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Abstract—Functional magnetic resonance imaging (fMRI) 

provides a window for studying brain function with high spatial 

resolution, enabling the investigation of additional sleep-stage 

features beyond electroencephalography to solve the sleeping 

problem. However, previous studies mostly focused on analyses of 

fMRI data from regions of interest at single-subject level, resulting 

in a lack of group features. In this study, we propose to analyze 

whole-brain fMRI data at multi-subject level to extract group 

sleep-stage activation features. More precisely, a Tucker-2 

decomposition algorithm is used to analyze multi-subject fMRI 

data collected during different sleep stages, since this algorithm 

simultaneously extracts group shared and individual spatial and 

temporal features from multi-subject fMRI data, minimizing the 

mixing of group and individual features. For fMRI data of 

different sleep stages, we extract components of interest such as 

the default mode network and auditory network, examine 

activations of group shared spatial maps, analyze frequency 

fluctuations of group shared time courses, and detect significant 

voxel-level differences in different sleep stages using individual 

spatial maps. We perform experiments using fMRI data from ten 

subjects with available non-rapid eye movement stage 1 and 2 and 

the wakefulness stage. The results show new findings, e.g., most 

components exhibit low-frequency oscillations during both 

wakefulness and sleep stages. However, in some networks, high-

frequency signals appear in non-rapid eye movement stages, such 

as the default mode network and auditory network in non-rapid 

eye movement stage 1. Therefore, our study provides new evidence 

for analyzing sleep stage features. 
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I. INTRODUCTION  

Sleep, an essential biological function observed across 
various species, plays crucial roles in several vital life processes. 
These include facilitating learning [1][2], managing emotions 
[3], and promoting restorative activities [4]. The human brain 
activity during sleep is typically measured using scalp 
electroencephalography (EEG), which is considered the gold 
standard for sleep scoring following the rules proposed by the 
American Academy of Sleep Medicine in 2007 [5]. To better 

describe sleep, it is now commonly used to categorize sleep 
stages into wakefulness (W), rapid eye movement sleep, and 
non-rapid eye movement  sleep. Non-rapid eye movement sleep 
can be further subdivided into non-rapid eye movement stage 1 
(N1), stage 2 (N2), and stage 3 (N3) based on the prominence of 
slow waves and spindles [6]. 

However, EEG lacks both the spatial resolution and the brain 
coverage required for monitoring local neuronal states [7]. 
Functional magnetic resonance imaging (fMRI) is important to 
understand brain function. It provides objective, non-invasive, 
and high spatial resolution for the detection of localized 
signatures of sleep in brain hemodynamic activity [8-10]. 
However, previous fMRI studies on sleep mostly rely on the 
blood oxygen level dependent signals of voxels within regions 
of interest to analyze local brain activity [11-16]. These studies 
focus on individual subjects, resulting in a lack of group features. 
Group analyses of multi-subject fMRI data facilitate the 
extraction of brain functional components, providing a 
foundation for research into brain functions and clinical 
diagnostics [17]. 

Tucker decomposition (TKD), as one of the tensor 
decomposition algorithms, has attracted increasing attention in 
blind source separation of multi-subject fMRI data [18]. TKD 
can effectively decompose a tensor into factor matrices and a 
core tensor without compressing the original data [19]. From 
multi-subject fMRI data, TKD can extract more individual 
features than other tensor decomposition methods [20], in 
addition to shared components, so it can also minimize the 
mixing of group and individual features. Thus, it is promising 
for identifying new features for analyzing sleep stages at both 
group and individual levels by TKD. The sparsity-low rank-
constraints TKD (slcTKD) model fully considered the 
characteristics of fMRI data [21], which makes full use of the 
tensor structure of a three-way (voxel × time × subject) multi-
subject fMRI data to obtain group shared time courses and 
spatial maps, and the core tensor. The core tensor can be 
sequentially used to extract more features in individual-level, 
such as individual spatial maps [22]. 



