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ABSTRACT

While in-context learning (ICL) has achieved remarkable success in natural lan-
guage and vision domains, its theoretical understanding—particularly in the context
of structured geometric data—remains unexplored. This paper initiates a theoreti-
cal study of ICL for regression of Holder functions on manifolds. We establish a
novel connection between the attention mechanism and classical kernel methods,
demonstrating that transformers effectively perform kernel-based prediction at a
new query through its interaction with the prompt. This connection is validated
by numerical experiments, revealing that the learned query—prompt scores for
Holder functions are highly correlated with the Gaussian kernel. Building on this
insight, we derive generalization error bounds in terms of the prompt length and the
number of training tasks. When a sufficient number of training tasks are observed,
transformers give rise to the minimax regression rate of Holder functions on man-
ifolds, which scales exponentially with the intrinsic dimension of the manifold,
rather than the ambient space dimension. Our result also characterizes how the
generalization error scales with the number of training tasks, shedding light on the
complexity of transformers as in-context kernel algorithm learners. Our findings
provide foundational insights into the role of geometry in ICL and novels tools to
study ICL of nonlinear models.

1 INTRODUCTION

The Transformer architecture, first introduced by [Vaswani et al.|(2017)), has fundamentally reshaped
machine learning, driving significant advancements in natural language processing (NLP), computer
vision, and other domains. Unlike traditional feedforward and convolutional neural networks,
transformers employ an attention mechanism that allows each token to interact with others and
selectively aggregate information based on learned relevance scores. This mechanism enables more
flexible and context-aware representation learning. Transformers now serve as the foundational
architecture for large language and video generation models, such as GPT (Achiam et al.| |[2023),
BERT (Devlin, 2018), SORA (Brooks et al.,|2024)) and their successors.

These empirical successes have demonstrated the in-context learning (ICL) capability of transformers,
in which models can perform learning tasks by conditioning on a given set of examples, known as a
prompt, provided at inference time, without any additional parameter updates Brown et al.| (2020);
Radford et al.|(2019)); [Liu et al.|(2023)); |Garg et al.|(2022). The ICL phenomenon of transformers
has also sparked substantial research interest in developing theoretical explanations of its underlying
mechanisms. In|[Bai et al.| (2023); [Zhang et al.| (2024); |Von Oswald et al.| (2023)); |Akytirek et al.
(2022); |Cole et al.|(2024), transformers are proved for ICL of linear models, including least squares,
ridge regression, Lasso, generalized linear models and linear inverse problems.

Beyond linear models, transformers are studied for nonlinear models in|Yun et al.|(2019)); Takakura
& Suzuki| (2023); |Gurevych et al.| (2022); [Havrilla & Liao|(2024)); |Shen et al.| (2025)), with the goal
of learning a single function, classifier, or sequence-to-sequence mapping. Specifically, Yun et al.
(2019) proved that transformer models can universally approximate continuous sequence-to-sequence
functions with compact support, while the network size grows exponentially with respect to the
sequence dimension. [Takakura & Suzuki|(2023) studied the approximation and estimation ability of
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transformers for sequence-to-sequence functions with anisotropic smoothness on infinite-dimensional
inputs. (Gurevych et al.| (2022) studied binary classification with transformers when the posterior
probability function exhibits a hierarchical composition model with Holder smoothness. In|Havrilla
& Liao| (2024); Shen et al.| (2025)), transformers are proved to leverage low-dimensional geometric
structures of data (Havrilla & Liao, [2024) or machine learning tasks (Shen et al., |2025). While
these works focus on a single learning task, ICL involves multiple learning tasks performed within
the same model by leveraging prompts to adapt to each task on the fly, highlighting a form of task
generalization without explicit retraining.

A theoretical understanding of ICL in transformers—especially in settings involving structured data
with a geometric prior—remains limited and largely unexplored. In this work, we initiate a theoretical
study of ICL for manifold regression. A manifold hypothesis is incorporated into our regression
model to leverage low-dimensional geometric structures of data. Recent works have demonstrated
that, under a manifold hypothesis of data, feedforward and convolutional residual networks give rise
to a sample complexity depending on the intrinsic dimension (Shaham et al.,[2018; |Chen et al., |2022;
2019; Liu et al., [2021; Nakada & Imaizumil [2020; |Schmidt-Hieber, [2019). Empirical evidence has
shown that the neural scaling laws of transformers depend on the intrinsic dimension of data (Kaplan
et al.}2020; |Sharma & Kaplan} 2022), while theoretical justifications, especially for ICL, are limited.

A central insight of this paper is the interpretation of transformers as learning kernel methods for
function regression. Our study establishes a novel connection between the attention mechanism
and classical kernel methods, showing that token interactions within attention can be interpreted
as constructing an interaction kernel used to perform regression. Based on this connection, we
construct a transformer neural network to exactly implement kernel regression, which builds an
approximation theory of transformers for in-context manifold regression. To be more precise, let
s = {x1, f(x1), X2, f(X2),...,Xn, [(Xn); Xn+1} be a prompt, we explicitly construct a transformer
T to exactly implement the kernel regression estimator /Cy, (s) such that
i1 exp (= [%ni1 — X4[|?/h?) £ (x:)
™ ; ey
i1 xp (=[xnp1 — x| /R?)
where the Gaussian kernel of bandwidth 2 > 0 is used. Our construction shows that transformer-
based ICL can implement kernel regression with zero approximation error. A formal statement can
be found in Lemmal(l] This perspective not only illuminates the internal workings of transformers
in the in-context regression setting, but also motivates a theoretical framework for analyzing their
generalization performance. Moreover, this connection is validated by numerical experiments on the
regression of Holder functions, revealing that the learned query—prompt scores in the last transformer
layer are highly correlated with the Gaussian kernel.

T}, (5) = Ka(s) =

Based on this key insight, our theoretical contribution for the generalization error of the transformer-
based ICL can be summarized as follows: Let M be a d-dimensional compact Riemannian manifold
in RP. We consider the ICL of a-Holder (0 < « < 1) functions on M given a prompt of length
n. During training, one observes the regression of I' functions/tasks, where each function/task is
provided on a prompt of length n. At inference time, a prompt of length n is given for a new a-Holder
function on M, and the goal is to predict the function value at a new input. Under this setting, we
prove that the squared generalization error of transformer-based ICL is upper bounded by

Cy (nDi’T—% log(nDF)) e (n—z(%[lognw%) , @)

with constants C', C5. A formal statement of our result can be found in Theorem Our result sheds
light on theoretical understandings of transformer-based ICL in the following aspects:

e Scaling Law of Transformers as Algorithm Learners. The first error term in (2 characterizes
the scaling law of transformers as in-context kernel algorithm learners. When a transformer is trained
on I regression tasks, it can learn a kernal regression algorithm and generalize to a new task, with the
generalization error given in the first term in (2).

e Minimax Regression Error with a Prompt of Length n. The second error term in (2)) indicates
the scaling law of transformers to make predictions based on a Prompt of Length n. It matches
2
the lower bound of n~ 2=+ (Gyorfi et al., [ 2006) for the regression of Holder functions up to a log
factor , and thereby demonstrating that transformers can achieve near-optimal performance if I" is
4o
large. Specifically, if I' > n%a+a 722 DS log(n.D) for some & > 0, then the second error term in (Z))
dominates the first term.
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o Dependence on the Intrinsic Dimension. By leveraging low-dimensional geometric structures of
data, the error in (2)) has an exponential dependence on d rather than the ambient dimension D. This
improvement offers foundational insight into the role of geometry in ICL.

Organization. In this paper, we present some preliminaries in Section [2|and the problem setup in
Section 3] We bridge attention to kernel methods in Section|4|and present the generalization error
bound in Section E} Related works are discussed in Section @ Finally, we make conclusion and
discuss the limitation of our paper in Section

Notation. Throughout this paper, vectors are denoted by boldface letters, while scalars and matrices
are denoted by standard (non-bold) letters. For a vector x € RP, we use ||x|| to denote its Euclidean
norm. For a function f : Q@ — R, we denote its L°° norm as || f|| Lo (o) := Supxeq |f(X)].

2 PRELIMINARIES

In this section, we introduce preliminary definitions about manifolds, Holder functions on manifolds,
and the transformer neural networks used in this paper.

Manifolds and Holder Functions on Manifolds. In this paper, we consider that data are sampled in
a compact d-dimensional Riemannian manifold M isometrically embedded in R”. Mathematically,
a d-dimensional manifold M is a topological space where each point has a neighborhood that is
homeomorphic to an open subset of R?. Furthermore, distinct points in M can be separated by
disjoint neighborhoods, and M has a countable basis for its topology. More definitions on geodesic
distance and the reach of manifold are in Appendix [B.1}

This work considers in-context regression of Holder functions on M.

Definition 1 (Holder function on a manifold). A function f : M — R is Holder continuous with
Hélder exponent o € (0, 1] and Holder constant L > 0 if

|f(x) — f(x)| < LdS4(x, %) forall x,x" € M.

Attention and Transformer Blocks. We consider ICL using transformer-based networks struc-
ture Vaswani et al.| (2017)) in this paper. We briefly review attention and multi-head attention here.

Definition 2 (Attention and Multi-head Attention). Attention with the Query, Key, Value matrices
Q, K,V € Rdemveaxdemved j5 defined as

Axov(H)=VHo((KH)"QH). 3)
The multi-head attention (MHA) with m heads is given by
MHA(H) = 27:1 ViHo((K;H)"Q;H). “)

We want to point out that in this paper we apply ReLU as the activation function of the attention
modules from the first to the penultimate layers in the transformer, and apply Softmax for the last
layer. A transformer block is a residual composition of the form

B(6; H) = FFN(MHA (H) + H) + MHA(H) + H. (5)

where FFN is a feed-forward neural network operating tokenwise on the input.

3 IN-CONTEXT REGRESSION ON MANIFOLD

Problem Setup. Empirical evidence from image (Roweis & Saul,|2000; Tenenbaum et al.,[2000; |[Pope
et al}|2021) and language datasets (Sharma & Kaplan, |2022; Havrilla & Liao, [2024])). suggests the
presence of underlying low-dimensional geometric structures in high-dimensional data. Motivated by
this observation, our study adopts a geometric prior by assuming that the data x lies on a Riemannian
manifold M of intrinsic dimension d, isometrically embedded in R with d < D.

