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ABSTRACT

While in-context learning (ICL) has achieved remarkable success in natural lan-
guage and vision domains, its theoretical understanding—particularly in the context
of structured geometric data—remains unexplored. This paper initiates a theoreti-
cal study of ICL for regression of Hölder functions on manifolds. We establish a
novel connection between the attention mechanism and classical kernel methods,
demonstrating that transformers effectively perform kernel-based prediction at a
new query through its interaction with the prompt. This connection is validated
by numerical experiments, revealing that the learned query–prompt scores for
Hölder functions are highly correlated with the Gaussian kernel. Building on this
insight, we derive generalization error bounds in terms of the prompt length and the
number of training tasks. When a sufficient number of training tasks are observed,
transformers give rise to the minimax regression rate of Hölder functions on man-
ifolds, which scales exponentially with the intrinsic dimension of the manifold,
rather than the ambient space dimension. Our result also characterizes how the
generalization error scales with the number of training tasks, shedding light on the
complexity of transformers as in-context kernel algorithm learners. Our findings
provide foundational insights into the role of geometry in ICL and novels tools to
study ICL of nonlinear models.

1 INTRODUCTION

The Transformer architecture, first introduced by Vaswani et al. (2017), has fundamentally reshaped
machine learning, driving significant advancements in natural language processing (NLP), computer
vision, and other domains. Unlike traditional feedforward and convolutional neural networks,
transformers employ an attention mechanism that allows each token to interact with others and
selectively aggregate information based on learned relevance scores. This mechanism enables more
flexible and context-aware representation learning. Transformers now serve as the foundational
architecture for large language and video generation models, such as GPT (Achiam et al., 2023),
BERT (Devlin, 2018), SORA (Brooks et al., 2024) and their successors.

These empirical successes have demonstrated the in-context learning (ICL) capability of transformers,
in which models can perform learning tasks by conditioning on a given set of examples, known as a
prompt, provided at inference time, without any additional parameter updates Brown et al. (2020);
Radford et al. (2019); Liu et al. (2023); Garg et al. (2022). The ICL phenomenon of transformers
has also sparked substantial research interest in developing theoretical explanations of its underlying
mechanisms. In Bai et al. (2023); Zhang et al. (2024); Von Oswald et al. (2023); Akyürek et al.
(2022); Cole et al. (2024), transformers are proved for ICL of linear models, including least squares,
ridge regression, Lasso, generalized linear models and linear inverse problems.

Beyond linear models, transformers are studied for nonlinear models in Yun et al. (2019); Takakura
& Suzuki (2023); Gurevych et al. (2022); Havrilla & Liao (2024); Shen et al. (2025), with the goal
of learning a single function, classifier, or sequence-to-sequence mapping. Specifically, Yun et al.
(2019) proved that transformer models can universally approximate continuous sequence-to-sequence
functions with compact support, while the network size grows exponentially with respect to the
sequence dimension. Takakura & Suzuki (2023) studied the approximation and estimation ability of
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transformers for sequence-to-sequence functions with anisotropic smoothness on infinite-dimensional
inputs. Gurevych et al. (2022) studied binary classification with transformers when the posterior
probability function exhibits a hierarchical composition model with Hölder smoothness. In Havrilla
& Liao (2024); Shen et al. (2025), transformers are proved to leverage low-dimensional geometric
structures of data (Havrilla & Liao, 2024) or machine learning tasks (Shen et al., 2025). While
these works focus on a single learning task, ICL involves multiple learning tasks performed within
the same model by leveraging prompts to adapt to each task on the fly, highlighting a form of task
generalization without explicit retraining.

A theoretical understanding of ICL in transformers—especially in settings involving structured data
with a geometric prior—remains limited and largely unexplored. In this work, we initiate a theoretical
study of ICL for manifold regression. A manifold hypothesis is incorporated into our regression
model to leverage low-dimensional geometric structures of data. Recent works have demonstrated
that, under a manifold hypothesis of data, feedforward and convolutional residual networks give rise
to a sample complexity depending on the intrinsic dimension (Shaham et al., 2018; Chen et al., 2022;
2019; Liu et al., 2021; Nakada & Imaizumi, 2020; Schmidt-Hieber, 2019). Empirical evidence has
shown that the neural scaling laws of transformers depend on the intrinsic dimension of data (Kaplan
et al., 2020; Sharma & Kaplan, 2022), while theoretical justifications, especially for ICL, are limited.

A central insight of this paper is the interpretation of transformers as learning kernel methods for
function regression. Our study establishes a novel connection between the attention mechanism
and classical kernel methods, showing that token interactions within attention can be interpreted
as constructing an interaction kernel used to perform regression. Based on this connection, we
construct a transformer neural network to exactly implement kernel regression, which builds an
approximation theory of transformers for in-context manifold regression. To be more precise, let
s = {x1, f(x1),x2, f(x2), . . . ,xn, f(xn);xn+1} be a prompt, we explicitly construct a transformer
T∗

h to exactly implement the kernel regression estimator Kh(s) such that

T∗
h (s) = Kh(s) :=

∑n
i=1 exp (−∥xn+1 − xi∥2/h2)f(xi)∑n

i=1 exp (−∥xn+1 − xi∥2/h2)
, (1)

where the Gaussian kernel of bandwidth h > 0 is used. Our construction shows that transformer-
based ICL can implement kernel regression with zero approximation error. A formal statement can
be found in Lemma 1. This perspective not only illuminates the internal workings of transformers
in the in-context regression setting, but also motivates a theoretical framework for analyzing their
generalization performance. Moreover, this connection is validated by numerical experiments on the
regression of Hölder functions, revealing that the learned query–prompt scores in the last transformer
layer are highly correlated with the Gaussian kernel.

Based on this key insight, our theoretical contribution for the generalization error of the transformer-
based ICL can be summarized as follows: Let M be a d-dimensional compact Riemannian manifold
in RD. We consider the ICL of α-Hölder (0 < α ≤ 1) functions on M given a prompt of length
n. During training, one observes the regression of Γ functions/tasks, where each function/task is
provided on a prompt of length n. At inference time, a prompt of length n is given for a new α-Hölder
function on M, and the goal is to predict the function value at a new input. Under this setting, we
prove that the squared generalization error of transformer-based ICL is upper bounded by

C1

(
nD3Γ− 1

2

√
log(nDΓ)

)
+ C2

(
n− 2α

2α+d [log n]1+
3d
4

)
, (2)

with constants C1, C2. A formal statement of our result can be found in Theorem 1. Our result sheds
light on theoretical understandings of transformer-based ICL in the following aspects:

• Scaling Law of Transformers as Algorithm Learners. The first error term in (2) characterizes
the scaling law of transformers as in-context kernel algorithm learners. When a transformer is trained
on Γ regression tasks, it can learn a kernal regression algorithm and generalize to a new task, with the
generalization error given in the first term in (2).

• Minimax Regression Error with a Prompt of Length n. The second error term in (2) indicates
the scaling law of transformers to make predictions based on a Prompt of Length n. It matches
the lower bound of n− 2α

2α+d (Györfi et al., 2006) for the regression of Hölder functions up to a log
factor , and thereby demonstrating that transformers can achieve near-optimal performance if Γ is
large. Specifically, if Γ ≳ n

4α
2α+d+δn2D6 log(nD) for some δ > 0, then the second error term in (2)

dominates the first term.
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• Dependence on the Intrinsic Dimension. By leveraging low-dimensional geometric structures of
data, the error in (2) has an exponential dependence on d rather than the ambient dimension D. This
improvement offers foundational insight into the role of geometry in ICL.

Organization. In this paper, we present some preliminaries in Section 2 and the problem setup in
Section 3. We bridge attention to kernel methods in Section 4 and present the generalization error
bound in Section 5. Related works are discussed in Section 6. Finally, we make conclusion and
discuss the limitation of our paper in Section 7.

Notation. Throughout this paper, vectors are denoted by boldface letters, while scalars and matrices
are denoted by standard (non-bold) letters. For a vector x ∈ RD, we use ∥x∥ to denote its Euclidean
norm. For a function f : Ω → R, we denote its L∞ norm as ∥f∥L∞(Ω) := supx∈Ω |f(x)|.

2 PRELIMINARIES

In this section, we introduce preliminary definitions about manifolds, Hölder functions on manifolds,
and the transformer neural networks used in this paper.

Manifolds and Hölder Functions on Manifolds. In this paper, we consider that data are sampled in
a compact d-dimensional Riemannian manifold M isometrically embedded in RD. Mathematically,
a d-dimensional manifold M is a topological space where each point has a neighborhood that is
homeomorphic to an open subset of Rd. Furthermore, distinct points in M can be separated by
disjoint neighborhoods, and M has a countable basis for its topology. More definitions on geodesic
distance and the reach of manifold are in Appendix B.1.

This work considers in-context regression of Hölder functions on M.
Definition 1 (Hölder function on a manifold). A function f : M → R is Hölder continuous with
Hölder exponent α ∈ (0, 1] and Hölder constant L > 0 if

|f(x)− f(x′)| ≤ LdαM(x,x′) for all x,x′ ∈ M.

Attention and Transformer Blocks. We consider ICL using transformer-based networks struc-
ture Vaswani et al. (2017) in this paper. We briefly review attention and multi-head attention here.
Definition 2 (Attention and Multi-head Attention). Attention with the Query, Key, Value matrices
Q,K, V ∈ Rdembed×dembed is defined as

AK,Q,V (H) = V Hσ((KH)⊤QH). (3)

The multi-head attention (MHA) with m heads is given by

MHA(H) =
∑m

j=1 VjHσ((KjH)⊤QjH). (4)

We want to point out that in this paper we apply ReLU as the activation function of the attention
modules from the first to the penultimate layers in the transformer, and apply Softmax for the last
layer. A transformer block is a residual composition of the form

B(θ;H) = FFN(MHA(H) +H) +MHA(H) +H. (5)

where FFN is a feed-forward neural network operating tokenwise on the input.

3 IN-CONTEXT REGRESSION ON MANIFOLD

Problem Setup. Empirical evidence from image (Roweis & Saul, 2000; Tenenbaum et al., 2000; Pope
et al., 2021) and language datasets (Sharma & Kaplan, 2022; Havrilla & Liao, 2024). suggests the
presence of underlying low-dimensional geometric structures in high-dimensional data. Motivated by
this observation, our study adopts a geometric prior by assuming that the data x lies on a Riemannian
manifold M of intrinsic dimension d, isometrically embedded in RD with d ≪ D.

With this geometric prior, we consider in-context learning for regression of functions defined on M.
More precisely, given a prompt/task as

s = {x1, y1,x2, y2, . . . ,xn, yn;xn+1} with yi = f(xi), (6)
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where xi’s are i.i.d. samples from a distribution ρx supported on M and f is sampled from ρf ,
a distribution in the function space {f : M → R}, the goal is to predict f(xn+1) based on the
following in-context learning problem.

Given {fγ}γ=1,...,Γ
i.i.d.∼ ρf and the corresponding training set S := {sγ}Γγ=1 provided by sγ =

{xγ
1 , y

γ
1 ,x

γ
2 , y

γ
2 , . . . ,x

γ
n, y

γ
n;x

γ
n+1, y

γ
n+1} with {xγ

i }
i.i.d.∼ ρx and yγi = fγ(xγ

i ), we minimize the
empirical risk:

T̂ ∈ argmin
Tθ∈T

Rn,Γ(Tθ) where Rn,Γ(Tθ) :=
1

Γ

Γ∑
γ=1

(
Tθ({xγ

i , y
γ
i }

n
i=1};x

γ
n+1)− yγn+1

)2
(7)

where Tθ is a transformer neural network parameterized by θ and T is a transformer network class to
be specified. Our goal is to study the squared generalization error of T̂ on a random test sample s
(independent of training data) in (6):

Rn(T̂(s)) := (T̂({xi, yi}ni=1};xn+1)− f(xn+1))
2. (8)

This generalization error can be characterized by the mean squared generalization error defined as:

Rn(T̂) = ESEs

[
Rn(T̂(s))

]
(9)

where the expectation Es is taken for the test sample s and the expectation ES is taken for the joint
distribution of the training samples.

