulative prediction errors of the underlying
model; they have slightly different forms but are conceptually similar for comparison purposes. Note
that when m = 1 or € = 0, our results recover (Lin et al.,[2022)). And S is the sample size of the
planner at each step. N, N., < T is the total number of plans that decreases as ¢, ar, and a5
increases.

Algorithm | Regret Bound | NFE
MPCL 0 (\/W—I—LQE) TkS
MPC} 0 (\/mchost(OPT) B+ mLzE) [T /m]ksS
MPCy.. o (\/L%ost(OPT) (E 1 ¢E + 1) + L*(E + ¢E + EQT)) N.kS
MPCar | O <\/cost(OPT)(L2E + ;—%(eo + a—ls)T) +I°E + ;—%(eo + é)T) NeokS

C.1 ASSUMPTIONS AND NOTATIONS

Our analysis largely follows the framework established by |Lin et al.[(2022). We impose the following
standard assumptions throughout this section:

« Stability of OPT: The offline optimal trajectory (.7, u8.7-_) is bounded. There exists a
constant D~ > 0 such that ||z}|| < D, for all states =} on the optimal trajectory (0 < ¢t < T').

* Lipschitz Dynamics: The ground-truth dynamics function g (-, -; &) is Lipschitz continuous
with respect to both state and action. There exists a constant L, such that for any feasible states
x4, x} and actions wug, uy:

lge(@e, ue; &) = ge(@p, uts E < Le(llee — 24| + [lue — wpl]).- ®

* Cost Function Regularity: Every stage cost f;(-,-;&;) and the terminal cost Fip(-; &%) are
non-negative, convex, and ¢-smooth with respect to (z,u;) and zr, respectively, for some
¢>0.

We note a slight strengthening compared to |Lin et al.| (2022), who only required the dynamics
9¢(+, +; &) to be Lipschitz continuous with respect to the action u;. Our stronger assumption (Lipschitz
continuity w.r.t. both state x; and action w;) is utilized specifically in the analysis of MPC}"
(Algorithm [3). The analysis for MPC, . (Algorithm ) does not require this modification and holds
under the weaker assumption.

When the context is clear, we use the shorthand ¢:(-,-) = ¢:(-, &), fe(-,-) = fe(-, &), and
Fr(-) = Fr(-; &) to simplify notation.

C.2 PERTURBATION ANALYSIS

Our analysis relies heavily on perturbation bounds for the Finite-Time Optimal Control Problem
(FTOCEP, see Definition [2.T]), which characterize how the optimal solution changes in response to
perturbations in parameters or initial states. Prior works (Shin et al., 2020; Lin et al., 2021} |Shin
& Zavalal, [2021; Xu & Anitescu, 2019; |Na & Anitescul, [2022)) have established such bounds, often
locally, for various FTOCP instances. We adopt the generalized forms presented by [Lin et al.| (2022):

(a) Parameter Perturbations (fixed initial state z): Let 1/12’;‘ (2,&; F), denote the optimal control
sequence from the FTOCP solution. Then,

|4t s P, = 082 (206003 F),,

to to
< <Z qi(s— t1)55> 21l + Z qa(s — t1)ds,
s=t1 s=t1
(10)

where §; = ||{s — &|| for s € [t1,t2]. The scalar functions ¢;, g» represent sensitivity decay
and satisfy lim;_,» ¢;(t) = 0and >, ¢;(t) < C; for constants C; > 1,7 = 1,2.
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(b) Initial State Perturbation (fixed parameters §): Let zb;f (2,&; F)y, /v, denote the state or control
component at time ¢ of the optimal solution. Then,

waf (Z7§t11t2; F)yt/v,, - T/Jff (Zlagtlitz;F)yt/vt

where the sensitivity decay function g3 satisfies > .-, g3(t) < C5 for some constant C3 > 1.

< qz(t—ty) ||z = 2'||, fort € [t1,ta], (11)

Intuitively, bound equation [T0]suggests that errors in parameter predictions further in the future have
a diminishing impact on the current optimal action. Bound equation (I 1|implies a form of stability:
the effect of an initial state perturbation decays over time within the planned trajectory.

While these perturbation bounds are powerful, proving they hold globally can be challenging; often,
they are established locally around a nominal trajectory. For a practical predictive control system
designed to track an optimal trajectory, it is reasonable to expect the executed trajectory to remain
relatively close to the (unknown) optimal one. Building on this, we adopt the following property,
similar to|Lin et al.| (2022), which posits that these bounds hold within a certain region around the
optimal trajectory OPT. Let B(x, R) denote the closed ball of radius R centered at x.

Property C.1. There exists a constant Ry > 0 such that the perturbation bounds equation[[0and
equation [[1) hold under the following specifications, assuming the underlying parameter sets =,
contain the relevant parameters:

* Bound equation [0\ holds for t, = t,to = t + k (where t < T — k) with terminal function
F =1 (identity), initial state z € B(x}, R1), parameters §£:t+k—1 = &1 p_1 (8round truth),
and Ei.¢+ 1, being any valid parameters within the family.

¢ Bound equationholdsfor t1 =t,to =T (wheret > T — k) with terminal function F' = Fr,
initial state z € B(x}, R1), parameters &, = &, and &7 being any valid parameters.

e Bound equationholdsfor any ty,to, any initial states z, 2" € B(xf , R1), and ground-truth
parameters & .1, = &f .1,

We quantify the quality of the parameter predictions &;,|; (prediction of &, made at time t)
available to the online controller.