With this geometric prior, we consider in-context learning for regression of functions defined on M.
More precisely, given a prompt/task as

5= {X17y1,X2,y27 <. 7men;Xn+1} with y; = f(xi)7 (6)
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where x;’s are i.i.d. samples from a distribution px supported on M and f is sampled from py,
a distribution in the function space {f : M — R}, the goal is to predict f(x,1) based on the
following in-context learning problem.

Given {f7}y=1,.1 o pr and the corresponding training set © = {57}F 1 provided by s7 =
{XY,.y},Xg,y; XYLy b with {x”} e " px and y] = f7(x]), we minimize the
empirical risk:

~ . 2

T S a;gren%n Rn,F(TO) where Rn F TG F Z (T9 {Xz ayz }z 1}’ n+1) yz+1) (7)
6

where T is a transformer neural network parameterlzed by 6 and 7 is a transformer network class to

be specified. Our goal is to study the squared generalization error of T on a random test sample s
(independent of training data) in (6)):

Ry (T(s)) := ( ({xi yi o s Xnt1) = F(%n41))? (®)
This generalization error can be characterized by the mean squared generalization error defined as:
Ra(T) = EoEs [Ra(T(s))] ©

where the expectation [E, is taken for the test sample s and the expectation Eg is taken for the joint
distribution of the training samples.

Transformer Network Class. To describe the ICL problem more precisely, let us specify the
transformer network class. We define a transformer network Ty (-) with weights parametrized by 6 as
consisting of an embedding layer, a positional encoding module, a sequence of transformer blocks,
and a decoding layer, i.e., for an input s defined in (6)

Ty(s) := DEoBj, o---0Bj o (PE + E(s)), (10)

Here E is a linear embedding and PE is the operation of adding positional encoding (see their
definitions in Appendix [B.2). PE + E (s) embeds s as a matrix H

X1 o X Xp41l 0
yioc Ym0 0
H=PE+E(s)= [0 - - o 0] eRemoeaxt — R(D+3)xL, (11)
Y 7,
1 eee e 1

In matrix H, each column is a token, and each token has dimension d¢,,peq = D + 5. The first D + 1
rows are data terms and the (D + 2)th row is 0. The (D + 3)-th and (D + 4)-th rows contain the

well-known sinusoidal positional encodings Z; = (COS(JZZ) sm(% )) T, which determines how each

token will interact with another through the attentlon mechanism. It is crucial to note that the data
terms are dynamic, whereas the positional encoding and constant terms remain static. Furthermore,
By, ,Bp, : Rdemveaxt _ Rdembea Xt gre the transformer blocks (with ReLU activation from the
first to the penultimate layers and Softmax activation for the last layer in the attention module) where
each block consists of the residual composition of multi-head attention layers and feed-forward layers.
DE : Remoeax? _ R is the decoding layer which outputs the desired element.

Our ICL problem is considered in the following networks class:

Definition 3 (Transformer Network Class). The transformer network class with weights 0 is
T (LT, mt, dembed; ¢, LrrN, wrEN, R, k)
= {Te(-) | To(-) has the form with L transformer blocks, at most mvy attention heads in

each block, embedded dimension dey,peq, number of hidden tokens ¢, and Lypy layers
of feed-forward networks with hidden width wren, with output || To(-)|| e mp)y < R

and weight magnitude ||0|| oo < Ii}.

Throughout the paper, we will shorten the notation 7 (L, mr, demped, ¢, LFFN, WrFN, R, k) as T
as long as there is no ambiguity in the context.
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4 BRIDGING ATTENTION TO KERNEL METHODS

One key insight of this paper is to interpret transformers used in ICL as a mechanism for learning
kernel methods in function regression. This interpretation not only illuminates the internal workings
of transformers in the in-context regression setting, but also motivates a theoretical framework to
understand transformers in ICL.

Constructing a Transformer to Implement Kernel Method. The classical (Nadaraya—Watson)
kernel estimator (Nadarayal |1964} Watson), |1964) is a well-established way for the estimation of

F(Xnt1) given { (x;, f(x:)) }y. It outputs
i Kn(%nt1 — x0)wi
2?21 Kp(Xn+1 — %;)

1 . . . .
where we choose Kp,(u) = e~ »2 to be the unnormalized Gaussian kernel with bandwidth i > 0.
The transformer’s attention mechanism can be interpreted as a form of kernel method, where the
attention scores function analogously to kernel-based importance weights over input tokens. Our idea
is to first use the interaction mechanism in attention to construct several layers of transformer blocks
which takes the input H in (1)) and outputs the following matrix:

’Ch(B)

, withy; = f(x). (12)

X1 ot Xp Xp4l Xn+1 — X12 T Xn+1 — xn2
[I%n+1—%1]| [%n4+1—%nl
Yy 0 Yn 0 By - R - R -
H=1{0 - 0o ... " Yn € RPFIXEnH) 0 (13)
Iy - e .. IQn—i—l

We will present the construction details which operates on the H in and gives rise to the H in
(I3) in Appendix [E.I] This operation accounts for the first to the penultimate layer in our transformer
network. In the final layer, we apply a single-head attention A with a mask from the (n + 2)-th to the
(2n + 1)-th token (with certain sparse query, key matrices ), K and value matrix V' = e D+1e£ 12)
such that the (n + 1)-th output token is

A1 = X240, softmax ((Qhsr, KH)); Vhy

Jj=n+

=l g1 =112 /2
=30 Z’: : e_HanJ_xjuz/hz (yjep+1) = Kn(s) - epi1.
ie

Here, we denote e; as the elementary vector with all entries zero except for the j-th entry, which is 1.
Therefore, the residual attention gives

X1 o Xp Xn+1 Xp41 —X12 X1 _X'n,2
K =t e —xall®
A(H) +H = %1 yn h(S) yf17,2 th c R(D+5)><(2n+1)
n k)
Ty o e e Tont

where the kernel estimator /Cj, (s) is realized in (D + 1)-th row and (n + 1)-th column. The decoding
operation DE produces this element in the (D + 1)-th row and (n + 1)-th column as the output.

This connection between the transformer network and the kernel estimator in (I2)) can be rigorously
established, that is, We prove that transformers can exactly implement the kernel estimator (12))
without any error. We summarize it as the following lemma, whose proof is in Appendix

Lemma 1. Let M C [—b,b|P. Suppose the prompt s in (6) satisfies: the x;’s are i.i.d. samples
from a distribution py supported on M and f : M — R is bounded, i.e. | f||ponm) < R. Let
K1 (+) be the empirical kernel estimator defined in (12). Then there exists a transformer network
T} € T(Ly,mr, dembed; £, Lrrn, Ween, R, k) with parameters

Lt =5 mr=nD, dempea =D +5, L =2n-+1,
Lyrxn = O(1), wppn = D +5, £ = O (D*n*b*R*/1®)
such that for any sample s in the form of (6), we have
T}, () = Kn(s). (14)

The notation O(+) hides absolute constants.
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Figure 1: Examples of attention scores and Gaussian kernel with in-context length n = 8 (first
column), n = 16 (second column), n = 32 (third column) respectively. The top and bottom rows are
the plots at two different samples. This figure shows a strong correlation between attention scores
and Gaussian kernel.

1750 400
1500 400 350
1250

1000

counts

150

100

00 02 04 06 o8 10 0o 02 04 06 08 10 02 04 06 08
Pearson correlation Pearson correlation Pearson correlation

Figure 2: Histograms of the Pearson correlation for n = 4, 8, 16 respectively. The ones with negative
correlation are not included in this plot, while they only account for a small amount. The total counts
for positive correlation are 4588, 4598, 4771 out of a total of 5000 samples in each case respectively.

Remark 1 (Universality). In LemmaEl the network architecture and weight parameters of T} are
universal for different functions f and points {x; "+11 The weight parameters only depend on
D,n,b, R, h. This construction indicates that transformer can universally implement the kernel

regression algorithm with zero approximation error.

Validating the Correlation between Attention Scores and Kernel Function. To validate that
transformer does indeed perform kernel regression implicitly, we conduct simulated experiment to
compare the attention scores in the last layer of the trained transformer and the Gaussian kernel

2 . . .
e~ In1=x%il" (o see if there is a strong correlation between the two.

In this simulation, we fix M = S? (the 2-dimensional sphere), and we consider the target function
f :S? — R to be the linear combination of the real part of the first 10 spherical harmonics on the
two-dimensional sphere S2. More precisely, let s1(6, ®), - -, s10(0, ¢) be the real part of the first 10
spherical harmonics on S2. For each task, we uniformly random sample the coefficients w) € [0, 1],
and 07 € [0,7), ¢] € [0,27], and generate y] = 10, w]sp(07,¢]), where i = 1,--- ,n
(in-context length) and v = 1,---,T (number of training tasks). Let z],; = sin(6]) cos(¢7)
xy ;= sin(0]) sin(e]), x5 ; = cos(H;Y). For each task, the training sample writes as the embedding
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Table 1: Average Pearson correlation coefficients (= standard deviation) and the corresponding
p-values (+ standard deviation)

In-context length n  Pearson correlation coefficient p-value
4 0.86 £ 0.21 0.14 £0.21
8 0.75 £ 0.22 0.09 +£0.19
16 0.69 +£0.22 0.06 £ 0.17
32 0.67 £0.19 0.03 £0.12

matrix H shown in in the Appendix[F| We fix the number of training and testing tasks I" = 50000
and vary the in-context length n = 4, 8, 16, 32.

Figure [T] plots the attention scores (after sorting from

the highest to the lowest value) in the last layer of the
trained transformer and compares it against the Gaus- 0s
sian kernel (sorted according to the corresponding atten-
tion scores), which demonstrates a strong correlation
between the two quantities. The distribution of the Pear-
son correlation values are plotted in Figure 2] we can
see that most correlations are concentrated around 0.8,
showing that the attention score and Gaussian kernel
are highly correlated with each other. More exemplar —
plots of attention scores and kernel function scores are : T B = P pa
provided in Figure[5|in Appendix [F] The average Pear- sorted index

son correlation coefficients between the two scores and
the corresponding p-values are also reported in Table
[I] The results are averaged over 5000 independent ran-
dom testing samples. More details of the experimental
setup are provided in Appendix [F}

sentence 1
sentence 2
sentence 3
sentence 4
sentence 5

attention score

Figure 3: Softmax attention scores for real
language data.