Transformer Network Class. To describe the ICL problem more precisely, let us specify the
transformer network class. We define a transformer network Tθ(·) with weights parametrized by θ as
consisting of an embedding layer, a positional encoding module, a sequence of transformer blocks,
and a decoding layer, i.e., for an input s defined in (6)

Tθ(s) := DE ◦ BLT
◦ · · · ◦ B1 ◦ (PE + E(s)), (10)

Here E is a linear embedding and PE is the operation of adding positional encoding (see their
definitions in Appendix B.2). PE + E (s) embeds s as a matrix H

H = PE+ E (s) =


x1 · · · xn xn+1 0
y1 · · · yn 0 0
0 · · · · · · · · · 0
I1 · · · · · · · · · Iℓ
1 · · · · · · · · · 1

 ∈ Rdembed×ℓ = R(D+5)×ℓ. (11)

In matrix H , each column is a token, and each token has dimension dembed = D+5. The first D+1
rows are data terms and the (D + 2)th row is 0. The (D + 3)-th and (D + 4)-th rows contain the
well-known sinusoidal positional encodings Ij = (cos( jπ2ℓ ), sin(

jπ
2ℓ ))

⊤, which determines how each
token will interact with another through the attention mechanism. It is crucial to note that the data
terms are dynamic, whereas the positional encoding and constant terms remain static. Furthermore,
B1, · · · ,BLT

: Rdembed×ℓ → Rdembed×ℓ are the transformer blocks (with ReLU activation from the
first to the penultimate layers and Softmax activation for the last layer in the attention module) where
each block consists of the residual composition of multi-head attention layers and feed-forward layers.
DE : Rdembed×ℓ → R is the decoding layer which outputs the desired element.

Our ICL problem is considered in the following networks class:
Definition 3 (Transformer Network Class). The transformer network class with weights θ is

T (LT,mT, dembed, ℓ, LFFN, wFFN, R, κ)

=
{
Tθ(·) | Tθ(·) has the form (10) with LT transformer blocks, at most mT attention heads in

each block, embedded dimension dembed, number of hidden tokens ℓ, and LFFN layers
of feed-forward networks with hidden width wFFN, with output ∥Tθ(·)∥L∞(RD) ≤ R

and weight magnitude ∥θ∥∞ ≤ κ
}
.

Throughout the paper, we will shorten the notation T (LT,mT, dembed, ℓ, LFFN, wFFN, R, κ) as T
as long as there is no ambiguity in the context.
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4 BRIDGING ATTENTION TO KERNEL METHODS

One key insight of this paper is to interpret transformers used in ICL as a mechanism for learning
kernel methods in function regression. This interpretation not only illuminates the internal workings
of transformers in the in-context regression setting, but also motivates a theoretical framework to
understand transformers in ICL.

Constructing a Transformer to Implement Kernel Method. The classical (Nadaraya–Watson)
kernel estimator (Nadaraya, 1964; Watson, 1964) is a well-established way for the estimation of
f(xn+1) given {(xi, f(xi))}ni=1. It outputs

Kh(s) :=

∑n
i=1 Kh(xn+1 − xi)yi∑n
i=1 Kh(xn+1 − xi)

, with yi = f(xi). (12)

where we choose Kh(u) = e−
∥u∥2

h2 to be the unnormalized Gaussian kernel with bandwidth h > 0.
The transformer’s attention mechanism can be interpreted as a form of kernel method, where the
attention scores function analogously to kernel-based importance weights over input tokens. Our idea
is to first use the interaction mechanism in attention to construct several layers of transformer blocks
which takes the input H in (11) and outputs the following matrix:

H =


x1 · · · xn xn+1 xn+1 − x1 · · · xn+1 − xn

y1 · · · yn 0 −∥xn+1−x1∥2

h2 · · · −∥xn+1−xn∥2

h2

0 · · · · · · · · · y1 · · · yn
I1 · · · · · · · · · · · · · · · I2n+1

1 · · · · · · · · · · · · · · · 1

 ∈ R(D+5)×(2n+1). (13)

We will present the construction details which operates on the H in (11) and gives rise to the H in
(13) in Appendix E.1. This operation accounts for the first to the penultimate layer in our transformer
network. In the final layer, we apply a single-head attention A with a mask from the (n+ 2)-th to the
(2n+ 1)-th token (with certain sparse query, key matrices Q,K and value matrix V = eD+1e

⊤
D+2)

such that the (n+ 1)-th output token is

[A(H)]n+1 =
∑2n+1

j=n+2 softmax (⟨Qhn+1,KH⟩)j V hj

=
∑n

j=1
e−∥xn+1−xj∥

2/h2∑n
j=1 e−∥xn+1−xj∥2/h2 · (yjeD+1) = Kh(s) · eD+1.

Here, we denote ej as the elementary vector with all entries zero except for the j-th entry, which is 1.
Therefore, the residual attention gives

A(H) +H =


x1 · · · xn xn+1 xn+1 − x1 · · · xn+1 − xn

y1 · · · yn Kh(s) −∥xn+1−x1∥2

h2 · · · −∥xn+1−xn∥2

h2

0 · · · · · · · · · y1 · · · yn
I1 · · · · · · · · · · · · · · · I2n+1

1 · · · · · · · · · · · · · · · 1

 ∈ R(D+5)×(2n+1),

where the kernel estimator Kh(s) is realized in (D+1)-th row and (n+1)-th column. The decoding
operation DE produces this element in the (D + 1)-th row and (n+ 1)-th column as the output.

This connection between the transformer network and the kernel estimator in (12) can be rigorously
established, that is, We prove that transformers can exactly implement the kernel estimator (12)
without any error. We summarize it as the following lemma, whose proof is in Appendix E.1.
Lemma 1. Let M ⊂ [−b, b]D. Suppose the prompt s in (6) satisfies: the xi’s are i.i.d. samples
from a distribution ρx supported on M and f : M → R is bounded, i.e. ∥f∥L∞(M) ≤ R. Let
Kh(·) be the empirical kernel estimator defined in (12). Then there exists a transformer network
T∗

h ∈ T (LT ,mT , dembed, ℓ, LFFN, wFFN, R, κ) with parameters

LT = 5, mT = nD, dembed = D + 5, ℓ = 2n+ 1,

LFFN = O(1), wFFN = D + 5, κ = O
(
D8n2b8R4/h8

)
such that for any sample s in the form of (6), we have

T∗
h (s) = Kh(s). (14)

The notation O(·) hides absolute constants.
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Figure 1: Examples of attention scores and Gaussian kernel with in-context length n = 8 (first
column), n = 16 (second column), n = 32 (third column) respectively. The top and bottom rows are
the plots at two different samples. This figure shows a strong correlation between attention scores
and Gaussian kernel.

n = 4 n = 8 n = 16

Figure 2: Histograms of the Pearson correlation for n = 4, 8, 16 respectively. The ones with negative
correlation are not included in this plot, while they only account for a small amount. The total counts
for positive correlation are 4588, 4598, 4771 out of a total of 5000 samples in each case respectively.

Remark 1 (Universality). In Lemma 1, the network architecture and weight parameters of T∗
h are

universal for different functions f and points {xi}n+1
i=1 . The weight parameters only depend on

D,n, b, R, h. This construction indicates that transformer can universally implement the kernel
regression algorithm with zero approximation error.

Validating the Correlation between Attention Scores and Kernel Function. To validate that
transformer does indeed perform kernel regression implicitly, we conduct simulated experiment to
compare the attention scores in the last layer of the trained transformer and the Gaussian kernel
e−∥xn+1−xi∥2

to see if there is a strong correlation between the two.

In this simulation, we fix M = S2 (the 2-dimensional sphere), and we consider the target function
f : S2 → R to be the linear combination of the real part of the first 10 spherical harmonics on the
two-dimensional sphere S2. More precisely, let s1(θ, ϕ), · · · , s10(θ, ϕ) be the real part of the first 10
spherical harmonics on S2. For each task, we uniformly random sample the coefficients wγ

k ∈ [0, 1],
and θγi ∈ [0, π], ϕγ

i ∈ [0, 2π], and generate yγi =
∑10

k=1 w
γ
ksk(θ

γ
i , ϕ

γ
i ), where i = 1, · · · , n

(in-context length) and γ = 1, · · · ,Γ (number of training tasks). Let xγ
1,i = sin(θγi ) cos(ϕ

γ
i ),

xγ
2,i = sin(θγi ) sin(ϕ

γ
i ), x

γ
3,i = cos(θγi ). For each task, the training sample writes as the embedding

6
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Table 1: Average Pearson correlation coefficients (± standard deviation) and the corresponding
p-values (± standard deviation)

In-context length n Pearson correlation coefficient p-value

4 0.86 ± 0.21 0.14 ± 0.21
8 0.75 ± 0.22 0.09 ± 0.19

16 0.69 ± 0.22 0.06 ± 0.17
32 0.67 ± 0.19 0.03 ± 0.12

matrix H shown in (35) in the Appendix F. We fix the number of training and testing tasks Γ = 50000
and vary the in-context length n = 4, 8, 16, 32.

Figure 3: Softmax attention scores for real
language data.

Figure 1 plots the attention scores (after sorting from
the highest to the lowest value) in the last layer of the
trained transformer and compares it against the Gaus-
sian kernel (sorted according to the corresponding atten-
tion scores), which demonstrates a strong correlation
between the two quantities. The distribution of the Pear-
son correlation values are plotted in Figure 2, we can
see that most correlations are concentrated around 0.8,
showing that the attention score and Gaussian kernel
are highly correlated with each other. More exemplar
plots of attention scores and kernel function scores are
provided in Figure 5 in Appendix F. The average Pear-
son correlation coefficients between the two scores and
the corresponding p-values are also reported in Table
1. The results are averaged over 5000 independent ran-
dom testing samples. More details of the experimental
setup are provided in Appendix F.

To further test how the curve of attention scores look like for real language data, we input five user
generated sentences (with length about 20 - 30) into the pretrained GPT2 (Radford et al., 2019) and
then plot the attention score for one of the heads in the model’s last layer after sorting the score of
each word from highest to the lowest value. The curves in Figure 3 shows that the attention scores for
the real language data do exhibit some kernel shape.

5 TRANSFORMER-BASED ICL GENERALIZATION ERROR BOUND

Based on the connection between transformer and kernel methods, we derive a generalization error
bounds for transformer-based ICL involving structured data. By imposing a geometric prior, we
assume that x is sampled on a low-dimensional manifold M, and f is a function on the manifold M.
This assumption leverages low-dimensional geometric structures in data which have been empirically
observed in image (Roweis & Saul, 2000; Tenenbaum et al., 2000; Pope et al., 2021) and language
datasets (Sharma & Kaplan, 2022; Havrilla & Liao, 2024).
Assumption 1. Let M be a compact d-dimensional Riemannian manifold isometrically embedded
in RD, M ⊂ [−b, b]D for some b > 0, and M has a positive reach τM > 0 (reach is defined in
Appendix B.1). Suppose ρx is the uniform distribution on M.
Assumption 2. Let α ∈ (0, 1], R,L > 0, and ρf be a probability distribution in the function space
F := {f : M → R : f is α-Hölder with Hölder constant no more than L, and ∥f∥L∞(M) ≤ R}.

Our main theorem about the generalization error of transformer-based ICL is given below.
Theorem 1. Suppose M, ρx and f , ρf satisfy Assumptions 1 and 2 respectively. If we choose the
transformer network class T (LT,mT, dembed, ℓ, LFFN, wFFN, R, κ) with parameters

LT = 5, mT = O(Dn), dembed = D + 5, ℓ = 2n+ 1,

LFFN = O(1), wFFN = D + 5, κ = O
(
D8n

4α+2d+8
2α+d b8R2

)
,

7
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where O(·) hides the dependency on the absolute constants. Then the minimizer T̂ defined in (7)
satisfies the squared generalization error bound:

Rn(T̂) ≤ C1

(
nD3Γ− 1

2

√
log(nDΓ)

)
+ C2

(
n− 2α

2α+d log1+
3d
4 n
)
, (15)

where the constant C1 depends on d, α, and constant C2 depends on d, α, L,R, τM.