Definition C.1 (Prediction Error). The prediction error at time t for lead time 7 > 0 is p; » =
10471 = &l

A key challenge in analyzing online algorithms via regret is the state mismatch: the online algorithm’s
state x; generally differs from the offline optimal state z}. Directly comparing the online action u;
to the offline optimal action w; is therefore insufficient. Inspired by techniques in reinforcement

learning (Lin et al.| [2021)), Lin et al.| (2022) utilized a per-step error comparing the online action u; to
the optimal action wu, It from the current state ;. For analyzing MPC}*, where actions are based on

plans made at earlier times ¢, we introduce a conditional variant.

Definition C.2 (Per-Step Error). The per-step error e; incurred by a predictive online controller
ALG at time step t is defined as the distance between its actual action u; and the clairvoyant optimal
action, i.e.,

= |Jur = o (@1, &5 Fr)o,|

up — g, , where ug = ALG(2¢, &pptift) v, -

€t ‘= ‘
The clairvoyant optimal trajectory starting from x; is defined as xz:Tlt =] (24, & Fr)y, e

Definition C.3 (Conditional Per-Step Error). The conditional per-step error e; incurred by a pre-
dictive online controller ALG at time step t given time step t' is defined as the distance between its
actual action u; and the clairvoyant optimal action given t'

= ||ut — YL (@, & i Fr)o, H , where uy = ALG(2/, §prir oftr ), -

erp = ‘ Up — Ufjy
The clairvoyant optimal trajectory starting from x; is defined as m;Tlt =] (24, & g Fr)yer-
What’s described above are adequate to analyze the regret of MPC}" (Algorithm 3) and MPCj, .

(Algorithm E]) However, when it comes to the analysis of MPC4r (Algorithm [5)), additional
assumptions have to be made.
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The core idea of ADAREP is to monitor and estimate local dynamic sensitivity and prediction error
based on observation. Previous assumptions only characterize how performance or deviation can be
upper bounder by local dynamic sensitivity and prediction error, but do not reveal how local dynamic
sensitivity and prediction error can be estimated by ground-truth observation. In the light of this, we
introduce the following properties, which gives the inequalities on the opposite direction of eq. (9)
and Equation (I0).

* Lipschitz Dynamics: For all [|u; | > 0, there exist 0 < A < 0 such that

ALy [Jue]| < llge(we, ues §) — @el] < Le [Juel| -
* Parameter Perturbations: There exist 0 < p < 0 such that

(Z(h 5 —11)0 >|Z||+MZ(]2S t1)ds,

s=t1 s=t1
(12)

|42 (2. €00ai ), = 082 (2460, F)

Now we are ready to provide the regret analysis for all the algorithms.

C.3 REGRET ANALYSIS FOR MPC}?

We first bound the conditional per-step error for the MPC}" algorithm.

Lemma C.1 (Conditional Per-Step Error Bound). Assume Propertyholds. Lett' =mn <t<
m(n + 1). Assume the state at the last replanning time satisfies vy € B(z},, R1). Further assume
the (potentially hypothetical) terminal cost used within the FTOCP solved at time t' implies a target
terminal state §(§y ) € B(x] 1y, R2) for some constant Ry > Ry > 0. Then, the conditional
per-step error ey of MPCJ is bounded by:

k

e < Z ((R1+ Dy+) - q1(7) + q2(7)) prr s + 2Ro (R1 + Dy ) - qu (k) + q2(k)) . (13)
=0

Next, we relate the deviation from the clairvoyant optimal trajectory (starting from x,/) to these
conditional errors.

Lemma C.2 (State Deviation Bound). Lett’ =mn < t <m(n+1) and let z7,,
time T on the clairvoyant optimal trajectory starting from x;: at time t'. Under the Lipschitz dynamics

assumption, we have:
t—1 t—1
| <ZW(HLJ. (14)

=t/ s=7+1
The following lemma connects the cumulative conditional per-step errors to the dynamic regret,
analogous to Lemma 3.2 in|Lin et al.| (2022).

denote the state at

*
Tt — xt‘t/

Lemma C.3 (Regret Bound via Conditional Errors). Assume T' = mN for integer N. Let L, =

maxo<¢(<T—k HtJrk ! L. Under the assumptions on cost function regularity and the applicability of
perturbation bound equation n (Property-) the dynamic regret of MPCY" is upper bounded by:

cost(MPC}") — cost(OPT)

N—-1m(i+1)—1

< (g-szzq%) cost(OPT) - Z >

T=mi

N—-1m(i+1)—1
2mL203 Z S - (15)

T=mi

Combining these results yields the main regret theorem for MPC}".
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Theorem C.4 (Regret Bound for MPC}"). Let Propertyhold. Suppose the terminal cost Fy
of MPC}" is set to be the indicator function of some state §(&4r)¢) that satisfies §(&eqrp) €
B(x},, Ro) for all time steps t < T — k. Further, suppose the prediction errors py ; are sufficiently
small and the prediction horizon k is sufficiently large, such that

k

> ((Ry+ Da) - qu(7) + ¢2(7)) prn.r + 2R2 (R1 + D+ ) - qu(k) + q2(k)) <
7=0

Then, the trajectory of MPC}' will remain close to OPT, i.e. x; € B(z}, Ry) for all time steps t, and
the dynamic regret of MPCL" is upper bounded by

Ry
ng,L* '

cost(MPC}") — cost(OPT) = O (\/mLfcost(OPT) By + mL3E1> ) (16)
where By = O (X820 (Ro - a1(7) + a2(7) Sng Mk + (a1 (K)? + aa2(k)*) T) .

C.4 REGRET ANALYSIS FOR MPC;, ..

We first bound the per-step error of MPCy, .

