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Abstract

We propose a novel prompt design paradigm
that challenges conventional wisdom in large
language model (LLM) prompting. While con-
ventional wisdom prioritizes well-crafted instruc-
tions and demonstrations for in-context learning
(ICL), we show that pruning random demonstra-
tions into seemingly incoherent “gibberish” can
remarkably improve performance across diverse
tasks. Notably, the “gibberish” always matches
or surpasses state-of-the-art automatic prompt
optimization techniques, achieving substantial
gains regardless of LLM alignment. Neverthe-
less, discovering an effective pruning strategy is
non-trivial, as existing attribution methods and
prompt compression algorithms fail to deliver ro-
bust results, let alone human intuition. In terms
of this, we propose a self-discover prompt op-
timization framework, PROMPTQUINE, an evo-
lutionary search framework that automatically
searches for the pruning strategy by itself using
only low-data regimes. Much like the emergent
complexity in nature—such as symbiosis and self-
organization—arising in response to resource con-
straints, our framework evolves and refines uncon-
ventional yet highly effective prompts by leverag-
ing only the tokens present within the context. We
demonstrate its effectiveness across classification,
multi-choice question answering, generation and
math reasoning tasks across LLMs, while achiev-
ing decent runtime efficiency. We hope our find-
ings can guide mechanistic studies on in-context
learning, and provide a call to action, to pave the
way for more open-ended search algorithms for
more effective LLM prompting.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on ICML 2025 Workshop on Reliable and Responsible Foundation
Models. Do not distribute.

1. Introduction
Prompting large language models (LLMs) has become
the de facto standard for numerous applications, shifting
the community focus to designing prompts that maximize
model performance. However, this task is inherently com-
plex due to the nuanced and often unpredictable behavior
of LLMs (Lu et al., 2022; Liu et al., 2023). Subtle changes
in phrasing, structure, or context can dramatically affect
outputs (Jiang et al., 2020; Shi et al., 2023). Consequently,
prompt engineering relies heavily on iterative experimenta-
tion and evaluation. On the other hand, automatic prompt
optimization (Liu et al., 2023) explores to minimize the
human involvement by leveraging computations to refine
prompts iteratively. The conventional wisdom (Zhao et al.,
2021; Lu et al., 2022; OpenAI, 2023; Wan et al., 2024) sug-
gests that well-specified task instruction, combined with a
few tuned demonstrations for ICL, yields the best results.

This paper presents a study that challenges conventional wis-
dom by showing that pruning clear, detailed demonstrations
into seemingly incoherent “gibberish” (both syntactically
and semantically strange) can, counterintuitively, improve
performance across various tasks. Notably, this effect gen-
eralizes across models, regardless of alignment (Shen et al.,
2023b), suggesting a broader misspecification of unnatu-
ral language in current LLMs. Even more surprisingly, we
find that this “gibberish” consistently matches or surpasses
the performance of state-of-the-art automatic prompt opti-
mization results in several tasks. Consequently, we propose
a novel conceptual framework that reframes prompt com-
pression as guided prompt search, enhancing both serving
efficiency and task performance. We further explore algo-
rithms to achieve these improvements.

To derive effective pruning strategies, one might expect
existing instance attribution (Li et al., 2016a; Yin & Neu-
big, 2022) or prompt compression methods (Li et al., 2023;
Jiang et al., 2023c;d; Pan et al., 2024) to provide guidance.
However, we find that none of these methods can reliably
produce accurate token importance scores to guide the prun-
ing, let alone human intuition according to word semantics.
A more practical idea is to ask algorithms to discover the
pruning strategies by themselves. We thus develop a self-
discover prompt optimization framework, Genetic Prompt-
Quine (PROMPTQUINE), an evolutionary search framework
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that automatically searches for the pruning strategy by it-
self using low-data regimes. The philosophy of this frame-
work is essentially a self-replicating program (Von Neu-
mann et al., 1966) that copies and mutates the prompt itself
(e.g., pruning random tokens). The mutated prompts com-
pete for limited resources to survive based on their fitness,
with only the most performant surviving, thereby evolving
effective pruning strategies over multiple generations. The
entire process closely resembles the evolutionary dynamics
of biological systems, where self-replication and adapta-
tion drive the emergence of more effective strategies over
successive generations (i.e., evolutionary self-replication).

Evolutionary self-replication, a fundamental concept in Dar-
winian evolution (Ofria & Wilke, 2004), explains how life
reproduces and evolves through genetic variation and natu-
ral selection, fostering the emergence of unpredictable traits
and behaviors that enhance adaptability to constantly shift-
ing environmental conditions. Similarly, the prompt design
problem can also be framed as an evolutionary process,
where prompts shall be iteratively refined to adapt to com-
plex LLM environments. As such, prompts that are optimal
for complex LLMs may exceed human intuition and require
methods beyond manual design. Inspired by our findings,
we propose embracing more open-ended innovations (or
broader open-endedness (Stanley et al., 2017))—shifting
from the human language space towards the “LLM language
space”—to advance LLM prompting strategies.

We demonstrate the effectiveness of our search framework
through large-scale experiments across tasks and LLMs.
Our results show that pruning a low-shot ICL prompt
could perform comparably to state-of-the-art methods
on a range of tasks, while maintaining competitive runtime
efficiency compared to prior optimization methods (e.g.,
Table 10 in Appendix). Notably, our PROMPTQUINE frame-
work is inherently well-suited for parallelization, which can
further enhance both its scalability and efficiency, for ex-
ample by parallelizing reproduction and fitness evaluation.
Moreover, we find that the task improvements of our ap-
proach could becosme more pronounced as the number of
in-context examples increases, suggesting that scaling to
more shots can unlock additional performance gains. This
suggests that richer prompt variations can drive further gains.
Finally, we show that key findings on label word importance
also hold for our ICL pruning, with the additional insight
that pruning has potentials to enhance performance with
random verbalizers, even when starting from chance.

2. Problem Formalisms
2.1. Preliminaries: In-context Learning

ICL describes an emergent capability of LLMs that given a
few training examples appended in context, the LLM is able

to be conditioned to infer the task results. Formally, given K
input-label pairs {(xi,yi)}Ki=1 and the task test input xtest
concatenated in the input context, the LLM is conditioned
to generate the task prediction:

ytest ∼ PLM (· | x1,y1, . . . ,xK ,yK ,xtest ) (1)

users can then parse the task output from the prediction ytest
(i.e., mapping into corresponding task verbalizers (Schick
& Schütze, 2021)).

2.2. The Motivating Discussion

An intriguing observation in recent LLM prompting re-
search (Shin et al., 2020; Deng et al., 2022; Zou et al.,
2023) suggests that, for certain tasks, unintelligible or
unnatural prompts (e.g., StaffAreaFocusHardware
Advisory for News Classification) can outperform care-
fully crafted natural language instructions. This unnatural
language phenomenon has been discussed as a form of se-
cret language (Daras & Dimakis, 2022) in literature.

Specifically, secret language often refers to unnatural lan-
guage prompts whose syntax and semantics are incoherent
and difficult for humans to parse, yet can be surprisingly
effective in certain scenarios. In the absence of theoretical
explanation for their emergence, and universally effective
method for large-scale discovery, such prompts, either dis-
covered by coincidence or found after extensive computa-
tion by certain algorithms (Shin et al., 2020; Deng et al.,
2022; Jones et al., 2023, inter alia), such as the news classi-
fication prompt we discussed above, are typically regarded
as mysterious, hidden, and inherently non-scalable.

We argue that such seemingly chaotic discoveries may actu-
ally contain universal insights into LLM sensitivity towards
prompt design. We detail our thought process as follows:
It’s counter-intuitive that unnatural prompts can outperform
natural instructions, despite being extensive trained to align
human language. This suggests LLMs may only experience
superficial alignment (Greenblatt et al., 2024) and instead
may prioritize hypotheses over the explicit structure of hu-
man linguistics. Recently, Chan et al. (2022) identified
that transformer language models, especially LLMs, exhibit
sparse, rule-based generalization in ICL, where minimal
features can dominate predictions (Dasgupta et al., 2022).
This raises the possibility that some input features can be
redundant or inessential towards task prediction. We are
thus curious whether natural language prompts, e.g., ICL,
could be improved simply by removing certain input fea-
tures in-context, exploring the potential of ICL optimization
in-context. In other words, we deliberately explore disrupt-
ing the grammatical structure of prompts in an attempt to
approach a structure that LLMs might prefer.