The proof roadmap of Theorem 1 is presented in Appendix C and more details of the proof are
provided in Appendix E. Lemma 1 is utilized as a key step to prove Theorem 1. Theorem 1 also offers
insights into several key aspects of transformer-based ICL, which is discussed in the introduction.

Validating the Generalization Error Bound. We conduct simulated experiments to validate our
generalization error bound (15) in Theorem 1 while varying n (prompt length) and Γ (number of
training tasks). The data generating procedure is the same as the experiments in Section 4. Figure
4 plots the average Mean Squared Error (MSE) over 30 repetitions on the testing data against the
number of tasks Γ and the prompt length n. More details of the experiments are given in Appendix F.

The top row of Figure 4 shows the testing MSE with respect to Γ in log-log scale when the prompt
length is fixed to be n = 16, 64, 256 respectively. In log-log scale, the slope initially coincides
with the theoretical slope of −0.5 in the first term of (15), and then slightly shifts above it. This is
consistent with our error bound in (15), as when Γ increases and n is fixed, the second term starts to
dominate the total error. In the bottom row of Figure 4, we plot the logarithm of testing MSE in terms
of the prompt length n when the number of tasks is fixed to be Γ = 400, 1600, 6400 respectively.
In our error bound (15), both terms depend on n while the first term increases and the second term
decreases as n increases. The testing MSE decays as n increases, and the rate of decay depends on
the balance of the two terms in (15). The larger Γ is, the more dominant the second term in (15) is,
and therefore the rate of convergence of the testing MSE is faster as n increases. By comparing the
three plots in the bottom row of Figure 4 with Γ = 400, 1600, 6400 respectively, we observe a faster
rate of convergence with respect to n when Γ is larger, which is consistent with our theory.

Figure 4: Top row: MSE v.s. number of tasks Γ (with fixed prompt length n = 16, 64, 256,
respectively). Bottom row: MSE v.s. prompt length n (with fixed tasks Γ = 400, 1600, 6400
respectively). All plots are in log10-log10 scale.

6 RELATED WORKS

We next discuss some connection and comparison of our result with existing works on transformers.
This paper highlights bridging the attention mechanism and classical kernel methods. It provides a
new interpretation of transformers in ICL, and new tools to address nonlinear models in transformer-
based ICL, which allows us to move beyond linear models studied in Bai et al. (2023); Zhang et al.
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(2024); Von Oswald et al. (2023); Akyürek et al. (2022); Cole et al. (2024). This novel tool also
allows us to address multiple tasks in ICL, in contrast to single task learning by transformers studied
in Yun et al. (2019); Takakura & Suzuki (2023); Gurevych et al. (2022); Havrilla & Liao (2024);
Shen et al. (2025).

The most closely related work to this paper is Kim et al. (2024), which studied in-context regression of
Besov functions in RD. Kim et al. (2024) derived approximation and generalization error bounds for
a transformer composed of a deep feedforward network and one linear attention layer. There are two
main differences between this paper and Kim et al. (2024): 1) Our transformer network has 5 layers
of multi-head attention, and each multi-head attention can be wide, i.e. with nD attention heads.
The feedforward layers in each attention is of a constant order. Such a wide transformer architecture
shares some similarity to those used in large language models (LLMs). For example, GPT-2 Small
only has 12 layers with 117 million parameters (Radford et al., 2019). Our approximation theory
is developed by fully leveraging the attention mechanism. In contrast, Kim et al. (2024) utilized
one linear attention layer and a deep feedforward network for approximation. 2) By incorporating
low-dimensional geometric structures of data, we prove error bounds with an exponential dependence
on the intrinsic dimension d, while the error bound in Kim et al. (2024) has an exponential dependence
on the ambient dimension D.

Our work is also connected with Li et al. (2023), which derived generalization errors for transformers
as in-context algorithm learners. While the framework in Li et al. (2023) is general, it does not
address some key components in this paper, such as our novel approximation theory bridging the
attention mechanism to kernel methods, and our covering number calculation.

The connection between the attention mechanism and kernel methods has been explored in prior
work, including Tsai et al. (2019); Wright & Gonzalez (2021); Yu et al. (2024); Lu & Yu (2025);
Cheng et al. (2023); Han et al. (2025). In particular, the work by Han et al. (2025) takes the kernel
perspective to understand ICL and empirically demonstrates that the attention and hidden features in
LLMs match the behaviors of a kernel regression. While our work and these prior studies all draw on
the connection between the attention mechanism and kernel methods, our theoretical justification is
novel. In particular, the construction of transformers to implement the kernel method in Lemma 1
and the generalization error bound in Theorem 1 have not been addressed in literature. Our paper
provides a theoretical framework to understand transformer-based ICL with geometric structures.

7 CONCLUSION AND DISCUSSION

Conclusion. This work provides a theoretical foundation for understanding in-context learning
(ICL) with transformers in the setting of manifold-structured regression tasks. By establishing a
novel connection between the attention mechanism and classical kernel regression, we interpret
transformers as implicitly learning kernel-based algorithms for function regression. Our findings
offer new theoretical insights into the algorithmic nature of transformers in ICL, establish a rigorous
approximation and generalization theory for manifold regression, and provide tools for analyzing
nonlinear models under geometric structure.

Our analysis derives sharp generalization error bounds for α-Hölder functions on compact Riemannian
manifolds, revealing how the performance of transformers in ICL depends on the prompt length n,
the number of training tasks Γ, and the intrinsic geometry of the data. Notably, our results show that
transformers can achieve the minimax optimal regression rate up to logarithmic factors when Γ is
sufficiently large. Furthermore, the derived bounds depend exponentially on the intrinsic dimension
d of the manifold, rather than the ambient dimension D, highlighting the critical role of geometric
priors in achieving efficient generalization.

Discussion. Our theoretical analysis focuses on α-Hölder regression with fixed-length prompts and
a large number of training tasks, under idealized assumptions such as exact kernel implementation
via attention. Extending the framework to broader function classes, variable prompt lengths, noisy
data or limited data remains an open challenge. Despite these limitations, our work reveals how
geometric structure can enhance generalization in ICL and draws a principled connection between
attention mechanisms and kernel methods. These insights may inform the design of more efficient
and interpretable models in domains where geometry plays a central role, such as scientific computing
robotics, and many others where geometric structure is prevalent.
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Reproducibility statement To support reproducibility of our work, we provide comprehensive
details across the main paper and supplementary materials. All theoretical results are accompanied
by clear assumptions and complete proofs in the appendix. For experimental results, we describe
the datasets used, preprocessing steps, and hyperparameter settings in both the main text and the
appendix. Our implementation, including training and evaluation scripts, is available as an anonymous
downloadable source code submitted in the supplementary materials.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT for minor language editing, such as grammar correction and improving sentence
flow. The scientific content and all writing were created by the authors.

B MORE DEFINITIONS

B.1 GEODESIC DISTANCE, REACH OF THE MANIFOLD AND COVERING NUMBER

With the induced metric on M, the geodesic distance on the manifold between x,x′ ∈ M is defined
as

dM(x,x′) := inf{|γ| : γ ∈ C1([t, t′]), γ : [t, t′] → M, γ(t) = x, γ(t′) = x′},

where the length is defined by |γ| :=
∫ t′

t
∥γ′(s)∥2ds. The existence of a length-minimizing geodesic

γ : [t, t′] → M between any two points x = γ(t),x′ = γ(t′) is guaranteed by the Hopf–Rinow
theorem (Hopf & Rinow, 1931).
Definition 4 (Medial Axis). Let M ⊆ RD be a connected and compact d-dimensional submanifold.
Its medial axis is defined as

Med(M) := {x ∈ RD | ∃p ̸= q ∈ M, ∥p− x∥2 = ∥q− x∥2 = inf
z∈M

∥z− x∥2},

which contains all points x ∈ RD with set-valued orthogonal projection πM(x) = argminz∈M ∥x−
z∥2.
Definition 5 (Local Reach and Reach of a Manifold). The local reach for v ∈ M is defined as
τM(v) := infz∈Med(M) ∥v − z∥2, which describes the minimum distance needed to travel from v to
the closure of medial axis. The smallest local reach τM := infv∈M τM(v) is called reach of M.
Definition 6 (Covering Number). Let (H, ρ) be a metric space, where H is the set of objects and ρ
is a metric. For a given ϵ > 0, the covering number N (ϵ,H, ρ) is the smallest number of balls of
radius ϵ (with respect to ρ) needed to cover H. More precisely,

N (ϵ,H, ρ) := min{N ∈ N | ∃{h1, . . . , hN} ⊆ H,∀h ∈ H, ∃hi such that ρ(h, hi) ≤ ϵ}.

B.2 EMBEDDING, POSITIONAL ENCODING AND TRANSFORMER BLOCK

Definition 7 (Embedding Layer). Given xi ∈ RD and yi ∈ R, the embedding layer E takes an input
s = {x1, y1,x2, y2, . . . ,xn, yn;xn+1} and maps it to

E (s) =


x1 · · · xn xn+1 0
y1 · · · yn 0 0
0 · · · · · · · · · 0
0 · · · · · · · · · 0
0 · · · · · · · · · 0
1 · · · · · · · · · 1

 ∈ R(D+5)×ℓ.

Definition 8 (Positional Encoding). The positional encoding takes an input s, maps it to Ij =

(cos( jπ2ℓ ), sin(
jπ
2ℓ ))

⊤ and put those Ij , j = 1, · · · , ℓ, into the third and second last row in the
embedding matrix, i.e.,

PE (s) =


0 · · · · · · · · · 0
0 · · · · · · · · · 0
0 · · · · · · · · · 0
I1 · · · · · · · · · Iℓ
0 · · · · · · · · · 0

 ∈ R(D+5)×ℓ.

With these definitions, we have

PE + E (s) =


x1 · · · xn xn+1 0
y1 · · · yn 0 0
0 · · · · · · · · · 0
I1 · · · · · · · · · Iℓ
1 · · · · · · · · · 1

 ∈ R(D+5)×ℓ,

as defined in (11).
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Definition 9 (Transformer Block Class). The transformer block class with parameters θ is

B(m,LFFN, wFFN) = {B(θ; ·) | B(θ; ·) a MHA with m attention heads, and a FFN layer
with depth LFFN and width wFFN}.

C ROADMAP FOR THE PROOF OF THEOREM 1

In this section, we present a roadmap for the proof of our main result in Theorem 1. We defer a more
detailed discussion of the roadmap to Appendix C and all the proof details to Appendix E.

Bias-Variance Error Decomposition. We first decompose the squared generalization error at the
test sample s in (8) as follows:

Rn(T̂(s)) = Rn(T̂(s))−Rn,Γ(T̂) +Rn,Γ(T̂)−Rn,Γ(T
∗) +Rn,Γ(T

∗)−Rn(T
∗(s)) +Rn(T

∗(s)),

where T∗ is a transformer network which approximates the in-context kernel estimator Kh in (12).
One term satisfies Rn,Γ(T̂)−Rn,Γ(T

∗) ≤ 0 since T̂ is the minimizer of Rn,Γ given in (7). After
taking expectations, we can decompose the mean squared generalization error (9) as follows:

Rn(T̂) = ESEs

[
Rn(T̂(s))

]
(16)

≤ES

(
Es

[
Rn(T̂(s))

]
−Rn,Γ(T̂)

)
︸ ︷︷ ︸

I

+ES

(
Rn,Γ(T

∗)− Es [Rn(T
∗(s))]

)
︸ ︷︷ ︸

II

+Es [Rn(T
∗(s))]︸ ︷︷ ︸

III

.