Lemma C.5. Let Propertyhold. Suppose the current state x; satisfies xy € B(x}, Ry) and the
terminal cost Fy 1, of MPCy, . is set to be the indicator function of some state §(&; 1 ¢) that satisfies
U(Eqr)e) € B(xf,y, Ro) for t < T — k. Further, suppose the last planned time step is t'. Then, the
per-step error of MPCy, . and MPC 4R is bounded by

k

er < q3(0)e+ > ((Ra+ Do) - 1 (7) + 2(7)) prr r +2Ra (R1 + Da) - qa (k) + q2(K)) - (17)
=0

This yields the final regret bonud for MPCy, .
Theorem C.6 (Regret Bound for MPCy. (). Let Property hold. Suppose the terminal cost
Fiy of MPC}! is set to be the indicator function of some state §(&;,|¢) that satisfies §(&pyp)) €
B(xy;, Ry) for all time steps t < T — k. Let L = maxo<i<7 L Further, suppose the prediction
errors p; » and threshold e are sufficiently small and the prediction horizon k is sufficiently large,
such that
k
g3(0) + > ((Ri + Dy=) - qu(7) + 42(7)) pr.r + 2Rz (Ry + Da-) - a1 (k) + g2 (k)
7=0

Ry
< — .
— C3L

Then, the trajectory of MPCy, . will remain close to OPT, i.e. x; € B(xz}, Ry) for all time steps t,
and the dynamic regret of MPCy, ¢ is upper bounded by

cost(MPCy, ¢)—cost(OPT) = O (\/L2cost(OPT) (By + €By + 2T) + mL2(Ey + €Ey + eQT)) ,

(18)
where Ey = O (Zf;(l) (Ro- q1(7) + 42(7) Sy P20y - + (1 (R)? + ga(k)?) T), p(t) denotes
the last time step that plans before t.

C.5 REGRET ANALYSIS FOR MPCy4g.

Theorem C.7 (Regret Bound for MPCy4R). Let Property hold. Suppose the terminal cost
Fiyr of MPC}! is set to be the indicator function of some state §(&4|¢) that satisfies (1)) €
B(x};,, Ry) for all time steps t < T — k. Let L = maxo<i<7 Lt Further, suppose the prediction
errors p; » and threshold € are sufficiently small and the prediction horizon k is sufficiently large,
such that
k
g3(0)e + > ((R1+ Dav) - q1(7) + q2(7)) pr.r + 2Ra (Ry + Do) - qu (k) + q2(k))
=0

Ry
< — .
- (3L

Then, the trajectory of MPCy, . will remain close to OPT, i.e. x; € B(z}, Ry) for all time steps t,
and the dynamic regret of MPCy, ¢ is upper bounded by
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cost(MPCy, ) — cost(OPT) (19)

=0 (min {Regret(MPCkyeo), \/cost(OPT)(LZE + = (eo + i)T) + L?E + 6—2(60 + 1)T}> ,
o

2
ar ags L ags

where E; = O (Zi;é (Ro - q1(7) + g2(1)) ZtT=o pi(t)ﬁ + (q1(k)* + q2(k)?) T), p(t) denotes
the last time step that plans before t.

D TECHNICAL PROOF

D.1 PROOF FOR MPC}"

Proof of Lemma|[C.]} Lemma[20]is a straight-forward implication of perturbation bound equation[I0]
To see this, for ' = mn < ¢ < m(n + 1), note that the per-step error e¢; can be bounded by

et|tr = ¢§:+k(xt/7§t’:t’+k*1|t/7g(ft,+k|t/);ﬂ)’t}t - 1/JtT($ta§t*:T§FT)vt (20a)
= ‘ ¢§/+k($t’, Et’:t’+k—1|t’a ﬂ(ft/+k|t')§ H)vt - wf/+k(ﬂft'7 f;;t/-}-k—la x:/+k|t/§]1)vt (20b)
k—1
<> (lowl - au(r) + @) pvs + (lzell- a k) + aa2(k0)) |56 ae) = g0
7=0
(20c¢)

Here, we apply the principle of optimality to conclude that the optimal trajectory from zy to 7, ol

(i.e., Q/Jtt: +k(xt/, §irtrih_10 Ty FAWE I) in equation i is a sub-trajectory of the clairvoyant optimal
trajectory from z; (i.e., ¥ (x4, & s Frr) in equation [20a)), and equation is obtained by directly
applying perturbation bound equation Note that [[z4/ || < Ry + Dy, and that both (& p)
and xf, ., arein B(x},;; R) by assumption and by perturbation bound equation |1 1|specified in
Property [C.1] we conclude that equation [I3]hold for ¢ < T' — k. The case t > T — k can be shown
similarly. O

Proof of Lemma|[C.2] We use mathematical induction to show how state deviations accumulate when
executing multiple actions from a single plan. The key insight is that each action error compounds
through the system dynamics.

We prove by induction for the first part. When ¢t = ¢’ + 1 (i.e., the first step after planning):

<Ly

* *
Lt/ +1 = Ty g (xt’:ut’) - gt/(xt’»utf|t/)

Uy — Ur/‘t/
SLt/et/‘t/ .

t—2 t—2 .
< >y erw [1s—, Ls). This means we

assume the state deviation bound holds up to time ¢t — 1. We now show it holds for time ¢:

Now suppose eq. li holds for ¢t — 1 (i.e., th — x:71|t’

* * *
‘ Ty = Typpr || = ‘ gt71(96t71, Ut71) - g(xt71|t’7ut71|t’) ‘
* *
§Lt—1(‘ Ug—1 — Up_qppr || T (’ T—1 — Ty_qp )
t—2 t—2

SLivep g + L Z Er|e/ H L,

=t/ S=T

t—1 t—1
= E eT‘t/ H Ls .
S=T

T=t'
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Proof of Lemma[C3] First we bound ||z, — x| and |lu; — uj||

oo = 1l = o0 = 2| + | — 27|

n—1
_ 7r* +
Lt = Tijmn

IN

* *
xt|m(i+1) = Lmi

IN

Ty — xamn + Z Q3 t - ’L + 1 H«Tm (i+1) — xm(t+1)|mz

t—1 — n—1 m(i+1)—1 m(i+1)—1

ZeT‘mnHLS—&—qu(t—(i—i—l)m) Z Cr|mi H L.

