
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNDERSTANDING IN-CONTEXT LEARNING ON
STRUCTURED MANIFOLDS: BRIDGING ATTENTION
TO KERNEL METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

While in-context learning (ICL) has achieved remarkable success in natural lan-
guage and vision domains, its theoretical understanding—particularly in the context
of structured geometric data—remains unexplored. This paper initiates a theoreti-
cal study of ICL for regression of Hölder functions on manifolds. We establish a
novel connection between the attention mechanism and classical kernel methods,
demonstrating that transformers effectively perform kernel-based prediction at a
new query through its interaction with the prompt. This connection is validated
by numerical experiments, revealing that the learned query–prompt scores for
Hölder functions are highly correlated with the Gaussian kernel. Building on this
insight, we derive generalization error bounds in terms of the prompt length and the
number of training tasks. When a sufficient number of training tasks are observed,
transformers give rise to the minimax regression rate of Hölder functions on man-
ifolds, which scales exponentially with the intrinsic dimension of the manifold,
rather than the ambient space dimension. Our result also characterizes how the
generalization error scales with the number of training tasks, shedding light on the
complexity of transformers as in-context kernel algorithm learners. Our findings
provide foundational insights into the role of geometry in ICL and novels tools to
study ICL of nonlinear models.

1 INTRODUCTION

The Transformer architecture, first introduced by Vaswani et al. (2017), has fundamentally reshaped
machine learning, driving significant advancements in natural language processing (NLP), computer
vision, and other domains. Unlike traditional feedforward and convolutional neural networks,
transformers employ an attention mechanism that allows each token to interact with others and
selectively aggregate information based on learned relevance scores. This mechanism enables more
flexible and context-aware representation learning. Transformers now serve as the foundational
architecture for large language and video generation models, such as GPT (Achiam et al., 2023),
BERT (Devlin, 2018), SORA (Brooks et al., 2024) and their successors.

These empirical successes have demonstrated the in-context learning (ICL) capability of transformers,
in which models can perform learning tasks by conditioning on a given set of examples, known as a
prompt, provided at inference time, without any additional parameter updates Brown et al. (2020);
Radford et al. (2019); Liu et al. (2023); Garg et al. (2022). The ICL phenomenon of transformers
has also sparked substantial research interest in developing theoretical explanations of its underlying
mechanisms. In Bai et al. (2023); Zhang et al. (2024); Von Oswald et al. (2023); Akyürek et al.
(2022); Cole et al. (2024), transformers are proved for ICL of linear models, including least squares,
ridge regression, Lasso, generalized linear models and linear inverse problems.

Beyond linear models, transformers are studied for nonlinear models in Yun et al. (2019); Takakura
& Suzuki (2023); Gurevych et al. (2022); Havrilla & Liao (2024); Shen et al. (2025), with the goal
of learning a single function, classifier, or sequence-to-sequence mapping. Specifically, Yun et al.
(2019) proved that transformer models can universally approximate continuous sequence-to-sequence
functions with compact support, while the network size grows exponentially with respect to the
sequence dimension. Takakura & Suzuki (2023) studied the approximation and estimation ability of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

transformers for sequence-to-sequence functions with anisotropic smoothness on infinite-dimensional
inputs. Gurevych et al. (2022) studied binary classification with transformers when the posterior
probability function exhibits a hierarchical composition model with Hölder smoothness. In Havrilla
& Liao (2024); Shen et al. (2025), transformers are proved to leverage low-dimensional geometric
structures of data (Havrilla & Liao, 2024) or machine learning tasks (Shen et al., 2025). While
these works focus on a single learning task, ICL involves multiple learning tasks performed within
the same model by leveraging prompts to adapt to each task on the fly, highlighting a form of task
generalization without explicit retraining.

A theoretical understanding of ICL in transformers—especially in settings involving structured data
with a geometric prior—remains limited and largely unexplored. In this work, we initiate a theoretical
study of ICL for manifold regression. A manifold hypothesis is incorporated into our regression
model to leverage low-dimensional geometric structures of data. Recent works have demonstrated
that, under a manifold hypothesis of data, feedforward and convolutional residual networks give rise
to a sample complexity depending on the intrinsic dimension (Shaham et al., 2018; Chen et al., 2022;
2019; Liu et al., 2021; Nakada & Imaizumi, 2020; Schmidt-Hieber, 2019). Empirical evidence has
shown that the neural scaling laws of transformers depend on the intrinsic dimension of data (Kaplan
et al., 2020; Sharma & Kaplan, 2022), while theoretical justifications, especially for ICL, are limited.

A central insight of this paper is the interpretation of transformers as learning kernel methods for
function regression. Our study establishes a novel connection between the attention mechanism
and classical kernel methods, showing that token interactions within attention can be interpreted
as constructing an interaction kernel used to perform regression. Based on this connection, we
construct a transformer neural network to exactly implement kernel regression, which builds an
approximation theory of transformers for in-context manifold regression. To be more precise, let
s = {x1, f(x1),x2, f(x2), . . . ,xn, f(xn);xn+1} be a prompt, we explicitly construct a transformer
T∗

h to exactly implement the kernel regression estimator Kh(s) such that

T∗
h (s) = Kh(s) :=

∑n
i=1 exp (−∥xn+1 − xi∥2/h2)f(xi)∑n

i=1 exp (−∥xn+1 − xi∥2/h2)
, (1)

where the Gaussian kernel of bandwidth h > 0 is used. Our construction shows that transformer-
based ICL can implement kernel regression with zero approximation error. A formal statement can
be found in Lemma 1. This perspective not only illuminates the internal workings of transformers
in the in-context regression setting, but also motivates a theoretical framework for analyzing their
generalization performance. Moreover, this connection is validated by numerical experiments on the
regression of Hölder functions, revealing that the learned query–prompt scores in the last transformer
layer are highly correlated with the Gaussian kernel.

Based on this key insight, our theoretical contribution for the generalization error of the transformer-
based ICL can be summarized as follows: Let M be a d-dimensional compact Riemannian manifold
in RD. We consider the ICL of α-Hölder (0 < α ≤ 1) functions on M given a prompt of length
n. During training, one observes the regression of Γ functions/tasks, where each function/task is
provided on a prompt of length n. At inference time, a prompt of length n is given for a new α-Hölder
function on M, and the goal is to predict the function value at a new input. Under this setting, we
prove that the squared generalization error of transformer-based ICL is upper bounded by

C1

(
nD3Γ− 1

2

√
log(nDΓ)

)
+ C2

(
n− 2α

2α+d [log n]1+
3d
4

)
, (2)

with constants C1, C2. A formal statement of our result can be found in Theorem 1. Our result sheds
light on theoretical understandings of transformer-based ICL in the following aspects:

• Scaling Law of Transformers as Algorithm Learners. The first error term in (2) characterizes
the scaling law of transformers as in-context kernel algorithm learners. When a transformer is trained
on Γ regression tasks, it can learn a kernal regression algorithm and generalize to a new task, with the
generalization error given in the first term in (2).

• Minimax Regression Error with a Prompt of Length n. The second error term in (2) indicates
the scaling law of transformers to make predictions based on a Prompt of Length n. It matches
the lower bound of n− 2α

2α+d (Györfi et al., 2006) for the regression of Hölder functions up to a log
factor , and thereby demonstrating that transformers can achieve near-optimal performance if Γ is
large. Specifically, if Γ ≳ n

4α
2α+d+δn2D6 log(nD) for some δ > 0, then the second error term in (2)

dominates the first term.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• Dependence on the Intrinsic Dimension. By leveraging low-dimensional geometric structures of
data, the error in (2) has an exponential dependence on d rather than the ambient dimension D. This
improvement offers foundational insight into the role of geometry in ICL.

Organization. In this paper, we present some preliminaries in Section 2 and the problem setup in
Section 3. We bridge attention to kernel methods in Section 4 and present the generalization error
bound in Section 5. Related works are discussed in Section 6. Finally, we make conclusion and
discuss the limitation of our paper in Section 7.

Notation. Throughout this paper, vectors are denoted by boldface letters, while scalars and matrices
are denoted by standard (non-bold) letters. For a vector x ∈ RD, we use ∥x∥ to denote its Euclidean
norm. For a function f : Ω → R, we denote its L∞ norm as ∥f∥L∞(Ω) := supx∈Ω |f(x)|.

2 PRELIMINARIES

In this section, we introduce preliminary definitions about manifolds, Hölder functions on manifolds,
and the transformer neural networks used in this paper.

Manifolds and Hölder Functions on Manifolds. In this paper, we consider that data are sampled in
a compact d-dimensional Riemannian manifold M isometrically embedded in RD. Mathematically,
a d-dimensional manifold M is a topological space where each point has a neighborhood that is
homeomorphic to an open subset of Rd. Furthermore, distinct points in M can be separated by
disjoint neighborhoods, and M has a countable basis for its topology. More definitions on geodesic
distance and the reach of manifold are in Appendix B.1.

This work considers in-context regression of Hölder functions on M.
Definition 1 (Hölder function on a manifold). A function f : M → R is Hölder continuous with
Hölder exponent α ∈ (0, 1] and Hölder constant L > 0 if

|f(x)− f(x′)| ≤ LdαM(x,x′) for all x,x′ ∈ M.

Attention and Transformer Blocks. We consider ICL using transformer-based networks struc-
ture Vaswani et al. (2017) in this paper. We briefly review attention and multi-head attention here.
Definition 2 (Attention and Multi-head Attention). Attention with the Query, Key, Value matrices
Q,K, V ∈ Rdembed×dembed is defined as

AK,Q,V (H) = V Hσ((KH)⊤QH). (3)

The multi-head attention (MHA) with m heads is given by

MHA(H) =
∑m

j=1 VjHσ((KjH)⊤QjH). (4)

We want to point out that in this paper we apply ReLU as the activation function of the attention
modules from the first to the penultimate layers in the transformer, and apply Softmax for the last
layer. A transformer block is a residual composition of the form

B(θ;H) = FFN(MHA(H) +H) +MHA(H) +H. (5)

where FFN is a feed-forward neural network operating tokenwise on the input.

3 IN-CONTEXT REGRESSION ON MANIFOLD

Problem Setup. Empirical evidence from image (Roweis & Saul, 2000; Tenenbaum et al., 2000; Pope
et al., 2021) and language datasets (Sharma & Kaplan, 2022; Havrilla & Liao, 2024). suggests the
presence of underlying low-dimensional geometric structures in high-dimensional data. Motivated by
this observation, our study adopts a geometric prior by assuming that the data x lies on a Riemannian
manifold M of intrinsic dimension d, isometrically embedded in RD with d ≪ D.

With this geometric prior, we consider in-context learning for regression of functions defined on M.
More precisely, given a prompt/task as

s = {x1, y1,x2, y2, . . . ,xn, yn;xn+1} with yi = f(xi), (6)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where xi’s are i.i.d. samples from a distribution ρx supported on M and f is sampled from ρf ,
a distribution in the function space {f : M → R}, the goal is to predict f(xn+1) based on the
following in-context learning problem.

Given {fγ}γ=1,...,Γ
i.i.d.∼ ρf and the corresponding training set S := {sγ}Γγ=1 provided by sγ =

{xγ
1 , y

γ
1 ,x

γ
2 , y

γ
2 , . . . ,x

γ
n, y

γ
n;x

γ
n+1, y

γ
n+1} with {xγ

i }
i.i.d.∼ ρx and yγi = fγ(xγ

i), we minimize the
empirical risk:

T̂ ∈ argmin
Tθ∈T

Rn,Γ(Tθ) where Rn,Γ(Tθ) :=
1

Γ

Γ∑
γ=1

(
Tθ({xγ

i , y
γ
i }

n
i=1};x

γ
n+1)− yγn+1

)2
(7)

where Tθ is a transformer neural network parameterized by θ and T is a transformer network class to
be specified. Our goal is to study the squared generalization error of T̂ on a random test sample s
(independent of training data) in (6):

Rn(T̂(s)) := (T̂({xi, yi}ni=1};xn+1)− f(xn+1))
2. (8)

This generalization error can be characterized by the mean squared generalization error defined as:

Rn(T̂) = ESEs

[
Rn(T̂(s))

]
(9)

where the expectation Es is taken for the test sample s and the expectation ES is taken for the joint
distribution of the training samples.

