- HealthGPT: A Medical Large Vision-Language Model for Unifying
Comprehension and Generation via Heterogeneous Knowledge Adaptation
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5 Medical Multi-Modal Generation Tasks

Figure 1: HealthGPT enables medical multimodal comprehension and generation, outperforming both state-of-the-art
unified visual models and medical-specific models across various tasks. This highlights its superior capability in tackling
complex tasks in healthcare applications. Comp.Perf. and Gen.Perf. denote the results of comprehension and generation.
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HoalthGPT

integrates medical visual comprehension and gen-
eration capabilities within a unified autoregres-
sive paradigm. Our bootstrapping philosophy
is to progressively adapt heterogeneous com-
prehension and generation knowledge to pre-
trained Large Language Models (LLMs). This
is achieved through a novel heterogeneous low-
rank adaptation (H-LoRA) technique, which is
complemented by a tailored hierarchical visual
perception (HVP) approach and a three-stage

We present HealthGPT, a powerful Medical
Large Vision-Language Model (Med-LVLM) that
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learning strategy (TLS). To effectively learn the
HealthGPT, we devise a comprehensive medical
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domain-specific comprehension and generation
dataset called VL-Health. Experimental results
demonstrate exceptional performance and scal-
ability of HealthGPT in medical visual unified
tasks. Our project can be accessed at https:
//github.com/DCDmllm/HealthGPT.

1. Introduction

Large Vision-Language Models (LVLMs) (Liu et al., 2023;
OpenAl, 2023; Liu et al., 2024c; Chen et al., 2024b) have
demonstrated outstanding open-world visual comprehension
and reasoning abilities through language-based interactive
dialogue over the past years, simultaneously opening up
new opportunities for applications in specialized domains.
Specifically, recent studies (Li et al., 2024b; Tu et al., 2024;
Li et al., 2025) have utilized pre-trained Large Language
Models (LLMs) and visual instruction data to build interac-
tive diagnostic tools and treatment planning systems, reveal-
ing the immense potential of LVLMs in medical scenarios.
However, these studies primarily concentrate on visual com-
prehension tasks that produce text-based outputs, such as
medical visual question answering (Li et al., 2024b) or re-
port generation (Nath et al., 2024), and deficient the “draw-
ing” capability needed for medical visual generation. In
practice, integrating visual comprehension and generation
can significantly enhance the multifunctionality of medical
LVLMs (Med-LVLMs).

Recent studies have increasingly focused on developing
unified LVLMs capable of comprehending and generating
content across diverse visual modalities. Earlier approaches
predominantly utilized continuous visual tokens fed into
LLMs, using the LLMs themselves as conditional gener-
ators for external generative models (Ge et al., 2024; Wu
et al., 2024b; Dong et al., 2024). More recent research
has explored the use of discrete visual tokens for image
representation and generation within a fully autoregressive
framework (Team, 2024a; Wang et al., 2024a; Xie et al.,
2024). These methods not only enhance controllability but
also demonstrate early success in open-world, any-to-any
tasks, highlighting the preliminary potential of a unified
autoregressive learning paradigm in multimodal tasks.

While unified LVLMs have achieved initial success in gen-
eral scenarios, such a unified framework remains under-
explored in the medical domain. Adapting the aforemen-
tioned general unified model paradigm to the medical do-
main presents two major challenges: (i) High-scale and
-quality Data Limitations. Open-world models necessi-
tate extensive pre-training on billions or even more diverse,
multimodal data samples for comprehension and generation
tasks (Lu et al., 2024; Team, 2024a). However, the acces-
sible medical data significantly lacks in scale and quality
compared to natural multimodal datasets. Its specialized
and domain-specific characteristics make it challenging to
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Figure 2: With a fixed amount of comprehension or genera-
tion data, increasing the proportion of the other type leads
to significant performance degradation.

develop a unified medical model from scratch. (ii) Con-
flicts between Comprehension and Generation. Compre-
hension tasks often strip away visual details to focus on
abstraction, while generation tasks require detailed preser-
vation, making tokens sensitive to all visual alterations. As
shown in Figure 2, which features experiments conducted
on medical images, the performance in comprehension (or
generation) tasks steadily decreases as the proportion of gen-
eration (or comprehension) data increases, and vice versa.
This highlights a dilemma in autoregressive multimodal
training, stemming from the need to maintain consistency of
features between pre-LVLMs and post-LVLMs. Although
some methods have explored mutual enhancement between
comprehension and generation tasks (Pan et al., 2024; Tong
et al., 2024), joint training in medical scenarios still faces
challenges such as task conflict, data bias, and optimiza-
tion saturation, leading to limited performance gains and
persistent degradation issues.

To tackle the aforementioned challenges, we propose
HealthGPT (see Figure 1) , which progressively adapts
a pre-trained LLM as an unified medical multimodal model
with a small amount of visual instruction data. We de-
vise innovative Parameter-Efficient Fine-Tuning (PEFT)
approach (Ding et al., 2023), called Heterogeneous Low-
Rank Adaptation (H-LoRA), which decouples the learning
process of LVLMs for comprehension and generation tasks.
Inspired by the plug-and-play nature of LoRA (Hu et al.,
2022), H-LoRA enables the model to store heterogeneous
comprehension and generation knowledge in independent
“plugins”, thus avoiding joint optimization issues caused by
conflicts between comprehension and generation tasks. In
addition, we also consider the variety of sub-tasks among
comprehension or generation tasks. Qualitative research
highlights the limitations of a single LoRA in handling mul-
tidimensional task scenarios, mainly due to catastrophic
forgetting and interference (Liu et al., 2024d; Lin et al.,
2024). To address this, we draw on the concept of Mixture
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of Experts (MoE) (Masoudnia & Ebrahimpour, 2014) and
introduce LoRA experts. The aim is to dynamically trans-
fer task-shared knowledge to adapt to downstream tasks.
Unlike MoELoRA (Luo et al., 2024a), H-LoRA employs
reversible matrix block multiplication to combine LoRA
experts, significantly reducing the overhead of multiple ma-
trix multiplications. Notably, when using four experts, it
requires only 67 % of the MoELoRA training time.

To effectively leverage H-LoRA in HealthGPT, we further
introduce a Hierarchical Visual Perception (HVP) and
devise a corresponding Three-stage Learning Strategy
(TLS). HVP: we separate visual details learning from Vi-
sion transformer (ViT) for comprehension and generation.
As is widely recognized, the ViT encodes visual concepts
with increasing abstraction, generally, becoming finer as we
progress over levels (Vig, 2019). Thus, we maintain the
visual features of the anterior and posterior layers to accom-
modate the differing requirements for visual granularity in
comprehension and generation tasks while preventing po-
tential task interference. TLS: In the first and second stages,
given the heterogeneity between comprehension and gener-
ation tasks, we first train H-LoRA plugins for HealthGPT
to incorporate both medical comprehension and generation
knowledge, thus endowing the LLMs with capabilities for
vision-language alignment and vision-to-vision reconstruc-
tion. Additionally, through minimal mixed-task training, we
built fusion embedding layers and output heads that merge
text and visual tokens, establishing a unified Med-LVLM
foundation for visual instruction fine-tuning. In the third
stage, by only training the H-LoRA plugins, HealthGPT is
able to rapidly adapt to a wide range of downstream medical
tasks, covering various types of medical comprehension and
generation tasks.