Alternatively, such perturbation might be viewed as a nearby
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search within semantically coherent natural language con-
texts, potentially outperforming the unnatural artifacts from
token-level searches with limited algorithmic capacity (Shin
et al., 2020; Deng et al., 2022). We refer to this as the Partial
Context Hypothesis.

Specifically, given a natural language prompt, e.g., ICL
prompt, x = (x1, x2, . . . , xn) with task performance X,
is it possible to prune a few prompt tokens, resulting in a
pruned prompt z = (z1, z2, . . . , zm),m ≤ n, with signifi-
cantly improved task performance Z. Notably, the prompt
can reach or even surpass task performance Y of unnatural
language prompts y discovered by prior token-level search
algorithms (Shin et al., 2020; Deng et al., 2022), although
initial performance X may be substantially lower.

As we demonstrate in Appendix B through a pilot study
using a simple hill-climbing approach (Section 3.1), the hy-
pothesis proves effective and may outperform the unnatural
language prompts discovered by Deng et al. (2022) across
various contexts—especially in pruning ICL, which is our
focus. In terms of the effectiveness, for example, the popu-
lar prompt “Let’s work this out step by step to be sure we
have the right answer,” introduced by Zhou et al. (2022), im-
proves InstructGPT’s performance on the MultiArith dataset
(Roy & Roth, 2015) from 78.7% to 81.5%, outperforming
the earlier prompt “Let’s think step by step” (Kojima et al.,
2022). By pruning the prompt to “Let’s work out step by
step sure we right answer”, we achieve an even higher result
of 86.7% (Appendix, Table 7).

2.3. Compression as Guided Search: A Reformulation

The prompt compression is a widely studied field where the
typical target is to improve the inference speed (Li et al.,
2023; Jiang et al., 2023d;b; Pan et al., 2024). In contrast,
we frame the prompt compression problem as a guided
prompt search where the task is construed as searching for
the prompt subsequence which can elicit improved task
results. To avoid the ambiguity, we mainly use the term
“prompt pruning” in the paper.

Formally, we describe the search problem as below:

Given input prompt x = (x1, x2, . . . , xn), the goal is to
locate a pruned prompt z = (z1, z2, . . . , zm),m ≤ n as a
subsequence of input prompt x. The subsequence length
m is not predefined and it shall continuously adjust over
optimization. Our search optimizes a non-differentiable
task objective f(z;x,D) which typically represents the task
performance over the dataset D and aims at returning the
optimal solution, i.e., an optimally pruned prompt we dis-
covered so far. In the remainder of this section, we will
describe the search space, the search objective as well as the
overall principles for the solution selection in detail.

Search Space. The search space refers to all possible
solution candidates that the algorithm can explore. In our
context, it specifically refers to any prompt subsequences
extracted from the original prompts. Ideally, the word order
within the prompts could also be altered during optimization.
However, this operation would significantly complicate the
search problem, resulting in an exponentially larger search
space. Therefore, in this paper, we focus primarily on the
fixed-order prompt subsequence search.

Search Objective. The search objective functions as a
performance measure to evaluate the quality of candidate
solutions, especially assessing the effectiveness of prompts
in enhancing downstream task performance. For instance,
prompt quality can be evaluated using an aggregated metric
(e.g., classification accuracy) on a held-out set separated
from the original dataset. Since the search objective is
typically non-differentiable, we cannot just approximate the
solutions via traditional gradient ascent.

Solution Selection. Once the search converges or termi-
nates, the algorithm returns a selected optimal solution, i.e.,
an optimal prompt. The optimality of a prompt is typically
measured by an aggregated metric on a held-out dataset.
This dataset is often referred to as the validation set, with
final performance reported separately on a test set using the
task-specific metric. We ensure strict separation between the
validation and test sets to prevent data leakage and enable a
reliable assessment of generalization.

3. PROMPTQUINE

We now introduce our search framework PROMPTQUINE.
We’ll begin with a straightforward hill-climbing search in
Section 3.1, which serves as a strong baseline with good em-
pirical performance and is also the method used in our pilot
study (Appendix B) to validate the Partial Context Hypothe-
sis. Then, we outline the core design principles for further
improvements in Section 3.2, followed by an exploration
of the objective landscape and the justification for using
evolutionary search in Section 3.3. Section 3.4 outlines our
evolutionary search framework for PROMPTQUINE.

3.1. A Simple Hill-climbing Search

Due to the absence of well-established or highly efficient al-
gorithms for this prompt subsequence search, as well as the
failure of attribution methods (Appendix C) and prompt
compression algorithms (e.g., Table 1), we start with a
greedy local search method. Basically, it works by iter-
atively pruning tokens, removing those that improve the
prompt’s performance. This continues until no token can be
pruned without harming validation set performance. This
follows the general framework of hill-climbing. While this
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approach may not yield optimal solutions, it provides a
quick and intuitive way to explore the hypothesis and gain
initial insights, as detailed in Appendix B.

Specifically, we primarily adopt the Threshold Accepting
(TA) algorithm (Dueck & Scheuer, 1990), which builds
upon the First-Choice Hill Climbing (FCHC) algorithm
(Russell & Norvig, 2016). Namely, given a prompt se-
quence x = (x1, x2, . . . , xn), the algorithm tracks the cur-
rent solution (initialized as prompt x) and generates a new
candidate by making a local per-token change, e.g., remov-
ing a token xi. If the new candidate improves upon the
current solution, it is accepted, and the tracked solution is
updated accordingly. This directly contrasts with Steepest-
Ascent Hill Climbing (SAHC) (Russell & Norvig, 2016),
which evaluates all possible one-token modifications and
selects the one that yields the greatest improvement (called
SAHCPruning)—our method offers significant speedups by
accepting any modification that improves the prompt.

The algorithms continue until no further improvements are
found or a stopping criterion is met. To ensure reproducibil-
ity, we fix the pruning order (the method used to make
per-token changes) in our implementation. In fact, we apply
a left-to-right pruning order, iterating over x1 to xn, and
proposing a new prompt by removing the most recently vis-
ited token, xi, at step i. As the algorithm converges when no
tokens can be further removed, it follows that we may repeat
the left-to-right iterations multiple times, with each iteration
initializing the tracked solution using the optimal prompt
from the previous iteration. We illustrate the whole idea in
Appendix, Algorithm 1. We call this approach TAPruning,
which helps escape local optima, as observed in preliminary
experiments, by further accepting suboptimal candidates
within a predefined threshold (e.g., ≥ 96% of the current
maximum prompting performance). This suggests a decep-
tive nature of our search objective (i.e., held-out score).
We’ll revisit this later in Section 3.3 and Section 4, where
we explore how greedy hill-climbing struggles, becoming
deeply trapped in local optima, and emphasize the need for
rewarding suboptimal stepping stones (Lehman & Stanley,
2011; Stanley & Lehman, 2015) to global optimization.

As shown in Table 6 (Appendix B) for Meta-Llama-3-8B-
Instruct (AI@Meta, 2024), and an extended study on various
LLMs across sizes (e.g., Table 10 in Appendix B) using held-
out performance for prompt selection, we demonstrate con-
sistent performance gains across models and tasks through
pruning. Notably, such improvement is independent of the
ICL prompt we sampled, suggesting a potentially effective
approach to stabilize ICL performance (Zhao et al., 2021;
Lu et al., 2022; Rubin et al., 2022). Besides, while sim-
ple, TAPruning already delivers competitive results against
prior search methods in both task results and runtime effi-
ciency across several tasks (e.g., Table 11 in Appendix D.3),

making it a strong contender for practical use. We explore
further improvements in the following sections.