To further test how the curve of attention scores look like for real language data, we input five user
generated sentences (with length about 20 - 30) into the pretrained GPT2 (Radford et al.,[2019) and
then plot the attention score for one of the heads in the model’s last layer after sorting the score of
each word from highest to the lowest value. The curves in Figure [3|shows that the attention scores for
the real language data do exhibit some kernel shape.

5 TRANSFORMER-BASED ICL GENERALIZATION ERROR BOUND

Based on the connection between transformer and kernel methods, we derive a generalization error
bounds for transformer-based ICL involving structured data. By imposing a geometric prior, we
assume that x is sampled on a low-dimensional manifold M, and f is a function on the manifold M.
This assumption leverages low-dimensional geometric structures in data which have been empirically
observed in image (Roweis & Saull 2000; [Tenenbaum et al., 2000; [Pope et al.,[2021)) and language
datasets (Sharma & Kaplan, [2022; Havrilla & Liao} [2024).

Assumption 1. Let M be a compact d-dimensional Riemannian manifold isometrically embedded
in RP, M C [~b,b]P for some b > 0, and M has a positive reach Trq > 0 (reach is defined in
Appendix[B.1). Suppose px is the uniform distribution on M.

Assumption 2. Let o € (0,1], R, L > 0, and py be a probability distribution in the function space
F:={f: M —=R: fisa-Holder with Hilder constant no more than L, and || f|| L) < R}.

Our main theorem about the generalization error of transformer-based ICL is given below.
Theorem 1. Suppose M, px and f, py satisfy Assumptionsand respectively. If we choose the
transformer network class T (L, mr, demped, ¥y Lrrn, Wren, R, k) with parameters

Lt =5 my= O(Dn), dembed = D+ 5, £ =2n+1,

4a+2d+8 )
)

Lypn = 0(1), wprpN = D+ 5, k=0 (Dgn satd PO R2
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where O(-) hides the dependency on the absolute constants. Then the minimizer T defined in
satisfies the squared generalization error bound:

Ro(T) < Cy (nD?’F’% 1og(nDF)) NG (n_T log!*+ % n) :

15)

where the constant C depends on d, o, and constant Co depends on d, o, L, R, Trq.

The proof roadmap of Theorem [I]is presented in Appendix [C]and more details of the proof are
provided in Appendix[E] Lemmal[l|is utilized as a key step to prove Theorem[I} Theorem|I]also offers
insights into several key aspects of transformer-based ICL, which is discussed in the introduction.

Validating the Generalization Error Bound. We conduct simulated experiments to validate our
generalization error bound (I5) in Theorem [I] while varying n (prompt length) and I' (number of
training tasks). The data generatlng procedure is the same as the experiments in Sectiond] Figure
H] plots the average Mean Squared Error (MSE) over 30 repetitions on the testing data against the
number of tasks I and the prompt length n. More details of the experiments are given in Appendix [F]

The top row of Figure 4] shows the testing MSE with respect to I in log-log scale when the prompt

length is fixed to be n =

16, 64, 256 respectively. In log-log scale, the slope initially coincides

with the theoretical slope of —0.5 in the first term of (I3)), and then slightly shifts above it. This is
consistent with our error bound in (I3)), as when T increases and n is fixed, the second term starts to
dominate the total error. In the bottom row of Figure[d] we plot the logarithm of testing MSE in terms
of the prompt length » when the number of tasks is fixed to be I' = 400, 1600, 6400 respectively.
In our error bound (I3), both terms depend on n while the first term increases and the second term
decreases as n increases. The testing MSE decays as n increases, and the rate of decay depends on
the balance of the two terms in (I3). The larger I" is, the more dominant the second term in (I3 is,
and therefore the rate of convergence of the testing MSE is faster as n increases. By comparing the
three plots in the bottom row of Figure 4| with I' = 400, 1600, 6400 respectively, we observe a faster
rate of convergence with respect to n when I is larger, which is consistent with our theory.

Figure 4: Top row: MSE v.s.
respectively). Bottom row: MSE v.s.
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6 RELATED WORKS
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number of tasks I' (with fixed prompt length n = 16, 64, 256,
prompt length n (with fixed tasks I' = 400, 1600, 6400

We next discuss some connection and comparison of our result with existing works on transformers.
This paper highlights bridging the attention mechanism and classical kernel methods. It provides a
new interpretation of transformers in ICL, and new tools to address nonlinear models in transformer-
based ICL, which allows us to move beyond linear models studied in Bai et al.|(2023); |[Zhang et al.
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(2024); |Von Oswald et al.| (2023); |Akytirek et al.| (2022); |Cole et al.| (2024). This novel tool also
allows us to address multiple tasks in ICL, in contrast to single task learning by transformers studied
in|Yun et al.| (2019); [Takakura & Suzuki|(2023); |Gurevych et al.| (2022); Havrilla & Liao|(2024);
Shen et al.| (2025)).

The most closely related work to this paper is|Kim et al.|(2024)), which studied in-context regression of
Besov functions in R”. |Kim et al. (2024) derived approximation and generalization error bounds for
a transformer composed of a deep feedforward network and one linear attention layer. There are two
main differences between this paper and |Kim et al.| (2024): 1) Our transformer network has 5 layers
of multi-head attention, and each multi-head attention can be wide, i.e. with n.D attention heads.
The feedforward layers in each attention is of a constant order. Such a wide transformer architecture
shares some similarity to those used in large language models (LLMs). For example, GPT-2 Small
only has 12 layers with 117 million parameters (Radford et al.,[2019). Our approximation theory
is developed by fully leveraging the attention mechanism. In contrast, Kim et al.| (2024) utilized
one linear attention layer and a deep feedforward network for approximation. 2) By incorporating
low-dimensional geometric structures of data, we prove error bounds with an exponential dependence
on the intrinsic dimension d, while the error bound in Kim et al.[(2024)) has an exponential dependence
on the ambient dimension D.

Our work is also connected with |Li et al.| (2023)), which derived generalization errors for transformers
as in-context algorithm learners. While the framework in |L1 et al.| (2023)) is general, it does not
address some key components in this paper, such as our novel approximation theory bridging the
attention mechanism to kernel methods, and our covering number calculation.

The connection between the attention mechanism and kernel methods has been explored in prior
work, including (Tsai et al.|(2019); Wright & Gonzalez|(2021); Yu et al.| (2024); Lu & Yu| (2025);
Cheng et al.|(2023); [Han et al.| (2025). In particular, the work by Han et al.|(2025)) takes the kernel
perspective to understand ICL and empirically demonstrates that the attention and hidden features in
LLMs match the behaviors of a kernel regression. While our work and these prior studies all draw on
the connection between the attention mechanism and kernel methods, our theoretical justification is
novel. In particular, the construction of transformers to implement the kernel method in Lemma
and the generalization error bound in Theorem [T have not been addressed in literature. Our paper
provides a theoretical framework to understand transformer-based ICL with geometric structures.

7 CONCLUSION AND DISCUSSION

Conclusion. This work provides a theoretical foundation for understanding in-context learning
(ICL) with transformers in the setting of manifold-structured regression tasks. By establishing a
novel connection between the attention mechanism and classical kernel regression, we interpret
transformers as implicitly learning kernel-based algorithms for function regression. Our findings
offer new theoretical insights into the algorithmic nature of transformers in ICL, establish a rigorous
approximation and generalization theory for manifold regression, and provide tools for analyzing
nonlinear models under geometric structure.

Our analysis derives sharp generalization error bounds for c.-Holder functions on compact Riemannian
manifolds, revealing how the performance of transformers in ICL depends on the prompt length n,
the number of training tasks I, and the intrinsic geometry of the data. Notably, our results show that
transformers can achieve the minimax optimal regression rate up to logarithmic factors when I' is
sufficiently large. Furthermore, the derived bounds depend exponentially on the intrinsic dimension
d of the manifold, rather than the ambient dimension D, highlighting the critical role of geometric
priors in achieving efficient generalization.

Discussion. Our theoretical analysis focuses on a-Holder regression with fixed-length prompts and
a large number of training tasks, under idealized assumptions such as exact kernel implementation
via attention. Extending the framework to broader function classes, variable prompt lengths, noisy
data or limited data remains an open challenge. Despite these limitations, our work reveals how
geometric structure can enhance generalization in ICL and draws a principled connection between
attention mechanisms and kernel methods. These insights may inform the design of more efficient
and interpretable models in domains where geometry plays a central role, such as scientific computing
robotics, and many others where geometric structure is prevalent.
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Reproducibility statement To support reproducibility of our work, we provide comprehensive
details across the main paper and supplementary materials. All theoretical results are accompanied
by clear assumptions and complete proofs in the appendix. For experimental results, we describe
the datasets used, preprocessing steps, and hyperparameter settings in both the main text and the
appendix. Our implementation, including training and evaluation scripts, is available as an anonymous
downloadable source code submitted in the supplementary materials.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT for minor language editing, such as grammar correction and improving sentence
flow. The scientific content and all writing were created by the authors.

B MORE DEFINITIONS

B.1 GEODESIC DISTANCE, REACH OF THE MANIFOLD AND COVERING NUMBER

With the induced metric on M, the geodesic distance on the manifold between x, x’ € M is defined
as

dm(x,x") = inf{]y| sy € CH([t,]), 7 : [8, 8] = M, y(t) = x,7(t) = x'},

where the length is defined by || := f:/ l7/(8)||2ds. The existence of a length-minimizing geodesic
v : [t,t'] = M between any two points x = y(t),x’ = ~(¢') is guaranteed by the Hopf-Rinow
theorem (Hopf & Rinow| |1931).

Definition 4 (Medial Axis). Let M C R be a connected and compact d-dimensional submanifold.
Its medial axis is defined as

Med(M) i= {x € R” | 3p £ q € M, [[p — x| = lla — x]l2 = inf [}z — x|,

which contains all points x € RY with set-valued orthogonal projection 7 p(x) = argmin, ¢ [|x —
ZHQ.