T=mn S=T =0 T=mt

IN

”ut - ’U/:H = ||Ut — u;fk|mn + u:\mn - u;fk

n—1
*
< Ut = Ugjmn +§ :’

* *
Ut |m(i+1) — Utimi

<||lus — uflmn + Z t—(GE+1)m Hfﬂm(zﬂ) :n(i+l)|m7ﬁ
n—1 m(i+1)—1 m(i+1)—

<etjmn + Z g3(t — (i+1)m) Z €r|mi H L
i=0 T=mi

Without loss of generality, we define g3(k) = 0 for k£ < 0. For simplicity of notation, we denote

L, = maxo<i<r MaxXo<i<m—1 H b + Ls, which captures the maximum compounding effect of
Lipschitz constants over m steps. S0 \ We arrive at

m(i+1)—1

e — il fue = < LS as(t = i+ Dm) S erpur. @)

=0 T=mt

To bound the squared deviations (which will be needed for the cost analysis), we use the Cauchy-
Schwarz inequality:

m(i+1)—1 2

o — a7l <L2 (D st —(i+1m) D> erjms
=0 T=mi
m(i+1)—1 2
<L2Zq3t— (t+1)m qut— (i +1)m) Z €r|mi
=0 T=mi
n m(i+1)—1
<mi2Cs [Saslt—G+m) S e
i=0 T=mi
This bound also holds for ||u; — u}||®, so we have
n m(i+1)—1
* 112 *12 .
= 27 [|” + [lue — wp | <2mL2Cs | Y qs(t—(i+1)m) Y €2,
=0 T=mi
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Without loss of generality, we assue 7' = Nm, we have

T T —1(n+l)m—1 n m(i+1)—1
D e —ap P 4+ Jlu — up||* <2mL2Cs Z Yo Y wt—G+1m) > €,
t=1 t=1 n=0 t=nm =0 T=mi
N—1m(i+1)— N—-1(n+1)m—1
<2mL:Cy Z Z Gimi Y Y as(t—(i+1)m)
T=mi n=i t=nm
N—1m(i+1)—
T=mi

Since the cost function f;(-, ;&) and Fr(-; &) are nonnegative, convex, and ¢-smooth in their
inputs, by Lemma F.2 in Lin et al.| (2021)), we see that the following inequality holds for arbitrary
n>0:

cost(ALG) — cost(OPT)
T-1 T—1
< (Z fe(@e, ues &) + FT(l'T;g;“)) - (Z fe(@y,ug &) + Fr(zy; f:?))

t=0 t=0

T-1
<n <Z fe(@y, uis &) + FT(JC%S%))

t=0
/ 1 T T-1
vy (1+3) (Z e — 202 + 3 —u:||2) @30)
n t=1 t=0
e N—-1m(i+1)—1
< n-cost(OPT) + ( > -2mL2C32 Z Z €2 i (23b)
1 ¢ N—-1m(i+1)—
=n- COSt(OPT) —+ 5 5 Qmchg Z Z Tlml

N—-1m(i+1)—1

2mL2C’3 Z D (23¢)

T=m1

where we apply Lemma F.2 in|Lin et al.| (2021} in equation and we use equation [22]in equa-
tion[23b] Setting the tunable weight 7 in equation [23c|to be

1
m H—l 2
2mL203 (Zz 0 ZT (mz T|mz)

= cost(OPT)
gives that
cost(ALG) — cost(OPT)
I} N—-1m(i+1)—1
< (2 . 2mL£C§) cost(OPT) Z Z T‘ml
T=mi
N—1m(i+1)—1

2mL2C’3 Z Z i | - (24)

This finishes the proof. O

21



Under review as a conference paper at ICLR 2026

Proof of Theorem We first use induction to show that the following two conditions holds for all
time steps t < 1"

x: € B(z}, R), (25a)
Ctlmn < Z ((R1+ Da+) - q1(7) + q2(7)) pmn.r + 2Ra (R1 + Dax) - (k) + g2(k)) . (25b)

At time step 0, equation [25a| holds because xy = , and equation [25b| holds by lemma|C.T|and the
assumption on the terminal cost Fj, of MPCy.

Suppose equation 254 and equation 25b] hold for all time steps 7 < ¢. For time step ¢, by the
assumption on the prediction errors p; » and prediction horizon k in Theorem @ we know that
e, < Cg I holds for all 7 < ¢ because equation holds for all 7 < ¢. Thus, we know that
equation @holds for time step ¢ by Equation (21} since

n m(i+1)—1
||$t _$2<|| SL*Z(B(t— (Z+ 1)m) Z e'r|mi
=0 T=mi
<m0 En: (t—(i+1)m)
- *mch* =0 13
Ry
<—-C3=R
03 3 1

Then, since equation [25a]holds for time step ¢, and the terminal cost F; 1, of MPCy, is set to be the
indicator function of some state y(§t+k|t) that satisfies §(&1x)e) € B(wy,,, R1)ift <T —k, we
know equation [25b] also holds for time step ¢ by Lemma|C.1] This finishes the induction proof of

equation 23]
To simplify the notation, let Ry := Ry + D,-. Note that equation 25b|implies that

K
Cimn < (Z (Ro - q1(7) + q2(7)) + 2Rz (Ro + 1))

=0

k
: (Z (Ro - q1(7) + @2(7)) piun.» + 2Ra (Ro - q1 (k)* + CI2(7€)2)> (262)