3.2. Design Principles for Improved Performance

A search framework consists of three key components: the
search space, algorithm, and objective. While refining
the search space is constrained by the black-box nature
of LLMs, there is significant potential to improve the algo-
rithm and objective: (1) Search Algorithm: Hill-climbing
may be suboptimal; insights into the search landscape (Deb
& Saha, 2010; Ecoffet et al., 2019) can guide better algo-
rithms. (2) Search Objective: The high cost of prompt
evaluation, driven by task metrics like accuracy, can be re-
duced by using more expressive proxies (Yang et al., 2024b).
We attempt to integrate these principles into our designs.

3.3. Navigating Sparse, Multimodal Search Landscapes

We now examine the search challenges in our optimization
landscape to inspire more effective algorithms.

To begin with, we revisit our hill-climbing approach (e.g.,
TA) and highlight a key assumption: hill climbing guaran-
tees convergence to the global optimum only in unimodal
spaces (Glover & Kochenberger, 2003). In such space, a
single optimum, i.e., a single peak, allows efficient optimiza-
tion by following increasing objective values without the
need for exhaustive searches in multiple directions. This
assumption, however, is very likely fail in our context.

As shown in the Figure 1 (Left), we relax the left-to-right
order constraint in our hill-climbing algorithm (TAPrun-
ing) and explore random pruning orders in multiple runs
using purely greedy hill-climbing. The results indicate that
these runs converge to different solutions, leading to sig-
nificant variations in task performance. This suggests a
potentially complex, multimodal nature of the search prob-
lem, where traditional hill-climbing—and its variants, such
as Simulated Annealing (Bertsimas & Tsitsiklis, 1993) and
TA—struggle to perform effectively. These findings high-
light the need for more global exploration strategies to ad-
dress local optima.

To navigate the multimodal landscape, both unstructured
methods like Random Search (Zhigljavsky, 2012) (RS) and
structured approaches such as Population-based Search (Be-
heshti & Shamsuddin, 2013) (e.g., evolutionary search, ES)
can be used, each offering unique advantages depending on
the search space. In certain scenarios, RS can outperform
more complex structured methods, particularly when local
optima are densely packed (Bergstra & Bengio, 2012), as
unstructured approaches may more efficiently explore multi-
ple regions and find better solutions, while population-based
approaches may overly exploit a local region.

We investigate the use of RS and population-based search
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Figure 1. Optimization challenges in our ICL-initialized landscape
using Llama-3-8B-Instruct for subjectivity classification. Left:
Randomizing pruning order in hill-climbing search leads to vary-
ing task performance, highlighting the multimodal nature. Middle:
Evolutionary search (ES) outperforms random search (RS) in iden-
tifying high-quality solutions, with TAPruning result as a dashed
line. Right: Relative success rate of RS over ES approaches zero
as task difficulty increases, particularly when solution sparsity is
enhanced by expanding the context. Further studies, with consis-
tent conclusions, are provided in Appendix D.2.

(i.e., evolutionary search, ES using our PROMPTQUINE de-
sign in Section 4.1) in the ICL landscape, conducting inde-
pendent sampling runs to generate 1,000 unique prompt sam-
ples for both subjectivity classification (Subj) and natural
language inference (SNLI). As shown in the Figure 1 (Mid-
dle), RS proves highly inefficient in obtaining high-quality
prompts that outperform TAPruning, while ES achieves
better performance under constrained prompt samples. In-
spired by Real et al. (2020), we define the number of the
acceptable prompts under the fixed budget as the number
of sampled pruned prompts which outperform TAPruning’s
average performance. The success rate is then defined as
the number of acceptable prompts divided by the number of
pruned prompts sampled. As shown in Figure 1 (right), the
relative success rate of RS to ES (i.e., the success rate of RS
divided by the success rate of ES) approaches zero as task
difficulty increases. For example, when dealing with stan-
dard long contexts, where high-quality prompts are sparse
in the search space, unstructured methods like RS may strug-
gle to efficiently navigate the space. We thus recommend
ES, as it is more robust to the search dimensions.

3.4. Evolutionary Search for PROMPTQUINE

We now provide an overview of our ES algorithm for prompt
subsequence search. Specifically, we use Genetic Algorithm
(GA) (Holland, 1992), due to its inherent compatibility with
our problem. In this approach, we evolve a population of
pruned prompts, where binary token masks serve as geno-
types and the resulting ICL prompts as phenotypes. Mu-
tations (i.e., pruning tokens) are implemented via bit-flip
1-to-0 operations. Elitism-based selection guides offspring
survival, enabling the autonomous evolution of pruning
strategies. Additional details are provided in Appendix D,
along with Algorithm 3. Our GA variants incorporate sev-
eral designs, which effectively improves the search quality.

In-Context 
Demonstration

Population
Initialization

Updates

Task Prompt 
Population 

Selection
Self-Replication
Mutation: Pruning
…

Self-Replicating Loop

Copy-then-Mutate

(a) Optimization Pipeline

Guided by Fitness Selection

(b) Genetic Prompt-Quine
More intelligent exploration
to more effective prompts

43

61

39

# Iterations of Self-Replicating Loops

57

85

76
93

Evolution

Figure 2. Overview of the PROMPTQUINE framework. Similar
to natural selection, our framework evolves prompts by copying
and mutating them (i.e., pruning random tokens). Guided by
task-specific selection pressures, it progressively optimizes itself.
Notably, the generation of unnatural language prompts, despite
introducing unexpected variations, consistently outperforms man-
ually designed prompts, representing a step towards open-ended
self-improvement in AI (Schmidhuber, 2003; Nisioti et al., 2024).

We refer the reader to Appendix D.1 for details. Tuning the
GA for an unknown landscape requires extensive trial and er-
ror. We recommend using our configurations for follow-up
experiments and discuss key designs below.

We initialize the entire population with duplicates of ICL
prompts, as early experiments with random pruning for ini-
tializations showed no significant advantage. For mutation
rate, a uniformly random selection of the number of flipped
bits among the values ∈ {1, 2, 3, 4} effectively balances the
exploration-exploitation. We then use tournament selection
with slightly reduced selection pressure, sampling k indi-
viduals and selecting the best for reproduction, which helps
mitigate local optima. Most crucially, we apply regular-
ized evolution (Real et al., 2017; 2019), where only new
offspring compete for population inclusion. This approach,
which we have empirically validated, is highly effective in
navigating the ICL landscape, particularly in addressing the
premature convergence issue that standard GA struggles to
overcome—an issue that is a key bottleneck in tuning the
configurations for ICL. As we demonstrate in Appendix D.7,
such simple approach outperforms many complex diversity-
preserving mechanisms (Friedrich et al., 2009) in balancing
search speed and solution quality.

Simple regularized evolution sacrifices some exploration,
limiting its effectiveness in broader contexts. To improve
exploration, we increase the selection probability for each
individual through additional designs, promoting more re-
production in each generation. This approach is guided
by two algorithmic frameworks (Syswerda, 1991): a paral-
lelizable Generational GA (GGA) and a more exploratory
Steady-state GA (SSGA), detailed in Appendix D.1. Un-
less otherwise noted, we use SSGA for 1-shot ICL results.
Subsequent experiments also reveal that GGA achieves com-
parable performance across various ICL search landscapes.

Finally, we introduce an additional prompt re-ranking phase,
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Table 1. Performance of PROMPTQUINE and baseline methods measured by overall accuracy (%) in classification tasks. All methods use
Meta-Llama-3-8B-Instruct (AI@Meta, 2024) as the backbone LM for a fair comparison. The best results are highlighted in bold and the
second best are underlined. Ratio denotes the compression ratio over the original 1-shot ICL prompts.