Transformer Network Class. To describe the ICL problem more precisely, let us specify the
transformer network class. We define a transformer network Tθ(·) with weights parametrized by θ as
consisting of an embedding layer, a positional encoding module, a sequence of transformer blocks,
and a decoding layer, i.e., for an input s defined in (6)

Tθ(s) := DE ◦ BLT
◦ · · · ◦ B1 ◦ (PE + E(s)), (10)

Here E is a linear embedding and PE is the operation of adding positional encoding (see their
definitions in Appendix B.2). PE + E (s) embeds s as a matrix H

H = PE+ E (s) =


x1 · · · xn xn+1 0
y1 · · · yn 0 0
0 · · · · · · · · · 0
I1 · · · · · · · · · Iℓ
1 · · · · · · · · · 1

 ∈ Rdembed×ℓ = R(D+5)×ℓ. (11)

In matrix H , each column is a token, and each token has dimension dembed = D+5. The first D+1
rows are data terms and the (D + 2)th row is 0. The (D + 3)-th and (D + 4)-th rows contain the
well-known sinusoidal positional encodings Ij = (cos(jπ2ℓ), sin(

jπ
2ℓ))

⊤, which determines how each
token will interact with another through the attention mechanism. It is crucial to note that the data
terms are dynamic, whereas the positional encoding and constant terms remain static. Furthermore,
B1, · · · ,BLT

: Rdembed×ℓ → Rdembed×ℓ are the transformer blocks (with ReLU activation from the
first to the penultimate layers and Softmax activation for the last layer in the attention module) where
each block consists of the residual composition of multi-head attention layers and feed-forward layers.
DE : Rdembed×ℓ → R is the decoding layer which outputs the desired element.

Our ICL problem is considered in the following networks class:
Definition 3 (Transformer Network Class). The transformer network class with weights θ is

T (LT,mT, dembed, ℓ, LFFN, wFFN, R, κ)

=
{
Tθ(·) | Tθ(·) has the form (10) with LT transformer blocks, at most mT attention heads in

each block, embedded dimension dembed, number of hidden tokens ℓ, and LFFN layers
of feed-forward networks with hidden width wFFN, with output ∥Tθ(·)∥L∞(RD) ≤ R

and weight magnitude ∥θ∥∞ ≤ κ
}
.

Throughout the paper, we will shorten the notation T (LT,mT, dembed, ℓ, LFFN, wFFN, R, κ) as T
as long as there is no ambiguity in the context.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 BRIDGING ATTENTION TO KERNEL METHODS

One key insight of this paper is to interpret transformers used in ICL as a mechanism for learning
kernel methods in function regression. This interpretation not only illuminates the internal workings
of transformers in the in-context regression setting, but also motivates a theoretical framework to
understand transformers in ICL.

Constructing a Transformer to Implement Kernel Method. The classical (Nadaraya–Watson)
kernel estimator (Nadaraya, 1964; Watson, 1964) is a well-established way for the estimation of
f(xn+1) given {(xi, f(xi))}ni=1. It outputs

Kh(s) :=

∑n
i=1 Kh(xn+1 − xi)yi∑n
i=1 Kh(xn+1 − xi)

, with yi = f(xi). (12)

where we choose Kh(u) = e−
∥u∥2

h2 to be the unnormalized Gaussian kernel with bandwidth h > 0.
The transformer’s attention mechanism can be interpreted as a form of kernel method, where the
attention scores function analogously to kernel-based importance weights over input tokens. Our idea
is to first use the interaction mechanism in attention to construct several layers of transformer blocks
which takes the input H in (11) and outputs the following matrix:

H =


x1 · · · xn xn+1 xn+1 − x1 · · · xn+1 − xn

y1 · · · yn 0 −∥xn+1−x1∥2

h2 · · · −∥xn+1−xn∥2

h2

0 · · · · · · · · · y1 · · · yn
I1 · · · · · · · · · · · · · · · I2n+1

1 · · · · · · · · · · · · · · · 1

 ∈ R(D+5)×(2n+1). (13)

We will present the construction details which operates on the H in (11) and gives rise to the H in
(13) in Appendix E.1. This operation accounts for the first to the penultimate layer in our transformer
network. In the final layer, we apply a single-head attention A with a mask from the (n+ 2)-th to the
(2n+ 1)-th token (with certain sparse query, key matrices Q,K and value matrix V = eD+1e

⊤
D+2)

such that the (n+ 1)-th output token is

[A(H)]n+1 =
∑2n+1

j=n+2 softmax (⟨Qhn+1,KH⟩)j V hj

=
∑n

j=1
e−∥xn+1−xj∥

2/h2∑n
j=1 e−∥xn+1−xj∥2/h2 · (yjeD+1) = Kh(s) · eD+1.

Here, we denote ej as the elementary vector with all entries zero except for the j-th entry, which is 1.
Therefore, the residual attention gives

A(H) +H =


x1 · · · xn xn+1 xn+1 − x1 · · · xn+1 − xn

y1 · · · yn Kh(s) −∥xn+1−x1∥2

h2 · · · −∥xn+1−xn∥2

h2

0 · · · · · · · · · y1 · · · yn
I1 · · · · · · · · · · · · · · · I2n+1

1 · · · · · · · · · · · · · · · 1

 ∈ R(D+5)×(2n+1),

where the kernel estimator Kh(s) is realized in (D+1)-th row and (n+1)-th column. The decoding
operation DE produces this element in the (D + 1)-th row and (n+ 1)-th column as the output.

This connection between the transformer network and the kernel estimator in (12) can be rigorously
established, that is, We prove that transformers can exactly implement the kernel estimator (12)
without any error. We summarize it as the following lemma, whose proof is in Appendix E.1.
Lemma 1. Let M ⊂ [−b, b]D. Suppose the prompt s in (6) satisfies: the xi’s are i.i.d. samples
from a distribution ρx supported on M and f : M → R is bounded, i.e. ∥f∥L∞(M) ≤ R. Let
Kh(·) be the empirical kernel estimator defined in (12). Then there exists a transformer network
T∗

h ∈ T (LT ,mT , dembed, ℓ, LFFN, wFFN, R, κ) with parameters

LT = 5, mT = nD, dembed = D + 5, ℓ = 2n+ 1,

LFFN = O(1), wFFN = D + 5, κ = O
(
D8n2b8R4/h8

)
such that for any sample s in the form of (6), we have

T∗
h (s) = Kh(s). (14)

The notation O(·) hides absolute constants.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 1: Examples of attention scores and Gaussian kernel with in-context length n = 8 (first
column), n = 16 (second column), n = 32 (third column) respectively. The top and bottom rows are
the plots at two different samples. This figure shows a strong correlation between attention scores
and Gaussian kernel.

n = 4 n = 8 n = 16

Figure 2: Histograms of the Pearson correlation for n = 4, 8, 16 respectively. The ones with negative
correlation are not included in this plot, while they only account for a small amount. The total counts
for positive correlation are 4588, 4598, 4771 out of a total of 5000 samples in each case respectively.

Remark 1 (Universality). In Lemma 1, the network architecture and weight parameters of T∗
h are

universal for different functions f and points {xi}n+1
i=1 . The weight parameters only depend on

D,n, b, R, h. This construction indicates that transformer can universally implement the kernel
regression algorithm with zero approximation error.

Validating the Correlation between Attention Scores and Kernel Function. To validate that
transformer does indeed perform kernel regression implicitly, we conduct simulated experiment to
compare the attention scores in the last layer of the trained transformer and the Gaussian kernel
e−∥xn+1−xi∥2

to see if there is a strong correlation between the two.

In this simulation, we fix M = S2 (the 2-dimensional sphere), and we consider the target function
f : S2 → R to be the linear combination of the real part of the first 10 spherical harmonics on the
two-dimensional sphere S2. More precisely, let s1(θ, ϕ), · · · , s10(θ, ϕ) be the real part of the first 10
spherical harmonics on S2. For each task, we uniformly random sample the coefficients wγ

k ∈ [0, 1],
and θγi ∈ [0, π], ϕγ

i ∈ [0, 2π], and generate yγi =
∑10

k=1 w
γ
ksk(θ

γ
i , ϕ

γ
i), where i = 1, · · · , n

(in-context length) and γ = 1, · · · ,Γ (number of training tasks). Let xγ
1,i = sin(θγi) cos(ϕ

γ
i),

xγ
2,i = sin(θγi) sin(ϕ

γ
i), x

γ
3,i = cos(θγi). For each task, the training sample writes as the embedding

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Average Pearson correlation coefficients (± standard deviation) and the corresponding
p-values (± standard deviation)

In-context length n Pearson correlation coefficient p-value

4 0.86 ± 0.21 0.14 ± 0.21
8 0.75 ± 0.22 0.09 ± 0.19

16 0.69 ± 0.22 0.06 ± 0.17
32 0.67 ± 0.19 0.03 ± 0.12

matrix H shown in (35) in the Appendix F. We fix the number of training and testing tasks Γ = 50000
and vary the in-context length n = 4, 8, 16, 32.

Figure 3: Softmax attention scores for real
language data.

Figure 1 plots the attention scores (after sorting from
the highest to the lowest value) in the last layer of the
trained transformer and compares it against the Gaus-
sian kernel (sorted according to the corresponding atten-
tion scores), which demonstrates a strong correlation
between the two quantities. The distribution of the Pear-
son correlation values are plotted in Figure 2, we can
see that most correlations are concentrated around 0.8,
showing that the attention score and Gaussian kernel
are highly correlated with each other. More exemplar
plots of attention scores and kernel function scores are
provided in Figure 5 in Appendix F. The average Pear-
son correlation coefficients between the two scores and
the corresponding p-values are also reported in Table
1. The results are averaged over 5000 independent ran-
dom testing samples. More details of the experimental
setup are provided in Appendix F.

To further test how the curve of attention scores look like for real language data, we input five user
generated sentences (with length about 20 - 30) into the pretrained GPT2 (Radford et al., 2019) and
then plot the attention score for one of the heads in the model’s last layer after sorting the score of
each word from highest to the lowest value. The curves in Figure 3 shows that the attention scores for
the real language data do exhibit some kernel shape.

5 TRANSFORMER-BASED ICL GENERALIZATION ERROR BOUND

Based on the connection between transformer and kernel methods, we derive a generalization error
bounds for transformer-based ICL involving structured data. By imposing a geometric prior, we
assume that x is sampled on a low-dimensional manifold M, and f is a function on the manifold M.
This assumption leverages low-dimensional geometric structures in data which have been empirically
observed in image (Roweis & Saul, 2000; Tenenbaum et al., 2000; Pope et al., 2021) and language
datasets (Sharma & Kaplan, 2022; Havrilla & Liao, 2024).
Assumption 1. Let M be a compact d-dimensional Riemannian manifold isometrically embedded
in RD, M ⊂ [−b, b]D for some b > 0, and M has a positive reach τM > 0 (reach is defined in
Appendix B.1). Suppose ρx is the uniform distribution on M.
Assumption 2. Let α ∈ (0, 1], R,L > 0, and ρf be a probability distribution in the function space
F := {f : M → R : f is α-Hölder with Hölder constant no more than L, and ∥f∥L∞(M) ≤ R}.

Our main theorem about the generalization error of transformer-based ICL is given below.
Theorem 1. Suppose M, ρx and f , ρf satisfy Assumptions 1 and 2 respectively. If we choose the
transformer network class T (LT,mT, dembed, ℓ, LFFN, wFFN, R, κ) with parameters

LT = 5, mT = O(Dn), dembed = D + 5, ℓ = 2n+ 1,

LFFN = O(1), wFFN = D + 5, κ = O
(
D8n

4α+2d+8
2α+d b8R2

)
,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

where O(·) hides the dependency on the absolute constants. Then the minimizer T̂ defined in (7)
satisfies the squared generalization error bound:

Rn(T̂) ≤ C1

(
nD3Γ− 1

2

√
log(nDΓ)

)
+ C2

(
n− 2α

2α+d log1+
3d
4 n
)
, (15)

where the constant C1 depends on d, α, and constant C2 depends on d, α, L,R, τM.

The proof roadmap of Theorem 1 is presented in Appendix C and more details of the proof are
provided in Appendix E. Lemma 1 is utilized as a key step to prove Theorem 1. Theorem 1 also offers
insights into several key aspects of transformer-based ICL, which is discussed in the introduction.

Validating the Generalization Error Bound. We conduct simulated experiments to validate our
generalization error bound (15) in Theorem 1 while varying n (prompt length) and Γ (number of
training tasks). The data generating procedure is the same as the experiments in Section 4. Figure
4 plots the average Mean Squared Error (MSE) over 30 repetitions on the testing data against the
number of tasks Γ and the prompt length n. More details of the experiments are given in Appendix F.

The top row of Figure 4 shows the testing MSE with respect to Γ in log-log scale when the prompt
length is fixed to be n = 16, 64, 256 respectively. In log-log scale, the slope initially coincides
with the theoretical slope of −0.5 in the first term of (15), and then slightly shifts above it. This is
consistent with our error bound in (15), as when Γ increases and n is fixed, the second term starts to
dominate the total error. In the bottom row of Figure 4, we plot the logarithm of testing MSE in terms
of the prompt length n when the number of tasks is fixed to be Γ = 400, 1600, 6400 respectively.
In our error bound (15), both terms depend on n while the first term increases and the second term
decreases as n increases. The testing MSE decays as n increases, and the rate of decay depends on
the balance of the two terms in (15). The larger Γ is, the more dominant the second term in (15) is,
and therefore the rate of convergence of the testing MSE is faster as n increases. By comparing the
three plots in the bottom row of Figure 4 with Γ = 400, 1600, 6400 respectively, we observe a faster
rate of convergence with respect to n when Γ is larger, which is consistent with our theory.