Definition 5 (Local Reach and Reach of a Manifold). The local reach for v € M is defined as
Tm (V) = inf enmea(m) [V — 2|2, which describes the minimum distance needed to travel from v to
the closure of medial axis. The smallest local reach Trq := inf,c pm Taq(v) is called reach of M.
Definition 6 (Covering Number). Let (H, p) be a metric space, where H is the set of objects and p
is a metric. For a given € > 0, the covering number N (¢, H, p) is the smallest number of balls of
radius € (with respect to p) needed to cover H. More precisely,

N(e,H,p) :=min{N € N| 3{hq,...,hn} C H,VYh € H, 3h; such that p(h, h;) < €}.

B.2 EMBEDDING, POSITIONAL ENCODING AND TRANSFORMER BLOCK

Definition 7 (Embedding Layer). Given x; € R and y; € R, the embedding layer E takes an input

5= {X1,Y1,X2,Y2, - - -, X, YUn; Xn+1 | and maps it to
X] r Xp Xpy1 O
vio Yy 00
o e e o0 D45)xe
E(s) = 0 ol € R(PH5)xE,
0 0
1 1
Definition 8 (Positional Encoding). The positional encoding takes an input s, maps it to I; =
(cos(L5),sin(%7)) " and put those I, j = 1,--- ,{, into the third and second last row in the
embedding matrix, i.e.,
0 0
0 0
PE(s)= | 0 0| € RIPHO)*E
7 )
0 0
With these definitions, we have
X1 0 Xp Xpil 0
yo oy 00
PE4+E(s)=|0 -+ -+ - 0 e RP+9)xE
Ty e e e T
I 1

as defined in (TT).
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Definition 9 (Transformer Block Class). The transformer block class with parameters 0 is

B(m, Lyrn, wrrn) = {B(6;-) | B(0;-) a MHA with m attention heads, and a FFN layer
with depth Lrpx and width wrpy }.

C ROADMAP FOR THE PROOF OF THEOREM

In this section, we present a roadmap for the proof of our main result in Theorem[I] We defer a more
detailed discussion of the roadmap to Appendix [C|and all the proof details to Appendix [E]

Bias-Variance Error Decomposition. We first decompose the squared generalization error at the
test sample s in (8] as follows:

Ra(T(5)) = Ru(T(s) = Rur(T) + Rur(T) = R (T*) + Ry (T*) — R (T*(5)) + R (T*(5)),

where T* is a transformer network which approximates the in-context kernel estimator Ky, in (12)).
One term satisfies R, r(T) — Ry, r(T*) < 0 since T is the minimizer of R,  given in (7). After
taking expectations, we can decompose the mean squared generalization error (9)) as follows:

~

Ra(T) = EeEq [Ra(T(s))] (16)

<Ee (Eq [Ru(T(3)] = Rur (D)) +Es (Rur(T") = B [Ra(T"(3))] ) + Es [Ra(T"(5))].
II1

I 11

In this error decomposition, error III denotes the approximation error which we will analyze in
Section|C.1] The errors in I and II denote the statistical error , which we will analyze in Section [C.2]

C.1 APPROXIMATION ERROR: TRANSFORMERS CAN IMPLEMENT KERNEL ESTIMATOR

A key innovation in our proof is establishing an approximation theory for transformers to implement
the classical kernel estimator in (I2)). Importantly, this implementation is universal for f and the x;’s
so that the weight matrices in transformer are independent of f and the x;’s.

Our approximation error bound is given by Proposition [T| below. Since transformers can exactly
implement the kernel estimator as shown in Lemmal ] the approximation error in Proposition [Iis the
same as the mean squared error given by the kernel estimator.

Proposition 1. Suppose M, px and f, py satisfy Assumptions |I| and [2| respectively. Let s be a
prompt in (6), where {xi}?’:"'ll are i.i.d. samples from px and f is sampled from py. There exists a
transformer network T* € T (Lr, mr, dembed, £, LrrN, WrrN, R, k) with parameters

Lt =5, mr =O(Dn), dempea = D +5, £ =2n+1,
Lrpn = 0(1)7 wppN = D + 5, k=0 (DS’I’L2bSR2/h8)

such that

[log (h=1)]'* %

. [Ra(T"() < Cy | 2]

+ h**log(h~1)]? | . (17)

The constant C'3 hides the constants depending on d, L, R, Tp4.

Proposition [T]is proved in Appendix Here we illustrate our proof idea. The empirical kernel
estimator in (12)) is applied to n samples in the prompt. When n — oo, the empirical kernel estimator
in (I2Z) converges to its integral counterpart. Given any f € F and X,,4+1 ~ px, we define the integral
form of the kernel estimator as

B [KnGonss = X ()] _ [ Kn(xoer — %)/ (x)dx
Ex [Kn(Xn+1 — X)] | Kn(xp41 —x)dx '

Kn(f;Xnt1) = (18)

14
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where the integral about x is about the measure dx = dpx. For any test sample s, the approximation
error 111 can be further decomposed into three terms:

* * 2
Ry (Th(s)) = (Th(s) — f(xn41)) (19)
" e = 2
= (Th(5) — Kn(s) + Kn(s) = Kn(f;xnt1) + Kn(f; Xnt1) — f(Xn-‘,-l))
" - 2 = 2
<3(Th(s) - Kh(5))2 +3 (’Ch(s) — Kn(f; Xn-H)) +3 (]Ch(fJ Xnt1) — f(xn+1))
Al A2 A3
where the error in A1 measures the bias of using a transformer network to implement the kernel
regression estimator, the error in A2 measures the variance of kernel regression estimator, and the
A3 error measures the bias of using kernel regression estimator to approximate the target function.
These three error terms are bounded by Lemma|[I] Lemma 2] and Lemma [3|respectively. Our Lemma

[I]shows that the error in A1 equals to 0. Lemma [2]and Lemma [3] give rise to an upper bound of A2
and A3. We defer their proof in Appendix [E.2]and Appendix respectively.

Lemma 2. Let K, be the integral kernel estimator defined as in (I8). For any X, 11 ~ px and any
M and | satisfying Assumptions [[|and 2| respectively,

|Kn(f;xn11) — f(Xn+1)| < O(h*log(h™)). (20)
The constant hidden in O(-) depend on d, L, R, T 4.
Lemma 3. Suppose M, px and f, py satisfy Assumptionsand respectively. Let s be a prompt in

(@), where {x; ?:"’11 are i.i.d. samples from py and f is sampled from p¢. Let Ky, and K1, be defined
as in (12) and (I8). Then with probability at least 1 — 6,

|Kn(s) — Kn(f;Xns1)| <O <10g3d/4 (1> log(4/5)> 1)

h nhd
The constants hidden in O(-) depend on d, R, T.

C.2 STATISTICAL ERROR

This section focuses on bounding the statistical errors in I and IT in (I6). We consider a transformer
network class 7~ with the architecture in Proposition

Bounding Error I in (T6). The error in I in (T6) can be bounded by
Ee sup B [Ra(T(s))] ~ Ror(T)]
TeT

since T belongs to the network class 7. Any function f ~ Py is bounded, such that || f|| . < R.
The transformer network T also yields bounded output such that ||T||L~ < R. For the sam-
ple s in (6), the transformer neural network T takes the input ({x;,y;}™ ;;Xn+1) and outputs
T({x;,¥i }7_1;Xn+1) € [—R, R]. In this paper, we take squared loss at each sample:

L(T,8,ynt1) = (T{xXi, Yi}i1; Xnt1) — yn+1)27

which satisfies [£(T, s, yn+1)| < 4R%. We define the Rademacher complexity of £ o 7 with respect
to the training sample S as

1 a 2
Rad(LoT 06) := ngN{il}r 21611%2 &y (T({x;’, Y b x) ) — yz_i_l) . (22)
~y=1

According to (Shalev-Shwartz & Ben-David, [2014, Lemma 26.2), we have
Eg sup [Es [R(T(5))] — Rnr(T)] < 2Eg [Rad(Lo T 0 &)].
TeT

To bound the expectation of Rademacher complexity Rad(L o T o &), we apply the well known
Dudley entropy integral (Dudley} [1967), which we state in Lemma([§] By Lemmal[g] we have
12 [
E <inf | 2¢ 4+ —= 1 || Lo 2

6[Rad(£o7'o@)]_£()<e+ﬁ i ViegN (6, Lo T, ||z )d§> (23)
where (6, Lo T, || - || L) is the covering number (defined in Appendix B.1)) of the function class
L o T under the L°° norm. We follow the proof idea in (Havrilla & Liao}, [2024) to bound its covering
number as follows.
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Lemmad. Fora transformer class T (L, mT, dembed; £s LrrN, WrpN, R, &) with input || H || co,co <
U. Let 6 > 0, then the covering number of L o T satisfies

embed

d

P
2 18LAL 2 L% )12 T
2Lt LppnU3trd, 0T FFNfﬁﬁLTLFFN“mTTELTR)
)

NG LT, |- =) < (

where Pr = dembed(D + 1) + L (3dgmbeme + LFFNw%‘FN)~

Lemma@is proved in Appendix Taking ¢ = 1/v/T in (23), we obtain a bound

Ee sup [Es [Rn(T(6))] ~ Ryr(T)] < 2B [Rad(L0 T 0 )] < 0 (”D@ ) |

where the O(-) hides the dependency on some absolute constants.

Bounding Error 1T in (T6). We can directly apply Hoeffding’s inequality to bound this term, with
details in Appendix

Ee (RM(T*) _E, [R,L(T*(s))]) <0 ( @ n h2> .

C.3 PUTTING APPROXIMATION ERROR AND STATISTICAL ERROR TOGETHER

Putting all the error terms together in (I6), we get

3d
A D3 /Tog(nDT/h log (h~1)]' T
Rp(T) ST+II+III < Cy (n (i%n / )> +Cy % + h**[log(h™1)]?

Finally, choosing h = n™~ 7a¥a gives rise to (I5) in T heoremlﬂ

D FUNDAMENTAL LEMMAS

In this section, we present some fundamental lemmas which are crucial for constructing a transformer
to represent the target function. Note that similar results of Lemma [5| and [§ have appeared in [Havrilla
& Liao|(2024), but our results are more general in the sense that they accommodate general de,pded
and general rows for gating. The detailed proofs of Lemma[5] [6] and[7]are provided in Appendix

and [E.§] respectively.