Method SST-2 Subj AG’s News Yelp-5 SNLI Yahoo Avg. Ratio ↑
ICL (1-shot, original) (Brown et al., 2020) 95.9 (0.6) 66.7 (4.3) 83.7 (1.9) 52.2 (6.0) 61.9 (2.0) 57.1 (6.9) 69.6 0.0%

LLMLingua (Jiang et al., 2023c) 95.8 (0.6) 64.0 (4.2) 85.3 (1.8) 49.7 (6.6) 64.2 (1.7) 49.5 (8.2) 68.1 30.0%
LLMLingua2 (Pan et al., 2024) 61.8 (11.8) 60.2 (5.1) 58.1 (13.0) 45.4 (5.7) 51.5 (5.1) 57.1 (4.4) 55.7 71.2%

ICL (4-shot) (Brown et al., 2020) 94.8 (1.5) 74.0 (7.8) 86.6 (1.8) 61.9 (0.6) 60.0 (2.5) 54.4 (5.7) 72.0 -
RLPrompt (Deng et al., 2022) 88.4 (1.5) 82.9 (0.5) 84.7 (0.7) 48.1 (1.0) 42.4 (4.2) 58.5 (0.6) 67.5 -
EvoPrompt (Guo et al., 2023) 92.9 (0.2) 84.1 (0.3) 86.5 (1.0) 51.5 (0.6) 68.2 (0.6) 58.6 (0.3) 73.6 -
Promptbreeder (Fernando et al., 2024) 96.0 (0.4) 83.6 (3.5) 88.6 (0.8) 59.3 (1.6) 64.2 (1.3) 62.9 (1.4) 75.8 -
Promptbreeder (4-shot) (Fernando et al., 2024) 95.8 (0.5) 83.1 (3.0) 88.5 (1.0) 59.3 (1.5) 59.6 (1.9) 65.0 (1.1) 75.2 -

TAPruning (1-shot ICL, Ours) 95.0 (1.5) 74.5 (3.9) 88.6 (0.3) 60.2 (0.9) 68.6 (2.9) 61.7 (1.7) 74.8 60.2 %
SAHCPruning (1-shot ICL, Ours) 96.0 (0.7) 77.3 (6.6) 88.5 (0.8) 58.5 (2.2) 68.4 (2.8) 62.8 (0.9) 75.3 8.7%
PROMPTQUINE (1-shot ICL, Ours) 96.2 (0.2) 86.5 (2.0) 89.2 (1.8) 59.7 (2.1) 69.2 (2.0) 64.2 (1.3) 77.5 52.9 %

TAPruning (4-shot ICL, Ours) 95.4 (1.5) 86.9 (0.7) 88.9 (0.8) 61.3 (1.6) 67.3 (1.6) 63.8 (1.1) 77.3 -
PROMPTQUINE (4-shot ICL, Ours) 96.4 (0.4) 93.1 (0.8) 89.4 (1.8) 64.3 (0.6) 78.6 (3.1) 66.2 (1.5) 81.3 -

called “calibration-then-selection”, using the entire held-
out score (e.g., what we used for TAPruning) to mitigate
potential overfitting to the imperfect evaluation proxy. This
function refines the prompt rankings, allowing for more
accurate identification of the true elite prompts. We then
select the “optimal” prompt from the calibrated rankings.

4. Task Designs & Results
Due to space constraints, we discuss classification and gen-
eration in the main paper, and put multi-choice question
answering and chain-of-thought reasoning in Appendix D.5
and D.6. In all these tasks, PROMPTQUINE consistently
achieves improved results over TAPruning.

4.1. PROMPTQUINE for Classification

For classification, probability-based prompt selection (Yang
et al., 2024b) demonstrates some success in few-shot set-
tings (Lu et al., 2022), enabling fine-grained measurement
using metrics like Mutual Information (Sorensen et al.,
2022), Entropy (Lu et al., 2022), and Majority Voting (Liao
et al., 2022). Through extensive experiments, we finally
take the piecewise reward function from (Deng et al., 2022)
as our default fitness measure, with details in Appendix
D.3. The existence of these multiple metrics can also be
extended to multi-objective optimization (Deb et al., 2002)
or novelty search (Lehman & Stanley, 2011), leveraging
complementary proxies (Vo & Luong, 2024) for prompt
selection. However, preliminary experiments indicate that
these approaches offer no significant advantages over our
single-objective formulation. Consequently, we center our
efforts on the single-objective approach in this work.

Models and Baselines. We report Meta-Llama-3-8B-
Instruct (Llama3-8B-It) (AI@Meta, 2024) in the main paper,

and leave others in Table 10 (Appendix D.3). We con-
sider the following methods for comparisons: (1) Prompt
Compression: LLMLingua (Jiang et al., 2023c) and LLM-
Lingua2 (Pan et al., 2024); (2) Prompt Optimization: RL-
Prompt (Deng et al., 2022), EvoPrompt (Guo et al., 2023)
and Promptbreeder (Fernando et al., 2024). Unless other-
wise specified, we append the optimized instructions from
EvoPrompt and Promptbreeder to our 1-shot ICL prompts
to form their few-shot versions. We report RLPrompt’s
templates in Appendix B. (3) In-context Learning (ICL): In
addition to 1-shot ICL, which directly illustrates the ben-
efits of our pruning methods, we also include 4-shot ICL
to assess whether simply increasing the number of shots
(Zhao et al., 2021) can easily match the benefits of prun-
ing. Finally, we include SAHCPruning on 1-shot ICL as a
purely greedy baseline to illustrate the deceptiveness of the
landscape. The results are averaged across five seeds, with
five different ICL initializations. All optimized prompts
are selected based on the same held-out accuracy, with full
details in Appendix D.3.

Evaluation Settings. We evaluate SST-2 (Socher et al.,
2013), Yelp-5 (Asghar, 2016), Subj (Pang & Lee, 2004),
AG’s News (Zhang et al., 2015), Yahoo (Labrou & Finin,
1999), and SNLI (Bowman et al., 2015) as our Pilot Study
(Appendix B). The overall statistics are in Table 5 (Appendix
B). As we find 8-shot balanced samples are generally suffi-
cient for fitness estimation, we extract such paired samples
from our held-out set (200 validation samples as TAPruning
in Appendix B) as in-search fitness estimation samples, and
use the entire held-out accuracy for prompt re-ranking. We
provide additional details and suggestions in Appendix D.3.

Results. As shown in Table 1, overall, PROMPTQUINE
on 1-shot ICL is able to match or surpass state-of-the-
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art performance across settings. One particular baseline
we emphasize for comparison is the Promptbreeder (Fer-
nando et al., 2024), which shares a closely aligned spirit
with our approach—leveraging evolutionary algorithms to
promote open-endedness in the context of LLMs. Their
framework, while demonstrating impressive generality, re-
lies more heavily on manual engineering (e.g., handcrafted
mutation prompts) and external resources (e.g., new tokens).
In contrast, PROMPTQUINE fosters open-endedness under
tighter resource constraints, by evolving unnatural language
prompts using only tokens within context. We show that
PROMPTQUINE also has potentials to be comparable in spe-
cific problem contexts. We further compare the runtime
efficiency against various baselines in Appendix, Table 11.
To the best of our knowledge, this is the first token-level
search (TAPruning & PROMPTQUINE) capable of optimiz-
ing in just minutes. Please refer to Appendix D.3 for ad-
ditional analysis, especially for the intriguing observations
that SAHCPruning may not always outperform TAPruning.

4.2. PROMPTQUINE for Text Generation

Generation tasks present unique challenges for the limi-
tations of automatic evaluation metrics, such as surface
form-based measures (Papineni et al., 2002) and neural
embedding-based metrics (Deng et al., 2021). These met-
rics often fail to capture the full complexity of the task or
accurately reflect fine-grained optimization progress, partic-
ularly in open-ended generation tasks. In open-ended cases,
e.g., topic-based generation, only sparse, qualitative scores
are available, e.g., those by LLM-as-a-Judge (Zheng et al.,
2023) based on predefined principles, or by more mechanis-
tic approaches like Exact Match (Zou et al., 2023), looking
for specific word overlaps. We now explore the potential of
PROMPTQUINE on generation tasks, focusing on style trans-
fer, which relies on imperfect quantitative measures, and
jailbreaking, which depends on sparse qualitative feedback.