In this study, we propose to analyze whole-brain fMRI data 
at multi-subject level to extract group sleep-stage activation 
features. We focus on four components of interest closely 
related to sleep: the occipital pole visual source, default mode 
network, auditory, and executive control network. These 
networks were obtained using the template obtained from the 
group independent component  analysis of nearly 30,000 
subjects by Smith et al. [23]. To extract group shared spatial 
components and temporal courses, the slcTKD model was 
applied to fMRI data from 10 patients, which included data from 
W, N1, and N2. Spatial activation analysis was conducted on the 
shared spatial maps to examine changes in spatial activation 
across different sleep stages. Fast Fourier Transform  of the 
shared time courses was performed to analyze frequency 
variations during different sleep stages. Additionally, a paired 
samples t-test was conducted on individual spatial maps 
between different sleep stages, with a significance threshold set 
at p < 0.05.  

To summarize, this research mainly consists of two parts: 

• We propose to analyze different sleep stages in both 
group and individual levels, using the TKD model for 
multi-subject fMRI data. We extract group-level 
activation features using shared spatial maps, analyze 
frequency fluctuations of shared time courses, and detect 
voxel-level features by individual spatial maps. This 
allows us to investigate the spatial and frequency 
changes in brain activity during wakefulness and sleep. 

• New temporal and spatial changes are found, e.g., high-
frequency signals appear in the non-rapid eye movement 
stages, such as the default mode network and auditory in 
N1. 

II. METHODS 

A. Extraction of Shared and Individual Components 

First, we aim to obtain shared spatial map (SM) and time 
courses (TC). For a multi-subject fMRI data 𝐗 ∈ ℝ𝑉×𝑇×𝐾 , 

where 𝑉, 𝑇, 𝐾 denote the number of in-brain voxels, time points, 
and subjects. The Tucker-2 model is built as follows: 

𝐗 = 𝐆 ×1 𝐒 ×2 𝐁 + 𝐄 (1) 

where ×1 and ×2 denote the mode-1 and mode-2 product,  𝐒 =
{𝒔𝑛} ∈ ℝ𝑉×𝑁 and 𝐁 = {𝒃𝒏} ∈ ℝ𝑇×𝑁  represent the shared SM 
matrix and the shared TC matrix, respectively; 𝒔𝑛 ∈ ℝ𝑉  and 
𝒃𝒏 ∈ ℝ𝑇 are the spatial and temporal components obtained from 
shared SM and shared TC; 𝑁  is the order of the model. 𝐆 ∈
ℝ𝑁×𝑁×𝐾   and 𝐄 ∈ ℝ𝑉×𝑇×𝐾  are the core tensor and the residual 

tensor. In slcTKD algorithm [21], the tensors and matrices are 
updated as follows:  

min
𝐒,𝐁,𝐆,𝐄

   ||𝐗 − 𝐆 ×1 𝐒 ×2 𝐁 − 𝐄||𝐹
2 + ‖𝐒‖𝐹

2 + ‖𝐁‖𝐹
2

                                         +𝛿‖𝐒‖𝑝 + 𝜆‖𝐆‖
1

+ 𝛾‖𝐄‖
1

(2) 

where ‖ · ‖𝐹  , ‖ · ‖𝑝  and ‖ · ‖1  denote low-rank ℓ𝐹 constraint, 
ℓ𝑝 sparsity constraints (0 < 𝑝 ≤ 1) and ℓ1 sparsity constraints. 

The positive parameters 𝛿 , 𝜆 , and 𝛾  control the sparsity of 

several regularization terms. More details about the updating 
rules  of the shared TC matrix 𝐁 and shared SM matrix 𝐒 can be 
referred to [21].  

Second, we extract individual SMs. For subject k, all the 

voxels in specific index n are extracted as follows： 

�̂�𝑘 = 𝐒 ∙ 𝐆(: , : , 𝑘) (3) 

where  𝑘 = 1, …, K, 𝐆(: , : , 𝑘) is the 𝑘th frontal slice of tensor 𝐆, 

�̂�𝑘 = {�̂�1
𝑘, . . . , 𝒔𝑁

𝑘 } ∈ ℝ𝑉×𝑁 represents the individual SM matrix 

for subject k, �̂�𝑛
𝑘  is the spatial component extracted from 

individual SM matrix �̂�𝑘, 𝑛 = 1, …, N. 