In this error decomposition, error III denotes the approximation error which we will analyze in
Section C.1. The errors in I and II denote the statistical error , which we will analyze in Section C.2.

C.1 APPROXIMATION ERROR: TRANSFORMERS CAN IMPLEMENT KERNEL ESTIMATOR

A key innovation in our proof is establishing an approximation theory for transformers to implement
the classical kernel estimator in (12). Importantly, this implementation is universal for f and the xi’s
so that the weight matrices in transformer are independent of f and the xi’s.

Our approximation error bound is given by Proposition 1 below. Since transformers can exactly
implement the kernel estimator as shown in Lemma 1, the approximation error in Proposition 1 is the
same as the mean squared error given by the kernel estimator.

Proposition 1. Suppose M, ρx and f , ρf satisfy Assumptions 1 and 2 respectively. Let s be a
prompt in (6), where {xi}n+1

i=1 are i.i.d. samples from ρx and f is sampled from ρf . There exists a
transformer network T∗ ∈ T (LT,mT, dembed, ℓ, LFFN, wFFN, R, κ) with parameters

LT = 5, mT = O(Dn), dembed = D + 5, ℓ = 2n+ 1,

LFFN = O(1), wFFN = D + 5, κ = O
(
D8n2b8R2/h8

)
such that

Es [Rn(T
∗(s))] ≤ C3

[log (h−1
)]1+ 3d

4

nhd
+ h2α[log(h−1)]2

 . (17)

The constant C3 hides the constants depending on d, L,R, τM.

Proposition 1 is proved in Appendix E.4. Here we illustrate our proof idea. The empirical kernel
estimator in (12) is applied to n samples in the prompt. When n → ∞, the empirical kernel estimator
in (12) converges to its integral counterpart. Given any f ∈ F and xn+1 ∼ ρx, we define the integral
form of the kernel estimator as

K̄h(f ;xn+1) :=
Ex [Kh(xn+1 − x)f(x)]

Ex [Kh(xn+1 − x)]
=

∫
Kh(xn+1 − x)f(x)dx∫
Kh(xn+1 − x)dx

, (18)
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where the integral about x is about the measure dx = dρx. For any test sample s, the approximation
error III can be further decomposed into three terms:

Rn(T
∗
h(s)) = (T∗

h(s)− f(xn+1))
2 (19)

=
(
T∗

h(s)−Kh(s) +Kh(s)− K̄h(f ;xn+1) + K̄h(f ;xn+1)− f(xn+1)
)2

≤ 3 (T∗
h(s)−Kh(s))

2︸ ︷︷ ︸
A1

+3
(
Kh(s)− K̄h(f ;xn+1)

)2︸ ︷︷ ︸
A2

+3
(
K̄h(f ;xn+1)− f(xn+1)

)2︸ ︷︷ ︸
A3

where the error in A1 measures the bias of using a transformer network to implement the kernel
regression estimator, the error in A2 measures the variance of kernel regression estimator, and the
A3 error measures the bias of using kernel regression estimator to approximate the target function.
These three error terms are bounded by Lemma 1, Lemma 2, and Lemma 3 respectively. Our Lemma
1 shows that the error in A1 equals to 0. Lemma 2 and Lemma 3 give rise to an upper bound of A2
and A3. We defer their proof in Appendix E.2 and Appendix E.3, respectively.
Lemma 2. Let K̄h be the integral kernel estimator defined as in (18). For any xn+1 ∼ ρx and any
M and f satisfying Assumptions 1 and 2 respectively,∣∣K̄h(f ;xn+1)− f(xn+1)

∣∣ ≤ O(hα log(h−1)). (20)

The constant hidden in O(·) depend on d, L,R, τM.
Lemma 3. Suppose M, ρx and f , ρf satisfy Assumptions 1 and 2 respectively. Let s be a prompt in
(6), where {xi}n+1

i=1 are i.i.d. samples from ρx and f is sampled from ρf . Let Kh and K̄h be defined
as in (12) and (18). Then with probability at least 1− δ,∣∣Kh(s)− K̄h(f ;xn+1)

∣∣ ≤ O

(
log3d/4

(
1

h

)√
log(4/δ)

nhd

)
(21)

The constants hidden in O(·) depend on d,R, τM.

C.2 STATISTICAL ERROR

This section focuses on bounding the statistical errors in I and II in (16). We consider a transformer
network class T with the architecture in Proposition 1.

Bounding Error I in (16). The error in I in (16) can be bounded by

ES sup
T∈T

[
Es [Rn(T(s))]−Rn,Γ(T)

]
since T̂ belongs to the network class T . Any function f ∼ Pf is bounded, such that ∥f∥L∞ ≤ R.
The transformer network T also yields bounded output such that ∥T∥L∞ ≤ R. For the sam-
ple s in (6), the transformer neural network T takes the input ({xi, yi}ni=1;xn+1) and outputs
T({xi, yi}ni=1;xn+1) ∈ [−R,R]. In this paper, we take squared loss at each sample:

L(T, s, yn+1) = (T({xi, yi}ni=1;xn+1)− yn+1)
2,

which satisfies |L(T, s, yn+1)| ≤ 4R2. We define the Rademacher complexity of L ◦ T with respect
to the training sample S as

Rad(L ◦ T ◦S) :=
1

Γ
Eξ∼{±1}Γ

[
sup
T∈T

Γ∑
γ=1

ξγ

(
T({xγ

i , y
γ
i }

n
i=1;x

γ
n+1)− yγn+1

)2]
. (22)

According to (Shalev-Shwartz & Ben-David, 2014, Lemma 26.2), we have
ES sup

T∈T
[Es [Rn(T(s))]−Rn,Γ(T)] ≤ 2ES [Rad(L ◦ T ◦S)] .

To bound the expectation of Rademacher complexity Rad(L ◦ T ◦S), we apply the well known
Dudley entropy integral (Dudley, 1967), which we state in Lemma 8. By Lemma 8, we have

ES [Rad(L ◦ T ◦S)] ≤ inf
ϵ>0

(
2ϵ+

12√
Γ

∫ 4R2

ϵ

√
logN (δ,L ◦ T , ∥ · ∥L∞) dδ

)
(23)

where N (δ,L ◦ T , ∥ · ∥L∞) is the covering number (defined in Appendix B.1) of the function class
L ◦ T under the L∞ norm. We follow the proof idea in (Havrilla & Liao, 2024) to bound its covering
number as follows.
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Lemma 4. For a transformer class T (LT,mT, dembed, ℓ, LFFN, wFFN, R, κ) with input ∥H∥∞,∞ ≤
U . Let δ > 0, then the covering number of L ◦ T satisfies

N (δ,L ◦ T , ∥ · ∥L∞) ≤

(
2L

2
T+4LFFNU

3LTd
18L2

TLFFN

embed κ6L2
TLFFN+1m

L2
T

T ℓL
2
TR

δ

)PT

,

where PT = dembed(D + 1) + LT(3d
2
embedmT + LFFNw

2
FFN).

Lemma 4 is proved in Appendix E.5. Taking ϵ = 1/
√
Γ in (23), we obtain a bound

ES sup
T∈T

[Es [Rn(T(s))]−Rn,T (T)] ≤ 2ES [Rad(L ◦ T ◦S)] ≤ O

(
nD3

√
log(nDΓ/h)√

Γ

)
,

where the O(·) hides the dependency on some absolute constants.

Bounding Error II in (16). We can directly apply Hoeffding’s inequality to bound this term, with
details in Appendix E.9.

ES

(
Rn,Γ(T

∗)− Es [Rn(T
∗(s))]

)
≤ O

(√
log(h−1)

Γ
+ h2

)
.

C.3 PUTTING APPROXIMATION ERROR AND STATISTICAL ERROR TOGETHER

Putting all the error terms together in (16), we get

Rn(T̂) ≤ I + II + III ≤ C1

(
nD3

√
log(nDΓ/h)√

Γ

)
+ C2

[log (h−1
)]1+ 3d

4

nhd
+ h2α[log(h−1)]2

 .

Finally, choosing h = n− 1
2α+d gives rise to (15) in Theorem 1.

D FUNDAMENTAL LEMMAS

In this section, we present some fundamental lemmas which are crucial for constructing a transformer
to represent the target function. Note that similar results of Lemma 5 and 6 have appeared in Havrilla
& Liao (2024), but our results are more general in the sense that they accommodate general dembded

and general rows for gating. The detailed proofs of Lemma 5, 6, and 7 are provided in Appendix E.6,
E.7, and E.8, respectively.

In the lemma and the proof, we use subscript to denote column index and superscript to denote
row index. For a matrix H , we use the notation ∥H∥∞ := ∥H∥∞,∞ = maxi,j |Hij | to denote the
infinity-infinity norm of a matrix H . When θ denotes the weight parameters of a neural network, we
use ∥θ∥∞ to denote the largest magnitude in the weight parameters.

Lemma 5 (Interaction Lemma). Let H = [ht]1≤t≤ℓ ∈ Rdembed×ℓ be an embedding matrix such
that h(dembed−2):(dembed−1)

t = It and hdembed
t = 1. Fix 1 ≤ t1, t2 ≤ ℓ, 1 ≤ i ≤ dembed, and

ℓ ∈ N. Suppose dembed ≥ 5 and ∥H∥∞,∞ < U for some U > 0, and the data kernels Qdata ∈
R(dembed−3)×l (the first (dembed − 3) rows in the query matrix Q) and Kdata ∈ R(dembed−3)×l (the
first (dembed − 3) rows in the key matrix K) satisfy max{∥Qdata∥∞,∞, ∥Kdata∥∞,∞} ≤ κ. Then
one can construct an attention head A with ReLU activation (σ = ReLU) such that

[A(H)]t =

{
σ(⟨Qdataht,K

dataht2⟩)ei if t = t1,

0 otherwise.

The weight parameters of this attention head satisfies ∥θA∥∞ = O(d4embedκ
2ℓ2U2).

Lemma 5 is proved in Appendix E.6. Lemma 5 is called an interaction lemma, which allows tokens
to interact and therefore outputs a pair-wise interaction result.
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Lemma 6 (Gating Lemma). Let dembed ≥ 5 and H = [ht]1≤t≤ℓ ∈ Rdembed×ℓ, be an embedding
matrix such that h(dembed−2):(dembed−1)

t = (I1
t , I2

t ) = It and hdembed
t = 1. Then for any r1 and r2

with 1 ≤ r1 ≤ r2 ≤ dembed − 3 and any k1, k2 with 1 ≤ k1, k2 ≤ ℓ, there exist both two-layer
feed-forward networks (FFN) such that

FFN1(ht) =



ht if t ∈ {1, · · · , k1}

(ht)1
...

(ht)r1−1

0

(ht)r2+1

...
(ht)dembed−3

I1
t

I2
t

1



otherwise
(24)

and

FFN2(ht) =



ht if t ∈ {k2, · · · , ℓ}

(ht)1
...

(ht)r1−1

0

(ht)r2+1

...
(ht)dembed−3

I1
t

I2
t

1



otherwise
(25)

Additionally, we have ∥θFFN∥∞ ≤ O(ℓ∥H∥∞,∞).

Lemma 6 is proved in E.7. Lemma 6 uses the feedforward layers to set certain rows in specified
tokens zero.
Lemma 7 (Decrementing Lemma). Let dembed ≥ 5 and H = [ht]1≤t≤ℓ ∈ Rdembed×ℓ, be an
embedding matrix such that h(dembed−2):(dembed−1)

t = (I1
t , I2

t ) = It and hdembed
t = 1. Then for any

r1, r2 with 1 ≤ r1 ≤ r2 ≤ dembed − 3 and any k1, k2 with 1 ≤ k1, k2 ≤ ℓ and any M > 0, there
exists a six-layer residual feed-forward network (FFN) such that

FFN(ht) + ht =



ht if t ∈ {1, · · · , k1} ∪ {k2, · · · , ℓ}

(ht)1
...