4.2.1. TEXT STYLE TRANSFER

Experimental Setups. We evaluate our prompts on Yelp
sentiment transfer dataset (Shen et al., 2017), as Pilot Study
(Appendix B) for both transfer directions. We set aside 200
samples from the original development set for validation
and report results on the test set. We use Joint Score (Kr-
ishna et al., 2020) following and reusing the modules by
Deng et al. (2022), as both the fitness function for prompt
search and the final metric for performance assessment. We
search under the unsupervised setting, where we only need
unpaired input samples from original development set (e.g.,
100) for fitness estimation, use the entire 200 samples for
re-ranking and report final results on the test set. To re-
duce computations, we adopt an early-stopping strategy
inspired by Jamieson & Talwalkar (2016); Li et al. (2018b)
to optimize resource allocation. We then compare against

RLPrompt & Promptbreeder under both greedy decoding
and Best-of-N sampling (setup of Deng et al. (2022)). To
ensure relatively fair comparisons, all methods are given
access to the same set of samples (Appendix D.4).

Table 2. Automatic evaluation of Yelp Sentiment Transfer. We
report their average Joint Score, averaging across negative and pos-
itive transfer results. The results (no parentheses) are reported with
greedy decoding. BoN refers to Best-of-N sampling, following
the setups of Deng et al. (2022), i.e., Bo32 under top-10 sampling.
Additional results are presented in Table 12 in Appendix D.4.

Method GPT-2 GPT-2 (BoN) Llama3-8B-It Llama3-8B-It (BoN)

ICL 4.6 40.8 54.4 69.6
RLPrompt 10.4 51.0 4.1 54.4
Promptbreeder 10.2 45.3 59.1 71.8
TAPruning 30.2 54.6 59.6 68.1
PROMPTQUINE 33.3 57.9 61.0 72.1

Results. As shown in Table 2, it’s possible that PROMP-
TQUINE could surpass the previous state-of-the-art on this
task. These results, as we demonstrate, are largely insensi-
tive to the decoding methods we employed. Additionally, as
shown in Table 14 (Appendix D.4), our search framework
operates more efficiently, delivering faster search. Neverthe-
less, compared to few-shot classification tasks, the search
tends to be slower due to the imperfect feedback we receive,
requiring more samples for fitness estimation.

Table 3. Attack success rate (ASR) for jailbreaking comparison of
PROMPTQUINE, and conventional ICL. The text in parentheses
refers to the fitness measure we used for PROMPTQUINE.

Attack Method ASR-EM ↑ ASR-LLM ↑
LLM: Vicuna-7b-v1.5

ICL (2-shot) 50.4 54.7
PROMPTQUINE (ASR-EM) 99.3 97.4
PROMPTQUINE (ASR-LLM) 99.4 97.5
PROMPTQUINE (SV) 90.3 94.2

LLM: Mistral-7B-Instruct-v0.3

ICL (2-shot) 48.0 47.2
PROMPTQUINE (ASR-EM) 98.8 93.8
PROMPTQUINE (ASR-LLM) 99.8 98.1
PROMPTQUINE (SV) 98.8 92.6

4.2.2. JAILBREAKING

Evaluation Settings. We consider this task as highly chal-
lenging due to the only sparse, qualitative feedback avail-
able, such as the Exact Match score. We adopt a simple
few-shot priming setup where the model directly follows the
demonstrations to make predictions (i.e., prefix attack, with-
out chat templates inserted), using popular models including
Vicuna-7b-1.5 (Zheng et al., 2023) and Mistral-7B-Instruct-
v0.3 (Jiang et al., 2023a) on AdvBench (Zou et al., 2023).
We measure Attack Success Rate (ASR) using both Exact
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Match (ASR-EM) and LLM-as-a-Judge by Llama-Guard-3
(Inan et al., 2023) (ASR-LLM). Please refer to Appendix
D.4 for the details of our EM strings (Zhao et al., 2024) and
prompts for Llama-Guard-3 (Ball et al., 2024) (taken from
JailbreakBench (Chao et al., 2024)). We split the original
520 samples into 100 for validation and 420 for testing, us-
ing samples from the validation set for fitness estimation and
prompt selection. We construct the ICL prompts (2-shot) by
reorganizing the 5-shot ICL prompts in Liu et al. (2024).

Experimental Details. We produce separated experi-
ments, using both ASR-EM score and ASR-LLM score
on the 50 validation samples to guide the search. These
experiments are conducted under a purely black-box setting,
with the same validation re-ranking for prompt selection.
We also explore to construct more expressive proxies (i.e.,
to reduce computational budgets) by leveraging steering
vectors (SV) from mechanistic interpretability (Bartoszcze
et al., 2025). Such vectors, extracted as activation difference,
can enable direct intervention in a model’s inner layers to
enhance task performance (Rimsky et al., 2024), allowing
us to hypothesize that the similarity between internal repre-
sentation changes after prompting and task steering vectors
correlates with performance. Please refer to Appendix D.4
for the full details (3 seeds). We also explore variants of
few-shot attack, e.g., in-context attacks (Wei et al., 2023b)
where input-output pairs are separated in the conversational
contexts, i.e., separated by the chat template tags, in the Ap-
pendix D.4.1, where we observe both successes and failures
with the current pruning formulations.

Results. As shown in Table 3, under the priming setup,
PROMPTQUINE is able to derive effective pruning which
leads to improved attack results, nearly doubling the tradi-
tional average ICL performance. Search results guided by
ASR-LLM achieve highest performance. It is noted that
SV’s performance is generally lower. This is expected as
just an initial exploration, and further research is needed to
obtain further improvements. We also release some direct
predictions of our pruned prompts on the AdvBench in the
GitHub repository, ensuring rigor given the different data-
separation schemes used across prior studies (Jiang et al.,
2024; Paulus et al., 2024).

5. A Deeper Look at Pruning Effects on ICL
5.1. On the Limitations of PromptQuine

While pruning tokens are effective at enhancing overall
ICL results, we identify its inherent limitations for current
PROMPTQUINE. Specifically, we find that token pruning
is not a universally reliable method for stabilizing ICL per-
formance, as its effectiveness remains highly sensitive to
the chosen ICL templates. We present one such study: we

Task Task Metric Score Standard

∆̂ (Score(pmin) → Score(pmax)) Deviation

SNLI 14.3 (60.8 → 75.1) 7.2

PIQA 2.6 (79.5 → 82.1) 1.1

Yelp Positive. 2.5 (49.9 → 52.4) 1.4

Yelp Negative. 1.0 (69.8 → 70.8) 0.9

Table 4. Performance fluctuations of PROMPTQUINE-pruned
prompts across three random ICL templates, each with three 1-
shot ICL seeds. Task scores are reported on the official test set.
∆̂ indicates the performance fluctuation from the minimum to the
maximum results across the selected templates.

cover a set of tasks, SNLI (Bowman et al., 2015) for classi-
fication, PIQA (Bisk et al., 2020) for multi-choice question
answering, and Yelp positive transfer and negative trans-
fer (Shen et al., 2017) for generation. For each task, we
evaluate two additional ICL templates (see Appendix, Table
24 for examples, where the templates differ only in signal
words, separators, spacing characters, and minor variations
in natural language instructions as normal variations in prac-
tice) and run PROMPTQUINE pruning on each using three
different seeds (i.e., three ICL prompts).

As presented in Table 4, differences in templates can still
lead to significant variations in task outcomes. For example,
in SNLI, the absolute accuracy fluctuation can reach up
to 14.3%, which is surprisingly high. This emphasizes
that PROMPTQUINE, or fixed-order ICL pruning in general,
exhibit instability when exposed to template differences.
Incorporating richer, more diverse prompt variations (e.g.,
token replacement or insertion) can be crucial for further
improvement. Nevertheless, achieving this in the current
PROMPTQUINE could be hard due to fitness-based selection
pressures—beneficial changes, such as the introduction of
new tokens, may be prematurely discarded. As a result,
we can only adopt more conservative mutation operators,
such as varying instructions (Fernando et al., 2024). More
aggressive approaches, like exploring the full token space
(Deng et al., 2022), are riskier. A promising direction to
advance is to consider novelty search (Lehman & Stanley,
2011), which favors novel solutions over fitness alone.

5.2. Mechanistic Analysis of Label Words

It is intriguing to analyze what matters in the unconventional
pruned ICL prompts for their unreasonable effectiveness.
In this section, we examine the role of label words in the
demonstrations—aligned with verbalizers—in classification
tasks, in line with existing ICL research (Min et al., 2022;
Yoo et al., 2022; Wang et al., 2023; Wei et al., 2023a). Con-
cretely, it is often assumed that label words play a crucial
role in determining original ICL performance (Min et al.,
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Figure 3. The percentage of label word presence is surprisingly
high for our PROMPTQUINE-pruned ICL prompts. We obtain
these parsing results by exactly matching the label words within
the pruned prompts. We verify that the ICL prompts used in the
analysis do not contain these words in their exemplar inputs.