In the lemma and the proof, we use subscript to denote column index and superscript to denote
row index. For a matrix H, we use the notation || H ||oo := || H /00,00 = max; j |H;;| to denote the
infinity-infinity norm of a matrix H. When 6 denotes the weight parameters of a neural network, we
use ||0]| oo to denote the largest magnitude in the weight parameters.

Lemma 5 (Interaction Lemma). Let H = [h]i1<i<¢ € Rembed Xt ho gn embedding matrix such
that hjtemvet 2 demvea ™) = T apd plemvet = 10 Fix 1 < ity < 61 < i < dempeq, and
¢ € N. Suppose dempea > 5 and ||H ||oo.0o < U for some U > 0, and the data kernels Q%' ¢
R(demvea=3)%L (the first (demped — 3) rows in the query matrix Q) and K® € R(demvea=3)x1 (the

first (dempea — 3) rows in the key matrix K) satisfy max{ || Q|| oo o0, [ K| s.00} < K. Then
one can construct an attention head A with ReLU activation (o = ReLU) such that

[A(H)], = {U(<Qd“t“ht,Kd“t“htZ))ei T
0

otherwise.
The weight parameters of this attention head satisfies |0 4]|cc = O(d2, , 42 02U?).

Lemma [5]is proved in Appendix [E.6] Lemma[j]is called an interaction lemma, which allows tokens
to interact and therefore outputs a pair-wise interaction result.
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Lemma 6 (Gating Lemma). Let dempeqd > 5 and H = [hi]1<i<¢ € RemvedXl be an embedding

matrix such that hidembed‘2)‘““"“"” = (I},7?) = I; and hi<m*** = 1. Then for any r1 and
withl < 11 < 1y < dembed — 3 and any ki, ko with 1 < ky, ko < ¢, there exist both two-layer
feed-forward networks (FFN) such that

and

Additionally, we have ||0rFN||co < O(KHHHOO’OO).

FEN; (hy) =

FFN,(hy) =

hy
(ht)1

(ht)’l"lfl
0
(ht)ry41

(ht)dembed,*?)
v
7
1

hy

(Bt )1

(ht)rlfl
0
(ht)7‘2+1

(ht)dembed*3
Z
7
1

ifte{l’...

otherwise

l'fte{k%...

otherwise

7k1}

(24)

(25)

Lemma [6]is proved in Lemma 6] uses the feedforward layers to set certain rows in specified

tokens zero.

Lemma 7 (Decrementing Lemma). Let demped > 5 and H = [hi]i<i<p € RéemvedXt pe an

embedding matrix such that hgdembed*z):(dembed*l) = (I}, 7?) = I, and hi<"*** = 1. Then for any
r1, o with 1 <11 < 19 < demped — 3 and any ky, ko with 1 < ki, ko < £ and any M > 0, there
exists a six-layer residual feed-forward network (FFN) such that

hy

l:ftE{l,"',kl}U{kQ,"',é}

(Bt )1

(he)on 1
(ht)ﬁ -M

(ht)rz. -M
(Pt )ra41

(I/Lt)dembed_3
va
1

17
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Additionally, we have ||0ppN||coc < O(LM).

Lemma(7]is proved in Appendix [E.8] Lemma [7]utilizes feedforward layers to substract M from
certain rows in specified tokens.

We next state the Dudley Entropy Integral (Dudley} [1967) which is used to derive (23, and refer its
proof to (Chen et al.,[2020) and (Van Der Vaart & Wellner, [1996).

Lemma 8 (Dudley Entropy Integral). Let M > 0. Suppose sup ¢z || fl|L~ < M for some function
class F. Then

1@ ) 12 M
E;¢ Lﬁggn ;@f(%)} < inf (26 + %/6 VIeg N6, F, || - lz>) d5> : (26)

where N'(8, T, || - || =) is the §-covering number of F with respect to L* norm.

E DEFERRED PROOFS

E.1 PROOF OoF LEMMA[I]

Proof of Lemmall] First, we embed the sample s = {(xX;, ¥;)/"_1; Xn+1} into the embedding matrix
H such that

X1 ot Xp Xpyl 0

Y1 Yn 0 0
PE+E(5):H: O e e e 0 eRdennbedXe.

Ti o e oo Tonn

We denote the i-th column/token by h; in the following proof. Throughout the proof, we let
U = ||H||co,00- Which is the largest entry-wise magnitude of the matrix.

Next, let us demonstrate the construction of K (s) step-by-step using our fundamental lemma in
Appendix D]

e Copying of (X5,+1):, 1 < ¢ < D, to the next column (constant multiplication by 1).
Let us define each attention head A;, 1 <7 < D, with V; = eiegmbed, and data kernel in the form

" 0 0 0 01 r1 0 0 0 7
Qdata — 0 0 1 Kdata — 00 0
0 R 1 R
0 0 0 0 0 00 0

i 0o 0 1 ] L 0l0 0 M |

where Qdate | [{data ¢ R(P+2)x(D+5) The Q9% has the i-th position and last position of the last
column equal to 1. By the Interaction Lemma, we can construct A;, 1 < ¢ < D, such that h, o
interacts with h,, 1 only, i.e.,

[Ai (H)lnt2 = 0(QF" “ hn o, KBy 1) Vil 1 = 0((%n41)i + M)e; = (Xny1)i + M)e;
and [A;(H)]; = 0 when t # n + 2. Then the residual multi-head attention yields

X1 o Xp Xpyl Xpp1 +M 0
Y1 Yn 0 0 O
MHAH)+H= |0 - - .- 0
Ty oee e e Tons1
) P 1

18
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Similarly, we can copy (Xp+1):i, 1 <@ < D, to the k-th column for k = n +2,--- ,2n + 1. This
gives
X1 o Xp Xyl Xpp M X + M
Yo Yn 0 0 0
MHAH)+H= |0 - - .. 0
Ty e e e Toni1

Then we can apply Lemmal([7]to subtract off the constant M to get

X1 0 Xp Xp4l Xp4l o Xpdd

v Yn O 0o - 0
Hy:=By(H)=|[0 - - ... 0

Ty e e o Topaa

In total, this process needs By € B(nD, 6, D + 5). The upper bound of the weights parameter in By
is [|0B, |leo < O(D*2U?b?).

o Implementation of (X,41); — (x;);for1 <i<Dand1<j<n

Let us define each attention head A; ; with V; = eie;embgd, and data kernel in the form

r 0 0 0 0 7 r1 0

Q;iata _ 0O 0 -1 Kidata — 0
0 R 1 :

0 0 0 O 0 0

L 0j0 0 1 J L 010

where Qdate, [data ¢ R(P+2)x(D+5) The 947 has the i-th position of last column equals to —1
and last position of the last column equals to 1. By the Interaction LemmaE], we can construct A; ;
such that h,, 114, interacts with h; only, i.e.,

A j(hng11s) = 0{QF" g1y, Kb Viky = 0(—(x;)i + M)e; = (—(x;)i + M)e;

and A; ;(hy) = 0fort # n+ 1+ j, where M > b > ||x||oo. Then the residual multi-head attention
yields

X1 o Xp Xppl Xppi—Xi+ Moo Xpp —Xp + M

Yi o Yn 0 0
MHA(H)+H; = [0 - -0 - 0

Ty oee e e Toni1

Then we can apply Lemma(7]to subtract off the constant M to get

X1 0 Xp Xpgl Xp4l — X1 o Xp4l — Xp
Y1 o UYn 0 0
Il I2n+1

19
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In total, this process needs By € B(Dn, 6, D + 5). The upper bound of the weights parameter in By
is |0, ] < O(D*?U?%b?).

2
e Implementation of —w for1<j<n

Let us define each attention head A; with V; = e D+1elmbed, and data kernel in the form

— 1 - - 1
- 000 .
Q?ata _ 0O 0 0 qulata _
_1 Lol 1
h . . . h
0 0 00 0
L 0]0 0 1. L 0

where Q4 Ko ¢ R(P+2)x(D+5) " By the Interaction Lemma, we can construct A; such that
hn+14; interacts with itself only, i.e.,

Aj(hn-i-l-i-j) = U(<Q?amhn+l+j7 Kgdatah’rb+1+j>)vjhn+1+j
1 Xpt1 — X |I?
=0 (—hQ<Xn+1 = Xj,Xp+1 — Xj) + M) €p+1 = (—”thjn + M) €D+1

and A;(ht) = 0fort # n+ 1+ j, where M > max (41;12D ; R) Then the residual multi-head

attention yields
H3 L= B3(H2) = MHA(HQ) + H2

X1 ot Xp Xp4l Xn+1 _Xl Xn+1 — Xp

Vi Un 0 Hxn+1 x1||? +M .- Hxn+1 an + M
=|lo ... .. ... 0 ,

Ty oo e e Toni1

where B3 € B(n,1,D + 5). The upper bound of the weights parameter in Bj is ||0p,|lcc <
O(DY2U2M?).

e copying y1, - -+ ,Yn from columns 1,--- ,ntocolumnsn +2,--- ,2n +1

Similar as before, there exists By € B(n, 1, D + 5) such that

X1 Xn Xn+1 Xn+1_xl X7l+l_§n
i o yn O M+M —wﬁ‘M
Il IZTL+1

Then we can apply Lemma z|t0 subtract off the constant M > max (4?12’3 , R) to get

_X1 o X Xp41 Xn+1 — X1 Xn+1 — Xn
Xn —x1|? Xn _xnz

Y1 cee o Yp 0 _% _w

_’[1 I2n+1

20
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In total, this process needs B4 € B(n,6, D + 5). The upper bound of the weights parameter in By is
105, o < O(D*2M? - M?) = O(D**M*).