Figure 4: Top row: MSE v.s. number of tasks Γ (with fixed prompt length n = 16, 64, 256,
respectively). Bottom row: MSE v.s. prompt length n (with fixed tasks Γ = 400, 1600, 6400
respectively). All plots are in log10-log10 scale.

6 RELATED WORKS

We next discuss some connection and comparison of our result with existing works on transformers.
This paper highlights bridging the attention mechanism and classical kernel methods. It provides a
new interpretation of transformers in ICL, and new tools to address nonlinear models in transformer-
based ICL, which allows us to move beyond linear models studied in Bai et al. (2023); Zhang et al.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(2024); Von Oswald et al. (2023); Akyürek et al. (2022); Cole et al. (2024). This novel tool also
allows us to address multiple tasks in ICL, in contrast to single task learning by transformers studied
in Yun et al. (2019); Takakura & Suzuki (2023); Gurevych et al. (2022); Havrilla & Liao (2024);
Shen et al. (2025).

The most closely related work to this paper is Kim et al. (2024), which studied in-context regression of
Besov functions in RD. Kim et al. (2024) derived approximation and generalization error bounds for
a transformer composed of a deep feedforward network and one linear attention layer. There are two
main differences between this paper and Kim et al. (2024): 1) Our transformer network has 5 layers
of multi-head attention, and each multi-head attention can be wide, i.e. with nD attention heads.
The feedforward layers in each attention is of a constant order. Such a wide transformer architecture
shares some similarity to those used in large language models (LLMs). For example, GPT-2 Small
only has 12 layers with 117 million parameters (Radford et al., 2019). Our approximation theory
is developed by fully leveraging the attention mechanism. In contrast, Kim et al. (2024) utilized
one linear attention layer and a deep feedforward network for approximation. 2) By incorporating
low-dimensional geometric structures of data, we prove error bounds with an exponential dependence
on the intrinsic dimension d, while the error bound in Kim et al. (2024) has an exponential dependence
on the ambient dimension D.

Our work is also connected with Li et al. (2023), which derived generalization errors for transformers
as in-context algorithm learners. While the framework in Li et al. (2023) is general, it does not
address some key components in this paper, such as our novel approximation theory bridging the
attention mechanism to kernel methods, and our covering number calculation.

The connection between the attention mechanism and kernel methods has been explored in prior
work, including Tsai et al. (2019); Wright & Gonzalez (2021); Yu et al. (2024); Lu & Yu (2025);
Cheng et al. (2023); Han et al. (2025). In particular, the work by Han et al. (2025) takes the kernel
perspective to understand ICL and empirically demonstrates that the attention and hidden features in
LLMs match the behaviors of a kernel regression. While our work and these prior studies all draw on
the connection between the attention mechanism and kernel methods, our theoretical justification is
novel. In particular, the construction of transformers to implement the kernel method in Lemma 1
and the generalization error bound in Theorem 1 have not been addressed in literature. Our paper
provides a theoretical framework to understand transformer-based ICL with geometric structures.

7 CONCLUSION AND DISCUSSION

Conclusion. This work provides a theoretical foundation for understanding in-context learning
(ICL) with transformers in the setting of manifold-structured regression tasks. By establishing a
novel connection between the attention mechanism and classical kernel regression, we interpret
transformers as implicitly learning kernel-based algorithms for function regression. Our findings
offer new theoretical insights into the algorithmic nature of transformers in ICL, establish a rigorous
approximation and generalization theory for manifold regression, and provide tools for analyzing
nonlinear models under geometric structure.

Our analysis derives sharp generalization error bounds for α-Hölder functions on compact Riemannian
manifolds, revealing how the performance of transformers in ICL depends on the prompt length n,
the number of training tasks Γ, and the intrinsic geometry of the data. Notably, our results show that
transformers can achieve the minimax optimal regression rate up to logarithmic factors when Γ is
sufficiently large. Furthermore, the derived bounds depend exponentially on the intrinsic dimension
d of the manifold, rather than the ambient dimension D, highlighting the critical role of geometric
priors in achieving efficient generalization.

Discussion. Our theoretical analysis focuses on α-Hölder regression with fixed-length prompts and
a large number of training tasks, under idealized assumptions such as exact kernel implementation
via attention. Extending the framework to broader function classes, variable prompt lengths, noisy
data or limited data remains an open challenge. Despite these limitations, our work reveals how
geometric structure can enhance generalization in ICL and draws a principled connection between
attention mechanisms and kernel methods. These insights may inform the design of more efficient
and interpretable models in domains where geometry plays a central role, such as scientific computing
robotics, and many others where geometric structure is prevalent.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility statement To support reproducibility of our work, we provide comprehensive
details across the main paper and supplementary materials. All theoretical results are accompanied
by clear assumptions and complete proofs in the appendix. For experimental results, we describe
the datasets used, preprocessing steps, and hyperparameter settings in both the main text and the
appendix. Our implementation, including training and evaluation scripts, is available as an anonymous
downloadable source code submitted in the supplementary materials.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,
2022.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection, 2023.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
generation models as world simulators. 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Minshuo Chen, Haoming Jiang, Wenjing Liao, and Tuo Zhao. Efficient approximation of deep relu
networks for functions on low dimensional manifolds. Advances in neural information processing
systems, 32, 2019.

Minshuo Chen, Wenjing Liao, Hongyuan Zha, and Tuo Zhao. Distribution approximation and statisti-
cal estimation guarantees of generative adversarial networks. arXiv preprint arXiv:2002.03938,
2020.

Minshuo Chen, Haoming Jiang, Wenjing Liao, and Tuo Zhao. Nonparametric regression on low-
dimensional manifolds using deep relu networks: Function approximation and statistical recovery.
Information and Inference: A Journal of the IMA, 11(4):1203–1253, 2022.

Xiang Cheng, Yuxin Chen, and Suvrit Sra. Transformers implement functional gradient descent to
learn non-linear functions in context. arXiv preprint arXiv:2312.06528, 2023.

Frank Cole, Yulong Lu, Riley O’Neill, and Tianhao Zhang. Provable in-context learning of linear
systems and linear elliptic pdes with transformers. arXiv preprint arXiv:2409.12293, 2024.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Richard M Dudley. The sizes of compact subsets of hilbert space and continuity of gaussian processes.
Journal of Functional Analysis, 1(3):290–330, 1967.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Iryna Gurevych, Michael Kohler, and Gözde Gül Şahin. On the rate of convergence of a classifier
based on a transformer encoder. IEEE Transactions on Information Theory, 68(12):8139–8155,
2022.

László Györfi, Michael Kohler, Adam Krzyzak, and Harro Walk. A distribution-free theory of
nonparametric regression. Springer Science & Business Media, 2006.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chi Han, Ziqi Wang, Han Zhao, and Heng Ji. Understanding emergent in-context learning from a
kernel regression perspective. Transactions on Machine Learning Research, 2025.

Alex Havrilla and Wenjing Liao. Predicting scaling laws with statistical and approximation theory
for transformer neural networks on intrinsically low-dimensional data. In Advances in Neural
Information Processing Systems, 2024.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. The collected
works of Wassily Hoeffding, pp. 409–426, 1994.

Heinz Hopf and W. Rinow. Über den begriff der vollständigen differentialgeometrischen fläche.
Commentarii Mathematici Helvetici, 3:209–225, 1931. Reprinted in Selecta Heinz Hopf, Heraus-
gegeben zu seinem 70. Geburtstag von der Eidgenössischen Technischen Hochschule Zürich, 1964,
pp. 64–79.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Juno Kim, Tai Nakamaki, and Taiji Suzuki. Transformers are minimax optimal nonparametric
in-context learners. Advances in Neural Information Processing Systems, 37:106667–106713,
2024.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
as algorithms: Generalization and stability in in-context learning. In International conference on
machine learning, pp. 19565–19594. PMLR, 2023.

Wenjing Liao and Mauro Maggioni. Adaptive geometric multiscale approximations for intrinsically
low-dimensional data. Journal of machine learning research, 20(98):1–63, 2019.

Hao Liu, Minshuo Chen, Tuo Zhao, and Wenjing Liao. Besov function approximation and binary
classification on low-dimensional manifolds using convolutional residual networks. In International
Conference on Machine Learning, pp. 6770–6780. PMLR, 2021.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM computing surveys, 55(9):1–35, 2023.

Fei Lu and Yue Yu. Transformer learns the cross-task prior and regularization for in-context learning.
arXiv preprint arXiv:2505.12138, 2025.

Mauro Maggioni, Stanislav Minsker, and Nate Strawn. Multiscale dictionary learning: non-asymptotic
bounds and robustness. The Journal of Machine Learning Research, 17(1):43–93, 2016.

E. A. Nadaraya. On estimating regression. Theory of Probability and Its Applications, 9(1):141–142,
1964. doi: 10.1137/1109020.

Ryumei Nakada and Masaaki Imaizumi. Adaptive approximation and generalization of deep neural
network with intrinsic dimensionality. Journal of Machine Learning Research, 21(174):1–38,
2020.

Partha Niyogi, Stephen Smale, and Shmuel Weinberger. Finding the homology of submanifolds with
high confidence from random samples. Discrete & Computational Geometry, 39:419–441, 2008.

Phillip E. Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic
dimension of images and its impact on learning. ArXiv, abs/2104.08894, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embedding.
science, 290(5500):2323–2326, 2000.

Johannes Schmidt-Hieber. Deep relu network approximation of functions on a manifold. arXiv
preprint arXiv:1908.00695, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Uri Shaham, Alexander Cloninger, and Ronald R Coifman. Provable approximation properties for
deep neural networks. Applied and Computational Harmonic Analysis, 44(3):537–557, 2018.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

Utkarsh Sharma and Jared Kaplan. Scaling laws from the data manifold dimension. J. Mach. Learn.
Res., 23(1), jan 2022. ISSN 1532-4435.

Zhaiming Shen, Alex Havrilla, Rongjie Lai, Alexander Cloninger, and Wenjing Liao. Transformers
for learning on noisy and task-level manifolds: Approximation and generalization insights. arXiv
preprint arXiv:2505.03205, 2025.

Shokichi Takakura and Taiji Suzuki. Approximation and estimation ability of transformers for
sequence-to-sequence functions with infinite dimensional input. In International Conference on
Machine Learning, pp. 33416–33447. PMLR, 2023.

Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan Salakhut-
dinov. Transformer dissection: a unified understanding of transformer’s attention via the lens of
kernel. arXiv preprint arXiv:1908.11775, 2019.

Aad W Van Der Vaart and Jon A Wellner. Weak convergence. In Weak convergence and empirical
processes, pp. 16–28. Springer, New York, NY, USA, 1996.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, 2017.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

G. S. Watson. Smooth regression analysis. Sankhyā: The Indian Journal of Statistics, Series A, 26(4):
359–372, 1964.

Matthew A Wright and Joseph E Gonzalez. Transformers are deep infinite-dimensional non-mercer
binary kernel machines. arXiv preprint arXiv:2106.01506, 2021.

Yue Yu, Ning Liu, Fei Lu, Tian Gao, Siavash Jafarzadeh, and Stewart A Silling. Nonlocal attention
operator: Materializing hidden knowledge towards interpretable physics discovery. Advances in
Neural Information Processing Systems, 37:113797–113822, 2024.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are trans-
formers universal approximators of sequence-to-sequence functions? In International Conference
on Learning Representations, 2019.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
Journal of Machine Learning Research, 25(49):1–55, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT for minor language editing, such as grammar correction and improving sentence
flow. The scientific content and all writing were created by the authors.