2022; Wang et al., 2023). We conduct a series of interven-
tion experiments on label words to better understand their
impact on pruning outcomes.

First, we observe that many of the pruned ICL prompts
retain certain task-specific label words in their exemplar
contexts (Figure 3). This observation closely mirrors find-
ings from conventional ICL, suggesting that label words
may play a significant role in ICL, even under pruning.
Then, we perform the interventions. Figure 4 (left) shows
the performance changes after removing the label words
in original ICL prompts. The results are consistent with
Min et al. (2022) that knowing the label space may help in
conventional ICL. The hypothesis also generalizes in our
unconventional ICL pruning context (Figure 4, middle) that
we can observe a slight performance drop on average in
pruned prompting performance. We then further experi-
ment with removing the whole output, i.e., the signal words
(e.g., Sentiment:) and the label words (e.g., great) in
Figure 4 (right). This operation further largely degrades per-
formance, highlighting the importance of preserving input-
label format as in standard ICL (Min et al., 2022).

Although most of our findings so far are consistent with
the findings on conventional ICL, there are still some spe-
cial cases where prompt instances violate the aggregated
findings discussed above (e.g., SNLI in Figure 4 (right),
in which the pruned prompt (No Output) could achieve
improved performance). This underscores the nuanced sen-
sitivity of prompts within their specific contexts. Finally, we
perform experiments with random verbalizers (label words
are also changed in prompts). As shown in Appendix, Table
25, all these models show near chance-level performance
without pruning. However, we find that counter-intuitively,
pruning could also bring some performance improvements,
especially towards the large 70B model. A non-negligible
number of prompts can achieve significantly improved per-
formance through pruning, and even achieve nearly identical
to that of prompts with task-intuitive verbalizers. This is
indeed surprising, and we hope future research will explore
its underlying mechanisms further.
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Figure 4. Changes in (unpruned & pruned) prompting performance
on Meta-Llama-3-8B-Instruct when labels are removed (left &
middle) or when the entire output is removed (right, breaking the
input-label pairing format). Another study with similar findings
on GPT-2 is presented in the Figure 9 in Appendix.

6. Related Work
We discuss briefly various prompt design paradigms and ICL
studies in previous work, and provide more comprehensive
discussion in Appendix A. Concretely, ICL was introduced
by Brown et al. (2020), who demonstrated that LLMs can
adapt to downstream tasks using few-shot prompting. Never-
theless, this paradigm has proven to be highly unstable; even
slight variations can lead to significant differences in perfor-
mance. Rubin et al. (2022) demonstrate the importance of
demonstration selections, where retrieving demonstrations
with similar patterns as the task input typically yields im-
proved performance. Lu et al. (2022) further identifies that
even demonstration orders affect the results to a significant
extent. Although heuristics—such as retrieving structurally
and potentially semantically similar exemplars—often per-
form well in practice, there remains a lack of well-grounded
principles to guide demonstration design. Several studies
aim to optimize prompts in alternative formats, typically
via direct natural language instructions (Zhou et al., 2022;
Guo et al., 2023, inter alia). Unlike ICL stabilization, this
approach treats prompt optimization as a search for optimal
instructions—often using LLMs as prompt engineers. In
contrast, we focus on optimizing in an unnatural language
space, building directly on few-shot prompts.

7. Conclusions
We introduce a novel prompt design paradigm that chal-
lenges conventional practices: instead of carefully crafting
instructions and examples, we show that pruning random
demonstrations into incoherent “gibberish” can still achieve
near state-of-the-art performance. As attribution and com-
pression methods remain unreliable, we present PROMP-
TQUINE, an evolutionary framework that autonomously
discovers effective pruning strategies. Experiments across
diverse tasks and models validate its effectiveness and run-
time efficiency, paving the way for future research into the
mechanistic foundations of in-context learning.

9



495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Evolving Prompts In-Context: An Open-ended, Self-replicating Perspective

Impact Statement
This work aimed at advancing the research of LLMs, with
a particular focus on prompt optimization and in-context
learning. In contrast to the traditional approach of optimiz-
ing in natural language space, we introduce a novel prompt
design paradigm that prunes random few-shot prompts into
syntactically and semantically unnatural language. Surpris-
ingly, we find that a simple pruning operation applied to ICL
prompts is sufficient to match the performance of previous
optimization methods across various tasks and models. This
insight paves the way for future research, leaving several
interpretability questions open for further exploration. For
example, it is intriguing to explore why pruning to unnatu-
ral language is effective for prompt optimization and why
such unnatural ICL remains effective for LLMs. This is
particularly noteworthy in cases where pruning enhances
performance for several random label words, whereas natu-
ral ICL yields only chance-level results.

Moreover, we highlight the direct societal implications of
our findings on unnatural language. Notably, our work
exposes critical weaknesses in current LLM alignment tech-
niques. Despite extensive training designed to align mod-
els with human values and ethical standards when given
natural language instructions, our findings reveal that un-
natural language can still be used to elicit malicious behav-
iors—exploiting gaps that developers cannot fully anticipate.
As demonstrated in our paper, this vulnerability persists
even in large models subjected to extensive red teaming.
While continuously iterating on red teaming and eliminat-
ing failure cases is beneficial, we advocate for exploring
novel alignment techniques that go beyond surface-level
fixes. In particular, a stronger focus on inner alignment may
lead to more robust improvements. For commercial models,
we strongly recommend complementing red teaming with
output-level restrictions, as this may provide a more intu-
itive and effective safeguard—especially given that existing
alignment methods are primarily optimized for handling
natural language inputs.
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A. Related Work
LLM Prompt Optimization. LLMs are sensitive to even minor variations in prompts, making their responses difficult
to predict without trial and error (Liu et al., 2023). This highlights the need for automated prompt tuning to optimize
prompts for specific tasks. Existing research can be broadly classified into two categories: 1) Soft Prompt Tuning (Lester
et al., 2021; Qin & Eisner, 2021; Li & Liang, 2021), which optimizes continuous embeddings in the LLM’s representation
space, replacing discrete prompts with learnable tokens. These embeddings, typically optimized via gradient descent, can
outperform hard prompts when applied to intermediate model layers (Sun et al., 2022), similar to parameter-efficient tuning
like adapters (Wang et al., 2021); 2) Hard Prompt Optimization: Shin et al. (2020); Deng et al. (2022); Zou et al. (2023);
Jones et al. (2023); Choi et al. (2024); Wen et al. (2024) use token-level search algorithms to reward effective tokens and
penalize ineffective ones. While promising, these methods often produce non-human-like prompts. In contrast, a more
popular line optimizes prompts in natural language, often using LLMs directly as prompt engineers (Zhou et al., 2022; Yang
et al., 2023; Guo et al., 2023; Chen et al., 2023; Fernando et al., 2024; Lin et al., 2024; Cui et al., 2024). By combining
LLMs with algorithmic designs like evolutionary algorithms (Fernando et al., 2024), these methods achieve expert-level
performance.

In-context Learning Studies. Here, we briefly review the literature highlighting the mechanistic studies of ICL, the
emergent capability of LLMs. Notably, the underlying mechanisms behind emergent in-context learning remain unclear. The
main debate revolves around the mesa-optimization hypothesis (Dai et al., 2023; Von Oswald et al., 2023b;a; Ahn et al., 2023;
Cheng et al., 2023; Fu et al., 2023a). Specifically, they argue that these models implement subsidiary learning algorithms that
adjust the model inner representations as new inputs are received, with update rules resembling gradient-based optimization
of a principled objective. For instance, Von Oswald et al. (2023a) shows that linear self-attention can emulate gradient
descent on simple linear regression tasks. However, most of these findings cannot generalize to practical LLM tasks: First,
Min et al. (2022) shows that input-label correspondence in demonstrations has little impact on task results. Furthermore,
Shen et al. (2023a); Deutch et al. (2024) provide concrete evidence against the validity of such hypotheses in NLP tasks.