7=0
< (RoC1 + Coy + 2R2(R0 + 1))

k-1
: (Z (Ro - q1(7) + q2(7)) pon.r + (2R2 + 1) (Ro - q1 (k) + Q2(k)2)> ,  (26b)
=0

where we use the Cauchy-Schwarz inequality in equation we use the bounds Zf—:o q1(7) < Cy
and Ei:o g2(7) < Cs in equation

N m(n—1)—1

Z Z ef\mn (27a)

t=mn
< (Rocl + C2+ 2Ry (Ro + 1))
k—1 N m(n—1)—1
Z (Ro - qi(7) + q2(7 Z Z pmn,T 4+ (2R2+1) (Ro - q1(k)* + Q2(k)2) T
=0 t=mn

(27b)
< (RoC1 4+ Co+2Re(Ry + 1))

k-1
(Z (Ro - qi(7) + ga(7 Z Mpry » + (2Ra + 1) (Ro - q1(k)* + ga(k)?) T) (27¢)

7=0
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Since equation [23]and equation [29]holds for all time steps ¢ < T', we can apply Lemma[C.3|to obtain
that

cost(MPC}') — cost(OPT) = O (mLi\/cost(OPT) -F1 + mLzEl) )

where

E; = (RoCy1 + Cy+2Ra(Ro + 1))
k—1 N
- (Z (Ro - a1(r) + (r)) S s + @R +1) (Ro - aa(k)? + a2(k)?) T)
=0 n=0

This finishes the proof of Theorem [C.4] O

D.2 PROOF FOR MPCy, .

Proof of Lemma[C.3] We bound the per-step error by decomposing it into two parts: the error due to
state deviation from the planned trajectory, and the error due to parameter uncertainty.

Let &y = 1/;::""“(@/, Eeritrpk—1)tr, U(Er 4k )y, De the planned state at time ¢ from the plan com-
puted at time ¢'. We have

ey = "¢f/+k($tlvgt/;t/+k71|t7 g(fturk“/);ﬂ)vt — ’(/};F(xtagi‘kT7 FT)vt

= ‘ wf +k(fﬂt’aft:t/+k—1\t/,?j(ft'-s-/c\t); ]I)vt - § +k($t75;y+k717ff/.,.kmﬂ)vt (28a)
<[t e € hmrien B a1 )3 Do = 08 (@, Grsemagrs 56w i) Do
+ ‘ ,f+k($t,€t:t/+k—1\tuﬂ(ﬁt%k\t’);mvt - z+k($t>€::t’+k717x:+k|t§ﬂ)vt
<q3(0) [|Z 4 — | (28b)
t'+k—t—1
3 Ul () + aa()pee + (el - ar (k) + aa (k) [[56ea1e) = o7
T=t—t'
(28¢)
k-1
<g3(0)e+ Y (Dar + R1) - a1 (1) + g2(7)) per,r + 2Ro(||zel] - aa (k) + g2(K)) . (280)
7=0
In equation we use the fact that the imagined optimal trajectory starting from imagined state

~ . RN _ . . . .
Ty (e, 1y + (@ajers Sectr b1, U(Eer016)3 Dy,y.or oy ovy0r ) 18 Sub-trajectory of the imagined op-

. . . . 1k _
timal trajectory starting from state ;s (i.e. ¥y, ™" (2vr, & qn—11t> U Evr4k)); Do s g vsrr o) I
equation [28b] we apply perturbation bound equation|[T0]and in equation @ we apply perturbation
bound equation Equation comes from the assumption that x; € B(x}, Ry).

O

Proof of Theorem|[C.6] This proof is a simple extension of the proof of Theorem [C.4]and Theorem
3.3 in (Lin et al., [2022)).

By Lemma 3.2 in (Lin et al., [2022)), we have

t—1 t—1
) R .
e = 7l € LY @s(ierioa S Lo 55 S aali) < B
i=0 =0

With the same induction as Theoremwe can see x; € B(x}, Ry) so the perturbation bounds hold.
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To simplify the notation, let Ry := R; + D-. Note that equation[I7]implies that

e? <(g3(0)e)?

k 2
+ (Z (Ro - q1(7) + q2(7)) pp(e),r + 2R (Ro - qu(k) + qQ(k))>

7=0
k
+ 2¢3(0)e (Z (Ro - q1(7) + q2(7)) pp(),r +2R2 (Ro - q1(k) + qg(k‘))) (29a)
7=0
SQS(0)262

k
+ (Z (Ro '(]1(7’) + QQ(T)) + 2Ry (Ro + 1))

=0

k
: (Z (Ro - q1(7) + 2(7)) Ppia). - + 2R (Ro - qu (k)* + qz(k)2)>

7=0

k
+ 2(]3(0)6 (Z (Ro g1 (7') + QQ(T)) Pp(t),r + 2R2 (Ro . ql(k) + QQ(]C))> (29b)
7=0

k
<0 (62 +e (Z (Ro - q1(7) 4+ q2(7)) pp(),r +2R2 (Ro - q1(k) + Q2(k’))>>

7=0
+0 (RoC1 +Cs + 2R2(RO + 1))

k—1
- (Z (Ro - q1(7) + q2(7)) piiy - + (2R2 + 1) (Ro - a1 (k)* + QQ(k)2)> : (29¢)

7=0

where p(t) denotes the last time step that plans before ¢t. We use the Cauchy-Schwarz inequality in
equation 29b; we use the bounds 37 _ q1(7) < C1, YF_ ga(7) < Cain equation

Finally, we apply Lemma 3.2 in (Lin et al.,|2022) and Lemma F.2 in|Lin et al.|(2021) to connect the
per-step errors to overall performance:

cost(MPCy, ) — cost(OPT)