B MORE DEFINITIONS

B.1 GEODESIC DISTANCE, REACH OF THE MANIFOLD AND COVERING NUMBER

With the induced metric on M, the geodesic distance on the manifold between x,x′ ∈ M is defined
as

dM(x,x′) := inf{|γ| : γ ∈ C1([t, t′]), γ : [t, t′] → M, γ(t) = x, γ(t′) = x′},

where the length is defined by |γ| :=
∫ t′

t
∥γ′(s)∥2ds. The existence of a length-minimizing geodesic

γ : [t, t′] → M between any two points x = γ(t),x′ = γ(t′) is guaranteed by the Hopf–Rinow
theorem (Hopf & Rinow, 1931).
Definition 4 (Medial Axis). Let M ⊆ RD be a connected and compact d-dimensional submanifold.
Its medial axis is defined as

Med(M) := {x ∈ RD | ∃p ̸= q ∈ M, ∥p− x∥2 = ∥q− x∥2 = inf
z∈M

∥z− x∥2},

which contains all points x ∈ RD with set-valued orthogonal projection πM(x) = argminz∈M ∥x−
z∥2.
Definition 5 (Local Reach and Reach of a Manifold). The local reach for v ∈ M is defined as
τM(v) := infz∈Med(M) ∥v − z∥2, which describes the minimum distance needed to travel from v to
the closure of medial axis. The smallest local reach τM := infv∈M τM(v) is called reach of M.
Definition 6 (Covering Number). Let (H, ρ) be a metric space, where H is the set of objects and ρ
is a metric. For a given ϵ > 0, the covering number N (ϵ,H, ρ) is the smallest number of balls of
radius ϵ (with respect to ρ) needed to cover H. More precisely,

N (ϵ,H, ρ) := min{N ∈ N | ∃{h1, . . . , hN} ⊆ H,∀h ∈ H, ∃hi such that ρ(h, hi) ≤ ϵ}.

B.2 EMBEDDING, POSITIONAL ENCODING AND TRANSFORMER BLOCK

Definition 7 (Embedding Layer). Given xi ∈ RD and yi ∈ R, the embedding layer E takes an input
s = {x1, y1,x2, y2, . . . ,xn, yn;xn+1} and maps it to

E (s) =


x1 · · · xn xn+1 0
y1 · · · yn 0 0
0 · · · · · · · · · 0
0 · · · · · · · · · 0
0 · · · · · · · · · 0
1 · · · · · · · · · 1

 ∈ R(D+5)×ℓ.

Definition 8 (Positional Encoding). The positional encoding takes an input s, maps it to Ij =

(cos(jπ2ℓ), sin(
jπ
2ℓ))

⊤ and put those Ij , j = 1, · · · , ℓ, into the third and second last row in the
embedding matrix, i.e.,

PE (s) =


0 · · · · · · · · · 0
0 · · · · · · · · · 0
0 · · · · · · · · · 0
I1 · · · · · · · · · Iℓ
0 · · · · · · · · · 0

 ∈ R(D+5)×ℓ.

With these definitions, we have

PE + E (s) =


x1 · · · xn xn+1 0
y1 · · · yn 0 0
0 · · · · · · · · · 0
I1 · · · · · · · · · Iℓ
1 · · · · · · · · · 1

 ∈ R(D+5)×ℓ,

as defined in (11).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Definition 9 (Transformer Block Class). The transformer block class with parameters θ is

B(m,LFFN, wFFN) = {B(θ; ·) | B(θ; ·) a MHA with m attention heads, and a FFN layer
with depth LFFN and width wFFN}.

C ROADMAP FOR THE PROOF OF THEOREM 1

In this section, we present a roadmap for the proof of our main result in Theorem 1. We defer a more
detailed discussion of the roadmap to Appendix C and all the proof details to Appendix E.

Bias-Variance Error Decomposition. We first decompose the squared generalization error at the
test sample s in (8) as follows:

Rn(T̂(s)) = Rn(T̂(s))−Rn,Γ(T̂) +Rn,Γ(T̂)−Rn,Γ(T
∗) +Rn,Γ(T

∗)−Rn(T
∗(s)) +Rn(T

∗(s)),

where T∗ is a transformer network which approximates the in-context kernel estimator Kh in (12).
One term satisfies Rn,Γ(T̂)−Rn,Γ(T

∗) ≤ 0 since T̂ is the minimizer of Rn,Γ given in (7). After
taking expectations, we can decompose the mean squared generalization error (9) as follows:

Rn(T̂) = ESEs

[
Rn(T̂(s))

]
(16)

≤ES

(
Es

[
Rn(T̂(s))

]
−Rn,Γ(T̂)

)
︸ ︷︷ ︸

I

+ES

(
Rn,Γ(T

∗)− Es [Rn(T
∗(s))]

)
︸ ︷︷ ︸

II

+Es [Rn(T
∗(s))]︸ ︷︷ ︸

III

.

In this error decomposition, error III denotes the approximation error which we will analyze in
Section C.1. The errors in I and II denote the statistical error , which we will analyze in Section C.2.

C.1 APPROXIMATION ERROR: TRANSFORMERS CAN IMPLEMENT KERNEL ESTIMATOR

A key innovation in our proof is establishing an approximation theory for transformers to implement
the classical kernel estimator in (12). Importantly, this implementation is universal for f and the xi’s
so that the weight matrices in transformer are independent of f and the xi’s.

Our approximation error bound is given by Proposition 1 below. Since transformers can exactly
implement the kernel estimator as shown in Lemma 1, the approximation error in Proposition 1 is the
same as the mean squared error given by the kernel estimator.

Proposition 1. Suppose M, ρx and f , ρf satisfy Assumptions 1 and 2 respectively. Let s be a
prompt in (6), where {xi}n+1

i=1 are i.i.d. samples from ρx and f is sampled from ρf . There exists a
transformer network T∗ ∈ T (LT,mT, dembed, ℓ, LFFN, wFFN, R, κ) with parameters

LT = 5, mT = O(Dn), dembed = D + 5, ℓ = 2n+ 1,

LFFN = O(1), wFFN = D + 5, κ = O
(
D8n2b8R2/h8

)
such that

Es [Rn(T
∗(s))] ≤ C3

[log (h−1
)]1+ 3d

4

nhd
+ h2α[log(h−1)]2

 . (17)

The constant C3 hides the constants depending on d, L,R, τM.

Proposition 1 is proved in Appendix E.4. Here we illustrate our proof idea. The empirical kernel
estimator in (12) is applied to n samples in the prompt. When n → ∞, the empirical kernel estimator
in (12) converges to its integral counterpart. Given any f ∈ F and xn+1 ∼ ρx, we define the integral
form of the kernel estimator as

K̄h(f ;xn+1) :=
Ex [Kh(xn+1 − x)f(x)]

Ex [Kh(xn+1 − x)]
=

∫
Kh(xn+1 − x)f(x)dx∫
Kh(xn+1 − x)dx

, (18)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where the integral about x is about the measure dx = dρx. For any test sample s, the approximation
error III can be further decomposed into three terms:

Rn(T
∗
h(s)) = (T∗

h(s)− f(xn+1))
2 (19)

=
(
T∗

h(s)−Kh(s) +Kh(s)− K̄h(f ;xn+1) + K̄h(f ;xn+1)− f(xn+1)
)2

≤ 3 (T∗
h(s)−Kh(s))

2︸ ︷︷ ︸
A1

+3
(
Kh(s)− K̄h(f ;xn+1)

)2︸ ︷︷ ︸
A2

+3
(
K̄h(f ;xn+1)− f(xn+1)

)2︸ ︷︷ ︸
A3

where the error in A1 measures the bias of using a transformer network to implement the kernel
regression estimator, the error in A2 measures the variance of kernel regression estimator, and the
A3 error measures the bias of using kernel regression estimator to approximate the target function.
These three error terms are bounded by Lemma 1, Lemma 2, and Lemma 3 respectively. Our Lemma
1 shows that the error in A1 equals to 0. Lemma 2 and Lemma 3 give rise to an upper bound of A2
and A3. We defer their proof in Appendix E.2 and Appendix E.3, respectively.
Lemma 2. Let K̄h be the integral kernel estimator defined as in (18). For any xn+1 ∼ ρx and any
M and f satisfying Assumptions 1 and 2 respectively,∣∣K̄h(f ;xn+1)− f(xn+1)

∣∣ ≤ O(hα log(h−1)). (20)

The constant hidden in O(·) depend on d, L,R, τM.
Lemma 3. Suppose M, ρx and f , ρf satisfy Assumptions 1 and 2 respectively. Let s be a prompt in
(6), where {xi}n+1

i=1 are i.i.d. samples from ρx and f is sampled from ρf . Let Kh and K̄h be defined
as in (12) and (18). Then with probability at least 1− δ,∣∣Kh(s)− K̄h(f ;xn+1)

∣∣ ≤ O

(
log3d/4

(
1

h

)√
log(4/δ)

nhd

)
(21)

The constants hidden in O(·) depend on d,R, τM.

C.2 STATISTICAL ERROR

This section focuses on bounding the statistical errors in I and II in (16). We consider a transformer
network class T with the architecture in Proposition 1.

Bounding Error I in (16). The error in I in (16) can be bounded by

ES sup
T∈T

[
Es [Rn(T(s))]−Rn,Γ(T)

]
since T̂ belongs to the network class T . Any function f ∼ Pf is bounded, such that ∥f∥L∞ ≤ R.
The transformer network T also yields bounded output such that ∥T∥L∞ ≤ R. For the sam-
ple s in (6), the transformer neural network T takes the input ({xi, yi}ni=1;xn+1) and outputs
T({xi, yi}ni=1;xn+1) ∈ [−R,R]. In this paper, we take squared loss at each sample:

L(T, s, yn+1) = (T({xi, yi}ni=1;xn+1)− yn+1)
2,

which satisfies |L(T, s, yn+1)| ≤ 4R2. We define the Rademacher complexity of L ◦ T with respect
to the training sample S as

Rad(L ◦ T ◦S) :=
1

Γ
Eξ∼{±1}Γ

[
sup
T∈T

Γ∑
γ=1

ξγ

(
T({xγ

i , y
γ
i }

n
i=1;x

γ
n+1)− yγn+1

)2]
. (22)

According to (Shalev-Shwartz & Ben-David, 2014, Lemma 26.2), we have
ES sup

T∈T
[Es [Rn(T(s))]−Rn,Γ(T)] ≤ 2ES [Rad(L ◦ T ◦S)] .

To bound the expectation of Rademacher complexity Rad(L ◦ T ◦S), we apply the well known
Dudley entropy integral (Dudley, 1967), which we state in Lemma 8. By Lemma 8, we have

ES [Rad(L ◦ T ◦S)] ≤ inf
ϵ>0

(
2ϵ+

12√
Γ

∫ 4R2

ϵ

√
logN (δ,L ◦ T , ∥ · ∥L∞) dδ

)
(23)

where N (δ,L ◦ T , ∥ · ∥L∞) is the covering number (defined in Appendix B.1) of the function class
L ◦ T under the L∞ norm. We follow the proof idea in (Havrilla & Liao, 2024) to bound its covering
number as follows.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Lemma 4. For a transformer class T (LT,mT, dembed, ℓ, LFFN, wFFN, R, κ) with input ∥H∥∞,∞ ≤
U . Let δ > 0, then the covering number of L ◦ T satisfies

N (δ,L ◦ T , ∥ · ∥L∞) ≤

(
2L

2
T+4LFFNU

3LTd
18L2

TLFFN

embed κ6L2
TLFFN+1m

L2
T

T ℓL
2
TR

δ

)PT

,

where PT = dembed(D + 1) + LT(3d
2
embedmT + LFFNw

2
FFN).

Lemma 4 is proved in Appendix E.5. Taking ϵ = 1/
√
Γ in (23), we obtain a bound

ES sup
T∈T

[Es [Rn(T(s))]−Rn,T (T)] ≤ 2ES [Rad(L ◦ T ◦S)] ≤ O

(
nD3

√
log(nDΓ/h)√

Γ

)
,

where the O(·) hides the dependency on some absolute constants.

Bounding Error II in (16). We can directly apply Hoeffding’s inequality to bound this term, with
details in Appendix E.9.

ES

(
Rn,Γ(T

∗)− Es [Rn(T
∗(s))]

)
≤ O

(√
log(h−1)

Γ
+ h2

)
.

C.3 PUTTING APPROXIMATION ERROR AND STATISTICAL ERROR TOGETHER

Putting all the error terms together in (16), we get

Rn(T̂) ≤ I + II + III ≤ C1

(
nD3

√
log(nDΓ/h)√

Γ

)
+ C2

[log (h−1
)]1+ 3d

4

nhd
+ h2α[log(h−1)]2

 .

Finally, choosing h = n− 1
2α+d gives rise to (15) in Theorem 1.

D FUNDAMENTAL LEMMAS

In this section, we present some fundamental lemmas which are crucial for constructing a transformer
to represent the target function. Note that similar results of Lemma 5 and 6 have appeared in Havrilla
& Liao (2024), but our results are more general in the sense that they accommodate general dembded

and general rows for gating. The detailed proofs of Lemma 5, 6, and 7 are provided in Appendix E.6,
E.7, and E.8, respectively.

In the lemma and the proof, we use subscript to denote column index and superscript to denote
row index. For a matrix H , we use the notation ∥H∥∞ := ∥H∥∞,∞ = maxi,j |Hij | to denote the
infinity-infinity norm of a matrix H . When θ denotes the weight parameters of a neural network, we
use ∥θ∥∞ to denote the largest magnitude in the weight parameters.