To effectively implement our approach, we have curated a
dataset for training unified Med-LVLMs, called VL-Health,
including seven comprehension tasks and five generation
tasks (Figure 1). Through quantitative analysis and vali-
dation on multimodal tasks, the results demonstrate that
HealthGPT is capable of unifying medical multimodal abil-
ities in data-constrained scenarios, achieving performance
comparable to or better than existing state-of-the-art (SOTA)
models across multiple metrics. Overall, the main contribu-
tions of this paper are summarized as follows:

¢ Unified Med-LVLM. We introduce HealthGPT, which,
to the best of our knowledge, is the first unified frame-
work for multimodal comprehension and generation in
complex medical scenarios.

 Effective Learning Paradigm. We present H-LoRA,
an optimized multi-LoRA PEFT architecture based
on task-gated decoupling, is designed to effectively
mitigate data conflict issues.

* Holistic Training Dataset. We curated VL-Health, a

comprehensive dataset designed for both comprehen-
sion and generation tasks.

 Superior Downstream Improvements: Extensive ex-
periments are conducted and the results confirm effec-
tiveness of our approach in medical vision-language
comprehension and generation.

2. Related Work

Medical Vision Large Language Models. In recent years,
the development of deep learning brings prosperity to the
field in medical applications (Zhang et al., 2022; Ong et al.,
2022). Most recently, medical vision large language models
(Med-VLLMs) demonstrate excellent performance in under-
standing medical images and responding to human queries
based on these images (Zhou et al., 2023; Tian et al., 2023).
XrayGPT (Thawakar et al., 2023) combines a medical visual
encoder (MedClip) (Wang et al., 2022) with a fine-tuned
LLM , using a simple linear transformation layer to achieve
alignment between visual and textual information, signifi-
cantly enhancing the understanding of medical images. On
this basis, some methods (Wu et al., 2023; Li et al., 2024a;
Bansal et al., 2025) further enhance visual-text alignment
in medical contexts by selecting high-quality image-text
pairs from PubMed papers and synthesized VQA datasets.
BiomedGPT (Luo et al., 2024b) employs a BERT-style en-
coder and GPT-style decoder architecture, pre-trained on
interdisciplinary datasets. Compared to commercial mod-
els like Med-PaLM (Singhal et al., 2023), BiomedGPT
significantly reduces model size while maintaining supe-
rior performance. However, issues of language adaptabil-
ity and dataset specificity still remain. To address these,
HuatuoGPT-Vision (Chen et al., 2024a) introduces the Pub-
MedVision dataset, which contains 1.3 million high-quality
medical samples, significantly improving the model’s adapt-
ability across diverse medical applications. However, cur-
rent Med-VLLMs mainly focus on medical comprehension
and lack the capability for the medical vision-language gen-
eration.

Unified Visual Comprehension and Generation Mod-
els. Recent research has increasingly concentrated on cre-
ating unified LVLMs that are adept at understanding and
producing content across various visual modalities. NExT-
GPT (Wu et al., 2024b) achieves perception and genera-
tion for arbitrary combinations of multimodal inputs and
outputs by aligning LLMs. Similarly, SEED (Ge et al.,
2023), SEED-X (Ge et al., 2024), and DreamLLLM (Dong
et al., 2024) employ learnable queries and leverage next-
token prediction to generate visual tokens, providing condi-
tional inputs to external generation modules. Unlike these
methods, which function as external conditioners, Unified-
10 (Lu et al., 2022), Unified-IO 2 (Lu et al., 2024), and
Chameleon (Team, 2024a) internalize multimodal genera-
tion tasks within a unified Transformer architecture by ex-
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Figure 3: The HealthGPT architecture integrates hierarchical visual perception and H-LoRA, employing a task-specific hard
router to select visual features and H-LoRA plugins, ultimately generating outputs with an autoregressive manner.

tending multimodal vocabularies, enabling direct generation
based on next-token prediction. Building on this concept,
Lumina-mGPT (Liu et al., 2024a) and ANOLE (Chern et al.,
2024) further enhance the generation capabilities of unified
models using high-quality data, particularly improving the
quality and flexibility of image generation.

3. Preliminaries

Large Vision-Language Models. The input to a LVLM
typically consists of an image =™ and a discrete text se-
quence =*'. The visual encoder £ converts the input
image ™ into a sequence of visual tokens V = [v;]\",
while the text sequence =™ is mapped into a sequence of
text tokens 7 = [t;])*, using an embedding function £,
The LVLM Mjy1m(+|0) models the joint probability of the
token sequence U/ = {V, T}, which is expressed as:

N
Py(RlU) = [ Po(rilith, r<i}), (1
i=1
where R = [r;]Yr, is the text response sequence. The

LVLM iteratively generates the next token r; based on r;.
The optimization objective is to minimize the cross-entropy
loss of the response R. It is worth noting that most LVLMs
adopt a design paradigm based on ViT, alignment adapters,
and pre-trained LLMs(Liu et al., 2023; 2024b), enabling
quick adaptation to downstream tasks.

VQGAN. VQGAN (Esser et al., 2021) employs latent space
compression and indexing mechanisms to effectively learn
a complete discrete representation of images. VQGAN first
maps the input image '™ to a latent representation z =
E(x) through a encoder £. Then, the latent representation

is quantized using a codebook Z = {z;}X_ |, generating
a discrete index sequence Z = [i,,]Y_;, where i,,, € Z
represents the quantized code index:

7 = Quantize(z|Z) = arg min ||z — zg|l2.  (2)

zZREZ

In our approach, the discrete index sequence Z serves as
a supervisory signal for the generation task, enabling the
model to predict the index sequence Z from input conditions
such as text or other modality signals. Finally, the predicted

index sequence Z is upsampled by the VQGAN decoder G,
generating the high-quality image '™ = G(Z).

Low Rank Adaptation. LoRA(Hu et al., 2022) effec-
tively captures the characteristics of downstream tasks by
introducing low-rank adapters. The core idea is to decom-
pose the bypass weight matrix AW € R?" ¥4 into two
low-rank matrices {A € RY*" B e R"™%"}, where
r < min{d™", d*}, significantly reducing learnable pa-
rameters. The output with the LoRA adapter for the input x
is then given by:

h=xzW,+ axAW /r =Wy + axAB/r, (3)

where matrix A is initialized with a Gaussian distribution,
while the matrix B is initialized as a zero matrix. The
scaling factor «v/r controls the impact of AW on the model.