T-1

¢
< <2 (14+2C3L%) - (1 + Cg)) - cost(OPT) - ; e?
/ T-1
+5 (142C5L%) - (1+Cs)- Y €}, (30a)
t=0
—0 (\/chost(OPT) “(Ba+ +€E + 1) + L2(Es + ¢E + eZT)) , (30b)

where
FEy = (R()Cl + Cy + 2R2(R0 + 1))
k-1 T
' (Z (Ro - qi(7) + qa(7)) pr,(t),T + (2R2 + 1) (Ro - q1(k)* + g2(k)?) T) .
t=0

7=0

D.3 PROOF FOR MPC4p

Proof. We extend the analysis of MPCy, . to handle time-varying thresholds. The key insight is that
our adaptive threshold choice allows us to bound the additional regret terms more tightly.
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First we introduce an adaptation of Equation (29) for time-varying thresholds.

k 2
e; < <q3(0)6t + Z (Ro - q1(7) 4+ q2(7)) pp(t),r +2R2 (Ro - q1(k) + qz(k))> (31a)
7=0

S( 6t+z Ro-qu(r +Q2(T))+2R2(Ro+1)>

: <€t + Z (Ro - 1(7) + a2(7)) ppry - + 2Rz (Ro - qu(k)* + QQ(k)2)> (31b)

<(RoC1+ Co+2Rs(Ro+ 1))

k—1
: (Z (Ro - q1(7) + 42(7)) ppa) - + (2R2 + 1) (Ro - qu (k)* + qQ(k)2)>

7=0

k-1
+0 <€f + e (Z (Ro - a1(7) + ¢2(7)) Py + (2R2 +1) (Ro - 1 (k)* + Q2(k)2)>> )

=0
(31¢)

where we use Cauchy-Schwarz inequality in Equation (3TD).

Then we bound ||z; — z}|| in a more fine-grained way to account for the adaptive nature of our
algorithm:

e = 25|l = [l —¥5 (z0)y, ||

< th wt (w1 ytH"’ZH¢t i(xe—4) wt i1 (Te—i—1 ytH
=1
t—1

< o= @)y ||+ (@) [|oems = o @iy || 32
i=1

SZ% ) #e—i = i1 (@i, (33)

< Zq?,(z')Lt_i_let_i_l, (34)

Taking squares and applying Cauchy-Schwarz:

t—1 2
e — 7)) < (Z q3(i)Lt—i—1et—i—1>
1=0
t—1
=< (Zq?»(“) (an Li i q€ef i 1> (352)
= Cs <qu LY i qef i 1> : (35b)

Similarly, we can bound the control deviations:
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t—1 2
e — up||* < ( + qu@m_i_let_i_l)
=0

t—1
< (HZ%U)) : <6t+2q3 L i ief i 1> (36a)
<(1+0s)- (qu L, 1€} 1>, (36b)

Summing equation [35]and equation [36| over time steps ¢ gives that

T T-1
>l — 2l + Z [y
=1
t T T-1
SC3Z<Z(J3 t 71— 16? 71— 1) 1+03 Z (Zq3 Lt2 71— let 71— 1)

t=1 i=0 t=0 1=0
T—1
(1+2C5) ZLfef, (37)
t=0

where we rearrange the terms and use Zjio q3(7) < Cj in the last inequality.
By Lemma F.2 in|Lin et al.| (202 1)) with similar analysis in previous theorem, we arrive at

cost(MPCy, ¢) — cost(OPT)

T-1

14 é
< (2 (14 203)) - cost(OPT) - Z L?e? + 14+2C5) - Z Lie? .

t=0

Now we focus on L7e? and the three terms in Equation (31c). The first term corresponds to the regret
of standard M PC,lf. The second term captures the effect of our adaptive threshold, which we show is
well-controlled. To see this, we have

=~ Lt Lt €0
Lie, < €0 —aply) < _ < - , 38
wer < colyexp(—aply) < eoe.aL.Lt - Eoe.aL-)\Lt elay, (382)

. . 1 . . .
where we use the inequality exp(—x) < - for 2 > 0 in the second step. This gives us

2 2 €0
Lt €4 S m . (38b)
For the third term, we denote s; := Zf;é (Ro-q1(7) + q2(7)) pﬁ(t)_f + (2R; +
1) (Ro - ¢1(k)* 4 g2(k)?) for the simplicity of notation, thus
Lieis; < e - (Lf exp(—ozLLt)) - (exp(—asdy)st) (38¢)
41?2
<e- i < st > (38d)
e2a? L3 e 0y
4 1 460
< en - . = 38
=<0 (e%z%)@) <eo¢5,u> eSN2pa2 o’ (38e)

where we use the fact that exp(—z) < L and exp(—z) < - in the second inequality. Combining
everything together, we have our final regret bound
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cost(MPCy, ¢) — cost(OPT)

<0 (\/Cost(OPT)(LQE + —(60 + f)T) + L’E + 7(60 + oj,;)T> .

where

Ey == (RoCy + Cy + 2Ra(Ro + 1))

k—1
(Z (Ro - qi(7) + ga(7 pr(t) T (2R +1) (Ro “qu(k)? + Q2(k)2) T) :
7=0

The above result may not recover to previous results when oy, = a5 = 0. To mitigate this, we
not need to apply the inequality exp(—z) < ﬁ and exp(—z) < 1-&-% in Equation 1) and
Equation when x are extremely small. So it can still be proved that the regret of MPC 4 g is no
more than regret of MPC,,

O

E EXPERIMENT DETAILS
This appendix provides further details on the experimental setup described in Section 4]

E.1 SIMULATED EXPERIMENTS SETUP

Simulated experiments in this work are conducted on the VP2 [Tian et al.| (2023b) benchmark.
All experiments can be conducted on a single NVIDIA GeForce RTX 4090 GPU. For each run
of the experiments, it takes approximately 2500-3000 MiB of GPU memory for video prediction
models like SVG (Villegas et al.,[2019)) and Struct-VRNN (Minderer et al.,[2019). The simulator
models and associated processes typically consume 20-25 GB of CPU RAM. Evaluating one learned
model on a single task for one seed takes approximately 0.5-1 hour, while evaluations involving
direct interaction with the simulator models (including noisy simulators in Appendix [E.6|and visual
vorrupted simulators in Appendix[E.7]) can take 2-3 hours per task per seed due to potentially different
computational characteristics.