B. Component Selection 

The component of interest from the shared SM matrix 𝐒 is 
selected as follows: 

𝑛∗ = 𝑎𝑟𝑔 max
𝑛=1,..,𝑁

(
𝒔𝑛 ∩ 𝒔𝑟𝑒𝑓

𝒔𝑟𝑒𝑓

∙
𝒔𝑛 ∩ 𝒔𝑟𝑒𝑓

𝒔𝑛

) (4) 

where 𝒔𝑟𝑒𝑓  is the spatial reference; 𝒔𝑛  denotes spatial 

component obtained from shared SM; “∩” denotes the number 
of voxels activated in both 𝒔𝑛 and 𝒔𝑟𝑒𝑓. Eq. (4) aims to select a 

component with more voxels inside the spatial reference 
network as well as less voxels outside it. For simplicity, we 
denote the components of interest extracted from the shared SM 
matrix 𝐒 as 𝒔∗ ∈ ℝ𝑉. Using a similar method as described in Eq. 
(4), the component extracted from the shared TC matrix 𝐁 is 

𝒃∗ ∈ ℝ𝑇 . The selected spatial map for subject k from matrix �̂�𝑘 

is denoted as 𝒔∗
𝑘 ∈ ℝ𝑉. 

C. Paired Samples t-test  

We denote the matrix �̂�∗
𝐾 = {𝒔∗

1, . . . , 𝒔∗
𝐾} ∈ ℝ𝑉×𝐾 as the SM 

matrix of interest for each K participants, which is formed by 

individual SMs of interest 𝒔∗
𝑘  from a same sleep stage. The SM 

matrices of sleep stage W, N1, and N2 are represented by 

�̂�∗,w
𝐾 ∈ ℝ𝑉×𝐾 , �̂�∗,N1

𝐾 ∈ ℝ𝑉×𝐾  and �̂�∗,N2
𝐾  ∈ ℝ𝑉×𝐾  respectively. A 

paired samples t-test is performed between each pair of voxel 

vectors in different sleep stages. For example, a paired samples 

t-test between W and N2 is represented as follows: 

𝒕(𝒗) = Φ(𝑣) ∙ 𝑡𝑡𝑒𝑠𝑡(�̂�∗,w
𝐾 , �̂�∗,N2

𝐾 ) (5) 

where 𝒕 ∈ ℝ𝑉 is the difference t-map, 𝑡𝑡𝑒𝑠𝑡(∙)  denotes paired 

samples t-test, and 𝚽 ∈  ℝ𝑉 is a binary mask determined by the 

significant level, defined as:  

Φ(𝑣) = {
1,   𝑖𝑓 |𝑡𝑡𝑒𝑠𝑡(�̂�∗,w

𝐾 , �̂�∗,N2
𝐾 )| > 𝒕𝑡ℎ

0,   otherwise
(6) 

where 𝒕𝑡ℎ is the threshold of t-value for paired samples t-test. 

III. EXPERIMENTAL METHODS 

A. fMRI Data Acquisition and Preprocessing 

The fMRI data used in this study were publicly provided on 
the public neuroimaging repository OpenNeuro.org [24]. The 



study involved 33 healthy subjects. The fMRI data were 
acquired using an Echo Planar Imaging sequence, with 
parameters as TR = 2100 ms, TE = 25 ms, flip angle = 90 
degrees, slice thickness = 4 mm, number of slices = 35, FOV = 
240 mm, in-plane resolution = 3 mm × 3 mm. Dataset provides 
the results of EEG sleep staging. Based on the results of EEG 
sleep staging, 10 subjects who exhibited the W, N1, and N2 
sleep stages were selected. After the collection of fMRI data, 
several preprocessing steps were necessary to eliminate 
potential noise factors, using the SPM toolbox [25]. The main 
preprocessing steps included: (1) discarding the first ten 
volumes to mitigate the effects of magnetic saturation, (2) 
motion correction, (3) spatial normalization using the T1 
structural image, and (4) spatial smoothing. The resulting fMRI 
data comprise 150 time points and contain 53 × 63 × 46 voxels. 