4. HealthGPT

4.1. Unified Autoregressive Generation.

Our approach (Figure 3) utilizes a discrete token representa-
tion that covers both text and visual outputs, unifying visual
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comprehension and generation as an autoregressive task.
For comprehension, pre-trained LLM My u(-|0) receives
the input joint sequence U/ and outputs a series of text token

R = [r1,7r2,...,7nN,], where r; € Vi, and Vi, represents
the vocabulary of LLM:
NT
Py(R|U) =[] Polri | U, 7<) 4)
i=1

For generation, My first receives a special start token
(|START_IMG]|), then generates a series of tokens corre-
sponding to the VQGAN indices Z = [i1,%2,...,1TN,],
where i; € Vg, and V,q represents the index range of
VQGAN. Upon completion of generation, the LLM outputs
an end token (|[END_IMG|):

N;
Po(Z |U) =[] Polis | U, icy). )
j=1

Finally, the generated index sequence Z is fed into the de-
coder G, which reconstructs the target image "™ = G(Z).

4.2. Hierarchical Visual Perception

Given the differences in visual perception between com-
prehension and generation tasks — where the former fo-
cuses on abstract semantics and the latter emphasizes com-
plete semantics—we employ ViT to compress the image
into discrete visual tokens at multiple hierarchical levels.
Specifically, the image is converted into a series of features
{f1, f2, ..., fr} as it passes through L ViT blocks.

To address the needs of various tasks, the hidden states
are divided into two types: (i) Concrete-grained features
FCor = Lf1, fo,....fx} for k < L, derived from the shal-
lower layers of ViT, containing sufficient global features,
suitable for generation tasks; (ii) Abstract-grained features
FAS = L1, fero, .-, fr}, derived from the deeper
layers of ViT, which contain abstract semantic information
closer to the text space, suitable for comprehension tasks.

The task type T' (comprehension or generation) determines
which set of features is selected as the input for the down-
stream large language model:

» FCon T =G tion Task
]—";ng _ { s 1 encration 1as (6)

FAb - if T = Comprehension Task

We integrate the image features f;“ ¢ and text features 7
into a joint sequence through simple concatenation, which is
then fed into the LLM M v for autoregressive generation.

4.3. Heterogeneous Knowledge Adaptation

We devise H-LoRA, which stores heterogeneous knowl-
edge from comprehension and generation tasks in separate
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Figure 4: Data statistics of VL-Health.

modules and dynamically routes to extract task-relevant
knowledge from these modules. At the task level, for each
task type T', we dynamically assign a dedicated H-LoRA
submodule 8T, which is expressed as:

R =Mum@|0,67), 6" ={A", BT Ry} (D
At the feature level for a single task, H-LoRA integrates the
idea of Mixture of Experts (MoE) (Masoudnia & Ebrahim-
pour, 2014) and designs an efficient matrix merging and
routing weight allocation mechanism, thus avoiding the sig-
nificant computational delay introduced by matrix splitting
in existing MoELoRA (Luo et al., 2024a). Specifically, we
first merge the low-rank matrices (rank = r) of k¥ LoRA
experts into a unified matrix:

Amereed - gmereed — Coneat({A; 1Y), Concat({ B;}Y), (8)

where Amerged c Rd‘"xrk and Bmerged c Rrkxd"“l. The
k-dimension routing layer generates expert weights W €
Rioken-numxk hased on the input hidden state a, and these
are expanded to Rioken-numxrk ghace as follows:

yespanded — kW /r @ 1, )

where ® denotes the replication operation. The overall
output of H-LoRA is computed as:

OH—LORA _ ( T Amerged ® Wexpanded) Bmerged’ (10)

where © represents element-wise multiplication. Finally,
the output of H-LoRA is added to the output of frozen pre-
trained weights to produce the final output:

O = W, + OHLoRA, (11)

4.4. Training Pipeline

1st Stage: multimodal Alignment. In the first stage, we
design separate visual adapters and H-LoRA submodules
for medical unified tasks. For the medical comprehension
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Table 1: Comparison of HealthGPT with other LVLMs and unified multimodal models on medical visual comprehension
tasks. Bold and underlined text indicates the best performance and second-best performance, respectively.

Medical

VQA-RAD +

SLAKE 1 PathVQA {1+ MMMU

Type b (LG i JHET LVLM | close all close all close all -Med QIIRAOLST | A%
Med-Flamingo 8.3B v 58.6 43.0 470 255 619 313 28.7 34.9 414

LLaVA-Med 7B v 60.2 48.1 584 448 623 357 30.0 413 47.6
HuatuoGPT-Vision 7B v 669 53.0 598 49.1 529 320 42.0 50.0 50.7

BLIP-2 6.7B X 434 368 41.6 353 485 288 27.3 26.9 36.1

Comp. Only

LLaVA-v1.5 7B X 51.8 428 371 377 535 314 32.7 44.7 41.5

InstructBLIP 7B X 61.0 448 668 433 560 323 253 29.0 44.8

Yi-VL 6B X 52,6 42.1 524 384 549 309 38.0 50.2 449

InternVL2 8B X 649 49.0 66.6 501 60.0 319 433 54.5 52.5

Llama-3.2 11B X 689 455 724 521 628 33.6 39.3 63.2 54.7

Show-o 1.3B X 50.6 339 315 179 529 282 22.7 45.7 42.6

Unified-10 2 7B X 462 326 359 219 525 270 253 33.0 338

Janus 1.3B X 709 528 347 269 519 279 30.0 26.8 335

Comp. & Gen. | Janus-Pro 7B X 629 492 513 387 489 272 32.7 54.1 45.6
Emu3 8B X 72.1 552 573 398 541 306 28.7 39.5 47.2

HealthGPT-M3 3.8B v 7377 559 746 564 78.7 39.7 433 68.5 61.3

HealthGPT-L14 14B v 777 583 764 645 859 444 49.2 74.4 66.4
HealthGPT-XL32 32B v 781 60.5 837 682 924 509 58.0 77.2 71.1

task, we train abstract-grained visual adapters using high-
quality image-text pairs to align visual embeddings with tex-
tual embeddings, thereby enabling the model to accurately
describe medical visual content. During this process, the
pre-trained LLLM and its corresponding H-LoRA submod-
ules remain frozen. In contrast, the medical generation task
requires training concrete-grained adapters and H-LoRA
submodules while keeping the LLM frozen. Meanwhile,
we extend the textual vocabulary to include multimodal to-
kens, enabling the support of additional VQGAN vector
quantization indices. The model trains on image-VQ pairs,
endowing the pre-trained LLM with the capability for image
reconstruction. This design ensures pixel-level consistency
of pre- and post-LVLM. The processes establish the initial
alignment between the LLM’s outputs and the visual inputs.

2nd Stage: Heterogeneous H-LoRA Plugin Adaptation.
The submodules of H-LoRA share the word embedding
layer and output head but may encounter issues such as bias
and scale inconsistencies during training across different
tasks. To ensure that the multiple H-LoRA plugins seam-
lessly interface with the LLMs and form a unified base, we
fine-tune the word embedding layer and output head using a
small amount of mixed data to maintain consistency in the
model weights. Specifically, during this stage, all H-LoRA
submodules for different tasks are kept frozen, with only
the word embedding layer and output head being optimized.
Through this stage, the model accumulates foundational
knowledge for unified tasks by adapting H-LoRA plugins.