. g =012 .
e Implementation of e W for 1 <j<n

In the last layer of transformer, we use Softmax instead of ReLU for this part of construction (with a
mask of size n). Then, we can construct V = ep1e},,, and

r 0 00 07 r 0 0 0

0 00 1 1 00

Q= 00 0 K = 0 0
0 : 0

0 00 0 0 0 0

i 0lo 0 0 i 010 0

where Q € R(P+2)x(D+5) hags (D + 1)-th position in the last column equals to 1 and all the other
entries are 0, and K € R(P+2)x(D+5) hag (D + 1, D + 1)-th position equals to 1 and all the other
entries are 0, such that

2n+1

[A(H)lng1 = Y softmax ((Qhni1, KHy)), Vh;
j=n+2
n yje—Hanfx]-lP/h"’
= Z ez ep+1 = Kn({Xi, i timi5 Xnt1) - €pi1 = Ki(s) - epya.
7 Zj—le H n+1 J” /
= -

Therefore, there exists Bs € B(1,1, D + 5) such that

X1 o Xp Xn+1 Xn+1 — X1 Xn+1 — Xn

Xnt1—x1]? x —x, |2

Y1 o UYn Kh(5) _HMTIH _w
H5Z:B5(H4): 0 Y1 Un
Il I2n+1

The upper bound of the weights parameter in Bs is [|0p; ||« < O(D*?M? - 1) = O (D*(*M?).

Finally, we apply a decoding layer DE to output the element '}, (s) as desired. The uniform upper
bound for the weight parameters in Bs;oBjoBsoBsoBisk < O (D4€2M4) <O (%) =
o (Dunt) e

E.2 PROOF OF LEMMA 2]

Proof of Lemma[2] Lemma[2]estimates the bias of kernel manifold regression. Our kernel estimator
uses the Gaussian kernel, which has infinite support. To deal with the infinite support of the Gaussian
kernel, we decompose the integral to nearby regions and far-away regions. For the x close to the
center x,,+1, we use the Lipchitz property of f to estimate the bias; For the x far from the center
Xn+1, We use the Gaussian tail to bound the bias.
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We first rewrite the bias in an integral form:
Kn(f;%nt1) = f(Xnt1) = = []EK[hlgr(l;:; X)ig?)] — f(%n41)
_ J Kpn(xp41 — x) f(x)dx gy
[ Kin(xp41 — x)dx
_ th(Xn—H —x)(f(x) = f(Xn41))dx
[ Kn(xp41 — x)dx '

(Xn+1)

We consider the set of points on the manifold M which is I distance to Xp+1:
By (xn41) i= {x € M : |[x = %11 < h}.
The choice of h will be specified later in the proof.

So we can write

fBﬁ(an) Kp(%p41 —x)(f(x) = f(Xp41))dx
J Kn(xn41 — x)dx
St ey K Gen = %) (F() = f 1)) x
J Kn(Xp41 — x)dx
fB;L (Xns1) K (xp41 — X)L(Q};)adx 2R IM\BTL(an) Kp(Xnq1 — x)dx
) J Knlxner —x)dx J Kn(xn 41 — x)dx
2R

Kh(f;XnJrl) — f(Xng1) =

fM\Bﬁ (Xnt1) Ky (Xn+1 — X)dx

< 4Lh"
- + [ Kpn(xp41 — x)dx

In the calculation above, we used the Lipchistz property of f for the integral inside the ball B (Xp11),
where the geodesic distance and Euclidean distance are equivalent metrics. By Proposition 11 in
(Maggioni et al., 2016)), when ||x,+1 — x|| < 7A¢/2, we have daq(Xn11,%) < 2||Xpt1 — X||

We next bound the integral outside the ball Bﬁ(xnﬂ). When h is small, i.e. h < Trq/2, the integral
satisfies

_lepgn —x)1? _lepgn —x)1?
/ h™ 4K (Xp 41 —x)dX:/ h~%e nZdx 2/ h~% n?dx
M M Bp(%n+1)

> / h e tdx = h= % 'Cgh? = e 'Cp
Bp(Xn+1)

with
d . h d . 1
Cp > cos (arcsm(z—)) > cos (arcsm(z)), 27
T
according to (Niyogi et al., 2008, Lemma5.3).

Therefore, when i < 7/2, the integral outside the ball B; (x,41) can be bounded as follows:

2R fM\B;(an) Kp(xp+1 —x)dx 2R fM\Bg(an) h= Ky (Xpy1 — X)dx

fM Kp(Xp41 — x)dx N fM h=4Kp(xp41 — x)dx
< 2eRCH* h 9K (Xpy1 — X)dx
MA\Bj (xp+1)
_ _g k2
< 2€RC31 “(px (M) = px(Bj (xn+1))) - 1 e
let hk=Ch

2eRCE" - (px(M) = px(By (xn41))) - h e~
< QeRCEl . h*de*C2
= O(h_de_cz)7

22
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where O hides constants about R and d.

Hence

Kn(fi%ns1) — f(xnt1) < O(COh*) + O(h~%e=7).

For h € (0,1), by choosing C' = y/(d + 1) log(1), we have h=%e~C" = h. Therefore,

Ralfinss) = Fxnsn) <0 (n710g (1)) 0 =0 (105 (1 )).

as desired. The notation O(+) hides the constants depending on d, L, R, Tr4.

E.3 PROOF OF LEMMA[3]

Proof of Lemma[3] Lemma [3|estimates the variance of kernel manifold regression. We prove it using
a series of concentration inequalities (Hoeffding, 1994;|Vershynin, 2018).

Let us define some empirical quantities used in kernel estimator and their counterparts in expectation.

Nn(xn+1) = % ZKh (XnJrl - Xi) f(xi); Bn(xn+1) = % ZKh (XnJrl - Xi)
N(xn41) = Ex [Kn (Xn11 = %) f(X)],  D(Xn+1) := Ex [Kp (Xn41 — x)]

We first decompose the variance as follows:

IKn(s) = Kn(f; Xng1)|

1 ~ ~
<= (1IPGo 1) 1N (1) = N(ni1)] + [N (s 1)l Da(xn41) = D))
| D (%n+1)[| D (Xn11)]
1 ( S [N (%n+1)| A
= = (INa(us1) = N(xus1)l) + = (1Dnxn11) = D)) -
| D (Xn41)] | D (Xp41)] - [D(Xn41)]
(28)
We will bound (28) in the following steps.
o Estimating ﬁn(an) in the denominator. We consider the following ball
By = By (%p11) == {x € M : |[x — X, 41| < B} (29)

with i = Ch. Let np be the number of samples in Bj (x,+1). By|Liao & Maggioni| (2019, Lemma
30), we can estimate np as follows:

1 3n-px (By (xn41))

IP{ %B — px (B, (Xn41))| = pr(Bﬁ(an))} < ge DB Lnn)

where px(B; (xn41)) = Cph® = CpC%h?, for some constant C which satisfies (Z7). Therefore,

3n-px (B (xn41))

with probability at least 1 —2e~ 25, it holds
1 np 3
*pX(Bh(Xn-&-l)) < n < ipX(Bﬁ(x’rH-l))'
We next re-write lA)n(an) as
-~ np 1 i np 1
Dn(Xn+1) = 7 . @ E;Kh(X?HJ — XZ') > 7 . E GBE(: )Kh(xn+1 - Xi)
= x; €Bj, (Xn+1

23
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: 1
where the continuous counterpart of -~ >
1

x;€Bj (Xn+41) Kp(Xn41 — %) is

di=— Kp(x —xp11)dx > ——— Kp(x — x,11)dx
px(BE) B, h( +1) px(BE) B, h( +1)
671PX(Bh) —d

> ————= > (CsC
o px(B']—z) =

where Cg is a constant depending on 7.

By the Hoeffding’s inequality (Hoeffding, |1994), with probability 1 — 4, ﬁn(xnﬂ) satisfies

Pulensn) > 22 [0 [ 0820) ) 15 (0 cma  [los(2/0)
n np n ng

Bounding the first term in (28). The numerator of the first term can be decomposed as

~

Na(at1) = Nxas1)| < [ B0 (041) = NO Gn0)| + [ B2 (x041) = N® (x041)

)

where ]
J0) _1 ) Fls
n (XTLJrl) n Z Kh (XnJrl Xz) f(xz)
x; € By, (Xn+1)
and
NO(xui0) = | Kn(xat1 — %)/ (x)dx
x€Bj, (Xn+1)
and 1
NP (xp41) = - > Kn (Xn41 = x4) f(xi)
x; €EM\Bj, (Xn+1)
and
N (x,41) = / Kn(%p41 — x) f(x)dx
x€EM\Bj, (Xn41)

Therefore, we just need to bound
[N (41) = VO ()| 4 | B2 0010) = N ()|
D (%n11)
W00 = NG| [ () — N )|

< +
ns (O@C_d _ log<2/6>) ns (C@C—d _ 1og(2/5>>

(30)

nB nB

The first term in (30) can be written as
|38 Gt0) = N ()|

nTB <C¢‘Cd_ /10g7(l2B/5)>

_ % ineBﬁ(xn_H) Kh (Xn+1 - Xi) f(xi) - % foB;L(xn+1) Kh(Xn+1 - X)f(X)dX‘

CpC—d — / 10g7(55/5)

% ineBﬁ(an) Kp (%n41 — %) f(xi) — px(lBE) fxeBﬁ(an) Kn(Xn41 — x)f(x)dx‘

- CpC— — log(2/9)

np

ﬁBa) fxEBﬁ(anrl) Kp(xp41 —x) f(x)dx — % fxeBg(an) K (%nt1 — x)f(x)dx‘

CpC—d — /logT(LQB/é)
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By the Hoeffding’s inequality, we know that with probability at least 1 — 4,

1 1 log(2/6
- Z Ky (xp+1 — %3) f(x3) — T/ Kp(Xnt1 —x)f(x)dx| < R M
"B x; € By, (Xn+1) px( h) xEBj, (Xn+1) nB