E.2 REAL-WORLD EXPERIMENTS SETUP

As shown in Figure [0 our real-world experiments are conducted using a Franka Emika Panda
robotic arm. The arm is equipped with a simple cubic pusher as its end-effector to interact with
the environment and objects. To obtain precise and high-frequency measurements of the keypoints
defining the state , we utilize a Vicon motion capture system. This system provides accurate 3D
coordinate data, which forms the basis for the state representations x; used by our learned world
models and the MPC controller in the real-world tasks.

E.3 STATE-BASED WORLD MODELING FOR REAL-WORLD TASKS

For the real-world experiments utilizing state-based representations (as opposed to vision-based
models used in simulation), we learn task-specific, single-step dynamics models f. These models
predict the next state x;; given the current state z; and the action w; applied by the robot’s end-
effector (pusher):

Ti41 = f(xhut) . (39)

Here, u; € R? typically represents the 2D movement command sent to the end-effector. The specific
state representation x € R? varies depending on the task:

» Open Door Task: The state z € R® comprises the 2D coordinates of the door hinge (axis)
(20, ¥yo), the door handle/endpoint (x1,y;), and the robot end-effector (pusher) (z.,ye), as
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q, ‘ ' Franka Emika ’ X
-~ Panda robotic arm
N / \ 1

O .

) Pusher

c
,ﬁ/ Markers

Figure 9: Real-World Experiments Setup

illustrated in Figure Note that while the hinge position (g, yo) is fixed during any single
task execution trial, its location may vary across different trials in the data collection phase. This
variation encourages the learned model f to generalize to different initial door configurations.
We utilize classical 3 layer MLP model structure.

* Push T-Block Task: The state = € R® includes the 2D coordinates of three key points defining
the T-block’s pose (e.g., top-left (x1, y1 ), top-right (x2, y2), and bottom-middle (x3, y3)), along
with the end-effector coordinates (., y. ), illustrated in Figure These points allow tracking
the object’s position and orientation. We utilize classical 6 layer MLP model structure.

(g, Yg)

(x1,y1) (x2,52)

(x1,1)

(%0, Y0) ‘:~|; . , O
O (xe, ¥e)

Figure 10: State representation for the Open  Figure 11: State representation for the Push
Door task, showing hinge (z¢,y0), endpoint  T-Block task, showing key points (z1,¥1),

(#1,%1), and pusher (z, ye). (w2,92), (v3,y3) and pusher (x.,ye).

E.4 DATA COLLECTION FOR STATE-BASED MODELS

For each task setting requiring a state-based model, training data for the dynamics model f (Eq. equa-
tion ??) was collected from two primary sources:

1. Expert Demonstrations: A collection of successful task executions providing examples of
effective interactions. Demonstrations were gathered via human teleoperation and potentially
supplemented by trajectories generated using path planning algorithms (like RRT) to reach
specific target configurations.
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2. Random Exploration: Data gathered from trajectories generated by applying random actions
within the operational workspace. This source contributes a significant portion of the dataset to
ensure broad coverage.

Combining targeted expert data with broad exploration data aims to prevent the model f from
overfitting to specific demonstration trajectories. This strategy helps ensure the model captures
dynamics across a wider range of the state-action space, potentially improving prediction accuracy
along near-optimal paths discovered during online planning.

E.5 WORLD MODEL TRAINING

The learned world models are trained as one-step predictors. For models trained from scratch (e.g.,
state-based models), we used the Adam optimizer with a learning rate of 5 x 10~% and a batch size
of 16. These models were trained for a total of 300 epochs. During the inference phase for planning,
multi-step future predictions are generated by recursively applying the learned one-step predictor.
Specifically, to predict k future steps given a sequence of actions from time ¢ to ¢ + k — 1, the model
autoregressively predicts Ty 1, T¢+2, .- ., Titk-

E.6 DETAILS FOR DISTURBED SIMULATORS AS WORLD MODEL

We add gaussian noise with mean 0 and different std for different components with various disturbance
level to construct noisy simulator, with details summarized in Table

Table 3: Standard deviations (std) of Gaussian noise applied to state components for different
disturbance levels in the noisy simulator experiments.

| Level 1 | Level 2 | Level 3

robot position 0.001 0.005 0.010
robot velocity 0.001 0.005 0.010
object position 0.000 0.001 0.005
object velocity 0.000 0.001 0.005
end effector position | 0.001 0.005 0.010

E.7 DETAILS FOR VISUAL CORRUPTED SIMULATORS AS WORLD MODEL

To assess the impact of imperfect visual predictions from a world model (distinct from errors in an
underlying state representation), we apply two types of visual corruption to the images generated by
an otherwise accurate simulator before they are processed (e.g., by a feature extractor like DINO):

1. Gaussian Noise: Additive Gaussian noise is applied directly to the pixel values of the predicted
images to make them appear more noisy.

2. Gaussian Blur: A Gaussian filter is applied to the predicted images to make them appear more
blurry.

The parameters for these visual corruptions are detailed in Tables 4] and [5]and visualizations are in

Figures [I2]and [T3]

Table 4: Parameters for adding Gaussian noise ~ Table 5: Parameters for applying Gaussian blur
to predicted images. ‘std’ refers to the standard  to predicted images. ‘sigma’ refers to the stan-

deviation of the noise. dard deviation (kernel size) of the Gaussian filter.
Noise Level  std Blurriness Level  sigma
Level 1 0.1 Level 1 0.1
Level 2 0.2 Level 2 0.5
Level 3 0.5 Level 3 1.0
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i

Figure 12: Visualization of different Noise Figure 13: Visualization of different Blurri-
Levels. ness Levels.