3rd Stage: Visual Instruction Fine-Tuning. In the third
stage, we introduce additional task-specific data to fur-

ther optimize the model and enhance its adaptability to
downstream tasks such as medical visual comprehension
(e.g., medical QA, medical dialogues, and report generation)
or generation tasks (e.g., super-resolution, denoising, and
modality conversion). Notably, by this stage, the word em-
bedding layer and output head have been fine-tuned, only the
H-LoRA modules and adapter modules need to be trained.
This strategy significantly improves the model’s adaptability
and flexibility across different tasks.

S. Experiments
5.1. Data and Experimental Setup

Data Details. We curate VL-Health dataset (see Fig-
ure 4). For medical visual comprehension, we leverage
multiple medical-specific datasets, including PubMedVi-
sion (Chen et al., 2024a), LLaVA-Med (Li et al., 2024a),
PathVQA (He et al., 2020), MIMIC-CXR-VQA (Bae et al.,
2024), SLAKE (Liu et al., 2021), and VQA-RAD (Lau
et al., 2018). Additionally, we incorporate high-quality
open-world data from LLaVA-1.5 (Liu et al., 2024b) to
preserve the model’s general knowledge and instruction-
following capabilities. For generation tasks, we construct
a reconstruction dataset based on LLaVA-558k (Liu et al.,
2024b), and also explore two key tasks in personalized
medical image enhancement—super-resolution and modal-
ity conversion—using the IXI (Davies et al., 2014) and
SynthRAD2023 (Thummerer et al., 2023) datasets. In ad-
dition to the above datasets, we further evaluate the com-
prehension task on the OmniMedVQA (Hu et al., 2024)
and MMMU (Yue et al., 2024) benchmarks. Detailed data
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Table 2: The experimental results for the four modality conversion tasks.

Model CT to MRI (Brain) CT to MRI (Pelvis) MRI to CT (Brain) MRI to CT (Pelvis)
SSIM1 PSNR?T MSE | ‘ SSIM{t PSNR1 MSE | ‘ SSIM1 PSNRT MSE | ‘ SSIMt PSNR1 MSE |
pix2pix 71.09 32.65 36.85 59.17 31.02 51.91 78.79 33.85 28.33 72.31 32.98 36.19
CycleGAN 54.76 32.23 40.56 54.54 30.77 55.00 63.75 31.02 52.78 50.54 29.89 67.78
BBDM 71.69 3291 34.44 57.37 31.37 48.06 86.40 34.12 26.61 79.26 33.15 33.60
Vmanba 69.54 32.67 36.42 63.01 31.47 46.99 79.63 34.12 26.49 77.45 33.53 31.85
DiffMa 71.47 32.74 35.77 62.56 3143 47.38 79.00 34.13 26.45 78.53 33.68 30.51
HealthGPT-M3 79.38 33.03 33.48 71.81 31.83 43.45 85.06 34.40 25.49 84.23 34.29 27.99
HealthGPT-L14 | 79.73 33.10 32.96 71.92 31.87 43.09 85.31 34.29 26.20 84.96 34.14 28.13

Table 3: Comparison results of super-resolution task.

Model ‘ SSIM1 PSNRTt MSE| LPIPS|
SRGAN 71.34 32.01 41.27 24.50
DASR 71.57 32.34 38.25 19.17
Real-ESRGAN 67.30 31.87 42.57 20.64
LIIF 73.27 32.13 40.14 22.93
BSRGAN 69.97 31.97 41.52 28.72
HealthGPT-M3 78.19 32.76 34.47 12.02
HealthGPT-L14 | 77.94 32.71 35.19 12.43

selection and instruction templates are in the Appendix A.3.

Model Details. We select CLIP-L/14 (Radford et al., 2021)
as the visual encoder and used the hidden states of its second
and penultimate layers as concrete-grained and abstract-
grained features for dynamic hierarchical visual perception
of models. Drawing on the successful experiences of LLaVA
architectures, we employ a MLP to align the multimodal
feature embeddings. We choose the parameter-efficient phi-
3-mini (Abdin et al., 2024) and phi-4 (Abdin et al., 2024) as
the base models. Additionally, we employ the larger-scale
Qwen2.5 (Team, 2024b) to explore the scalability of the
proposed method. For visual comprehension and generation
tasks, we set the rank of H-LoRA to 16/8 and 64/32 for
different base models, with four experts. Additionally, we
use the f8-8192 version of VQGAN as the image indexing
and upsampling module. The model parameters and training
configurations are provided in Appendix A.1 and A.2.

5.2. Main Experiments

Comprehension. We compare HealthGPT with several
existing models, including medical-specific LVLMs (e.g.,
Med-Flamingo (Moor et al., 2023), LLaVA-Med (Li et al.,
2024a), HuatuoGPT-Vision (Chen et al., 2024a)) as well as
recent open-world LVLMs (e.g., BLIP-2 (Li et al., 2023b),
LLaVA-v1.5 (Liu et al., 2024b), InstructBLIP (Dai et al.,
2023), Yi-VL (Young et al., 2024), InternVL2 (Chen et al.,
2024b), Llama-3.2 (Dubey et al., 2024)). Additionally, we
test several SOTA unified visual comprehension and genera-
tion models, including Show-o (Xie et al., 2024), Unified-10
2 (Luetal., 2024), Janus (Wu et al., 2024a), Janus-Pro (Chen

et al., 2025), and Emu3 (Wang et al., 2024a). The experi-
mental results are shown in Table 1, with the following key
observations: (i) SOTA Results Compared with LVLMs:
In medical visual comprehension tasks, HealthGPT demon-
strates superior performance, significantly outperforming
both medical-specific models (e.g., HuatuoGPT-Vision) and
general-purpose models (e.g., Llama-3.2). (ii) Surpass-
ing Current Unified LVLMs: Despite being trained on
billions of data points, unified models still exhibit poor gen-
eralization performance in medical visual comprehension.
For instance, Unified-1O 2 scored only 33.8. In contrast,
HealthGPT-M3, with only 3.8B parameters, scored 61.3
on the medical multimodal unified task, significantly out-
performing existing unified models in medical downstream
scenarios. (iii) Stable Improvement with Large Base
Model: Our method demonstrates excellent scalability, with
HealthGPT-L14 and HealthGPT-XL32 achieving a score of
66.4 and 71.1 in the larger model configuration. This result
significantly outperforms all other models, highlighting the
effectiveness of scaling up the base model for enhanced
performance in medical tasks.

It is noteworthy that some Med-LVLMs (Xie et al., 2025)
perform continual fine-tuning and evaluation on the training
sets of specific benchmarks, which may lead to structural
degradation in model outputs and negatively impact gener-
alization. To ensure fair comparison and reliable evaluation
of generalization ability, we adopt a unified experimental
setting and only compare with models trained on diverse
and comprehensive datasets.