By|Liao & Maggioni| (2019, Lemma 30), with probability 1 — ¢,
np log(2/0) px (B, (xn+1))
px(Br(xa11)) ~ 2| < 0 (% D
n n
which gives rise to
1 n
T/ Kn(Xn41 — %) f(x)dx — — Kp(xn41 — x) f(x)dx
px( E) XEBj (Xn+1) NB Jx€B; (xnt1)
1 n / 1 n
<|—=-—" Kp(xp+1 — x) f(x)dx| < Rpx(B7) | ——— — —
pX(BTL) nB XGBﬁ(anrl) n+ h px(BTL) npB
n |np R log(2/0) px(B;;(Xn+1))
—R{1~ = pa(By)| = R | "2 — pu(Bp)| < O \/
‘ an ( h) ng |l n P ( h) <px(Bﬁ(Xn+1)) n
log(2/9)
=0|Ry|—F————"—— |-
( 1 (B (1))
Therefore, with probability at least 1 — 24, the first term in satisfies
[N Gee) = N ()| log(2/5 log(2/5
Dy (%n+1) np npx (B, (Xn11))
log(2/6 RCY? [log(2/6
=0 RCd Og(/) =0 Og(g) ,
nps(Bj, (Xn+1)) VCp nh
(€29)
where the constant C'p satisfies (27).
For the second term in (30), it satisfies
N (1) = N (x,041)|
ﬁn(xn-‘rl)
< % ineM\Bﬂ(an) Ky (X1 —x3) f(x3) — fxeM\B,ﬂ(x"H) K (xp41 — x)f(x)dx’
e <C¢Cd— /10g7(li/5)>
By the Hoeffding’s inequality, we have, with probability at least 1 — 4,
1 _ log(2/6
LY Kb x| Kin(nsr — x)f(x)dx| < Re=©* [/ BCL0),
" i€ M\B; (1) xEMA\B (xn+1) "

where we bound | f(x)| < e~ forall z € M \ B;;. Therefore, the second term in (30) can be
further bounded as

5(2) A2 ‘ —c? [log(2/9)
’Nn (Xnil) N (Xn+1) < Re n <0 Odefczﬂ M
D (%p41) U (C@C—d _ log@/é)) e "
n np
—C?
B e log(2/96)
=0 ( hd/2 nhd (52)
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In summary, the first term in (28)) can be split into two terms according to (30): one term is inside the
ball By, and the other is outside the ball. We have bounded the term inside the ball By, in and the
term outside the ball in (32). Combining (3T) and (32) gives rise to

|Nn(xn+1) B N(XnJrl)‘ <0 RCd/Q 10g(2/(5> +0 6_02 / 10g(2/5)
| D (% 11)| — A\ VOV nh ha/2 V- nhd
_1y14 , [log(2/9)
=0 | [log(h™1)]*/ —=2L=].
(e
where the last line results from choosing
C = +/dlog(1/h), (33)

so that e=C” = pd < h9/2 when h is small.

Bounding the second term in (28). The second term in (28) can be bounded similarly to the first
term, with an additional estimate on %. We define the ball B, (xy,+1) and B;; (X,,41) as in (29)
with b = Ch.
N(Xn41) _ fM Kn(Xn41 — x) f(x)dx
D(xny1) [ Kn(Xns1 — x)dx
- fBz(x7z+1) Kp(xn41 — x) f(x)dx + fM\Bﬁ(an) K (xn41 — %) f(x)dx
< th (xin) K (xXp41 — x)dx
< RPX(BTL(XnJrl)) + Re_CQPX(M)
- e px(Br(Xn+1))
where the last inequality holds with C' chosen according to (33) and when £ is sufficiently small.

< O(RCY),

Applying a similar argument above, the second term in can be bounded bounded by

[N (Xn+1)] D. (x — D(x og3d/4 1 log(2/6)
B 1D (D7) = "“))w(lg (h) nh )

Putting the two terms in (28) together. Putting the two terms in in together, for & >
3npx (B (xp41))

2¢e” 28, we have with probability at least 1 — 24,

|Cn(s) — Kn(f;xns1) <O <log3d/4 (;L) 10g(2/6)> .

nhd

By abusing the notation, rewrite 24 as §, we get with at least probability 1 — 4,
_ 1 log(4/9)
|’Ch(5) - Ich(f§xn+1)| <0 (10g3d/4 (h) W ’

as desired. The notation O(+) hides constants depending on d, R, 7. O

E.4 PROOF OF PROPOSITION[I]

Proof of Proposition[l] By Lemma and equation (19),

B [Ra(T°(6)] < (1= 8)- O ([log (1) PEEL) 4 5. oy + 0012 o))

let 6=4h> (1—482)-0 ([1og (h,l)]3d/4 log(h™1)

i > + 16h*R? + O(h**[log(h™1)]?)
[log (hil)} 1+3d/4
<o (

. ) + 00 log(h™)]?)

The last inequality holds because 0 < h < 1. The notation O(-) hides the constants depending on
d,L, R, Tnm. O
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E.5 PROOF OF LEMMA[]
Proof of Lemmald] Through the proof, we use the notation || H||oc := ||H||oc,00 to denote the
infinity-infinity norm of a matrix H.

Since our transformer has softmax as activation function in the last layer and ReLU as activation
from the first to the penultimate layers, we need to consider those two cases separately.

Set ) > 0, we choose T with parameters 6, and T’ with parameters 6’ such that |6 — 0’ || < 7.
We first bound the Multi-head Attention (MHA) layer in a transformer block. For the ReLU activation
layer, according to (Havrilla & Liaol [2024), for | H || < U, we have

[MHA(H) — MHA,(H)||REY < 343dS, USmrtn.
By the similar argument, for the softmax activation layer, since it takes normalization, we can bound

[MHA(H) — MHA, (H)|[2oftmax < |MHA, (H) — MHA,(H)||ReMY < 36348, ,U3mol.

embe

Therefore, for the MHA layer, we have
IMHA; (H) — MHA5(H)||oo < 363dS,,pcqUmrn.
Next, we bound the FFN layer. According to (Havrilla & Liao, 2024), we have
|[FFN;(H + MHA; (H)) — FFENy(H + MHA2(H))|| oo
< B3RPTEIN RN A e aU )+ Lien (wren (248 pear Umel) + 2) (kwppn) P57,

Therefore, putting together the MHA and FFN layer together, we get the estimate on the difference
of the transformer block ||B1(H) — B2(H)|| oo ( for both ReLU and softmax activation) as

IB1(H) — B2(H)lloo
=||(H + MHA (H) + FFN; (H + MHA; (H)))

— (H + MHA(H) + FFNy(H + MHA5(H))) | 0o
<[MHA(H) — MHA2(H)| s

+ [[FFNy (H + MHA (H)) — FFN2(H + MHA>(H)) | o

<3RS,y qUsmeptn + 33T LreN g 2leengb o USmerty
+ Lrrn (wFFN(ZdSmbedmgUmTy) + 2)(KwFFN)LFFN—1,'7

<(ARTTEEEN RN A peg Ul + Lepx (WepN (240 mpeqh U e) + 2)(wppn) 751y,

Then, we can chain the multi-block together and have the difference (the same as (Havrilla & Liao,
2024)

2 2
IBry o Bi(H) — B, 0 0B}(H)llw < 2757 LyppnUPLT d} oyt ¥ k0L Leen 11 gLy,

Recall that the decoder layer D : Réemeeaxt _ R is fixed and it outputs the last element in
the first row. For the encoding layer H = PE + E(s), both PE and E are fixed and we have
IPE 4+ E(5) |loo = ||s]loc + 1 < U + 1. Thus, together this gives the total error bound between
T7 T € T(LTa mr, dembeda Ev LFFN7 WEFFN, Ra "{) with H9 - 01”00 < n as
IT(s) = T'(s)[loc = [D o Br, 0+ Byo(PE+E(s)) —D' 0By o 0B (PE+E'(s))]
< 2L%+1LFFNU3LTCZ18L2TLFFN KGLZTLFFNmé%ﬁLZTn.

embed

Notice that the total number of parameters in the transformer class 7 is

Lt

0] = 0p] + > |08,

i=1

+ 08| = dempea + L1 (3d2,peqmt + Lrrnwipy) + dempea D

< dembed(D + 1) + L1 (3d2,peamr + LEpnwipy)-
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Since the number of steps for each parameter is 27]—"“, then the covering number is

embed

)

<

dembe (D+1)+LT(3d2 mr+Lprpnw? )
12 18L2 Lrrn L2.L L2 2 bed embed FFN
(2/{ oL UBET @O VFEN 6Ly FFNmTTﬁLT>

embed

4]

dempea(DA1)+L7(3d2,, . omr+Lernwiey)
2 18L2 L 2 L2 2 bed embed FFN
<2LT+2LFFNU3LTd TN L Lren L, 2T gL )

For the covering number of £ o T, we have
1£(T,5,9) = L(T',5,9)|loc = (T(8) = yns1)* = (T'(5) = yn11)? < 4R[T(8) — T'(5)]|oo-
Therefore, the covering number

NG LT, |+ lloo)

embed

]

) demped(D+1)+Lr(3d2 +L 2
<4R 9K - 2L%+1LFFNU3LTd18L%-LFFN HGL%LFFNmL%gL% ) beal VLo (Bdeppeqmr+ Leen rpy)
< T

demped(D+1)+ L1 (3d2,, peqmT+LrrNwE
_ 2L%+4LFFNU3Lle,8an%dLFFNH6L%LFFN+1mé2T£L§“R bed( )+Lr( beaMT+LFFNWERN)
)
as desired.
O
E.6 PROOF OF LEMMA[3]
Proof of Lemma[5] For convenience, we denote the i-th token in the output by
¢
A(hi) = [A(H)]i = 3251 0((Qhi, Khy))Vhy, (34)

This formula illustrates that the attention mechanism performs a weighted average of token values
based on their pairwise interactions.

Let us defined the query, key, and value matrices as

Qdam Kdata
0 -~ 0 (@)1 (@2 0 0 -+ 0 (KT), (K%),
- ’ ’ and K= : ,
@ 0 -+ 0 ( 1)2,1 (QI)272 0 0 --- 0 (KI)2,1 (KI)Z,Q
0 -~ 0 0 0 1 0 --- 0 0 0 _C

and V = eie;mm. Here we call Qeta, gdata ¢ R(dembea—3)Xdembed the data kernels, QF =

z z z z
EgI;; Eglgiz € R?*2 and K% := Egzgii Egzgiz € R?*2 the interaction ker-
nels, and C' > 0 s élarge positive number. 7 7

Let us choose Q*, K such that K* = Pz, is a projection onto Z;,, and @ is a dilation and rotation
of Z;, onto Iy, i.e., Q*T;, = CT;,. Now let us compute A(h;) fort = t; and t # t;.