(ht)r1−1

(ht)r1 −M
...

(ht)r2 −M

(ht)r2+1

...
(ht)dembed−3

It
1



otherwise
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Additionally, we have ∥θFFN∥∞ ≤ O(ℓM).

Lemma 7 is proved in Appendix E.8. Lemma 7 utilizes feedforward layers to substract M from
certain rows in specified tokens.

We next state the Dudley Entropy Integral (Dudley, 1967) which is used to derive (23), and refer its
proof to (Chen et al., 2020) and (Van Der Vaart & Wellner, 1996).
Lemma 8 (Dudley Entropy Integral). Let M > 0. Suppose supf∈F ∥f∥L∞ ≤ M for some function
class F . Then

Ex,ξ

[
sup
f∈F

1

n

n∑
i=1

ξif(xi)

]
≤ inf

ϵ>0

(
2ϵ+

12√
n

∫ M

ϵ

√
logN (δ,F , ∥ · ∥L∞) dδ

)
. (26)

where N (δ, T , ∥ · ∥L∞) is the δ-covering number of F with respect to L∞ norm.

E DEFERRED PROOFS

E.1 PROOF OF LEMMA 1

Proof of Lemma 1. First, we embed the sample s = {(xi, yi)
n
i=1;xn+1} into the embedding matrix

H such that

PE + E (s) = H =


x1 · · · xn xn+1 0
y1 · · · yn 0 0
0 · · · · · · · · · 0
I1 · · · · · · · · · I2n+1

1 · · · · · · · · · 1

 ∈ Rdembed×ℓ.

We denote the i-th column/token by hi in the following proof. Throughout the proof, we let
U = ∥H∥∞,∞, which is the largest entry-wise magnitude of the matrix.

Next, let us demonstrate the construction of Kh(s) step-by-step using our fundamental lemma in
Appendix D.

• Copying of (xn+1)i, 1 ≤ i ≤ D, to the next column (constant multiplication by 1).
Let us define each attention head Ai, 1 ≤ i ≤ D, with Vi = eie

⊤
dembed

, and data kernel in the form

Qdata
i =



0 0 0 0
. . .

...
...

...
. . . 0 0 1

0
...

...
...

0 0 0 0
0 0 0 1


Kdata

i =



1 0 0 0
. . .

...
...

...
. . . 0 0 0

1
...

...
...

0 0 0 0
0 0 0 M


where Qdata

i ,Kdata
i ∈ R(D+2)×(D+5). The Qdata

i has the i-th position and last position of the last
column equal to 1. By the Interaction Lemma, we can construct Ai, 1 ≤ i ≤ D, such that hn+2

interacts with hn+1 only, i.e.,

[Ai(H)]n+2 = σ⟨Qdata
i hn+2,K

data
i hn+1⟩Vihn+1 = σ((xn+1)i +M)ei = ((xn+1)i +M)ei

and [Ai(H)]t = 0 when t ̸= n+ 2. Then the residual multi-head attention yields

MHA(H) +H =


x1 · · · xn xn+1 xn+1 +M 0
y1 · · · yn 0 0 0
0 · · · · · · · · · · · · 0
I1 · · · · · · · · · · · · I2n+1

1 · · · · · · · · · · · · 1

 .
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Similarly, we can copy (xn+1)i, 1 ≤ i ≤ D, to the k-th column for k = n+ 2, · · · , 2n + 1. This
gives

MHA(H) +H =


x1 · · · xn xn+1 xn+1 +M · · · xn+1 +M
y1 · · · yn 0 0 · · · 0
0 · · · · · · · · · · · · · · · 0
I1 · · · · · · · · · · · · · · · I2n+1

1 · · · · · · · · · · · · · · · 1

 .

Then we can apply Lemma 7 to subtract off the constant M to get

H1 := B1(H) =


x1 · · · xn xn+1 xn+1 · · · xn+1

y1 · · · yn 0 0 · · · 0
0 · · · · · · · · · · · · · · · 0
I1 · · · · · · · · · · · · · · · I2n+1

1 · · · · · · · · · · · · · · · 1

 .

In total, this process needs B1 ∈ B(nD, 6, D + 5). The upper bound of the weights parameter in B1

is ∥θB1∥∞ ≤ O(D4ℓ2U2b2).

• Implementation of (xn+1)i − (xj)i for 1 ≤ i ≤ D and 1 ≤ j ≤ n

Let us define each attention head Ai,j with Vi = eie
⊤
dembed

, and data kernel in the form

Qdata
i =



0 0 0 0
. . .

...
...

...
. . . 0 0 −1

0
...

...
...

0 0 0 0
0 0 0 1


Kdata

i =



1 0 0 0
. . .

...
...

...
. . . 0 0 0

1
...

...
...

0 0 0 0
0 0 0 M


where Qdata

i ,Kdata
i ∈ R(D+2)×(D+5). The Qdata

i has the i-th position of last column equals to −1
and last position of the last column equals to 1. By the Interaction Lemma 5, we can construct Ai,j

such that hn+1+j interacts with hj only, i.e.,

Ai,j(hn+1+j) = σ⟨Qdata
i hn+1+j ,K

data
i hj⟩Vihj = σ(−(xj)i +M)ei = (−(xj)i +M)ei

and Ai,j(ht) = 0 for t ̸= n+ 1 + j, where M ≥ b ≥ ∥x∥∞. Then the residual multi-head attention
yields

MHA(H1) +H1 =


x1 · · · xn xn+1 xn+1 − x1 +M · · · xn+1 − xn +M
y1 · · · yn 0 · · · · · · 0
0 · · · · · · · · · · · · · · · 0
I1 · · · · · · · · · · · · · · · I2n+1

1 · · · · · · · · · · · · · · · 1

 .

Then we can apply Lemma 7 to subtract off the constant M to get

H2 := B2(H1) =


x1 · · · xn xn+1 xn+1 − x1 · · · xn+1 − xn

y1 · · · yn 0 · · · · · · 0
0 · · · · · · · · · · · · · · · 0
I1 · · · · · · · · · · · · · · · I2n+1

1 · · · · · · · · · · · · · · · 1

 .

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

In total, this process needs B2 ∈ B(Dn, 6, D + 5). The upper bound of the weights parameter in B2

is ∥θB2
∥ ≤ O(D4ℓ2U2b2).

• Implementation of −∥xn+1−xj∥2

h2 for 1 ≤ j ≤ n

Let us define each attention head Aj with Vj = eD+1e
⊤
dembed

, and data kernel in the form

Qdata
j =



− 1
h 0 0 0

. . .
...

...
...

. . . 0 0 0

− 1
h

...
...

...
0 0 0 0

0 0 0 1


Kdata

j =



1
h 0 0 0

. . .
...

...
...

. . . 0 0 0

1
h

...
...

...
0 0 0 0

0 0 0 M


where Qdata

j ,Kdata
j ∈ R(D+2)×(D+5). By the Interaction Lemma, we can construct Aj such that

hn+1+j interacts with itself only, i.e.,

Aj(hn+1+j) = σ(⟨Qdata
j hn+1+j ,K

data
j hn+1+j⟩)Vjhn+1+j

= σ

(
− 1

h2
⟨xn+1 − xj ,xn+1 − xj⟩+M

)
eD+1 =

(
−∥xn+1 − xj∥2

h2
+M

)
eD+1

and Aj(ht) = 0 for t ̸= n + 1 + j, where M ≥ max
(

4b2D
h2 , R

)
. Then the residual multi-head

attention yields

H3 : = B3(H2) = MHA(H2) +H2

=


x1 · · · xn xn+1 xn+1 − x1 · · · xn+1 − xn

y1 · · · yn 0 −∥xn+1−x1∥2

h2 +M · · · −∥xn+1−xn∥2

h2 +M
0 · · · · · · · · · · · · · · · 0
I1 · · · · · · · · · · · · · · · I2n+1

1 · · · · · · · · · · · · · · · 1

 ,

where B3 ∈ B(n, 1, D + 5). The upper bound of the weights parameter in B3 is ∥θB3∥∞ ≤
O(D4ℓ2U2M2).

• copying y1, · · · , yn from columns 1, · · · , n to columns n+ 2, · · · , 2n+ 1

Similar as before, there exists B4 ∈ B(n, 1, D + 5) such that

MHA(H3) +H3 =


x1 · · · xn xn+1 xn+1 − x1 · · · xn+1 − xn

y1 · · · yn 0 −∥xn+1−x1∥2

h2 +M · · · −∥xn+1−xn∥2

h2 +M
0 · · · · · · · · · y1 +M · · · yn +M
I1 · · · · · · · · · · · · · · · I2n+1

1 · · · · · · · · · · · · · · · 1

 .

Then we can apply Lemma 7 to subtract off the constant M ≥ max
(

4b2D
h2 , R

)
to get

H4 := B4(H3) =


x1 · · · xn xn+1 xn+1 − x1 · · · xn+1 − xn

y1 · · · yn 0 −∥xn+1−x1∥2

h2 · · · −∥xn+1−xn∥2

h2

0 · · · · · · · · · y1 · · · yn
I1 · · · · · · · · · · · · · · · I2n+1

1 · · · · · · · · · · · · · · · 1

 .

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

In total, this process needs B4 ∈ B(n, 6, D + 5). The upper bound of the weights parameter in B4 is
∥θB4

∥∞ ≤ O(D4ℓ2M2 ·M2) = O(D4ℓ2M4).

• Implementation of e−
∥xn+1−xj∥

2

h2 for 1 ≤ j ≤ n

In the last layer of transformer, we use Softmax instead of ReLU for this part of construction (with a
mask of size n). Then, we can construct V = eD+1e

⊤
D+2 and

Q =



0 0 0 0
. . .

...
...

...
0 0 0 1

. . . 0 0 0

0
...

...
...

0 0 0 0
0 0 0 0


K =



0 0 0 0
. . .

...
...

...
1 0 0 0

. . . 0 0 0

0
...

...
...

0 0 0 0
0 0 0 0



where Q ∈ R(D+2)×(D+5) has (D + 1)-th position in the last column equals to 1 and all the other
entries are 0, and K ∈ R(D+2)×(D+5) has (D + 1, D + 1)-th position equals to 1 and all the other
entries are 0, such that

[A(H4)]n+1 =

2n+1∑
j=n+2

softmax (⟨Qhn+1,KH4⟩)j V hj

=

n∑
j=1

yje
−∥xn+1−xj∥2/h2∑n

j=1 e
−∥xn+1−xj∥2/h2 · eD+1 = Kh({xi, yi}ni=1;xn+1) · eD+1 = Kh(s) · eD+1.

Therefore, there exists B5 ∈ B(1, 1, D + 5) such that

H5 := B5(H4) =


x1 · · · xn xn+1 xn+1 − x1 · · · xn+1 − xn

y1 · · · yn Kh(s) −∥xn+1−x1∥2

h2 · · · −∥xn+1−xn∥2

h2

0 · · · · · · · · · y1 · · · yn
I1 · · · · · · · · · · · · · · · I2n+1

1 · · · · · · · · · · · · · · · 1

 .

The upper bound of the weights parameter in B5 is ∥θB5∥∞ ≤ O(D4ℓ2M2 · 1) = O
(
D4ℓ2M2

)
.

Finally, we apply a decoding layer DE to output the element Kh(s) as desired. The uniform upper
bound for the weight parameters in B5 ◦B4 ◦B3 ◦B2 ◦B1 is κ ≤ O

(
D4ℓ2M4

)
≤ O

(
D8ℓ2b8R4

h8

)
=

O
(

D8n2b8R4

h8

)
.