Lemma 5 (Interaction Lemma). Let H = [ht]1≤t≤ℓ ∈ Rdembed×ℓ be an embedding matrix such
that h(dembed−2):(dembed−1)

t = It and hdembed
t = 1. Fix 1 ≤ t1, t2 ≤ ℓ, 1 ≤ i ≤ dembed, and

ℓ ∈ N. Suppose dembed ≥ 5 and ∥H∥∞,∞ < U for some U > 0, and the data kernels Qdata ∈
R(dembed−3)×l (the first (dembed − 3) rows in the query matrix Q) and Kdata ∈ R(dembed−3)×l (the
first (dembed − 3) rows in the key matrix K) satisfy max{∥Qdata∥∞,∞, ∥Kdata∥∞,∞} ≤ κ. Then
one can construct an attention head A with ReLU activation (σ = ReLU) such that

[A(H)]t =

{
σ(⟨Qdataht,K

dataht2⟩)ei if t = t1,

0 otherwise.

The weight parameters of this attention head satisfies ∥θA∥∞ = O(d4embedκ
2ℓ2U2).

Lemma 5 is proved in Appendix E.6. Lemma 5 is called an interaction lemma, which allows tokens
to interact and therefore outputs a pair-wise interaction result.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Lemma 6 (Gating Lemma). Let dembed ≥ 5 and H = [ht]1≤t≤ℓ ∈ Rdembed×ℓ, be an embedding
matrix such that h(dembed−2):(dembed−1)

t = (I1
t , I2

t) = It and hdembed
t = 1. Then for any r1 and r2

with 1 ≤ r1 ≤ r2 ≤ dembed − 3 and any k1, k2 with 1 ≤ k1, k2 ≤ ℓ, there exist both two-layer
feed-forward networks (FFN) such that

FFN1(ht) =



ht if t ∈ {1, · · · , k1}

(ht)1
...

(ht)r1−1

0

(ht)r2+1

...
(ht)dembed−3

I1
t

I2
t

1



otherwise
(24)

and

FFN2(ht) =



ht if t ∈ {k2, · · · , ℓ}

(ht)1
...

(ht)r1−1

0

(ht)r2+1

...
(ht)dembed−3

I1
t

I2
t

1



otherwise
(25)

Additionally, we have ∥θFFN∥∞ ≤ O(ℓ∥H∥∞,∞).

Lemma 6 is proved in E.7. Lemma 6 uses the feedforward layers to set certain rows in specified
tokens zero.
Lemma 7 (Decrementing Lemma). Let dembed ≥ 5 and H = [ht]1≤t≤ℓ ∈ Rdembed×ℓ, be an
embedding matrix such that h(dembed−2):(dembed−1)

t = (I1
t , I2

t) = It and hdembed
t = 1. Then for any

r1, r2 with 1 ≤ r1 ≤ r2 ≤ dembed − 3 and any k1, k2 with 1 ≤ k1, k2 ≤ ℓ and any M > 0, there
exists a six-layer residual feed-forward network (FFN) such that

FFN(ht) + ht =



ht if t ∈ {1, · · · , k1} ∪ {k2, · · · , ℓ}

(ht)1
...

(ht)r1−1

(ht)r1 −M
...

(ht)r2 −M

(ht)r2+1

...
(ht)dembed−3

It
1



otherwise

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Additionally, we have ∥θFFN∥∞ ≤ O(ℓM).

Lemma 7 is proved in Appendix E.8. Lemma 7 utilizes feedforward layers to substract M from
certain rows in specified tokens.

We next state the Dudley Entropy Integral (Dudley, 1967) which is used to derive (23), and refer its
proof to (Chen et al., 2020) and (Van Der Vaart & Wellner, 1996).
Lemma 8 (Dudley Entropy Integral). Let M > 0. Suppose supf∈F ∥f∥L∞ ≤ M for some function
class F . Then

Ex,ξ

[
sup
f∈F

1

n

n∑
i=1

ξif(xi)

]
≤ inf

ϵ>0

(
2ϵ+

12√
n

∫ M

ϵ

√
logN (δ,F , ∥ · ∥L∞) dδ

)
. (26)

where N (δ, T , ∥ · ∥L∞) is the δ-covering number of F with respect to L∞ norm.

E DEFERRED PROOFS

E.1 PROOF OF LEMMA 1

Proof of Lemma 1. First, we embed the sample s = {(xi, yi)
n
i=1;xn+1} into the embedding matrix

H such that

PE + E (s) = H =


x1 · · · xn xn+1 0
y1 · · · yn 0 0
0 · · · · · · · · · 0
I1 · · · · · · · · · I2n+1

1 · · · · · · · · · 1

 ∈ Rdembed×ℓ.

We denote the i-th column/token by hi in the following proof. Throughout the proof, we let
U = ∥H∥∞,∞, which is the largest entry-wise magnitude of the matrix.

Next, let us demonstrate the construction of Kh(s) step-by-step using our fundamental lemma in
Appendix D.

• Copying of (xn+1)i, 1 ≤ i ≤ D, to the next column (constant multiplication by 1).
Let us define each attention head Ai, 1 ≤ i ≤ D, with Vi = eie

⊤
dembed

, and data kernel in the form

Qdata
i =



0 0 0 0
. . .

...
...

...
. . . 0 0 1

0
...

...
...

0 0 0 0
0 0 0 1


Kdata

i =



1 0 0 0
. . .

...
...

...
. . . 0 0 0

1
...

...
...

0 0 0 0
0 0 0 M


where Qdata

i ,Kdata
i ∈ R(D+2)×(D+5). The Qdata

i has the i-th position and last position of the last
column equal to 1. By the Interaction Lemma, we can construct Ai, 1 ≤ i ≤ D, such that hn+2

interacts with hn+1 only, i.e.,

[Ai(H)]n+2 = σ⟨Qdata
i hn+2,K

data
i hn+1⟩Vihn+1 = σ((xn+1)i +M)ei = ((xn+1)i +M)ei

and [Ai(H)]t = 0 when t ̸= n+ 2. Then the residual multi-head attention yields

MHA(H) +H =


x1 · · · xn xn+1 xn+1 +M 0
y1 · · · yn 0 0 0
0 · · · · · · · · · · · · 0
I1 · · · · · · · · · · · · I2n+1

1 · · · · · · · · · · · · 1

 .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Similarly, we can copy (xn+1)i, 1 ≤ i ≤ D, to the k-th column for k = n+ 2, · · · , 2n + 1. This
gives

MHA(H) +H =


x1 · · · xn xn+1 xn+1 +M · · · xn+1 +M
y1 · · · yn 0 0 · · · 0
0 · · · · · · · · · · · · · · · 0
I1 · · · · · · · · · · · · · · · I2n+1

1 · · · · · · · · · · · · · · · 1

 .

Then we can apply Lemma 7 to subtract off the constant M to get

H1 := B1(H) =


x1 · · · xn xn+1 xn+1 · · · xn+1

y1 · · · yn 0 0 · · · 0
0 · · · · · · · · · · · · · · · 0
I1 · · · · · · · · · · · · · · · I2n+1

1 · · · · · · · · · · · · · · · 1

 .

In total, this process needs B1 ∈ B(nD, 6, D + 5). The upper bound of the weights parameter in B1

is ∥θB1∥∞ ≤ O(D4ℓ2U2b2).

• Implementation of (xn+1)i − (xj)i for 1 ≤ i ≤ D and 1 ≤ j ≤ n

Let us define each attention head Ai,j with Vi = eie
⊤
dembed

, and data kernel in the form

Qdata
i =



0 0 0 0
. . .

...
...

...
. . . 0 0 −1

0
...

...
...

0 0 0 0
0 0 0 1


Kdata

i =



1 0 0 0
. . .

...
...

...
. . . 0 0 0

1
...

...
...

0 0 0 0
0 0 0 M


where Qdata

i ,Kdata
i ∈ R(D+2)×(D+5). The Qdata

i has the i-th position of last column equals to −1
and last position of the last column equals to 1. By the Interaction Lemma 5, we can construct Ai,j

such that hn+1+j interacts with hj only, i.e.,

Ai,j(hn+1+j) = σ⟨Qdata
i hn+1+j ,K

data
i hj⟩Vihj = σ(−(xj)i +M)ei = (−(xj)i +M)ei

and Ai,j(ht) = 0 for t ̸= n+ 1 + j, where M ≥ b ≥ ∥x∥∞. Then the residual multi-head attention
yields

MHA(H1) +H1 =


x1 · · · xn xn+1 xn+1 − x1 +M · · · xn+1 − xn +M
y1 · · · yn 0 · · · · · · 0
0 · · · · · · · · · · · · · · · 0
I1 · · · · · · · · · · · · · · · I2n+1

1 · · · · · · · · · · · · · · · 1

 .

Then we can apply Lemma 7 to subtract off the constant M to get

H2 := B2(H1) =


x1 · · · xn xn+1 xn+1 − x1 · · · xn+1 − xn

y1 · · · yn 0 · · · · · · 0
0 · · · · · · · · · · · · · · · 0
I1 · · · · · · · · · · · · · · · I2n+1

1 · · · · · · · · · · · · · · · 1

 .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

In total, this process needs B2 ∈ B(Dn, 6, D + 5). The upper bound of the weights parameter in B2

is ∥θB2
∥ ≤ O(D4ℓ2U2b2).

• Implementation of −∥xn+1−xj∥2

h2 for 1 ≤ j ≤ n

Let us define each attention head Aj with Vj = eD+1e
⊤
dembed

, and data kernel in the form

Qdata
j =



− 1
h 0 0 0

. . .
...

...
...

. . . 0 0 0

− 1
h

...
...

...
0 0 0 0

0 0 0 1


Kdata

j =



1
h 0 0 0

. . .
...

...
...

. . . 0 0 0

1
h

...
...

...
0 0 0 0

0 0 0 M


where Qdata

j ,Kdata
j ∈ R(D+2)×(D+5). By the Interaction Lemma, we can construct Aj such that

hn+1+j interacts with itself only, i.e.,

Aj(hn+1+j) = σ(⟨Qdata
j hn+1+j ,K

data
j hn+1+j⟩)Vjhn+1+j

= σ

(
− 1

h2
⟨xn+1 − xj ,xn+1 − xj⟩+M

)
eD+1 =

(
−∥xn+1 − xj∥2

h2
+M

)
eD+1

and Aj(ht) = 0 for t ̸= n + 1 + j, where M ≥ max
(

4b2D
h2 , R

)
. Then the residual multi-head

attention yields

H3 : = B3(H2) = MHA(H2) +H2

=


x1 · · · xn xn+1 xn+1 − x1 · · · xn+1 − xn

y1 · · · yn 0 −∥xn+1−x1∥2

h2 +M · · · −∥xn+1−xn∥2

h2 +M
0 · · · · · · · · · · · · · · · 0
I1 · · · · · · · · · · · · · · · I2n+1

1 · · · · · · · · · · · · · · · 1

 ,

where B3 ∈ B(n, 1, D + 5). The upper bound of the weights parameter in B3 is ∥θB3∥∞ ≤
O(D4ℓ2U2M2).

• copying y1, · · · , yn from columns 1, · · · , n to columns n+ 2, · · · , 2n+ 1

Similar as before, there exists B4 ∈ B(n, 1, D + 5) such that

MHA(H3) +H3 =


x1 · · · xn xn+1 xn+1 − x1 · · · xn+1 − xn

y1 · · · yn 0 −∥xn+1−x1∥2

h2 +M · · · −∥xn+1−xn∥2

h2 +M
0 · · · · · · · · · y1 +M · · · yn +M
I1 · · · · · · · · · · · · · · · I2n+1

1 · · · · · · · · · · · · · · · 1

 .

Then we can apply Lemma 7 to subtract off the constant M ≥ max
(

4b2D
h2 , R

)
to get

H4 := B4(H3) =


x1 · · · xn xn+1 xn+1 − x1 · · · xn+1 − xn

y1 · · · yn 0 −∥xn+1−x1∥2

h2 · · · −∥xn+1−xn∥2

h2

0 · · · · · · · · · y1 · · · yn
I1 · · · · · · · · · · · · · · · I2n+1

1 · · · · · · · · · · · · · · · 1

 .

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

In total, this process needs B4 ∈ B(n, 6, D + 5). The upper bound of the weights parameter in B4 is
∥θB4

∥∞ ≤ O(D4ℓ2M2 ·M2) = O(D4ℓ2M4).

• Implementation of e−
∥xn+1−xj∥

2

h2 for 1 ≤ j ≤ n

In the last layer of transformer, we use Softmax instead of ReLU for this part of construction (with a
mask of size n). Then, we can construct V = eD+1e

⊤
D+2 and

Q =



0 0 0 0
. . .

...
...

...
0 0 0 1

. . . 0 0 0

0
...

...
...

0 0 0 0
0 0 0 0


K =



0 0 0 0
. . .

...
...

...
1 0 0 0

. . . 0 0 0

0
...