For any 1 < ¢ < /, we can write the action A, on h; as

¢

L
A(he) =Y o((Qhy, Khi))Vhg = Y o ((Q"hy, K¥*hy) +(Q7 Ty, K¥T1,) — C) €.
k=1 k=1
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Casel: t = t; and k = t5. By construction, we have (Q*Z;,, K*Z,,) = (CZ;,,1;,) = C. Therefore
o ((Qdataht17Kdataht2> + <QIIt1,KIIt2> _ O) . (<Qdataht17Kdataht2> 4 C — C)
- (<Qdataht1 , Kdataht2>) )

Casell: ¢t = tl and k 7é kg. We have <QIIt1,KIIk> S ||QII,51 ||2||KIIk||2 = C||PIt2:ZkH2 <C.
The last inequality holds since HPIQI;C ll2 < 1 when k # to. Thus, for large C, we have

o ((QU"hy,, K¥* hip) +(Q Lo, , K7 Ty,) — C) < 0 ((Q"hyy, K™ hy) + C|| Pr,, Te||2 — C) .

<Qdata htl 7Kdatahk->
=[Py, Tl

By choosing (Q¥*h,, , K hy)+C|| P, Ti||2—C < 0, or equivalently, C' >
we get

o ((Qhy,, K hy) +(Q* Ly, , K*Ti) — C) < o ((Q*hy,, K *hy) + C|| P, Ti |2 — C) = 0.

Combining Case I and I, we conclude A(h;) = o ((Q***h,, K9**%h,,)) e; when t = t;.
Case III: ¢ # t; and k = t5. We have

(Q"Te, K™T,,) = Q" Tel2| K Ty |2 cos(Beo),

where 6, ;, is the angle between Q*Z; and KZT,,. Since t # t1, Q*Z, # CIy,, cos(6y4,) < 1.
<Qdataht,Kdataht2>
1—cos(0t,t,)

Then by choosing C' > , we have

o ((QU*hy, K4 hy,) + (Q* Ty, KTT,,) — C) = 0 ((Q*hy, K4 hy,) + C cos(fy4,) — C) =0

Case IV: ¢ # t, and k # t5. In this case, we have ((Q**h;, Kb\ + (Q*T;, KTT;) — C < 0,
so the argument follows the same way as Case 2.

Combining Case III and Case IV, we conclude A(h;) = 0 when ¢ # t;.

(Qdatahtl’Kdatahk> <Qdataht)Kdataht2> )

To obtain the bound on the constant C', we need C' > max ( =Pr, Zils T—cos(0; 13)

Both numerators can be bounded by

(QUhe, KU )| < [|Q* he 2| Bl < Q1.1 [ elloo 1 [11,1 1P |

< ||QdataHOQOOdgmbed”Kdata||OO7OOdgmbedU2 < dgmbedHQUQ'

The two denominators can be bounded by

™

1-— ||PL21;§||2 > 1-— COS(2€

)>1—(1-0(7%) =07,

and
™

1-— COS(GLQ) =1- <It+t27t171.t2> Z 1-— COS(ZE

)>1—(1-0(2%) =0"?).

The O(-) hides the dependency on some absolute constant. So we conclude C' = O(dZ, , ,k2(?U?).

E.7 PROOF OF LEMMA[6G]

Proof of Lemma[6] We denote the i-th column/token by k; and j-th component of h; by (h;); in
the proof. Recall that Z; is the sinusoid positional encoding, it is easy to see there exists some
v = (v1,vg) € Stsuchthat Z; - v > Ofort = {1,--- k1 }and Z; - v < O for t = {ky,--- ,/(}.
Then for large C, we can construct (all the blank places are filled with zeros) with C'vy, Cv, appears
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N demped—2-th and de,mpeq—s3-th columns, from row 71 to row r5 for 1 < r; < 79 < dembed—3-

M1
1
Wi =
M1
1
Wy =
so that
21 = O'(Wlht + bl) =
and

z1 = J(Wlht + bl) =

CVl CV2

Cvy Cvs

7CV2

—éVQ

i (he )1

(he)ry 1
o((ht)r, +CL; - v)

o ((he)r, ‘:*‘CIt ')
(ht)ra+1

(ht)dembed -3

(he)1 )

(he)ry 1
U((ht)rl + CIt . V)

o((he)r, ;‘CIt ")
(Bt )ry41

(ht)dembed -3
I;
I}
1

30

dembed Xdembed
eR ,

dembed Xdembed
eR 7

if Z;-v>0

if T, v<0 0
(h’t)T2+1

(ht)dewnbed_g
Il

t
z;
1

~ (ht)l -

(ht)rl—l
(h/t)rl + CIt -V

(ht)rg + CIt -V
(ht)ry41

by=0¢ Rdembea

dembe
by = 0 € Rilembed
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Then apply the second layer yields

(he)1 T (heh
(ht)rl—l (ht)rl—l
0 (ht)ﬁ
29 = Waz1 + by = 0 and 29 = Waz1 + by = (ht)Tz
(ht)rs41 (ht)rs41
(h’t)dem,bed73 (h’t)dem,bed73
7} I
7 72
L 1 i L 1 i

respectively. This shows . Similarly, there exists some v = (v1,v2) € S! such that Z, - v < 0
fort ={1,--- ,k1} andZy - v > O fort = {ky,--- ,£}. Applying the same argument we get (25).

To obtain a bound on the constant C, we need |CZ; - v| > || H||. Hence C' > “lgll‘j = O{||H||c0)-
O

E.8 PROOF OF LEMMA[]]

Proof of Lemmal7} Given an H = [h]1<¢<¢, we apply the first layer of FFN with
M

Wy = c Rembed Xdembed  apnd b, =

1

so that the output after the first layer of FFN is

Hl — M L M c Rde'mbed XZ.
o, - I
1 - 1

Then by Lemmal] there exists a two-layer FFN such that the output after applying these two layers
become

M .. M 0 o0
Hy=|p .o M 0 ... 0 ERImerXd
Iy - Ty Tpyrr - Lo
1 .. 1 1 o1

Again by Lemma 6] there exists a two-layer FFN such that the output after applying these two layers
become

0 - 0 M .. M 0 .0
0o : : : : : : ¢ Rilembeaxt
5 0 .- 0 M ... M 0 .0 .
7, Ty, Ipi+1 Ty Tiyt1 Z
1 1 1 1 1 1
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Finally, we apply a FFN with

Il
\
—

W € Rdembed Xdembed  gnd bg=0¢ Rdcmbcd’

1

where the entries —1 appear in r-th row to r5-th row and r;-th column to r5-th column. Therefore,
the output after applying Wg and bg is

0 .- 0 0 .0 0 e 0
0 0 0 0O 0 - 0
0 0 -M M0 - 0
Hg = : : : eRdeanedXé
=10 0 —M M0 0 >
0 0 0 0 0 0
T o Ty Tesr - Doy Tegsr - T
1 - 1 1 | 1 cee 1]

where the entries — M appear in r1-th row to r-th row and k;-th column to k5-th column. Therefore,
the residual FFN gives the output

hy ifte{l,--- k1t U{ka,---,¢}

(he)

(h’t)rlfl
(ht)rl - M
FEN(h) + hy = :
ol (h¢)y, — M | otherwise

(ht)erl

(Pt)depipea—3
7
1

as desired. O

E.9 BOUNDING THE ERROR II IN (I6)

Since 0 < (T*({x], 4] Y11 }i X} 1) — yn41)? < 4R?, by Hoeffding’s inequality, for any ¢ > 0, it
satisfies

P(Rrn,r(T") — Es [Rn(T"(s))] > 1) < e sRT.
Hence with probability at least 1 — §, it satisfies

Rn.r(T7) = Es [Rn(T"(5))] < R
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Let 6 = h?, we get
* * log(h_l) 2
Ee (Rar(T9) = Es [Ra(T*(s))] ) < O [/ =25— + 42 ).
where O(-) hides the dependency on R.

F ADDITIONAL EXPERIMENTS AND DETAILS

-x’ly,l e x’ly,n ‘r}/,n-&-l 0
x;/,l T x’ZY,n x;,u-ﬁ—l 0
33; 1 T3 T3 a4 0
H= y;/ A 0], (35)
0 ... 0
Il Ié
L 1 1 .

F.1 ADDITIONAL EXPERIMENTAL DETAILS

For the transformer architecture we used for the experiments in Section@ we fiX demped = 8, LT = 5,
Lpnn = 6. The number of attention heads is m = 1 for n = 4, 8, 16, 32. We generate I' = 50000
for both training and testing. The model is trained with batch size 100, using Adam with learning
rate 0.0005 for 100 epochs.

For experiments in Section we fiX demped = 8, LT = 5, Lpnn = 6, and the number of attention
heads m = 2,4,8 for n = 16,64, 256 respectively. We generate I' = 400, 1600, 6400 for both
training and testing. The model is trained with batch size 100, using Adam with learning rate 0.0005
for 100 epochs.

To make the experiment setup the as close as to our theory suggests, we apply the softmax activation
in the last layer of our transformer model, and ReL.U activation in all the layers before the last layer.
The activation function for the feed-forward components are ReLLU activation.

The following sentences are used to generate the attention score curves in Figure Sen-
tences are cut in the end so that all the sentences have the same length.

Sentence 1: ”In the quiet town by the river, a curious child spent the afternoon reading stories about
distant galaxies and dreaming of becoming an astronaut one day.”

Sentence 2: “"The professor walked slowly across the lecture hall, carefully explaining how black
holes bend space and time while students scribbled furiously in their notebooks.”

Sentence 3: ”On a rainy evening in Paris, a young artist painted the city’s rooftops in dazzling colors,
imagining how the world might look if dreams could shape reality.”

Sentence 4: “The spacecraft drifted silently beyond the orbit of Saturn, transmitting faint signals
back to Earth as scientists waited anxiously for news of its discoveries.”

Sentence 5: ”In the heart of the ancient forest, an owl watched quietly from a high branch, while a
fox padded softly across the moss-covered ground below.”

F.2 ADDITIONAL EXPERIMENTAL RESULTS
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Figure 5: More examples of attention scores and Gaussian kernel function with in-context length

n

4,8, 16, 32 respectively.
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