B. Experimental Process  

Fig. 1 shows the flow chart of the overall experimental 
process. First, the experimental procedure begins with the 
classification of sleep stages derived from EEG signals. 
Subsequently, fMRI data corresponding to these stages are 
selected and then are subjected to preprocessing procedures. The 
preprocessed data are constructed into a multi-subject fMRI 
tensor. Second, the slcTKD method is applied to extract shared 
SMs and shared TCs across subjects. Individual SMs for each 
participant are then calculated. Third, analyses are conducted 
based on four networks to extract components of interest. Then, 
we conduct group-level analyses. For the extracted shared SMs 
of interest, the total number of voxels 𝑉𝑡𝑜𝑡𝑎𝑙 and the number of 
voxels inside the reference 𝑉𝑖𝑛  are calculated. For the shared 
TCs, the power spectrum is obtained by a fast Fourier transform. 
Finally, to capture individual-level differences, a paired samples 
t-test is conducted across different sleep stages on the individual 
components of interest, considering a level of p < 0.05 to denote 
statistically significant differences. Using a t-distribution table 
with 9 degrees of freedom, the critical t-value is 1.833. 

 

Fig. 1. The flow chart of the overall experimental process for analyzing shared 

spatial maps (SMs) and time courses (TCs), and individual SMs across different 

sleep stages. 

IV. RESULTS 

A. Group Shared Spatial Activation Maps 

We focus on four components of interest closely related to 
sleep: the occipital pole visual source (OPVS), default mode 
network (DMN), auditory (AUD), and executive control 
network (ECN). Group shared spatial activation maps are 
illustrated in Fig. 2. During W, AUD and ECN are highly active. 
From W to N2, the shared SMs of most components become 
closer to the SM reference, with the values of  𝑉𝑖𝑛  first 
decreasing and then increasing, except for the DMN. 
Additionally, the maximum spatial activation values increase, 
except for the OPVS. For the OPVS, the 𝑉𝑡𝑜𝑡𝑎𝑙  consistently 
increases and 𝑉𝑖𝑛 reaches its maximum value of 3541 during the 
N2 stage, indicating that OPVS is most active during N2. The 
shared SMs of DMN have more activation voxels in total during 
the N1 and N2 stages compared to the W stage. During the N1 
stage, there is a significant increase in activation in the posterior 
cingulate cortex. In the N2 stage, activity in the anterior 
cingulate cortex decreases. For the AUD, from W to N2, 
activation becomes increasingly concentrated in the left and 
right parts of the AUD network. The activation of the ECN is 
concentrated in the frontal and parietal cortices, and as sleep 
deepens, the activation becomes more concentrated in the frontal 
cortex. 

B. Frequency Features of Group Shared Time Courses 

The power spectrum of four networks is illustrated in Fig. 3. 
We notice that all four components predominantly exhibit low-
frequency signals (< 0.1 Hz) at each stage, with the low-
frequency power being significantly greater in N2. Additionally, 
noticeable high-frequency signals (> 0.1 Hz) are observed in the 
DMN and AUD during N1.  

(a)OPVS

(d)ECN

(c)AUD

(b)DMN

W                                         N1                                       N2  
W                                                                                                 N1                         N2Vtotal=8277, Vin=2949 Vtotal=8609, Vin=3541Vtotal=8564, Vin=2738

Vtotal=7688, Vin=4168 Vtotal=8694, Vin=3939Vtotal=9491, Vin=4094
1

3.986.244.98

11

3.59 4.13 4.66

1 1 1

Vtotal=9389, Vin=5304 Vtotal=8565, Vin=6311Vtotal=8939, Vin=4970

Vtotal=9389, Vin=5304 Vtotal=9510, Vin=5105Vtotal=8939, Vin=4749

3.59 3.87 3.59

1 1 1

3.83 5.12

1 1 1

6.20

 

Fig. 2. Group shared spatial activation maps of four components of interest 

across sleep stages W, N1, and N2:(a)OPVS, (b)DMN, (c)AUD and (d)ECN. 