...
...

0 0 0 0
0 0 0 0



where Q ∈ R(D+2)×(D+5) has (D + 1)-th position in the last column equals to 1 and all the other
entries are 0, and K ∈ R(D+2)×(D+5) has (D + 1, D + 1)-th position equals to 1 and all the other
entries are 0, such that

[A(H4)]n+1 =

2n+1∑
j=n+2

softmax (⟨Qhn+1,KH4⟩)j V hj

=

n∑
j=1

yje
−∥xn+1−xj∥2/h2∑n

j=1 e
−∥xn+1−xj∥2/h2 · eD+1 = Kh({xi, yi}ni=1;xn+1) · eD+1 = Kh(s) · eD+1.

Therefore, there exists B5 ∈ B(1, 1, D + 5) such that

H5 := B5(H4) =


x1 · · · xn xn+1 xn+1 − x1 · · · xn+1 − xn

y1 · · · yn Kh(s) −∥xn+1−x1∥2

h2 · · · −∥xn+1−xn∥2

h2

0 · · · · · · · · · y1 · · · yn
I1 · · · · · · · · · · · · · · · I2n+1

1 · · · · · · · · · · · · · · · 1

 .

The upper bound of the weights parameter in B5 is ∥θB5∥∞ ≤ O(D4ℓ2M2 · 1) = O
(
D4ℓ2M2

)
.

Finally, we apply a decoding layer DE to output the element Kh(s) as desired. The uniform upper
bound for the weight parameters in B5 ◦B4 ◦B3 ◦B2 ◦B1 is κ ≤ O

(
D4ℓ2M4

)
≤ O

(
D8ℓ2b8R4

h8

)
=

O
(

D8n2b8R4

h8

)
.

E.2 PROOF OF LEMMA 2

Proof of Lemma 2. Lemma 2 estimates the bias of kernel manifold regression. Our kernel estimator
uses the Gaussian kernel, which has infinite support. To deal with the infinite support of the Gaussian
kernel, we decompose the integral to nearby regions and far-away regions. For the x close to the
center xn+1, we use the Lipchitz property of f to estimate the bias; For the x far from the center
xn+1, we use the Gaussian tail to bound the bias.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

We first rewrite the bias in an integral form:

K̄h(f ;xn+1)− f(xn+1) =
E [Kh(xn+1 − x)f(x)]

E [Kh(xn+1 − x)]
− f(xn+1)

=

∫
Kh(xn+1 − x)f(x)dx∫
Kh(xn+1 − x)dx

− f(xn+1)

=

∫
Kh(xn+1 − x)(f(x)− f(xn+1))dx∫

Kh(xn+1 − x)dx
.

We consider the set of points on the manifold M which is h̃ distance to xn+1:

Bh̃(xn+1) := {x ∈ M : ∥x− xn+1∥ ≤ h̃}.

The choice of h̃ will be specified later in the proof.

So we can write

K̄h(f ;xn+1)− f(xn+1) =

∫
B

h̃
(xn+1)

Kh(xn+1 − x)(f(x)− f(xn+1))dx∫
Kh(xn+1 − x)dx

+

∫
M\B

h̃
(xn+1)

Kh(xn+1 − x)(f(x)− f(xn+1))dx∫
Kh(xn+1 − x)dx

≤

∫
B

h̃
(xn+1)

Kh(xn+1 − x)L(2h̃)αdx∫
Kh(xn+1 − x)dx

+
2R
∫
M\B

h̃
(xn+1)

Kh(xn+1 − x)dx∫
Kh(xn+1 − x)dx

≤ 4Lh̃α +
2R
∫
M\B

h̃
(xn+1)

Kh(xn+1 − x)dx∫
Kh(xn+1 − x)dx

.

In the calculation above, we used the Lipchistz property of f for the integral inside the ball Bh̃(xn+1),
where the geodesic distance and Euclidean distance are equivalent metrics. By Proposition 11 in
(Maggioni et al., 2016), when ∥xn+1 − x∥ ≤ τM/2, we have dM(xn+1,x) ≤ 2∥xn+1 − x∥.

We next bound the integral outside the ball Bh̃(xn+1). When h is small, i.e. h < τM/2, the integral
satisfies∫

M
h−dKh(xn+1 − x)dx =

∫
M

h−de−
∥xn+1−x∥2

h2 dx ≥
∫
Bh(xn+1)

h−de−
∥xn+1−x∥2

h2 dx

≥
∫
Bh(xn+1)

h−de−1dx = h−de−1CBh
d = e−1CB

with
CB ≥ cosd(arcsin(

h

2τ
)) ≥ cosd(arcsin(

1

4
)), (27)

according to (Niyogi et al., 2008, Lemma5.3).

Therefore, when h < τ/2, the integral outside the ball Bh̃(xn+1) can be bounded as follows:

2R
∫
M\B

h̃
(xn+1)

Kh(xn+1 − x)dx∫
M Kh(xn+1 − x)dx

=
2R
∫
M\B

h̃
(xn+1)

h−dKh(xn+1 − x)dx∫
M h−dKh(xn+1 − x)dx

≤ 2eRC−1
B

∫
M\B

h̃
(xn+1)

h−dKh(xn+1 − x)dx

≤ 2eRC−1
B · (ρx(M)− ρx(Bh̃(xn+1))) · h−de−

h̃2

h2

let h̃=Ch
====== 2eRC−1

B · (ρx(M)− ρx(Bh̃(xn+1))) · h−de−C2

≤ 2eRC−1
B · h−de−C2

= O(h−de−C2

),

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

where O hides constants about R and d.

Hence

K̄h(f ;xn+1)− f(xn+1) ≤ O(Cαhα) +O(h−de−C2

).

For h ∈ (0, 1), by choosing C =
√
(d+ 1) log(1h), we have h−de−C2

= h. Therefore,

K̄h(f ;xn+1)− f(xn+1) ≤ O

(
hα log

(
1

h

))
+O(h) = O

(
hα log

(
1

h

))
.

as desired. The notation O(·) hides the constants depending on d, L,R, τM.

E.3 PROOF OF LEMMA 3

Proof of Lemma 3. Lemma 3 estimates the variance of kernel manifold regression. We prove it using
a series of concentration inequalities (Hoeffding, 1994; Vershynin, 2018).

Let us define some empirical quantities used in kernel estimator and their counterparts in expectation.

N̂n(xn+1) :=
1

n

n∑
i=1

Kh (xn+1 − xi) f(xi), D̂n(xn+1) :=
1

n

n∑
i=1

Kh (xn+1 − xi)

N(xn+1) := Ex [Kh (xn+1 − x) f(x)] , D(xn+1) := Ex [Kh (xn+1 − x)]

We first decompose the variance as follows:

|Kh(s)− K̄h(f ;xn+1)|

≤ 1

|D̂n(xn+1)||D(xn+1)|

(
|D(xn+1)||N̂n(xn+1)−N(xn+1)|+ |N(xn+1)||D̂n(xn+1)−D(xn+1)|

)
=

1

|D̂n(xn+1)|

(
|N̂n(xn+1)−N(xn+1)|

)
+

|N(xn+1)|
|D̂n(xn+1)| · |D(xn+1)|

(
|D̂n(xn+1)−D(xn+1)|

)
.

(28)

We will bound (28) in the following steps.

• Estimating D̂n(xn+1) in the denominator. We consider the following ball

Bh̃ := Bh̃(xn+1) := {x ∈ M : ∥x− xn+1∥ ≤ h̃} (29)

with h̃ = Ch. Let nB be the number of samples in Bh̃(xn+1). By Liao & Maggioni (2019, Lemma
30), we can estimate nB as follows:

P
{ ∣∣∣nB

n
− ρx(Bh̃(xn+1))

∣∣∣ ≥ 1

2
ρx(Bh̃(xn+1))

}
≤ 2e−

3n·ρx(B
h̃
(xn+1))

28 ,

where ρx(Bh̃(xn+1)) = CBh̃
d = CBC

dhd, for some constant CB which satisfies (27). Therefore,

with probability at least 1− 2e−
3n·ρx(B

h̃
(xn+1))

28 , it holds

1

2
ρx(Bh̃(xn+1)) ≤

nB

n
≤ 3

2
ρx(Bh̃(xn+1)).

We next re-write D̂n(xn+1) as

D̂n(xn+1) =
nB

n
· 1

nB

n∑
i=1

Kh(xn+1 − xi) ≥
nB

n
· 1

nB

∑
xi∈B

h̃
(xn+1)

Kh(xn+1 − xi)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

where the continuous counterpart of 1
nB

∑
xi∈B

h̃
(xn+1)

Kh(xn+1 − xi) is

Φ :=
1

ρx(Bh̃)

∫
B

h̃

Kh(x− xn+1)dx ≥ 1

ρx(Bh̃)

∫
Bh

Kh(x− xn+1)dx

≥ e−1ρx(Bh)

ρx(Bh̃)
≥ CΦC

−d

where CΦ is a constant depending on τM.

By the Hoeffding’s inequality (Hoeffding, 1994), with probability 1− δ, D̂n(xn+1) satisfies

D̂n(xn+1) ≥
nB

n
·

Φ−

√
log(2/δ)

nB

 =
nB

n

CΦC
−d −

√
log(2/δ)

nB

 .

Bounding the first term in (28). The numerator of the first term can be decomposed as∣∣∣N̂n(xn+1)−N(xn+1)
∣∣∣ ≤ ∣∣∣N̂ (1)

n (xn+1)−N (1)(xn+1)
∣∣∣+ ∣∣∣N̂ (2)

n (xn+1)−N (2)(xn+1)
∣∣∣ ,

where
N̂ (1)

n (xn+1) =
1

n

∑
xi∈B

h̃
(xn+1)

Kh (xn+1 − xi) f(xi)

and
N (1)(xn+1) =

∫
x∈B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx

and
N̂ (2)

n (xn+1) =
1

n

∑
xi∈M\B

h̃
(xn+1)

Kh (xn+1 − xi) f(xi)

and
N (2)(xn+1) =

∫
x∈M\B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx

Therefore, we just need to bound∣∣∣N̂ (1)
n (xn+1)−N (1)(xn+1)

∣∣∣+ ∣∣∣N̂ (2)
n (xn+1)−N (2)(xn+1)

∣∣∣
D̂n(xn+1)

≤

∣∣∣N̂ (1)
n (xn+1)−N (1)(xn+1)

∣∣∣
nB

n

(
CΦC−d −

√
log(2/δ)

nB

) +

∣∣∣N̂ (2)
n (xn+1)−N (2)(xn+1)

∣∣∣
nB

n

(
CΦC−d −

√
log(2/δ)

nB

) (30)

The first term in (30) can be written as∣∣∣N̂ (1)
n (xn+1)−N (1)(xn+1)

∣∣∣
nB

n

(
CΦC−d −

√
log(2/δ)

nB

)

=

∣∣∣ 1
nB

∑
xi∈B

h̃
(xn+1)

Kh (xn+1 − xi) f(xi)− n
nB

∫
x∈B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx
∣∣∣

CΦC−d −
√

log(2/δ)
nB

≤

∣∣∣ 1
nB

∑
xi∈B

h̃
(xn+1)

Kh (xn+1 − xi) f(xi)− 1
ρx(Bh̃

)

∫
x∈B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx
∣∣∣

CΦC−d −
√

log(2/δ)
nB

+

∣∣∣ 1
ρx(Bh̃

)

∫
x∈B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx− n
nB

∫
x∈B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx
∣∣∣

CΦC−d −
√

log(2/δ)
nB

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

By the Hoeffding’s inequality, we know that with probability at least 1− δ,∣∣∣∣∣∣ 1

nB

∑
xi∈B

h̃
(xn+1)

Kh (xn+1 − xi) f(xi)−
1

ρx(Bh̃)

∫
x∈B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx

∣∣∣∣∣∣ ≤ R

√
log(2/δ)

nB
.

By Liao & Maggioni (2019, Lemma 30), with probability 1− δ,∣∣∣ρx(Bh̃(xn+1))−
nB

n

∣∣∣ ≤ O

(√
log(2/δ)ρx(Bh̃(xn+1))

n

)
which gives rise to∣∣∣∣∣ 1

ρx(Bh̃)

∫
x∈B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx− n

nB

∫
x∈B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx

∣∣∣∣∣
≤
∣∣∣∣ 1

ρx(Bh̃)
− n

nB

∣∣∣∣ ·
∣∣∣∣∣
∫
x∈B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx

∣∣∣∣∣ ≤ Rρx(Bh̃)

∣∣∣∣ 1

ρx(Bh̃)
− n

nB

∣∣∣∣
=R

∣∣∣∣1− n

nB
ρx(Bh̃)

∣∣∣∣ = R
n

nB

∣∣∣nB

n
− ρx(Bh̃)

∣∣∣ ≤ O

(
R

ρx(Bh̃(xn+1))

√
log(2/δ)ρx(Bh̃(xn+1))

n

)

= O

(
R

√
log(2/δ)

nρx(Bh̃(xn+1))

)
.