Generation. We study three key tasks in medical imag-
ing. (i) Modality Conversion: In this task, we focus
on the conversion between CT and MRI modalities for
the brain and pelvic regions, designing four specific sub-
tasks. All comparative models (Pix2Pix (Isola et al., 2017),
CycleGAN (Zhu et al., 2017), BBDM (Li et al., 2023a),
Vmamba (Liu et al., 2024e), and DiffMa (Wang et al.,
2024b)) trained a separate model for each sub-task, while
HealthGPT unify all tasks into a single training process.
The experimental results, shown in Table 2, demonstrate
that our approach outperforms other methods across multi-
ple evaluation metrics. For instance, in the CT2MRI-Brain
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Table 4: We present the performance and speed differences of LoORA, MoELoRA (n=4), and H-LoRA (n=4) on medical

visual comprehension and generation tasks.

Comp. Gen. Training
Model VQA-RAD SLAKE PathVQA MMMU OMVQA | RECOM MTRANS SR Time
close all close all close all -Med
+LoRA 713 572 70.0 534 764 38.6 41.30 65.10 62.67 59.99 65.88 1.00x
HealthGPT w/  +MoELoRA | 72.5 57.2 664 524 732 36.0 39.30 64.90 67.31 59.76 65.91 1.49x
+H-LoRA 737 559 74.6 564 78.7 39.7 43.30 68.50 67.69 60.30 66.14 1.00x

Table 5: Comparison between the H-LoRA-based Three-Stage Learning Strategy and the mixed-training approach.

Comp. Gen.
Training Strategy VQA-RAD SLAKE PathVQA MMMU OMVQA CT MRI
close all close all close all -Med Brain Pelvis Brain Pelvis
HealthGPT w/ Mixed-Training 56.6 379 450 329 657 336 44.0 48.9 65.64 6275 56.61 50.77
Three-Stage-Training | 72.5 552 779 59.6 79.7 49.0 42.7 68.5 70.84 7299 6526 61.33
(a) Comp. (b) Gen. (a) (b)
— - 1.2 70
54 ~ | s 71 811 o
< % 1.0 60 <K
<52 ] <62 ‘509 s0 é
] 3 Eos < ]
% % S § 40
£50 £ 60 075 20 40 60 80 100%) 2 D
S S " ° £ 30 >
S s 8 ss g s & ®
{Mg 2 20 <]
46 56 '; 2 10 3
(7]
(6]
- =3 LoRA 3 MoELoRA BT H-LoRA o2 °s 2 40 eo 8o wog  © Comp. Gen.

Figure 5: Performance comparison of LoORA, MoELoRA,
and H-LoRA under different rank settings.

task, HealthGPT-M3 achieves an SSIM of 79.38, signifi-
cantly surpassing traditional methods like Pix2Pix (71.09)
and the recent DiffMa (71.47). (ii) Super-Resolution: We
conduct 4x super-resolution experiments on the IXI dataset,
with the results presented in Table 3. Notably, most exist-
ing methods fail to fully leverage the prior knowledge of
key structures in medical images, resulting in significant
shortcomings in detail recovery. In contrast, our method
significantly mitigates this issue. Specifically, HealthGPT-
M3 excels in key metrics such as SSIM, PSNR, and MSE,
achieving scores of 78.19, 32.76, and 34.47, respectively.
Additionally, HealthGPT-M3 achieves the lowest perception
distance of 12.34, further validating its exceptional perfor-
mance in human visual perception. (iii) Reconstruction:
We compare HealthGPT-M3 with unified models with re-
construction capabilities, such as Unified-IO 2 and SEED-X.
The results show that our approach performs better controlla-
bility for visual reconstruction. Details are in the Appendix
C.5.

To explore the scalability of the proposed method in gen-
eration tasks, we also train HealthGPT-L14 with a similar
number of trainable parameters to the M3 version. Hence,

Perception W/ Fapstract Perception. w/ Feoncrete

Figure 6: The loss visualization (a) and performance com-
parison (b) with respect to different visual perceptions.

the similar performance between the two models in Figure 2
and 3 meets our expectations. For efficiency considerations,
most open-world unified models are limited to a size of no
more than 13B. In alignment with this practical constraint,
we did not train the HealthGPT-XL32 on generation tasks.

5.3. In-Depth Study

Effect of Heterogeneous Low-Rank Adaptation. H-LoRA
provides an optimized multi-LoRA architecture for multi-
task learning. We conduct extensive validation of this struc-
ture, with results presented in Table 4, comparing the per-
formance of LoRA, MoELoRA, and H-LoRA in medical
unified comprehension and generation tasks. In the majority
of comprehension tasks and all generation tasks, H-LoRA
demonstrates superior performance, particularly in the Om-
niMedVQA benchmark, where it improved from 64.90 to
68.50. Notably, despite some applications of MoELoRA in
certain scenarios, it do not show advantages in this task and
had a training time approximately 50% longer than LoRA.
Figure 5 illustrates the performance of the three PEFT meth-
ods in medical visual comprehension and generation tasks
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Figure 7: Case study of report-to-CXR under different instructions. (a) shows a normal CXR image for comparison. (b) and
(c) illustrate generated cases with varying severity and affected regions. The graffiti areas indicate abnormal conditions.

across different ranks, with H-LoRA consistently outper-
forming the other methods in all scenarios, demonstrating
significant advantages in handling diverse tasks.

Different Learning Strategy. We propose a three-stage
learning strategy for H-LoRA that decouples comprehension
and generation tasks. Unlike methods that train both tasks
simultaneously, our approach reduces performance degrada-
tion from task conflicts (see Table 5). In the medical visual
comprehension task, mixed training causes catastrophic for-
getting and degrades visual reconstruction, whereas our
strategy effectively uses the medical embedding knowledge
in pre-trained LLMs to mitigate these conflicts. Meanwhile,
we examine how fusing heterogeneous H-LoRA plugins in
the second training stage results in minimal performance
degradation. Detailed results are in the Appendix C.3.

Hierarchical Visual Perception Analysis. We conduct an
ablation analysis on visual perceptual inputs suitable for
comprehension and generation tasks. Figure 6 illustrates
that the convergence efficiency for comprehension tasks is
significantly higher with abstract-grained visual inputs com-
pared to concrete-grained inputs, whereas generation tasks
perform better with concrete-grained inputs. This result
further underscores the necessity of the hierarchical visual
perception we propose, which suggests that customizing
visual inputs at different hierarchies for specific tasks can
substantially enhance efficiency.

Report-to-CXR Task. Text-to-image generation is a com-
mon component in unified models (Lee et al., 2023; Huang
et al., 2023; 2024); therefore, we further extend our investi-
gation to this task within the medical domain. We explore
the Report-to-CXR task without reference images, using a
small amount of CXR data (Johnson et al., 2019) for instruc-
tion fine-tuning. Figure 7 annotates images with varying
injury degrees and locations, comparing them to healthy
CXR images. We observe that HealthGPT effectively gener-
ates CXR images based on the instructions, showcasing its
potential in healthcare education and auxiliary diagnosis.