E.2 PROOF OF LEMMA 2

Proof of Lemma 2. Lemma 2 estimates the bias of kernel manifold regression. Our kernel estimator
uses the Gaussian kernel, which has infinite support. To deal with the infinite support of the Gaussian
kernel, we decompose the integral to nearby regions and far-away regions. For the x close to the
center xn+1, we use the Lipchitz property of f to estimate the bias; For the x far from the center
xn+1, we use the Gaussian tail to bound the bias.
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We first rewrite the bias in an integral form:

K̄h(f ;xn+1)− f(xn+1) =
E [Kh(xn+1 − x)f(x)]

E [Kh(xn+1 − x)]
− f(xn+1)

=

∫
Kh(xn+1 − x)f(x)dx∫
Kh(xn+1 − x)dx

− f(xn+1)

=

∫
Kh(xn+1 − x)(f(x)− f(xn+1))dx∫

Kh(xn+1 − x)dx
.

We consider the set of points on the manifold M which is h̃ distance to xn+1:

Bh̃(xn+1) := {x ∈ M : ∥x− xn+1∥ ≤ h̃}.

The choice of h̃ will be specified later in the proof.

So we can write

K̄h(f ;xn+1)− f(xn+1) =

∫
B

h̃
(xn+1)

Kh(xn+1 − x)(f(x)− f(xn+1))dx∫
Kh(xn+1 − x)dx

+

∫
M\B

h̃
(xn+1)

Kh(xn+1 − x)(f(x)− f(xn+1))dx∫
Kh(xn+1 − x)dx

≤

∫
B

h̃
(xn+1)

Kh(xn+1 − x)L(2h̃)αdx∫
Kh(xn+1 − x)dx

+
2R
∫
M\B

h̃
(xn+1)

Kh(xn+1 − x)dx∫
Kh(xn+1 − x)dx

≤ 4Lh̃α +
2R
∫
M\B

h̃
(xn+1)

Kh(xn+1 − x)dx∫
Kh(xn+1 − x)dx

.

In the calculation above, we used the Lipchistz property of f for the integral inside the ball Bh̃(xn+1),
where the geodesic distance and Euclidean distance are equivalent metrics. By Proposition 11 in
(Maggioni et al., 2016), when ∥xn+1 − x∥ ≤ τM/2, we have dM(xn+1,x) ≤ 2∥xn+1 − x∥.

We next bound the integral outside the ball Bh̃(xn+1). When h is small, i.e. h < τM/2, the integral
satisfies∫

M
h−dKh(xn+1 − x)dx =

∫
M

h−de−
∥xn+1−x∥2

h2 dx ≥
∫
Bh(xn+1)

h−de−
∥xn+1−x∥2

h2 dx

≥
∫
Bh(xn+1)

h−de−1dx = h−de−1CBh
d = e−1CB

with
CB ≥ cosd(arcsin(

h

2τ
)) ≥ cosd(arcsin(

1

4
)), (27)

according to (Niyogi et al., 2008, Lemma5.3).

Therefore, when h < τ/2, the integral outside the ball Bh̃(xn+1) can be bounded as follows:

2R
∫
M\B

h̃
(xn+1)

Kh(xn+1 − x)dx∫
M Kh(xn+1 − x)dx

=
2R
∫
M\B

h̃
(xn+1)

h−dKh(xn+1 − x)dx∫
M h−dKh(xn+1 − x)dx

≤ 2eRC−1
B

∫
M\B

h̃
(xn+1)

h−dKh(xn+1 − x)dx

≤ 2eRC−1
B · (ρx(M)− ρx(Bh̃(xn+1))) · h−de−

h̃2

h2

let h̃=Ch
====== 2eRC−1

B · (ρx(M)− ρx(Bh̃(xn+1))) · h−de−C2

≤ 2eRC−1
B · h−de−C2

= O(h−de−C2

),
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where O hides constants about R and d.

Hence

K̄h(f ;xn+1)− f(xn+1) ≤ O(Cαhα) +O(h−de−C2

).

For h ∈ (0, 1), by choosing C =
√
(d+ 1) log( 1h ), we have h−de−C2

= h. Therefore,

K̄h(f ;xn+1)− f(xn+1) ≤ O

(
hα log

(
1

h

))
+O(h) = O

(
hα log

(
1

h

))
.

as desired. The notation O(·) hides the constants depending on d, L,R, τM.

E.3 PROOF OF LEMMA 3

Proof of Lemma 3. Lemma 3 estimates the variance of kernel manifold regression. We prove it using
a series of concentration inequalities (Hoeffding, 1994; Vershynin, 2018).

Let us define some empirical quantities used in kernel estimator and their counterparts in expectation.

N̂n(xn+1) :=
1

n

n∑
i=1

Kh (xn+1 − xi) f(xi), D̂n(xn+1) :=
1

n

n∑
i=1

Kh (xn+1 − xi)

N(xn+1) := Ex [Kh (xn+1 − x) f(x)] , D(xn+1) := Ex [Kh (xn+1 − x)]

We first decompose the variance as follows:

|Kh(s)− K̄h(f ;xn+1)|

≤ 1

|D̂n(xn+1)||D(xn+1)|

(
|D(xn+1)||N̂n(xn+1)−N(xn+1)|+ |N(xn+1)||D̂n(xn+1)−D(xn+1)|

)
=

1

|D̂n(xn+1)|

(
|N̂n(xn+1)−N(xn+1)|

)
+

|N(xn+1)|
|D̂n(xn+1)| · |D(xn+1)|

(
|D̂n(xn+1)−D(xn+1)|

)
.

(28)

We will bound (28) in the following steps.

• Estimating D̂n(xn+1) in the denominator. We consider the following ball

Bh̃ := Bh̃(xn+1) := {x ∈ M : ∥x− xn+1∥ ≤ h̃} (29)

with h̃ = Ch. Let nB be the number of samples in Bh̃(xn+1). By Liao & Maggioni (2019, Lemma
30), we can estimate nB as follows:

P
{ ∣∣∣nB

n
− ρx(Bh̃(xn+1))

∣∣∣ ≥ 1

2
ρx(Bh̃(xn+1))

}
≤ 2e−

3n·ρx(B
h̃
(xn+1))

28 ,

where ρx(Bh̃(xn+1)) = CBh̃
d = CBC

dhd, for some constant CB which satisfies (27). Therefore,

with probability at least 1− 2e−
3n·ρx(B

h̃
(xn+1))

28 , it holds

1

2
ρx(Bh̃(xn+1)) ≤

nB

n
≤ 3

2
ρx(Bh̃(xn+1)).

We next re-write D̂n(xn+1) as

D̂n(xn+1) =
nB

n
· 1

nB

n∑
i=1

Kh(xn+1 − xi) ≥
nB

n
· 1

nB

∑
xi∈B

h̃
(xn+1)

Kh(xn+1 − xi)
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where the continuous counterpart of 1
nB

∑
xi∈B

h̃
(xn+1)

Kh(xn+1 − xi) is

Φ :=
1

ρx(Bh̃)

∫
B

h̃

Kh(x− xn+1)dx ≥ 1

ρx(Bh̃)

∫
Bh

Kh(x− xn+1)dx

≥ e−1ρx(Bh)

ρx(Bh̃)
≥ CΦC

−d

where CΦ is a constant depending on τM.

By the Hoeffding’s inequality (Hoeffding, 1994), with probability 1− δ, D̂n(xn+1) satisfies

D̂n(xn+1) ≥
nB

n
·

Φ−

√
log(2/δ)

nB

 =
nB

n

CΦC
−d −

√
log(2/δ)

nB

 .

Bounding the first term in (28). The numerator of the first term can be decomposed as∣∣∣N̂n(xn+1)−N(xn+1)
∣∣∣ ≤ ∣∣∣N̂ (1)

n (xn+1)−N (1)(xn+1)
∣∣∣+ ∣∣∣N̂ (2)

n (xn+1)−N (2)(xn+1)
∣∣∣ ,

where
N̂ (1)

n (xn+1) =
1

n

∑
xi∈B

h̃
(xn+1)

Kh (xn+1 − xi) f(xi)

and
N (1)(xn+1) =

∫
x∈B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx

and
N̂ (2)

n (xn+1) =
1

n

∑
xi∈M\B

h̃
(xn+1)

Kh (xn+1 − xi) f(xi)

and
N (2)(xn+1) =

∫
x∈M\B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx

Therefore, we just need to bound∣∣∣N̂ (1)
n (xn+1)−N (1)(xn+1)

∣∣∣+ ∣∣∣N̂ (2)
n (xn+1)−N (2)(xn+1)

∣∣∣
D̂n(xn+1)

≤

∣∣∣N̂ (1)
n (xn+1)−N (1)(xn+1)

∣∣∣
nB

n

(
CΦC−d −

√
log(2/δ)

nB

) +

∣∣∣N̂ (2)
n (xn+1)−N (2)(xn+1)

∣∣∣
nB

n

(
CΦC−d −

√
log(2/δ)

nB

) (30)

The first term in (30) can be written as∣∣∣N̂ (1)
n (xn+1)−N (1)(xn+1)

∣∣∣
nB

n

(
CΦC−d −

√
log(2/δ)

nB

)

=

∣∣∣ 1
nB

∑
xi∈B

h̃
(xn+1)

Kh (xn+1 − xi) f(xi)− n
nB

∫
x∈B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx
∣∣∣

CΦC−d −
√

log(2/δ)
nB

≤

∣∣∣ 1
nB

∑
xi∈B

h̃
(xn+1)

Kh (xn+1 − xi) f(xi)− 1
ρx(Bh̃

)

∫
x∈B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx
∣∣∣

CΦC−d −
√

log(2/δ)
nB

+

∣∣∣ 1
ρx(Bh̃

)

∫
x∈B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx− n
nB

∫
x∈B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx
∣∣∣

CΦC−d −
√

log(2/δ)
nB
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By the Hoeffding’s inequality, we know that with probability at least 1− δ,∣∣∣∣∣∣ 1

nB

∑
xi∈B

h̃
(xn+1)

Kh (xn+1 − xi) f(xi)−
1

ρx(Bh̃)

∫
x∈B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx

∣∣∣∣∣∣ ≤ R

√
log(2/δ)

nB
.

By Liao & Maggioni (2019, Lemma 30), with probability 1− δ,∣∣∣ρx(Bh̃(xn+1))−
nB

n

∣∣∣ ≤ O

(√
log(2/δ)ρx(Bh̃(xn+1))

n

)
which gives rise to∣∣∣∣∣ 1

ρx(Bh̃)

∫
x∈B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx− n

nB

∫
x∈B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx

∣∣∣∣∣
≤
∣∣∣∣ 1

ρx(Bh̃)
− n

nB

∣∣∣∣ ·
∣∣∣∣∣
∫
x∈B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx

∣∣∣∣∣ ≤ Rρx(Bh̃)

∣∣∣∣ 1

ρx(Bh̃)
− n

nB

∣∣∣∣
=R

∣∣∣∣1− n

nB
ρx(Bh̃)

∣∣∣∣ = R
n

nB

∣∣∣nB

n
− ρx(Bh̃)

∣∣∣ ≤ O

(
R

ρx(Bh̃(xn+1))

√
log(2/δ)ρx(Bh̃(xn+1))

n

)

= O

(
R

√
log(2/δ)

nρx(Bh̃(xn+1))

)
.

Therefore, with probability at least 1− 2δ, the first term in (30) satisfies∣∣∣N̂ (1)
n (xn+1)−N (1)(xn+1)

∣∣∣
D̂n(xn+1)

≤ O

RCd

√
log(2/δ)

nB

+O

(
RCd

√
log(2/δ)

nρx(Bh̃(xn+1))

)

= O

(
RCd

√
log(2/δ)

nρx(Bh̃(xn+1))

)
= O

(
RCd/2

√
CB

√
log(2/δ)

nhd

)
,

(31)

where the constant CB satisfies (27).