AI alignment. Alignment (Gabriel, 2020; Ngo et al., 2022) describes a process of encoding human values and goals into
AI assistants to make them as helpful, safe, and reliable as possible. Recent advances of LLMs also motivate extensive
studies to align LLM chatbots to human values (Shen et al., 2023b). LLM alignment typically involves two steps. In
the instruction-tuning stage (Longpre et al., 2023; Zhang et al., 2023), LLMs are given instruction-response pairs of the
tasks so they can learn by imitating the output. In the critique phase, a human or another AI interacts with the model and
grades its responses in real-time, known as the reinforcement learning from human or AI feedback (Ouyang et al., 2022;
Lee et al., 2023). It seems that LLM researchers are already able to significantly improve the alignment progress as the
increasing performance numbers in a wide range of benchmarks and the improved win rates of their optimized LLMs against
other LLMs. However, just as Ngo et al. (2022); Di Langosco et al. (2022) hypothesize that, these “aligned” LLMs may
only experience superficial outer alignment as they can still be prompted to generate undesired output (Zou et al., 2023;
Greenblatt et al., 2024). This necessitates further studies on the inner alignment problem (Ngo et al., 2022).

B. A Pilot Study with TAPruning
In this section, we provide a pilot study of the Partial Context Hypothesis across prompts, models and tasks. As introduced
in Section 3.1, where we lack well-established methods for this hypothesis, we begin our investigation with a simple,
easy-to-implement hill-climbing search, TAPruning. Please refer to Section 3.4 for a more effective algorithmic framework.

B.1. TAPruning Additional Details

Algorithmic Descriptions. We present the pseudocode of our TAPruning algorithm in Algorithm 1. As stated, our
algorithm maintains a tracked prompt, denoted as T , which serves as the basis for conducting local search operations.
As presented in the do-while loop in Algorithm 1, we employ a left-to-right token pruning process, iterating sequentially
from the leftmost token to the rightmost, attempting to remove each token at every iteration. The generated new prompt P
experiences performance evaluation and comparison against the optimal performance fOptimal. If it improves or at least,
degrades within a certain threshold δ, we will accept the prompt P as the new tracked prompt T , which we may revisit in
the next iteration loop. If it improves, we will also update the optimal prompt S = P . Until no further tokens are removable
under the performance constraints, we return the optimal prompt S we discovered as the final solution. Please note that
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Algorithm 1 Threshold Accepting (TAPruning) for Prompt Pruning

Input: prompt X , x1 · · ·xN , dataset D, performance measure function f , language modelM, Threshold δ
Output: Solution S
Measure the performance fX for prompt X on D for language modelM as the original prompting performance fOriginal,
which is also used to initialize current optimal prompting performance fOptimal = fOriginal.
Initialize tracked prompt T = X, t1 · · · tN = x1 · · ·xN .
Initialize optimal prompt S = X, s1 · · · sN = x1 · · ·xN .
repeat

Initialize length variable L as the number of the tokens in current tracked prompt T (re-tokenized).
for i = 1 to L do

Generate a neighborhood prompt P by removing the token ti from prompt T .
Calculate the performance fP for P on D,
If fP > fOptimal, we accept and update the prompt T = P , optimal prompt S = P , and update the optimal
performance record fOptimal = fP .
If fP < fOptimal, we accept P as the new T only if fP > fOptimal × δ (within the threshold).

end for
until The solution S converges

Algorithm 2 Steepest-Ascent Hill Climbing (SAHCPruning) for Prompt Pruning

Input: prompt X , x1 · · ·xN , dataset D, performance measure function f , language modelM, Threshold δ
Output: Solution S
Measure the performance fX for prompt X on D for language modelM as the original prompting performance fOriginal,
which is also used to initialize current optimal prompting performance fOptimal = fOriginal.
Initialize tracked prompt (also as optimal prompt) S = X, s1 · · · sN = x1 · · ·xN .
Initialize optimal token index candidate Tc = −1.
repeat

Initialize length variable L as the number of the tokens in current tracked prompt S (re-tokenized).
for i = 1 to L do

Generate a neighborhood prompt P by removing the token si from prompt S.
Calculate the performance fP for P on D,
If fP > fOptimal, update the optimal performance record fOptimal = fP and optimal token index candidate Tc = i.

end for
if Tc is not -1 then

Update tracked prompt S by removing token sTc

Update Tc = −1
end if

until The solution S converges

the tokens (tokenized) may change through the optimization as the prompt changes in its surface form, as we desire the
optimized prompts to be portable strings. Preliminary experiments show that the Partial Context Hypothesis also works if
we retain the same prompt tokens through optimization.

We discuss other design choices, especially attempting to leverage insights from LLM mechanistic interpretability studies,
such as attribution methods (Li et al., 2016a), in Appendix C. These methods can generate a token ranking in a single
forward-backward pass, potentially leading to significant speedups. However, as observed, they generally fail to effectively
guide performance improvement, making them unsuitable for our problem. We present SAHCPruning in Algorithm 2,
which accepts the update only if this move (i.e., how to remove the next single token) is the best possible move among all
available options. This algorithm limits in its high computational cost: since ICL prompts always take more than hundreds
of tokens, i.e., the problem is relatively high-dimensional, the search would become much slower and less scalable, e.g.,
Table 11. Also, due to the deceptive, multimodal nature of the search landscape, SAHCPruning does not always outperform
TAPruning (Table 1).
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Table 5. Details of our classification datasets evaluated in this work. |C|: # of classes for classification tasks. |Test|: # of testing samples
for each particular dataset.

Dataset Type |C| |Test| Label words
SST-2 Sentiment (Movie reviews) 2 1.8k terrible, great

Subj Subjectivity (Movie reviews) 2 2k subjective, objective

AG’s News Topic (News articles) 4 7.6k World, Sports, Business, Tech

Yelp-5 Sentiment (Yelp reviews) 5 50k terrible, bad, okay, good, great

SNLI Natural Language Inference 3 10k Yes, Unknown, No

Yahoo Topic (Question types) 10 60k
culture, science, health, education, computer,
sports, business, music, family, politics

B.2. Pilot Study

Datasets. Our investigation covers four task types: classification, multiple-choice question answering, generation, and
chain-of-thought reasoning. Unless otherwise stated, we sample from their official validation set for the prompt selection,
and report on their official testing split for final evaluation. 1) Classification: We evaluate sentiment analysis (SST-2 (Socher
et al., 2013), Yelp-5 (Asghar, 2016)), subjectivity classification, Subj (Pang & Lee, 2004), topic classification (AG’s News
(Zhang et al., 2015) and Yahoo (Labrou & Finin, 1999)), and natural language inference (SNLI (Bowman et al., 2015)).
We present the overall statistics in Table 5; 2) Multi-choice questions: We include commonsense reasoning datasets, PIQA
(Bisk et al., 2020), a binary-choice question answering dataset with verbalizers A and B. Since its testing performance
can only be assessed via submission to the leaderboard, we sample from their training set to form our held-out set for
prompt selection and evaluate on the official validation set, which consists of 2,000 examples, for the final performance
assessment; 3) Generation: We include Yelp Sentiment Transfer (Shen et al., 2017) (Yelp Style.), where we follow Deng
et al. (2022) in an unsupervised style transfer setting, sampling from its development set for prompt selection and using its
test set for final evaluation, with reference collected by Li et al. (2018a) for both transfer directions (e.g., positive-to-negative
and negative-to-positive); 4) Chain-of-Thought (CoT) reasoning: We include GSM8K (Cobbe et al., 2021) and MAWPS
(Koncel-Kedziorski et al., 2016).