6. Conclusion

In this paper, we introduce HealthGPT, a Med-LVLM that
unifies medical vision-language understanding and genera-
tion through a novel heterogeneous knowledge adaptation
approach. Experimental results demonstrate that HealthGPT
achieves significant performance improvements across mul-
tiple medical understanding and generation tasks, showcas-
ing its potential for healthcare applications.
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hierarchical visual perception and a three-stage learning
strategy. This method effectively integrates diverse com-
prehension and generation knowledge into pre-trained large
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Appendix

This is the Appendix for “HealthGPT: A Medical Large Vision-Language Model for Unifying Comprehension and Generation
via Heterogeneous Knowledge Adaptation”. This Appendix is organized as follows:

¢ Section A presents the experimental implementation details, the training process of HealthGPT, and the specifics of
VL-Health.

* Section B systematically provides an analysis of Heterogeneous Low-Rank Adaptation.

* Section C shows supplementary experimental results to validate the effectiveness of HealthGPT.

A. Implementation Details
A.1. Model Details

We employ CLIP-L/14 (Radford et al., 2021) as the visual feature extractor, extracting both shallow and deep features to
serve as visual tokens. The model uses alignment adapters, implemented with two-layer MLPs, to align shallow features,
representing concrete visual granularity, and deep features, representing abstract visual granularity. These visual tokens are
concatenated with text tokens and input into the Large Language Models (LLMs).

The development of MLLMs has undergone several paradigm shifts (Zhang et al., 2024a; OpenAl, 2023; Liu et al., 2024c;
Chen et al., 2024b); however, the LLaVA architecture (Liu et al., 2023) has gained widespread attention due to its simplicity
and portability. Therefore, we adopt this architecture in our work. HealthGPT offers three versions: HealthGPT-M3,
HealthGPT-L14, and HealthGPT-XL32, which are based on Phi-3-mini (Abdin et al., 2024), Phi-4 (Abdin et al., 2024), and
Qwen2.5-32B (Team, 2024b) as the pre-trained base models, respectively. In addition, we expand the LLM vocabulary with
8192 VQ indices derived from VQGAN-f8-8192 (Esser et al., 2021), serving as multi-modal tokens to further augment the
capacity of models for understanding both visual and textual input and output. Figure 6 shows the details.

Table 6: Overview of the Components of HealthGPT.

Model ‘ ViT Adapter MLP Dims Model Dims Base Model Params Vocab Size H-LoRA Rank

HealthGPT-M3 CLIP-L/14  2-layer MLP 1024 3072 Phi-3-mini 3.8B 40206 16(Comp.), 64(Gen.)
HealthGPT-L14 CLIP-L/14  2-layer MLP 1024 5120 Phi-4 14B 108547 8(Comp.), 32(Gen.)
HealthGPT-XL32 | CLIP-L/14 2-layer MLP 1024 5120 Qwen2.5-32B 32B 152064 8(Comp.), 32(Gen.)

A.2. Training Details

In this study, we propose a three-stage learning strategy that is compatible with our innovative heterogeneous low-rank
adaptation (H-LoRA). We provide a detailed hyperparameter configuration for the model’s three-stage training process.
The specific hyperparameter settings used are listed in Table 7. These hyperparameters are crucial for ensuring the model’s
learning efficacy and final performance.

Table 7: Overview of Hyperparameter Configurations.

HealthGPT-M3 HealthGPT-L14/XL32

Hyperparameter Stage-1 Stage-2 Stage-3 Stage-1 Stage-2 Stage-3

Comp. Gen. | Comp. Gen. | Comp. Gen. | Comp. Gen. | Comp. Gen. | Comp. Gen.
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Adapter LR le-3  2e-5 2e-5 2e-5 le-:3  2e-5 2e-5 2e-5
Learning Rate / 2e-4 2e-4 2e-4 / le-4 2e-4 2e-4
Global Batch Size 256 64 32 128 64 256 64 32 128 64
Weight Decay 0 0 0 0 0 0
Dropout Rate 0 0.05 0.05 0.05 0 0.05 0.05 0.05
LR Scheduler Warm Up Constant Warm Up Warm Up Constant Warm Up
Max Sequence Length 2048 2048 2048 2048 2048 2048
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Figure 8: VL-Health dataset collection distribution.

It is worth noting that we sometimes observe instances of loss spikes during the training of medical visual comprehension
and generation tasks. Through repeated validation, we discovered that larger model parameters and learning rates tend to
lead to this issue, which is the reason for the slight differences in hyperparameters between HealthGPT-M3 and HealthGPT-
LI14/XL32.

A.3. VL-Health

The construction of the VL-Health dataset involves two key steps: (i) data collection, (ii) data processing, as detailed
below:

Data Collection: During the collection phase, we carefully considered the diversity of medical images and the complexity
of the tasks, selecting appropriate subsets for comprehension and generation tasks. For comprehension tasks, we selected
datasets such as VQA-RAD (Lau et al., 2018), SLAKE (Liu et al., 2021), PathVQA (He et al., 2020), and MIMIC-
CXR-VQA (Bae et al., 2024), which cover various medical imaging modalities like radiology and pathology, and include
professional annotations to assist the model in learning tasks such as lesion detection and disease diagnosis. Additionally,
large-scale multi-modal datasets like LLaVA-Med (Li et al., 2024a) and PubMedVision (Chen et al., 2024a) were included
to provide broader medical knowledge support and facilitate the training of complex reasoning tasks. For generation
tasks, we focused on four mainstream task categories: super-resolution image generation, modality conversion, text-
to-image generation, and image reconstruction. The IXI (Davies et al., 2014) dataset, containing a large number of
healthy brain MRI images, is suitable for training super-resolution models; the MIMIC-CHEST-XRAY (Bae et al., 2024)
dataset, with X-ray images and their corresponding textual reports, is appropriate for text-to-image generation tasks; the
SynthRAD2023 (Thummerer et al., 2023) dataset provides a large number of paired CT and MRI images, supporting
modality conversion model training; for image reconstruction tasks, we rewrote and adjusted the LLaVA-558k (Liu et al.,
2024b) dataset.

Data Processing: After data collection, we performed filtering and processing of the raw data. For VisualQA tasks, we
standardized the data entries into two forms: open-ended questions and single-choice questions, enabling flexible training
and evaluation. Additionally, considering that multi-image data has a minimal impact on performance but introduces extra
padding and training time, we excluded multi-image data. For the scanned image data in generation tasks, we applied slicing
extraction, image registration, data augmentation, and normalization to treat 2D images as visual inputs for model training
or used VQGAN-generated indices to supervise the generation tasks.

A.3.1. DATA STATISTICS

This section provides detailed statistical information about the VL-Health dataset to offer a more comprehensive understand-
ing.

Data Overview: To ensure a balanced development of the model’s comprehension and generation capabilities, in addition
to the LLaVA-558k and PubMedVision-PT datasets used for alignment, the VL-Health dataset ultimately selected
765,802 additional visual question-answering (VQA) training samples (to endow the model with visual comprehension and
instruction-following capabilities) and 783,045 generation training samples (to provide the model with reconstruction and
visual generation instruction-following abilities). This contributes to the transfer of knowledge between comprehension
and generation tasks, enhancing the model’s overall performance. For medical image comprehension tasks, images were
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selected from VQA-RAD (approximately 450 images), SLAKE (approximately 630 images), PathVQA (approximately
2,600 images), MIMIC-CXR-VQA (approximately 52,000 images), LLaVA-Med (approximately 61,000 images), and
PubMedVision (approximately 500,000 images). Multiple question-answer pairs were retained for each image to enhance
the model’s understanding and generalization of the image content. Table 8 shows the data distribution of VL-Health for
three-stage learning strategy, where mixed-47k is based on the sampling of all data in stage-1.