For the second term in (30), it satisfies∣∣∣N̂ (2)
n (xn+1)−N (2)(xn+1)

∣∣∣
D̂n(xn+1)

≤

∣∣∣ 1n ∑xi∈M\B
h̃
(xn+1)

Kh (xn+1 − xi) f(xi)−
∫
x∈M\B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx
∣∣∣

nB

n

(
CΦC−d −

√
log(2/δ)

nB

)
By the Hoeffding’s inequality, we have, with probability at least 1− δ,∣∣∣∣∣∣ 1n

∑
xi∈M\B

h̃
(xn+1)

Kh (xn+1 − xi) f(xi)−
∫
x∈M\B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx

∣∣∣∣∣∣ ≤ Re−C2

√
log(2/δ)

n
,

where we bound |f(x)| ≤ e−C2

for all x ∈ M \ Bh̃. Therefore, the second term in (30) can be
further bounded as∣∣∣N̂ (2)

n (xn+1)−N (2)(xn+1)
∣∣∣

D̂n(xn+1)
≤

Re−C2
√

log(2/δ)
n

nB

n

(
CΦC−d −

√
log(2/δ)

nB

) ≤ O

(
Cde−C2 n

nB

√
log(2/δ)

n

)

= O

(
e−C2

hd/2

√
log(2/δ)

nhd

)
(32)
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In summary, the first term in (28) can be split into two terms according to (30): one term is inside the
ball Bh̃ and the other is outside the ball. We have bounded the term inside the ball Bh̃ in (31) and the
term outside the ball in (32). Combining (31) and (32) gives rise to

|N̂n(xn+1)−N(xn+1)|
|D̂n(xn+1)|

≤ O

(
RCd/2

√
CB

√
log(2/δ)

nhd

)
+O

(
e−C2

hd/2

√
log(2/δ)

nhd

)

= O

([
log
(
h−1

)] d
4

√
log(2/δ)

nhd

)
.

where the last line results from choosing

C =
√

d log(1/h), (33)

so that e−C2

= hd < hd/2 when h is small.

Bounding the second term in (28). The second term in (28) can be bounded similarly to the first
term, with an additional estimate on N(xn+1)

D(xn+1)
. We define the ball Bh(xn+1) and Bh̃(xn+1) as in (29)

with h̃ = Ch.
N(xn+1)

D(xn+1)
=

∫
M Kh(xn+1 − x)f(x)dx∫

M Kh(xn+1 − x)dx

≤

∫
B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx+
∫
M\B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx∫
Bh(xn+1)

Kh(xn+1 − x)dx

≤
Rρx(Bh̃(xn+1)) +Re−C2

ρx(M)

e−1ρx(Bh(xn+1))
≤ O(RCd),

where the last inequality holds with C chosen according to (33) and when h is sufficiently small.

Applying a similar argument above, the second term in (28) can be bounded bounded by

|N(xn+1)|
|D̂n(xn+1)| · |D(xn+1)|

(
|D̂n(xn+1)−D(xn+1)|

)
≤ O

(
log3d/4

(
1

h

)√
log(2/δ)

nhd

)

Putting the two terms in (28) together. Putting the two terms in in (28) together, for δ >

2e−
3n·ρx(B

h̃
(xn+1))

28 , we have with probability at least 1− 2δ,

|Kh(s)− K̄h(f ;xn+1)| ≤ O

(
log3d/4

(
1

h

)√
log(2/δ)

nhd

)
.

By abusing the notation, rewrite 2δ as δ, we get with at least probability 1− δ,

|Kh(s)− K̄h(f ;xn+1)| ≤ O

(
log3d/4

(
1

h

)√
log(4/δ)

nhd

)
.

as desired. The notation O(·) hides constants depending on d,R, τM.

E.4 PROOF OF PROPOSITION 1

Proof of Proposition 1. By Lemma 1, 2, 3 and equation (19),

Es [Rn(T
∗(s))] ≤ (1− δ) ·O

([
log
(
h−1

)]3d/4 log(4/δ)

nhd

)
+ δ · (2R)2 +O(h2α[log(h−1)]2)

let δ=4h2

====== (1− 4h2) ·O
([

log
(
h−1

)]3d/4 log(h−1)

nhd

)
+ 16h2R2 +O(h2α[log(h−1)]2)

≤ O

([
log
(
h−1

)]1+3d/4

nhd

)
+O(h2α[log(h−1)]2).

The last inequality holds because 0 < h < 1. The notation O(·) hides the constants depending on
d, L,R, τM.
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E.5 PROOF OF LEMMA 4

Proof of Lemma 4. Through the proof, we use the notation ∥H∥∞ := ∥H∥∞,∞ to denote the
infinity-infinity norm of a matrix H .

Since our transformer has softmax as activation function in the last layer and ReLU as activation
from the first to the penultimate layers, we need to consider those two cases separately.

Set η > 0, we choose T with parameters θ, and T′ with parameters θ′ such that ∥θ − θ′∥∞ ≤ η.

We first bound the Multi-head Attention (MHA) layer in a transformer block. For the ReLU activation
layer, according to (Havrilla & Liao, 2024), for ∥H∥∞ ≤ U , we have

∥MHA1(H)−MHA2(H)∥ReLU
∞ ≤ 3κ3d6embedU

3mTℓη.

By the similar argument, for the softmax activation layer, since it takes normalization, we can bound

∥MHA1(H)−MHA2(H)∥softmax
∞ ≤ ∥MHA1(H)−MHA2(H)∥ReLU

∞ ≤ 3κ3d6embedU
3mTℓη.

Therefore, for the MHA layer, we have

∥MHA1(H)−MHA2(H)∥∞ ≤ 3κ3d6embedU
3mTℓη.

Next, we bound the FFN layer. According to (Havrilla & Liao, 2024), we have

∥FFN1(H +MHA1(H))− FFN2(H +MHA2(H))∥∞
≤ 3κ3+LFFNw2LFFN

FFN d6embedU
3mTℓη + LFFN(wFFN(2d

6
embedκ

3UmTℓ) + 2)(κwFFN)
LFFN−1η.

Therefore, putting together the MHA and FFN layer together, we get the estimate on the difference
of the transformer block ∥B1(H)− B2(H)∥∞ ( for both ReLU and softmax activation) as

∥B1(H)− B2(H)∥∞
=∥(H +MHA1(H) + FFN1(H +MHA1(H)))

− (H +MHA2(H) + FFN2(H +MHA2(H)))∥∞
≤∥MHA1(H)−MHA2(H)∥∞
+ ∥FFN1(H +MHA1(H))− FFN2(H +MHA2(H))∥∞

≤3κ3d6embedU
3mTℓη + 3κ3+LFFNw2LFFN

FFN d6embedU
3mTℓη

+ LFFN(wFFN(2d
6
embedκ

3UmTℓ) + 2)(κwFFN)
LFFN−1η

≤(4κ3+LFFNw2LFFN

FFN d6embedU
3mTℓ+ LFFN(wFFN(2d

6
embedκ

3UmTℓ) + 2)(κwFFN)
LFFN−1)η.

Then, we can chain the multi-block together and have the difference (the same as (Havrilla & Liao,
2024))

∥BLT
◦ · · ·B1(H)− B′

LT
◦ · · · ◦ B′

1(H)∥∞ ≤ 27L
2
TLFFNU

3LT d
18L2

TLFFN

embed κ6L2
TLFFNm

L2
T

T ℓL
2
T η.

Recall that the decoder layer D : Rdembed×ℓ → R is fixed and it outputs the last element in
the first row. For the encoding layer H = PE + E(s), both PE and E are fixed and we have
∥PE + E (s) ∥∞ = ∥s∥∞ + 1 ≤ U + 1. Thus, together this gives the total error bound between
T, T ′ ∈ T (LT,mT, dembed, ℓ, LFFN, wFFN, R, κ) with ∥θ − θ′∥∞ ≤ η as

∥T(s)− T′(s)∥∞ = ∥D ◦ BLT
◦ · · ·B1 ◦ (PE + E(s))−D′ ◦ B′

LT
◦ · · · ◦ B′

1(PE + E′(s))∥∞

≤ 2L
2
T+1LFFNU

3LT d
18L2

TLFFN

embed κ6L2
TLFFNm

L2
T

T ℓL
2
T η.

Notice that the total number of parameters in the transformer class T is

|θ| = |θD|+
LT∑
i=1

|θBi
|+ |θE | = dembed + LT(3d

2
embedmT + LFFNw

2
FFN) + dembedD

≤ dembed(D + 1) + LT(3d
2
embedmT + LFFNw

2
FFN).
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Since the number of steps for each parameter is 2κ
η , then the covering number is

N (δ, T , ∥ · ∥∞)

≤

(
2κ · 2L2

T+1LFFNU
3LT d

18L2
TLFFN

embed κ6L2
TLFFNm

L2
T

T ℓL
2
T

δ

)dembed(D+1)+LT (3d2
embedmT+LFFNw2

FFN)

=

(
2L

2
T+2LFFNU

3LT d
18L2

TLFFN

embed κ6L2
TLFFN+1m

L2
T

T ℓL
2
T

δ

)dembed(D+1)+LT (3d2
embedmT+LFFNw2

FFN)

.

For the covering number of L ◦ T , we have

∥L(T, s, y)− L(T′, s, y)∥∞ = (T(s)− yn+1)
2 − (T′(s)− yn+1)

2 ≤ 4R∥T(s)− T′(s)∥∞.

Therefore, the covering number

N (δ,L ◦ T , ∥ · ∥∞)

≤

(
4R · 2κ · 2L2

T+1LFFNU
3LT d

18L2
TLFFN

embed κ6L2
TLFFNm

L2
T

T ℓL
2
T

δ

)dembed(D+1)+LT (3d2
embedmT+LFFNw2

FFN)

=

(
2L

2
T+4LFFNU

3LT d
18L2

TLFFN

embed κ6L2
TLFFN+1m

L2
T

T ℓL
2
TR

δ

)dembed(D+1)+LT (3d2
embedmT+LFFNw2

FFN)

as desired.

E.6 PROOF OF LEMMA 5

Proof of Lemma 5. For convenience, we denote the i-th token in the output by

A(hi) := [A(H)]i =
∑ℓ

j=1 σ(⟨Qhi,Khj⟩)V hj , (34)

This formula illustrates that the attention mechanism performs a weighted average of token values
based on their pairwise interactions.

Let us defined the query, key, and value matrices as

Q =

 Qdata

0 · · · 0 (QI)1,1 (QI)1,2 0
0 · · · 0 (QI)2,1 (QI)2,2 0
0 · · · 0 0 0 1

 and K =

 Kdata

0 · · · 0 (KI)1,1 (KI)1,2 0
0 · · · 0 (KI)2,1 (KI)2,2 0
0 · · · 0 0 0 −C


and V = eie

⊤
dembed

. Here we call Qdata,Kdata ∈ R(dembed−3)×dembed the data kernels, QI :=[
(QI)1,1 (QI)1,2
(QI)2,1 (QI)2,2

]
∈ R2×2 and KI :=

[
(KI)1,1 (KI)1,2
(KI)2,1 (KI)2,2

]
∈ R2×2 the interaction ker-

nels, and C > 0 is a large positive number.

Let us choose QI ,KI such that KI = PIt2
is a projection onto It2 , and QI is a dilation and rotation

of It1 onto It2 , i.e., QIIt1 = CIt2 . Now let us compute A(ht) for t = t1 and t ̸= t1.

For any 1 ≤ t ≤ ℓ, we can write the action Ah on ht as

A(ht) =

ℓ∑
k=1

σ(⟨Qht,Khk⟩)V hk =

ℓ∑
k=1

σ
(
⟨Qdataht,K

datahk⟩+ ⟨QIIt,KIIk⟩ − C
)
ei.
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Case I: t = t1 and k = t2. By construction, we have ⟨QIIt1 ,KIIt2⟩ = ⟨CIt2 , It2⟩ = C. Therefore

σ
(
⟨Qdataht1 ,K

dataht2⟩+ ⟨QIIt1 ,KIIt2⟩ − C
)
= σ

(
⟨Qdataht1 ,K

dataht2⟩+ C − C
)

= σ
(
⟨Qdataht1 ,K

dataht2⟩
)
.