F MORE EXPERIMENTAL RESULTS

F.1 EXPERIMENTAL RESULTS FOR MPC}" AND MPC,, .

We first explore how fixed m (number of steps to execute per plan) and e (deviation threshold for
replanning) influence the performance (success rate) and computational cost (NFE) of world model
planning in simulation. This provides baseline intuition for understanding the trade-offs involved and
motivates the need for adaptive approaches. The results are presented for the SVG and Struct-VRNN
models on the VP2 benchmark tasks.

Success Rate vs. £ AlINFE vs. &
Model: SVG (mean + std across seeds) Model: SVG (mean + std across seeds)
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Figure 14: Performance of SVG model with MPC;, . for different deviation thresholds e.
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Figure 15: Performance of Struct-VRNN model with MPC,, . for different deviation thresholds e.

As our theoretical analysis suggests (Section [3.1)), both task performance (success rate) and compu-
tational cost (NFE) tend to decrease as m (number of steps per plan) and e (replanning threshold)
increase. However, the rate at which performance degrades varies significantly. This variation is
influenced by factors such as the prediction quality of the specific world model and the sensitivity of
the local dynamics encountered along the trajectories across different tasks. These results highlight
the challenge of selecting a single fixed m or € that performs optimally across all scenarios, motivating
our adaptive approach.

F.2 TRAJECTORY VISUALIZATION OF REAL-WORLD EXPERIMENTS

The trajectory visualizations of our real-world experiments, presented in Figures|[I8|to[22] demonstrate
the significant advantages of our adaptive replanning algorithm (ADAREP). These figures qualitatively
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Success Rate vs, m AINFEvs. m
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Figure 16: Performance of SVG model with MPC}* for different numbers of executed steps m.

Success Rate vs. m AllNFE vs. m
Model: VRNN (mean = std across seeds) Model: VRNN (mean + std across seeds)
120000

Task

Task
—e flat_block_off_table
—e— open_drawer

—e flat_block_off_table
—e— open_drawer

open_slide 100000 open_siide

08 —e— push_blue —e— push_blue
—e— push_green —e— push_green
—e— push_red —e— push_red

Upright_block_off_table 80000 wpright_block off_table

60000

Success Rate

Number of Function Evaluations

40000

02
——3 20000
00

Figure 17: Performance of Struct-VRNN model with MPC}” for different numbers of executed steps
m.

compare the behavior of ADAREP against the baseline MPC}C. Different colors along an agent’s
path indicate segments executed from distinct plans; consequently, fewer color changes in the
trajectories generated by ADAREP visually highlight its reduced replanning frequency and the
associated computational savings.
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Figure 18: Trajectory of opening door to 90°. Left: MPC,IC. Right: MPC 4.

G MORE ANALYSIS AND DISCUSSIONS

ADAREP does require additional hyperparameter tuning, how ever we clarify that the tuning for
ADAREP is a modest, one-time, upfront cost that yields substantial, continuous benefits.

Our tuning process is efficient as it builds upon the baseline. A practitioner can start with a reason-
able fixed threshold € and then simply tune ADAREP’s parameters , which intuitively control the
adaptation’s sensitivity. This is significantly faster than exhaustively searching for the "perfect".

We want to further demonstrate that both our adaptive method (ADAREP) and other non-adaptive
method (MPCE', MPCy, ) rely on hyperparameter tuning, adaptive method is indeed much better.
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Figure 19: Trajectory of opening door to 180°.
represent controls from different plans.

Complete Trajectory Visualization

o7s
= Troht
= Ten
oo = Ten
TR
@ Start Tright
06 ® st
stort T eno
: @ sunet
050 % J Goal T_right
K Goal T left
Goal Tona
% o0ss * *
3 E J
Soso ¥
:
0ss
040 o .
£
03s ¢
o

-03 —02 —01 0o
¥ Coordinate

Figure 20: Trajectory of translating T-block.
controls from different plans.
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Figure 21: Trajectory of rotating T-block.
controls from different plans.

Complete Two-Phase Trajectory Visualization

- Subgoal _right
- Subgoal Tleft
% Subgoa

X Coordinate.

030
2o,
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Figure 23: Visual demonstration for opening door to 90°.

Figure 24: Visual demonstration for opening door to 180°.

Figure 25: Visual demonstration for translating T-block.

Figure 26: Visual demonstration for rotating T-block.

Figure 27: Visual demonstration for translating and rotating T-block.
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This small upfront investment unlocks the key benefits of our method: significant NFE reductions
at runtime, robust performance across diverse tasks without re-tuning, and the ability to adapt to
changing dynamics within a single episode. We believe this favorable trade-off is a core strength of
our approach.

H LIMITATIONS

Despite these promising results, this work has several limitations. A key challenge is the performance
dependency on the quality of sensory input, particularly for vision-based models. As noted, future
work should focus on developing more robust visual features, as the current approach’s effectiveness
can be hampered by visual corruptions or less discriminative features, leading to a performance gap
compared to state-based world models where ADAREP excels. The current adaptive mechanism,
while training-free and broadly applicable, relies on heuristic-driven parameter adjustments based on
online estimates; the accuracy and reliability of these estimates are crucial, and noisy estimates could
lead to suboptimal replanning decisions.

Future work should therefore focus on developing more robust visual features for vision-based
models to broaden ADAREP’s applicability. Additionally, exploring the integration of learning-based
methods to further refine the adaptive parameters of ADAREP presents another promising research
avenue, potentially leading to enhanced generalization and finer-grained adaptation across a wider
array of tasks and conditions.
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