(a)OPVS

(d)ECN

(c)AUD

(b)DMN

W                                 N1                                N2  

 

Fig. 3. Power spectrum of four components of interest across different sleep 

stages (W, N1, N2): (a)OPVS, (b)DMN, (c)AUD and (d)ECN. 

For DMN, in the N2 stage, the amplitude of low-frequency 
components increases, while high-frequency components 
decrease compared to the N1 stage. For the AUD, compared to 
the W stage, the N1 stage shows a decrease in low-frequency 
activity and an increase in high-frequency activity. For the ECN, 
during the N1 and N2 stage, there is an increase in low-
frequency components, compared to the W stage. 

C. W-N2 difference t-maps 

Given that the N1 stage is a transitional stage of sleep and its 
differences from other sleep stages are less obvious, we present 
only the results of the paired samples t-test between the W and 
N2 stages. The results are shown in Fig. 4. Significant 
differences are primarily concentrated in the posterior occipital 
lobe of the brain, the anterior cingulate cortex of the DMN, and 
the frontal cortex of the ECN, which is consistent with the 
conclusions of shared SMs. The right part of auditory cortex 
exhibits more significant changes than the left part of auditory 
cortex during the transition from wakefulness to sleep. 

V. DISCUSSION AND CONCLUSION 

In this study, we utilized the slcTKD model to analyze multi-
subject fMRI data, aiming to extract group activation features 
across different sleep stages. Our research focused on four 
components: OPVS, DMN, AUD, and ECN, analyzing their 
dynamic changes during different sleep stages. We found that 
each network exhibited variations in space and frequency 
between wakefulness and sleep. 

During the transition from wakefulness to sleep, our results 
show that the spatial activation pattern of DMN is consistent 
with previous studies, with reduced activation of the anterior 
cingulate cortex region during N2 [26]. In addition, frequency 
analysis revealed a pattern consistent with previous studies: a 
low-frequency oscillation prominent in light sleep [7]. These 
findings confirm the reliability of our method. 
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Fig. 4.  Significant difference betweenW-N2 detected using a paired samples 

t-test at p < 0.05 in (a)OPVS, (b)DMN, (c) AUD, and (d)ECN.  

Additionally, we have made several new findings. From the 
results of group shared SMs, during the wakefulness stage, most 
networks exhibited substantial activation, with large activation 
areas, particularly the AUD and ECN. This suggests high brain 
activity in processing external stimuli and performing control 
tasks during wakefulness. From W to N2, the spatial activation 
of most components becomes more concentrated in the 
reference network. This suggests that as the brain transitions 
from wakefulness to deeper sleep stages, neural activity 
becomes more focused within specific functional networks. 
From a frequency perspective, most networks predominantly 
exhibit low-frequency signals during the W, N1, and N2 stages. 
However, the amplitude of  low-frequency power is significantly 
higher in the N2 stage compared to the W stage. Additionally, 
high-frequency signals are observed in the DMN and AUD 
during the N1 stage. The results of the paired samples t-test 
shows the same changes as the shared SM results, indicating that 
the group-level changes are also consistent at the individual 
level. The group shared SMs indicate increased spatial 
activation of OPVS, AUD, and ECN components within the 
reference network. The results of the paired samples t-test also 
show significant changes in these regions. Additionally, the 
result of group shared SMs shows the anterior cingulate cortex 
region deactivation in the N2 stage compared to the W stage, 
which is also confirmed by the t-test result. 

Our findings indicate differences in activation patterns and 
frequencies of the brain across different sleep stages. These 
insights into the dynamic changes in brain function during sleep 
are crucial for accurate assessment of sleep disorders and the 
development of targeted therapeutic strategies. 

Limitations: 

The study included only ten subjects with recorded data for 
the W, N1, and N2 sleep stages, lacking comprehensive analysis 
of the N3 and REM stages. And the physiological mechanisms 
underlying these changes remained unclear. 
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