Therefore, with probability at least 1− 2δ, the first term in (30) satisfies∣∣∣N̂ (1)
n (xn+1)−N (1)(xn+1)

∣∣∣
D̂n(xn+1)

≤ O

RCd

√
log(2/δ)

nB

+O

(
RCd

√
log(2/δ)

nρx(Bh̃(xn+1))

)

= O

(
RCd

√
log(2/δ)

nρx(Bh̃(xn+1))

)
= O

(
RCd/2

√
CB

√
log(2/δ)

nhd

)
,

(31)

where the constant CB satisfies (27).

For the second term in (30), it satisfies∣∣∣N̂ (2)
n (xn+1)−N (2)(xn+1)

∣∣∣
D̂n(xn+1)

≤

∣∣∣ 1n ∑xi∈M\B
h̃
(xn+1)

Kh (xn+1 − xi) f(xi)−
∫
x∈M\B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx
∣∣∣

nB

n

(
CΦC−d −

√
log(2/δ)

nB

)
By the Hoeffding’s inequality, we have, with probability at least 1− δ,∣∣∣∣∣∣ 1n

∑
xi∈M\B

h̃
(xn+1)

Kh (xn+1 − xi) f(xi)−
∫
x∈M\B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx

∣∣∣∣∣∣ ≤ Re−C2

√
log(2/δ)

n
,

where we bound |f(x)| ≤ e−C2

for all x ∈ M \ Bh̃. Therefore, the second term in (30) can be
further bounded as∣∣∣N̂ (2)

n (xn+1)−N (2)(xn+1)
∣∣∣

D̂n(xn+1)
≤

Re−C2
√

log(2/δ)
n

nB

n

(
CΦC−d −

√
log(2/δ)

nB

) ≤ O

(
Cde−C2 n

nB

√
log(2/δ)

n

)

= O

(
e−C2

hd/2

√
log(2/δ)

nhd

)
(32)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

In summary, the first term in (28) can be split into two terms according to (30): one term is inside the
ball Bh̃ and the other is outside the ball. We have bounded the term inside the ball Bh̃ in (31) and the
term outside the ball in (32). Combining (31) and (32) gives rise to

|N̂n(xn+1)−N(xn+1)|
|D̂n(xn+1)|

≤ O

(
RCd/2

√
CB

√
log(2/δ)

nhd

)
+O

(
e−C2

hd/2

√
log(2/δ)

nhd

)

= O

([
log
(
h−1

)] d
4

√
log(2/δ)

nhd

)
.

where the last line results from choosing

C =
√

d log(1/h), (33)

so that e−C2

= hd < hd/2 when h is small.

Bounding the second term in (28). The second term in (28) can be bounded similarly to the first
term, with an additional estimate on N(xn+1)

D(xn+1)
. We define the ball Bh(xn+1) and Bh̃(xn+1) as in (29)

with h̃ = Ch.
N(xn+1)

D(xn+1)
=

∫
M Kh(xn+1 − x)f(x)dx∫

M Kh(xn+1 − x)dx

≤

∫
B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx+
∫
M\B

h̃
(xn+1)

Kh(xn+1 − x)f(x)dx∫
Bh(xn+1)

Kh(xn+1 − x)dx

≤
Rρx(Bh̃(xn+1)) +Re−C2

ρx(M)

e−1ρx(Bh(xn+1))
≤ O(RCd),

where the last inequality holds with C chosen according to (33) and when h is sufficiently small.

Applying a similar argument above, the second term in (28) can be bounded bounded by

|N(xn+1)|
|D̂n(xn+1)| · |D(xn+1)|

(
|D̂n(xn+1)−D(xn+1)|

)
≤ O

(
log3d/4

(
1

h

)√
log(2/δ)

nhd

)

Putting the two terms in (28) together. Putting the two terms in in (28) together, for δ >

2e−
3n·ρx(B

h̃
(xn+1))

28 , we have with probability at least 1− 2δ,

|Kh(s)− K̄h(f ;xn+1)| ≤ O

(
log3d/4

(
1

h

)√
log(2/δ)

nhd

)
.

By abusing the notation, rewrite 2δ as δ, we get with at least probability 1− δ,

|Kh(s)− K̄h(f ;xn+1)| ≤ O

(
log3d/4

(
1

h

)√
log(4/δ)

nhd

)
.

as desired. The notation O(·) hides constants depending on d,R, τM.

E.4 PROOF OF PROPOSITION 1

Proof of Proposition 1. By Lemma 1, 2, 3 and equation (19),

Es [Rn(T
∗(s))] ≤ (1− δ) ·O

([
log
(
h−1

)]3d/4 log(4/δ)

nhd

)
+ δ · (2R)2 +O(h2α[log(h−1)]2)

let δ=4h2

====== (1− 4h2) ·O
([

log
(
h−1

)]3d/4 log(h−1)

nhd

)
+ 16h2R2 +O(h2α[log(h−1)]2)

≤ O

([
log
(
h−1

)]1+3d/4

nhd

)
+O(h2α[log(h−1)]2).

The last inequality holds because 0 < h < 1. The notation O(·) hides the constants depending on
d, L,R, τM.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E.5 PROOF OF LEMMA 4

Proof of Lemma 4. Through the proof, we use the notation ∥H∥∞ := ∥H∥∞,∞ to denote the
infinity-infinity norm of a matrix H .

Since our transformer has softmax as activation function in the last layer and ReLU as activation
from the first to the penultimate layers, we need to consider those two cases separately.

Set η > 0, we choose T with parameters θ, and T′ with parameters θ′ such that ∥θ − θ′∥∞ ≤ η.

We first bound the Multi-head Attention (MHA) layer in a transformer block. For the ReLU activation
layer, according to (Havrilla & Liao, 2024), for ∥H∥∞ ≤ U , we have

∥MHA1(H)−MHA2(H)∥ReLU
∞ ≤ 3κ3d6embedU

3mTℓη.

By the similar argument, for the softmax activation layer, since it takes normalization, we can bound

∥MHA1(H)−MHA2(H)∥softmax
∞ ≤ ∥MHA1(H)−MHA2(H)∥ReLU

∞ ≤ 3κ3d6embedU
3mTℓη.

Therefore, for the MHA layer, we have

∥MHA1(H)−MHA2(H)∥∞ ≤ 3κ3d6embedU
3mTℓη.

Next, we bound the FFN layer. According to (Havrilla & Liao, 2024), we have

∥FFN1(H +MHA1(H))− FFN2(H +MHA2(H))∥∞
≤ 3κ3+LFFNw2LFFN

FFN d6embedU
3mTℓη + LFFN(wFFN(2d

6
embedκ

3UmTℓ) + 2)(κwFFN)
LFFN−1η.

Therefore, putting together the MHA and FFN layer together, we get the estimate on the difference
of the transformer block ∥B1(H)− B2(H)∥∞ (for both ReLU and softmax activation) as

∥B1(H)− B2(H)∥∞
=∥(H +MHA1(H) + FFN1(H +MHA1(H)))

− (H +MHA2(H) + FFN2(H +MHA2(H)))∥∞
≤∥MHA1(H)−MHA2(H)∥∞
+ ∥FFN1(H +MHA1(H))− FFN2(H +MHA2(H))∥∞

≤3κ3d6embedU
3mTℓη + 3κ3+LFFNw2LFFN

FFN d6embedU
3mTℓη

+ LFFN(wFFN(2d
6
embedκ

3UmTℓ) + 2)(κwFFN)
LFFN−1η

≤(4κ3+LFFNw2LFFN

FFN d6embedU
3mTℓ+ LFFN(wFFN(2d

6
embedκ

3UmTℓ) + 2)(κwFFN)
LFFN−1)η.

Then, we can chain the multi-block together and have the difference (the same as (Havrilla & Liao,
2024))

∥BLT
◦ · · ·B1(H)− B′

LT
◦ · · · ◦ B′

1(H)∥∞ ≤ 27L
2
TLFFNU

3LT d
18L2

TLFFN

embed κ6L2
TLFFNm

L2
T

T ℓL
2
T η.

Recall that the decoder layer D : Rdembed×ℓ → R is fixed and it outputs the last element in
the first row. For the encoding layer H = PE + E(s), both PE and E are fixed and we have
∥PE + E (s) ∥∞ = ∥s∥∞ + 1 ≤ U + 1. Thus, together this gives the total error bound between
T, T ′ ∈ T (LT,mT, dembed, ℓ, LFFN, wFFN, R, κ) with ∥θ − θ′∥∞ ≤ η as

∥T(s)− T′(s)∥∞ = ∥D ◦ BLT
◦ · · ·B1 ◦ (PE + E(s))−D′ ◦ B′

LT
◦ · · · ◦ B′

1(PE + E′(s))∥∞

≤ 2L
2
T+1LFFNU

3LT d
18L2

TLFFN

embed κ6L2
TLFFNm

L2
T

T ℓL
2
T η.

Notice that the total number of parameters in the transformer class T is

|θ| = |θD|+
LT∑
i=1

|θBi
|+ |θE | = dembed + LT(3d

2
embedmT + LFFNw

2
FFN) + dembedD

≤ dembed(D + 1) + LT(3d
2
embedmT + LFFNw

2
FFN).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Since the number of steps for each parameter is 2κ
η , then the covering number is

N (δ, T , ∥ · ∥∞)

≤

(
2κ · 2L2

T+1LFFNU
3LT d

18L2
TLFFN

embed κ6L2
TLFFNm

L2
T

T ℓL
2
T

δ

)dembed(D+1)+LT (3d2
embedmT+LFFNw2

FFN)

=

(
2L

2
T+2LFFNU

3LT d
18L2

TLFFN

embed κ6L2
TLFFN+1m

L2
T

T ℓL
2
T

δ

)dembed(D+1)+LT (3d2
embedmT+LFFNw2

FFN)

.

For the covering number of L ◦ T , we have

∥L(T, s, y)− L(T′, s, y)∥∞ = (T(s)− yn+1)
2 − (T′(s)− yn+1)

2 ≤ 4R∥T(s)− T′(s)∥∞.

Therefore, the covering number

N (δ,L ◦ T , ∥ · ∥∞)

≤

(
4R · 2κ · 2L2

T+1LFFNU
3LT d

18L2
TLFFN

embed κ6L2
TLFFNm

L2
T

T ℓL
2
T

δ

)dembed(D+1)+LT (3d2
embedmT+LFFNw2

FFN)

=

(
2L

2
T+4LFFNU

3LT d
18L2

TLFFN

embed κ6L2
TLFFN+1m

L2
T

T ℓL
2
TR

δ

)dembed(D+1)+LT (3d2
embedmT+LFFNw2

FFN)

as desired.

E.6 PROOF OF LEMMA 5

Proof of Lemma 5. For convenience, we denote the i-th token in the output by

A(hi) := [A(H)]i =
∑ℓ

j=1 σ(⟨Qhi,Khj⟩)V hj , (34)

This formula illustrates that the attention mechanism performs a weighted average of token values
based on their pairwise interactions.

Let us defined the query, key, and value matrices as

Q =

 Qdata

0 · · · 0 (QI)1,1 (QI)1,2 0
0 · · · 0 (QI)2,1 (QI)2,2 0
0 · · · 0 0 0 1

 and K =

 Kdata

0 · · · 0 (KI)1,1 (KI)1,2 0
0 · · · 0 (KI)2,1 (KI)2,2 0
0 · · · 0 0 0 −C


and V = eie

⊤
dembed

. Here we call Qdata,Kdata ∈ R(dembed−3)×dembed the data kernels, QI :=[
(QI)1,1 (QI)1,2
(QI)2,1 (QI)2,2

]
∈ R2×2 and KI :=

[
(KI)1,1 (KI)1,2
(KI)2,1 (KI)2,2

]
∈ R2×2 the interaction ker-

nels, and C > 0 is a large positive number.

Let us choose QI ,KI such that KI = PIt2
is a projection onto It2 , and QI is a dilation and rotation

of It1 onto It2 , i.e., QIIt1 = CIt2 . Now let us compute A(ht) for t = t1 and t ̸= t1.

For any 1 ≤ t ≤ ℓ, we can write the action Ah on ht as

A(ht) =

ℓ∑
k=1

σ(⟨Qht,Khk⟩)V hk =

ℓ∑
k=1

σ
(
⟨Qdataht,K

datahk⟩+ ⟨QIIt,KIIk⟩ − C
)
ei.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Case I: t = t1 and k = t2. By construction, we have ⟨QIIt1 ,KIIt2⟩ = ⟨CIt2 , It2⟩ = C. Therefore

σ
(
⟨Qdataht1 ,K

dataht2⟩+ ⟨QIIt1 ,KIIt2⟩ − C
)
= σ

(
⟨Qdataht1 ,K

dataht2⟩+ C − C
)

= σ
(
⟨Qdataht1 ,K

dataht2⟩
)
.