Case II: t = t1 and k ̸= k2. We have ⟨QIIt1 ,KIIk⟩ ≤ ∥QIIt1∥2∥KIIk∥2 = C∥PIt2
Ik∥2 < C.

The last inequality holds since ∥PIt2
Ik∥2 < 1 when k ̸= t2. Thus, for large C, we have

σ
(
⟨Qdataht1 ,K

datahk⟩+ ⟨QIIt1 ,KIIk⟩ − C
)
≤ σ

(
⟨Qdataht1 ,K

datahk⟩+ C∥PIt2
Ik∥2 − C

)
.

By choosing ⟨Qdataht1 ,K
datahk⟩+C∥PIt2

Ik∥2−C < 0, or equivalently, C >
⟨Qdataht1

,Kdatahk⟩
1−∥PIt2

Ik∥2
,

we get

σ
(
⟨Qdataht1 ,K

datahk⟩+ ⟨QIIt1 ,KIIk⟩ − C
)
≤ σ

(
⟨Qdataht1 ,K

datahk⟩+ C∥PIt2
Ik∥2 − C

)
= 0.

Combining Case I and II, we conclude A(ht) = σ
(
⟨Qdataht,K

dataht2⟩
)
ei when t = t1.

Case III: t ̸= t1 and k = t2. We have

⟨QIIt,KIIt2⟩ = ∥QIIt∥2∥KIIt2∥2 cos(θt,t2),

where θt,t2 is the angle between QIIt and KIIt2 . Since t ̸= t1, QIIt ̸= CIt2 , cos(θt,t2) < 1.

Then by choosing C >
⟨Qdataht,K

dataht2
⟩

1−cos(θt,t2 )
, we have

σ
(
⟨Qdataht,K

dataht2⟩+ ⟨QIIt,KIIt2⟩ − C
)
= σ

(
⟨Qdataht,K

dataht2⟩+ C cos(θt,t2)− C
)
= 0

Case IV: t ̸= t1 and k ̸= t2. In this case, we have (⟨Qdataht,K
datahk⟩+ ⟨QIIt,KIIk⟩ − C < 0,

so the argument follows the same way as Case 2.

Combining Case III and Case IV, we conclude A(ht) = 0 when t ̸= t1.

To obtain the bound on the constant C, we need C > max
(

⟨Qdataht1
,Kdatahk⟩

1−∥PIt2
Ik∥2

,
⟨Qdataht,K

dataht2
⟩

1−cos(θt,t2 )

)
.

Both numerators can be bounded by

|⟨Qdataht,K
datahk⟩| ≤ ∥Qdataht∥2∥Kdatahk∥2 ≤ ∥Qdata∥1,1∥ht∥∞∥Kdata∥1,1∥ht∥∞

≤ ∥Qdata∥∞,∞d2embed∥Kdata∥∞,∞d2embedU
2 ≤ d4embedκ

2U2.

The two denominators can be bounded by

1− ∥PIt2
Ik∥2 ≥ 1− cos(

π

2ℓ
) ≥ 1− (1−O(ℓ−2)) = O(ℓ−2),

and

1− cos(θt,t2) = 1− ⟨It+t2−t1 , It2⟩ ≥ 1− cos(
π

2ℓ
) ≥ 1− (1−O(ℓ−2)) = O(ℓ−2).

The O(·) hides the dependency on some absolute constant. So we conclude C = O(d4embedκ
2ℓ2U2).

E.7 PROOF OF LEMMA 6

Proof of Lemma 6. We denote the i-th column/token by hi and j-th component of hi by (hi)j in
the proof. Recall that It is the sinusoid positional encoding, it is easy to see there exists some
v = (v1,v2) ∈ S1 such that It · v > 0 for t = {1, · · · , k1} and It · v < 0 for t = {k1, · · · , ℓ}.
Then for large C, we can construct (all the blank places are filled with zeros) with Cv1, Cv2 appears
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in dembed−2-th and dembed−3-th columns, from row r1 to row r2 for 1 ≤ r1 ≤ r2 ≤ dembed−3.

W1 =



1
. . . Cv1 Cv2

. . .
...

...
1 Cv1 Cv2

. . .
. . .

1
1

1


∈ Rdembed×dembed , b1 = 0 ∈ Rdembed

W2 =



1
. . . −Cv1 −Cv2

. . .
...

...
1 −Cv1 −Cv2

. . .
. . .

1
1

1


∈ Rdembed×dembed , b2 = 0 ∈ Rdembed ,

so that

z1 = σ(W1ht + b1) =



(ht)1
...

(ht)r1−1

σ((ht)r1 + CIt · v)
...

σ((ht)r2 + CIt · v)
(ht)r2+1

...
(ht)dembed−3

I1
t

I2
t
1



if It·v<0
======



(ht)1
...

(ht)r1−1

0
...
0

(ht)r2+1

...
(ht)dembed−3

I1
t

I2
t
1



.

and

z1 = σ(W1ht + b1) =



(ht)1
...

(ht)r1−1

σ((ht)r1 + CIt · v)
...

σ((ht)r2 + CIt · v)
(ht)r2+1

...
(ht)dembed−3

I1
t

I2
t
1



if It·v>0
======



(ht)1
...

(ht)r1−1

(ht)r1 + CIt · v
...

(ht)r2 + CIt · v
(ht)r2+1

...
(ht)dembed−3

I1
t

I2
t
1



.
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Then apply the second layer yields

z2 = W2z1 + b2 =



(ht)1
...

(ht)r1−1

0
...
0

(ht)r2+1

...
(ht)dembed−3

I1
t

I2
t
1



and z2 = W2z1 + b2 =



(ht)1
...

(ht)r1−1

(ht)r1
...

(ht)r2
(ht)r2+1

...
(ht)dembed−3

I1
t

I2
t
1


respectively. This shows (24). Similarly, there exists some v = (v1,v2) ∈ S1 such that It · v < 0
for t = {1, · · · , k1} and It · v > 0 for t = {k1, · · · , ℓ}. Applying the same argument we get (25).

To obtain a bound on the constant C, we need |CIt ·v| > ∥H∥∞. Hence C > ∥H∥∞
|It·v| = O(ℓ∥H∥∞).

E.8 PROOF OF LEMMA 7

Proof of Lemma 7. Given an H = [ht]1≤t≤ℓ, we apply the first layer of FFN with

W1 =

 1
1

1

 ∈ Rdembed×dembed and b1 =



M
...
M
0
0
0

 ∈ Rdembed ,

so that the output after the first layer of FFN is

H1 =


M · · · M
...

...
M · · · M
I1 · · · Iℓ
1 · · · 1

 ∈ Rdembed×ℓ.

Then by Lemma 6, there exists a two-layer FFN such that the output after applying these two layers
become

H3 =


M · · · M 0 · · · 0
...

...
...

...
M · · · M 0 · · · 0
I1 · · · Ik2

Ik2+1 · · · Iℓ
1 · · · 1 1 · · · 1

 ∈ Rdembed×ℓ.

Again by Lemma 6, there exists a two-layer FFN such that the output after applying these two layers
become

H5 =


0 · · · 0 M · · · M 0 · · · 0
...

...
...

...
...

...
0 · · · 0 M · · · M 0 · · · 0
I1 · · · Ik1

Ik1+1 · · · Ik2
Ik2+1 · · · Iℓ

1 · · · 1 1 · · · 1 1 · · · 1

 ∈ Rdembed×ℓ.
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Finally, we apply a FFN with

W6 =



−1
. . .

−1

1
1

1


∈ Rdembed×dembed and b6 = 0 ∈ Rdembed ,

where the entries −1 appear in r1-th row to r2-th row and r1-th column to r2-th column. Therefore,
the output after applying W6 and b6 is

H6 =



0 · · · 0 0 · · · 0 0 · · · 0
...

...
...

...
...

...
0 · · · 0 0 · · · 0 0 · · · 0
0 · · · 0 −M · · · −M 0 · · · 0
...

...
...

...
...

...
0 · · · 0 −M · · · −M 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0
...

...
...

...
...

...
0 · · · 0 0 · · · 0 0 · · · 0
I1 · · · Ik1 Ik1+1 · · · Ik2 Ik2+1 · · · Iℓ
1 · · · 1 1 · · · 1 1 · · · 1



∈ Rdembed×ℓ,

where the entries −M appear in r1-th row to r2-th row and k1-th column to k2-th column. Therefore,
the residual FFN gives the output

FFN(ht) + ht =



ht if t ∈ {1, · · · , k1} ∪ {k2, · · · , ℓ}

(ht)1
...

(ht)r1−1

(ht)r1 −M
...

(ht)r2 −M

(ht)r2+1

...
(ht)dembed−3

It
1



otherwise

as desired.

E.9 BOUNDING THE ERROR II IN (16)

Since 0 ≤ (T∗({xγ
i , y

γ
i }ni=1};x

γ
n+1)− yγn+1)

2 ≤ 4R2, by Hoeffding’s inequality, for any t > 0, it
satisfies

P(Rn,Γ(T
∗)− Es [Rn(T

∗(s))] ≥ t) ≤ e−
t2Γ
8R4 .

Hence with probability at least 1− δ, it satisfies

Rn,Γ(T
∗)− Es [Rn(T

∗(s))] ≤ R2

√
8 log(1/δ)

Γ
.
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Let δ = h2, we get

ES

(
Rn,Γ(T

∗)− Es [Rn(T
∗(s))]

)
≤ O

(√
log(h−1)

Γ
+ h2

)
,

where O(·) hides the dependency on R.

F ADDITIONAL EXPERIMENTS AND DETAILS

H =



xγ
1,1 · · · xγ

1,n xγ
1,n+1 0

xγ
2,1 · · · xγ

2,n xγ
2,n+1 0

xγ
3,1 · · · xγ

3,n xγ
3,n+1 0

yγ1 · · · yγn 0 0
0 · · · · · · · · · 0
I1 · · · · · · · · · Iℓ
1 · · · · · · · · · 1


, (35)

F.1 ADDITIONAL EXPERIMENTAL DETAILS

For the transformer architecture we used for the experiments in Section 4, we fix dembed = 8, LT = 5,
LFNN = 6. The number of attention heads is m = 1 for n = 4, 8, 16, 32. We generate Γ = 50000
for both training and testing. The model is trained with batch size 100, using Adam with learning
rate 0.0005 for 100 epochs.

For experiments in Section 5, we fix dembed = 8, LT = 5, LFNN = 6, and the number of attention
heads m = 2, 4, 8 for n = 16, 64, 256 respectively. We generate Γ = 400, 1600, 6400 for both
training and testing. The model is trained with batch size 100, using Adam with learning rate 0.0005
for 100 epochs.

To make the experiment setup the as close as to our theory suggests, we apply the softmax activation
in the last layer of our transformer model, and ReLU activation in all the layers before the last layer.
The activation function for the feed-forward components are ReLU activation.

The following sentences are used to generate the attention score curves in Figure 3. Sen-
tences are cut in the end so that all the sentences have the same length.

Sentence 1: ”In the quiet town by the river, a curious child spent the afternoon reading stories about
distant galaxies and dreaming of becoming an astronaut one day.”

Sentence 2: ”The professor walked slowly across the lecture hall, carefully explaining how black
holes bend space and time while students scribbled furiously in their notebooks.”

Sentence 3: ”On a rainy evening in Paris, a young artist painted the city’s rooftops in dazzling colors,
imagining how the world might look if dreams could shape reality.”

Sentence 4: ”The spacecraft drifted silently beyond the orbit of Saturn, transmitting faint signals
back to Earth as scientists waited anxiously for news of its discoveries.”

Sentence 5: ”In the heart of the ancient forest, an owl watched quietly from a high branch, while a
fox padded softly across the moss-covered ground below.”

F.2 ADDITIONAL EXPERIMENTAL RESULTS
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Figure 5: More examples of attention scores and Gaussian kernel function with in-context length
n = 4, 8, 16, 32 respectively.
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