Diversity and Quality Assessment: VL-Health covers 11 modalities, including CT, MRI, X-ray, microscopy, OCT,
ultrasound, and fundus photography, which aids the model in learning features from various modalities. The dataset also
encompasses a wide range of diseases, from common to rare, and from localized lesions to systemic diseases, including
pulmonary diseases, skeletal abnormalities, brain lesions, tumors, cardiovascular diseases, and cellular abnormalities. This
provides comprehensive training support to the model, enabling it to learn the characteristics and diagnosis of various
diseases.

Table 8: Data distribution of VL-Health in three-stage learning strategy.

Medical Task | Stage-1 Stage-2

Comp. LLaVA-558k, PubMedVision-PT .

Gen. LLaVA-558k Mixed-47k

Medical Task | Stage-3

Comp. LLaVA_Med, MIMIC_CXR_VQA, PubMedVision-FT, LLaVA-665k, PathVQA, SLAKE, VQA-RAD
Gen. IXI, SynthRAD2023, MIMIC-CHEST-XRAY

A.3.2. DATA FORMAT.

All data samples are converted into a unified instruction-response format for training and evaluation. Specifically, the
VL-Health dataset consists of the following components:

» Task Type: Specifies the granularity of visual features output by the visual encoder and selects the corresponding
H-LoRA submodule. For generation tasks, the response also includes multi-modal tokens corresponding to VQ indices.

e Task Instruction: Guides the model to interpret the image and generate a response, covering various aspects of the
image and specifying the output format.

* Response: The textual output generated based on the task instruction and input image, ensuring it meets the question
and formatting requirements.

e Input Image: Provides the visual signal for the model to process.

» Target Image Index: In generation tasks, this is added as a multi-modal token to the response for autoregressive
generation.

B. Analysis of Heterogeneous Low-Rank Adaptation

We propose H-LoRA, which utilizes hard routing selection to allocate plugins for knowledge learning and representation
across tasks, thereby preventing conflicts arising from heterogeneous knowledge. This is especially beneficial for domain
adaptation, where task and distribution shifts often cause interference between domains (Zhang et al., 2024b). Furthermore,
within each task, we optimized based on MOELoRA, enhancing performance while reducing computational overhead. The
pseudocode is detailed Algorithm 1.

We further analyzed the computational overhead differences between MoELoRA and H-LoRA. Assuming that both methods
use the same number of LoRA experts k, we can compare their time complexity from the perspective of the operational
steps involved.

Computational Overhead of MoELoRA. In MoELoRA, the operations involving the expert matrix mainly include the
following steps: (i) Expert Multiplication: MoELoRA requires 2k multiplications with the LoRA experts. (ii) Router
Multiplication: One multiplication with the Router is required. (iii) Router Output Expansion: MoELoRA needs to
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Algorithm 1 H-LoRA Algorithm

Input: concrete-grained visual features FC°", abstract-grained visual features FA, comprehension-based H-LoRA
modules ({ASO™}E_ | REWP) generation-based H-LoRA modules ({A%en}F | RS task type T' (comprehension
or generation), number of LoRA experts k, origin linear layer weights W), text features 7, hidden state h
Output: final output O
/I Select task-specific image features
if T' = generation task then
Fimg . 7Con
else if 7' = comprehension task then
]:'img — ]:Abs
end if
U < concat(F™2 T) // Concatenate image features and text features
{ANE  ABYY | Rowter < {ATYE_ {BI}r_ | RI,. // Assign task-specific H-LoRA submodule
// Merge LoRA experts’ matrices
Amereed ¢« concat({A4;}5_)
Bmereed « concat({B;}¥_,)
W <« R(h) // Generate routing weights based on input hidden state x
yyexpanded o 5 W /r @ 1, // Expand routing weights to match merged matrices
OHLORA (5. Amereed ) Jpexpanded) . gmereed /7 Compute H-LoRA output using element-wise multiplication
O + x - Wy + OFLoRA J Add H-LoRA output to pre-trained weights to get final output
Return O

perform & expansion operations on the Router’s output weights to generate the appropriate shapes that match the dimensions
of the input and LoRA experts while iterating through the experts. (iv) Dot Product: For each expanded Router weight, a
dot product with the intermediate state of the expert is required, resulting in & multiplications. (v) Addition: Finally, k
addition operations are required to accumulate the results from each LoRA expert into the final output. Assuming the time
complexity of each operation is the same, the additional time complexity introduced when equipping a fully connected layer
with MoELoRA is: O(2k + 1+ k + k + k) = O(5k + 1). Thus, MoELoRA introduces an additional time overhead of
O(5k + 1) during computation.

H-LoRA. In contrast to MoELoRA, H-LoRA reduces the computational overhead by concatenating the LoRA expert
matrices. Specifically: (i) Expert Multiplication: H-LoRA merges all LoRA experts by directly creating a larger A and B
matrix, instead of performing independent operations for each expert. This process can be implemented through matrix
initialization without additional concatenation operations. Therefore, only 2 multiplications with the LoRA experts are
required. (ii) Router Multiplication: H-LoRA still requires one multiplication with the Router. (iii) Router Output
Expansion: H-LoRA only requires one expansion operation on the Router’s output weights. (iv) Dot Product: H-LoRA
only requires one dot product between the Router’s output and the expert’s intermediate state. (v) Addition: Finally,
H-LoRA only requires one addition operation to accumulate the LoORA expert results into the intermediate state. Therefore,
the additional time complexity introduced by H-LoRA is: O(2+ 1+ 1+ 1+ 1) = O(6).

Comparing the two, we see that MoELoRA introduces a linear increase in additional time complexity with respect to the
number of experts k, resulting in a complexity of O(5k + 1), while H-LoRA’s additional time complexity is fixed at O(6),
independent of k. We observe that when k is small, the time complexity differences between MoELoRA and H-LoRA are
negligible. However, as k increases, MOELoRA’s computational overhead grows linearly, while H-LoRA’s remains constant.
This makes H-LoRA significantly more computationally efficient than MoELoRA, particularly in large-scale tasks. We
will further demonstrate the significant advantage of H-LoRA in training time in subsequent experiments, validating its
efficiency in practical applications.

C. Supplemental Experimental Results

In this section, we include additional experiments to demonstrate the superiority of HealthGPT and articulate our design
philosophy.
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C.1. OmniMedVQA Benchmark

OmniMedVQA (Hu et al., 2024) is a novel, large-scale medical visual question answering (VQA) benchmark designed to
encompass various modalities and anatomical regions by collecting diverse images from multiple medical datasets. Our
experimental results are presented in Table 9.