Case II: t = t1 and k ̸= k2. We have ⟨QIIt1 ,KIIk⟩ ≤ ∥QIIt1∥2∥KIIk∥2 = C∥PIt2
Ik∥2 < C.

The last inequality holds since ∥PIt2
Ik∥2 < 1 when k ̸= t2. Thus, for large C, we have

σ
(
⟨Qdataht1 ,K

datahk⟩+ ⟨QIIt1 ,KIIk⟩ − C
)
≤ σ

(
⟨Qdataht1 ,K

datahk⟩+ C∥PIt2
Ik∥2 − C

)
.

By choosing ⟨Qdataht1 ,K
datahk⟩+C∥PIt2

Ik∥2−C < 0, or equivalently, C >
⟨Qdataht1

,Kdatahk⟩
1−∥PIt2

Ik∥2
,

we get

σ
(
⟨Qdataht1 ,K

datahk⟩+ ⟨QIIt1 ,KIIk⟩ − C
)
≤ σ

(
⟨Qdataht1 ,K

datahk⟩+ C∥PIt2
Ik∥2 − C

)
= 0.

Combining Case I and II, we conclude A(ht) = σ
(
⟨Qdataht,K

dataht2⟩
)
ei when t = t1.

Case III: t ̸= t1 and k = t2. We have

⟨QIIt,KIIt2⟩ = ∥QIIt∥2∥KIIt2∥2 cos(θt,t2),

where θt,t2 is the angle between QIIt and KIIt2 . Since t ̸= t1, QIIt ̸= CIt2 , cos(θt,t2) < 1.

Then by choosing C >
⟨Qdataht,K

dataht2
⟩

1−cos(θt,t2)
, we have

σ
(
⟨Qdataht,K

dataht2⟩+ ⟨QIIt,KIIt2⟩ − C
)
= σ

(
⟨Qdataht,K

dataht2⟩+ C cos(θt,t2)− C
)
= 0

Case IV: t ̸= t1 and k ̸= t2. In this case, we have (⟨Qdataht,K
datahk⟩+ ⟨QIIt,KIIk⟩ − C < 0,

so the argument follows the same way as Case 2.

Combining Case III and Case IV, we conclude A(ht) = 0 when t ̸= t1.

To obtain the bound on the constant C, we need C > max
(

⟨Qdataht1
,Kdatahk⟩

1−∥PIt2
Ik∥2

,
⟨Qdataht,K

dataht2
⟩

1−cos(θt,t2)

)
.

Both numerators can be bounded by

|⟨Qdataht,K
datahk⟩| ≤ ∥Qdataht∥2∥Kdatahk∥2 ≤ ∥Qdata∥1,1∥ht∥∞∥Kdata∥1,1∥ht∥∞

≤ ∥Qdata∥∞,∞d2embed∥Kdata∥∞,∞d2embedU
2 ≤ d4embedκ

2U2.

The two denominators can be bounded by

1− ∥PIt2
Ik∥2 ≥ 1− cos(

π

2ℓ
) ≥ 1− (1−O(ℓ−2)) = O(ℓ−2),

and

1− cos(θt,t2) = 1− ⟨It+t2−t1 , It2⟩ ≥ 1− cos(
π

2ℓ
) ≥ 1− (1−O(ℓ−2)) = O(ℓ−2).

The O(·) hides the dependency on some absolute constant. So we conclude C = O(d4embedκ
2ℓ2U2).

E.7 PROOF OF LEMMA 6

Proof of Lemma 6. We denote the i-th column/token by hi and j-th component of hi by (hi)j in
the proof. Recall that It is the sinusoid positional encoding, it is easy to see there exists some
v = (v1,v2) ∈ S1 such that It · v > 0 for t = {1, · · · , k1} and It · v < 0 for t = {k1, · · · , ℓ}.
Then for large C, we can construct (all the blank places are filled with zeros) with Cv1, Cv2 appears

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

in dembed−2-th and dembed−3-th columns, from row r1 to row r2 for 1 ≤ r1 ≤ r2 ≤ dembed−3.

W1 =



1
. . . Cv1 Cv2

. . .
...

...
1 Cv1 Cv2

. . .
. . .

1
1

1


∈ Rdembed×dembed , b1 = 0 ∈ Rdembed

W2 =



1
. . . −Cv1 −Cv2

. . .
...

...
1 −Cv1 −Cv2

. . .
. . .

1
1

1


∈ Rdembed×dembed , b2 = 0 ∈ Rdembed ,

so that

z1 = σ(W1ht + b1) =



(ht)1
...

(ht)r1−1

σ((ht)r1 + CIt · v)
...

σ((ht)r2 + CIt · v)
(ht)r2+1

...
(ht)dembed−3

I1
t

I2
t
1



if It·v<0
======



(ht)1
...

(ht)r1−1

0
...
0

(ht)r2+1

...
(ht)dembed−3

I1
t

I2
t
1



.

and

z1 = σ(W1ht + b1) =



(ht)1
...

(ht)r1−1

σ((ht)r1 + CIt · v)
...

σ((ht)r2 + CIt · v)
(ht)r2+1

...
(ht)dembed−3

I1
t

I2
t
1



if It·v>0
======



(ht)1
...

(ht)r1−1

(ht)r1 + CIt · v
...

(ht)r2 + CIt · v
(ht)r2+1

...
(ht)dembed−3

I1
t

I2
t
1



.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Then apply the second layer yields

z2 = W2z1 + b2 =



(ht)1
...

(ht)r1−1

0
...
0

(ht)r2+1

...
(ht)dembed−3

I1
t

I2
t
1



and z2 = W2z1 + b2 =



(ht)1
...

(ht)r1−1

(ht)r1
...

(ht)r2
(ht)r2+1

...
(ht)dembed−3

I1
t

I2
t
1


respectively. This shows (24). Similarly, there exists some v = (v1,v2) ∈ S1 such that It · v < 0
for t = {1, · · · , k1} and It · v > 0 for t = {k1, · · · , ℓ}. Applying the same argument we get (25).

To obtain a bound on the constant C, we need |CIt ·v| > ∥H∥∞. Hence C > ∥H∥∞
|It·v| = O(ℓ∥H∥∞).

E.8 PROOF OF LEMMA 7

Proof of Lemma 7. Given an H = [ht]1≤t≤ℓ, we apply the first layer of FFN with

W1 =

 1
1

1

 ∈ Rdembed×dembed and b1 =



M
...
M
0
0
0

 ∈ Rdembed ,

so that the output after the first layer of FFN is

H1 =


M · · · M
...

...
M · · · M
I1 · · · Iℓ
1 · · · 1

 ∈ Rdembed×ℓ.

Then by Lemma 6, there exists a two-layer FFN such that the output after applying these two layers
become

H3 =


M · · · M 0 · · · 0
...

...
...

...
M · · · M 0 · · · 0
I1 · · · Ik2

Ik2+1 · · · Iℓ
1 · · · 1 1 · · · 1

 ∈ Rdembed×ℓ.

Again by Lemma 6, there exists a two-layer FFN such that the output after applying these two layers
become

H5 =


0 · · · 0 M · · · M 0 · · · 0
...

...
...

...
...

...
0 · · · 0 M · · · M 0 · · · 0
I1 · · · Ik1

Ik1+1 · · · Ik2
Ik2+1 · · · Iℓ

1 · · · 1 1 · · · 1 1 · · · 1

 ∈ Rdembed×ℓ.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Finally, we apply a FFN with

W6 =



−1
. . .

−1

1
1

1


∈ Rdembed×dembed and b6 = 0 ∈ Rdembed ,

where the entries −1 appear in r1-th row to r2-th row and r1-th column to r2-th column. Therefore,
the output after applying W6 and b6 is

H6 =



0 · · · 0 0 · · · 0 0 · · · 0
...

...
...

...
...

...
0 · · · 0 0 · · · 0 0 · · · 0
0 · · · 0 −M · · · −M 0 · · · 0
...

...
...

...
...

...
0 · · · 0 −M · · · −M 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0
...

...
...

...
...

...
0 · · · 0 0 · · · 0 0 · · · 0
I1 · · · Ik1 Ik1+1 · · · Ik2 Ik2+1 · · · Iℓ
1 · · · 1 1 · · · 1 1 · · · 1



∈ Rdembed×ℓ,

where the entries −M appear in r1-th row to r2-th row and k1-th column to k2-th column. Therefore,
the residual FFN gives the output

FFN(ht) + ht =



ht if t ∈ {1, · · · , k1} ∪ {k2, · · · , ℓ}

(ht)1
...

(ht)r1−1

(ht)r1 −M
...

(ht)r2 −M

(ht)r2+1

...
(ht)dembed−3

It
1



otherwise

as desired.

E.9 BOUNDING THE ERROR II IN (16)

Since 0 ≤ (T∗({xγ
i , y

γ
i }ni=1};x

γ
n+1)− yγn+1)

2 ≤ 4R2, by Hoeffding’s inequality, for any t > 0, it
satisfies

P(Rn,Γ(T
∗)− Es [Rn(T

∗(s))] ≥ t) ≤ e−
t2Γ
8R4 .

Hence with probability at least 1− δ, it satisfies

Rn,Γ(T
∗)− Es [Rn(T

∗(s))] ≤ R2

√
8 log(1/δ)

Γ
.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Let δ = h2, we get

ES

(
Rn,Γ(T

∗)− Es [Rn(T
∗(s))]

)
≤ O

(√
log(h−1)

Γ
+ h2

)
,

where O(·) hides the dependency on R.

F ADDITIONAL EXPERIMENTS AND DETAILS

H =



xγ
1,1 · · · xγ

1,n xγ
1,n+1 0

xγ
2,1 · · · xγ

2,n xγ
2,n+1 0

xγ
3,1 · · · xγ

3,n xγ
3,n+1 0

yγ1 · · · yγn 0 0
0 · · · · · · · · · 0
I1 · · · · · · · · · Iℓ
1 · · · · · · · · · 1


, (35)

F.1 ADDITIONAL EXPERIMENTAL DETAILS

For the transformer architecture we used for the experiments in Section 4, we fix dembed = 8, LT = 5,
LFNN = 6. The number of attention heads is m = 1 for n = 4, 8, 16, 32. We generate Γ = 50000
for both training and testing. The model is trained with batch size 100, using Adam with learning
rate 0.0005 for 100 epochs.

For experiments in Section 5, we fix dembed = 8, LT = 5, LFNN = 6, and the number of attention
heads m = 2, 4, 8 for n = 16, 64, 256 respectively. We generate Γ = 400, 1600, 6400 for both
training and testing. The model is trained with batch size 100, using Adam with learning rate 0.0005
for 100 epochs.

To make the experiment setup the as close as to our theory suggests, we apply the softmax activation
in the last layer of our transformer model, and ReLU activation in all the layers before the last layer.
The activation function for the feed-forward components are ReLU activation.

The following sentences are used to generate the attention score curves in Figure 3. Sen-
tences are cut in the end so that all the sentences have the same length.

Sentence 1: ”In the quiet town by the river, a curious child spent the afternoon reading stories about
distant galaxies and dreaming of becoming an astronaut one day.”

Sentence 2: ”The professor walked slowly across the lecture hall, carefully explaining how black
holes bend space and time while students scribbled furiously in their notebooks.”

Sentence 3: ”On a rainy evening in Paris, a young artist painted the city’s rooftops in dazzling colors,
imagining how the world might look if dreams could shape reality.”

Sentence 4: ”The spacecraft drifted silently beyond the orbit of Saturn, transmitting faint signals
back to Earth as scientists waited anxiously for news of its discoveries.”

Sentence 5: ”In the heart of the ancient forest, an owl watched quietly from a high branch, while a
fox padded softly across the moss-covered ground below.”

F.2 ADDITIONAL EXPERIMENTAL RESULTS

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Figure 5: More examples of attention scores and Gaussian kernel function with in-context length
n = 4, 8, 16, 32 respectively.

34

	Introduction
	Preliminaries
	In-Context Regression on Manifold
	Bridging Attention to Kernel Methods
	Transformer-Based ICL Generalization Error Bound
	Related Works
	Conclusion and Discussion
	The Use of Large Language Models (LLMs)
	More Definitions
	Geodesic Distance, Reach of the Manifold and Covering Number
	Embedding, Positional Encoding and Transformer Block

	Roadmap for the Proof of Theorem 1
	Approximation Error: Transformers can Implement Kernel Estimator
	Statistical Error
	Putting Approximation Error and Statistical Error Together

	Fundamental Lemmas
	Deferred Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Proposition 1
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7
	Bounding the error II in (16)

	Additional Experiments and Details
	Additional Experimental Details
	Additional Experimental Results