Table 9: Performance comparison of OmniMedVQA Benchmark.

Medical OmniMedVQA 1

Type Model Params  yvin | €T Xeray FDM MiS OCT MRI  USS | Ave.
Med-Flamingo 83B v/ 301 339 255 370 600 276 304 | 349

LLaVA-Med 7B V284 328 427 316 553 450 53.6 | 413
HuatuoGPT-Vision 7B V353 415 514 623 593 404 60.1 | 50.0

BLIP-2 6.7B X 266 29.1 223 369 291 227 214 | 269

Comp. Only | LLaVA-v1.5 7B X | 280 557 355 421 492 529 497 | 447
InstructBLIP 7B X 201 222 341 306 386 319 255 29.0

Yi-VL 6B X 512 47.1 277 626 67.6 550 403 | 50.2

InternVL2 8B X 1402 579 532 640 590 581 49.1 | 54.5

Llama-3.2 11B X 37.6 552 714 821 625 652 68.6 | 63.2

Show-o 1.3B X 290 504 309 220 308 342 338 | 33.0

Unified-10 2 7B X 108 377 123 253 326 309 377 | 268

Janus 1.3B X | 249 548 359 627 542 507 368 | 45.7

Comp. & Gen, | 14105 Pro 7B X 312 612 514 717 602 572 458 | 54.1
Emu3 8B X 340 312 345 348 783 S17 123 | 395

HealthGPT-M3 3.8B vV 353 819 546 882 893 785 514 | 685

HealthGPT-L14 14B V390 866 641 886 997 809 622 | 744
HealthGPT-XL32 32B vV 664 813 617 856 987 763 645 | 772

Through our analysis, we make the following observations: (i) HealthGPT-M3 outperforms other models in 4 out of 7
sub-tasks, achieving an average score that exceeds cutting-edge medical Large Vision-Language Models (Med-LVLMs)
as well as general LVLMs; (ii) the unified model demonstrates relatively weak performance on OmniMedVQA; however,
our approach effectively mitigates performance degradation caused by generation tasks, serving as a unified model; (iii)
HealthGPT-L14 and HealthGPT-XL32 excel across all sub-tasks, achieving optimal or near-optimal results with an average
score of 74.4 and 77.2, significantly surpassing other models.

C.2. Stability Analysis of Number of Experts

We investigated the impact of the number of LoRA experts on model performance within a multi-LoRA architecture,
conducting extensive experiments on MOELoRA and H-LoRA with varying numbers of experts. The experimental results
are presented in Table 10. As the number of experts increases, the training time for MoELoRA is significantly prolonged.
When n = 8§, the training time for MoELoRA is twice that of LoRA, whereas H-LoRA incurs no additional training delay
and performs better. It is estimated that at n = 32, the training time for MOELoRA could reach eight times that of LoRA,
preventing it from completing training and inference. This result aligns with the analysis in Appendix B, indicating that
H-LoRA not only avoids introducing additional training delays compared to LoRA but also outperforms MoELoRA.

Table 10: We explored the performance of MoELoRA and H-LoRA with different numbers of LoRA experts. At n = 32,
MoELoRA was unable to complete training.

Model =) n=4 n=8 n=32
Comp. Gen. Time | Comp. Gen. Time | Comp. Gen. Time | Comp. Gen. Time
HealthGPT w/ +MoELoRA | 503 6298 1.22x 50.0 6433 1.49x 50.8  63.71 2.09x / / 5.81x
ea ' fH-LoRA 51.5 6348 0.99x 528 64.71 1.00x 53.6 6498 0.99x 535 64.74 1.01x

18



HealthGPT: A Medical Large Vision-Language Model for Unifying Comprehension and Generation

C.3. Impact of Heterogeneous Knowledge Fusion on Performance

Traditional unified models often utilize mixed training methods, which may result in performance degradation due to
variations in task modes. To address this, we propose a three-phase learning strategy to support H-LoRA, effectively
mitigating inter-task conflicts. Specifically, the second phase (Heterogeneous H-LoRA Plugin Adaptation) integrates
LLMs with different H-LoRA plugins into a new unified foundation by mixing the training of the embedding layers and
output heads for two tasks. Figure 9 illustrates the impact of this phase on the performance of medical comprehension
and generation tasks. We observe that the second phase effectively unifies the model with minimal impact on overall
performance, significantly alleviating the conflict issues arising from mixed training in medical scenarios.

C.4. Human Evaluation.

We further conduct human evaluation on the VQA-RAD, SLAKE, and PathVQA benchmarks, which contain 1,000 open-
ended questions. Specifically, we recruit 5 clinicians to rank the randomly shuffled responses from HealthGPT-L14,
LLaVA-Med, HuatuoGPT-Vision, Llama-3.2, InternVL-2 and Show-o. During the evaluation, questions were randomly
selected, and the model-generated responses were anonymized and ranked. The results, as shown in Figure 10, indicate that
HealthGPT was frequently selected as the best answer. This suggests that HealthGPT has further application potential in
medical care scenarios.

C.5. Reconstruction Performance

Currently, unified models that align visual features based on recon-

struction tasks include pre-LVLMs, post-LVLMs, as well as Unified- 70 67.7 67.0
10 2 (Lu et al., 2024) and SEED-X (Ge et al., 2024). To investigate the
controllability of visual generation in rigorous settings such as medical 60
contexts, we evaluated the performance of these models in medical 50
image reconstruction in Table 11. Experimental results demonstrate b
that HealthGPT exhibits the most stable reconstruction performance 240
with a small amount of data. g

£30
C.6. Case Study & 2
Figures 11 and 12 illustrate examples of modality transformation and
super-resolution reconstruction. In Figure 11, the results generated 10
by our method in the CT (MRI) to MRI (CT) transformation task 0 |

Comp. Gen.

are highly close to the ground truth, effectively guiding the model
in the transformation across different regions. For the MRI super-
resolution reconstruction task, Figure 12 demonstrates the accuracy of ~ Figure 9: Performance changes before and after
our method in restoring scan image details, accurately reconstructing the stage-2.

the essential details of the image.

3 pre-stage-2 Z3 post-stage-2

Table 11: The experimental results for the four reconstruction tasks.

Model CT(Brain) ’ CT(Pelvis) MRI (Brain) MRI(Pelvis)
SSIMt+ PSNRT MSE| SSIMt PSNRT MSE | ‘ SSIM1+ PSNRT MSE | ‘ SSIM1+ PSNRT MSE |
SEED-X 20.18 27.66 112.11 21.53 28.02 102.87 4.90 27.62 112.86 6.31 27.89 106.21
Unified-10 2 83.93 36.09 17.95 85.36 35.10 25.46 87.50 34.25 25.47 86.31 33.53 29.80
HealthGPT-M3 | 91.73 36.42 15.46 94.26 37.30 12.53 88.76 33.97 27.05 84.40 33.11 32.62
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Figure 10: (a) Proportion of model responses selected as the best in human evaluation. (b) Human Evaluation Dataset.
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Figure 11: Case of modality transfer.
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Figure 12: Case of MRI image super-resolution.
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