Models and Baselines. We evaluate a range of popular LLMs varying in architecture, scale, and alignment efforts.
Concretely, 1) Classification: we study base models: RoBERTa-large (Liu et al., 2019), GPT-2 (Radford et al., 2019),
Meta-Llama-3-8B, Meta-Llama-3-70B (AI@Meta, 2024), instruction-tuned model (SFT): Gemma-7b-it (Team et al., 2024),
and further reinforcement learning-tuned (RLHF) models: Meta-Llama-3-8B-Instruct, and Meta-Llama-3-70B-Instruct
(AI@Meta, 2024); 2) Multi-choice question answering: Meta-Llama-3-8B & Meta-Llama-3-8B-Instruct; 3) Generation:
GPT-2 & Meta-Llama-3-8B-Instruct; 4) Reasoning: Meta-Llama-3-8B-Instruct, Mistral-7B-Instruct (Jiang et al., 2023a)
and Qwen2-7B-Instruct (Yang et al., 2024a). In this section, we focus on results from RoBERTa-large and Meta-Llama-3-
8B-Instruct. Results for other models, along with PROMPTQUINE, are presented in the corresponding Appendix sections
that follow. We include both the original ICL and RLPrompt (Deng et al., 2022)—a state-of-the-art prompt optimization
method—as well as a token-level search algorithm for the “secret language” baseline. It is important to note that this
approach cannot be applied to CoT reasoning tasks. For ICL prompts, we primarily use one-shot ICL, where each prompt for
four-way classification is constructed by randomly sampling one instance and its label from each category in the training split.
Two-shot prompts (two input-output pairs) are used for style transfer. For ICL on classification and multiple-choice question
answering, results are averaged over 10 random seeds, each with a unique ICL prompt. For generation and reasoning tasks,
we average over 5 seeds. For RLPrompt, results are averaged over 3 seeds. We also use the entire held-out set for prompt
selection in RLPrompt. Specifically, we first rank the explored prompts by their reward scores, select the top 50, and then
re-rank them based on validation performance. We also explore using more training task samples for reward calculation but
observe minimal performance gains. Thus, we adopt the original 16-shot setup from Deng et al. (2022) for classification and
use 200 unsupervised samples for style transfer, training over five tokens with default hyperparameters.

Prompt Template Details. First, for the RLPrompt, we use the following template for most of the classification tasks,
following (Schick & Schütze, 2021; Deng et al., 2022):
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RLPrompt - Classification:

{Input}{Prompt}

That is, we replace the “{Input}” placeholder with the task input instance. The policy network directly generates the prompt,
replacing the “{Prompt}” placeholder. For masked language models, such as RoBERTa-large, we directly append a [MASK]
into the last of the template, run the prompt, and parse its task predictions from that token. One exception is the natural
language inference task, which involves two inputs (the premise & the hypothesis). We provide its template as below:

RLPrompt - Natural Language Inference:

{Premise} {Hypothesis} {Prompt} Entailment:

Then, we provide its template for multi-choice question answering:

RLPrompt - Multi-choice Question Answering:

{Prompt}
Question: {Input}
Options: A) {Option1} B) {Option2}
Answer:

The template for style transfer:

RLPrompt - Text Style Transfer:

{Prompt} "{Input}" "

Just as (Deng et al., 2022) does, we allow the model to generate tokens one by one until we meet a special character " (the
quotation mark). We then parse the completions inside the quotation marks as final task output.

Next, we provide our templates for our ICL prompts, which also serve as the basis for our prompt pruning.

ICL - Sentiment Analysis (SST-2 and Yelp-5):

{Examples}

Review: {Input}
Sentiment:

For “{Examples}”, we use the same format to organize the input-output task pairs as we do for the input task instances.
This principle applies to all our ICL prompts regardless of tasks.

We discuss templates for other tasks as follows:

ICL - Subjectivity Classification (Subj):

{Examples}

Sentence: {Input}
Viewpoint:

ICL - News Topic Classification (AG’s News):

{Examples}

Article: {Input}
Answer:

ICL - Natural Language Inference (SNLI):
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{Examples}

Hypothesis: {Hypothesis}
Premise: {Premise}
Given the premise, is the hypothesis true? Yes, No or Unknown?
The answer is:

ICL - Topic Classification (Yahoo):

{Examples}

Sentence: {Input}
Topic:

ICL - Multi-choice Question Answering (PIQA):

{Examples}

Question: {Input}
Options: A) {Option1} B) {Option2}
Answer:

ICL - Text Style Transfer (Yelp Sentiment.):

{Examples}

Here is a text, which is [negative/positive]: "{Input}".
Here is a rewrite of the text, which is [positive/negative]: "

We alternate between the sentiment signal words, “negative” and “positive”, for two token choices for target sentiment
direction. For example, for positive transfer, we use negative and positive respectively. Similarly, we parse the completions
inside the quotation marks as final task output.

ICL - Chain-of-thought Reasoning (GSM8K & MAWPS):

{Examples}

Question: {Input}
Let’s think step by step.

The models are then expected to follow the exemplar patterns, i.e., generating the reasoning chains before predicting the
task answer. For this particular task, as we lack the direct annotations of the ground truth reasoning chains, we conduct
the following steps to collect our CoT prompts: 1) GSM8K (Cobbe et al., 2021): we directly sample and adopt the ICL
prompts provided by the Chain-of-Thought Hub (Fu et al., 2023b); 2) MAWPS (Koncel-Kedziorski et al., 2016): we ask
GPT-4o (Hurst et al., 2024) to generate the reasoning chains for the training questions we sampled, which are then paired to
construct the corresponding ICL prompts.

Evaluation settings. During the search stage, each prompt’s quality is evaluated on 200 samples from the official validation
split (as our held-out set), or the training split if the validation is unavailable (e.g., PIQA). We report performance on the
official test set (i.e., validation set for PIQA).

Evaluation Metrics. As stated, we report testing accuracy for classification, multi-choice question answering and
reasoning tasks. For style transfer, we follow Deng et al. (2022) to use their fine-tuned style classifiers for Style calculation,
pre-trained LM to calculate input-output alignment (Deng et al., 2021), Content, and a pre-trained grammaticality classifier
(Krishna et al., 2020) for Fluency. Then, we average these sentence-level scores, as the Joint Score, strictly following
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Table 6. Task performance evaluation of TAPruning upon original 1-shot ICL prompts. For classification, multi-choice answering (PIQA)
and math reasoning (GSM8K & MAWPS), we report accuracy on their test set. For style transfer (Yelp sentiment transfer, Yelp Style.), we
report their joint score on a separate 500 sample set, following (Krishna et al., 2020; Deng et al., 2022). We evaluate using greedy decoding.
We report classification performance on RoBERTa-large (Liu et al., 2019) and overall task performance on Meta-Llama-3-8B-Instruct
(AI@Meta, 2024) (Llama3-8B-It). Note that RLPrompt (Deng et al., 2022) cannot be applied to CoT reasoning, so we leave those cells
blank. The numbers in (parentheses) are the standard deviations between different prompts.

LLM Methods SST-2 Subj AG’s News Yelp-5 SNLI Yahoo Yelp Style. PIQA GSM8K MAWPS

RoBERTa-large
ICL 86.2 (7.7) 53.8 (5.3) 57.2 (3.6) 27.3 (2.1) 33.3 (1.2) 36.8 (9.9) - - - -

RLPrompt 92.5 (0.8) 81.2 (1.7) 80.2 (0.7) 44.8 (4.3) 33.5 (0.8) 48.6 (1.0) - - - -
TAPruning (Ours) 90.8 (2.6) 80.9 (1.6) 79.7 (2.3) 42.8 (6.9) 42.0 (5.9) 51.4 (1.5) - - - -

Llama3-8B-It
ICL 95.9 (0.6) 66.7 (4.3) 83.7 (1.9) 52.2 (6.0) 61.9 (2.0) 57.1 (6.9) 54.4 (6.9) 75.4 (1.6) 68.0 (7.4) 75.6 (9.4)

RLPrompt 88.4 (1.5) 82.9 (0.5) 84.7 (0.7) 48.1 (1.0) 42.4 (4.2) 58.5 (0.6) 8.3 (2.8) 85.9 (2.6) - -
TAPruning (Ours) 95.0 (1.5) 74.5 (3.9) 88.6 (0.3) 60.2 (0.9) 68.6 (2.9) 61.7 (1.7) 59.6 (1.3) 75.1 (3.0) 77.1 (2.1) 85.0 (3.9)

Krishna et al. (2020)’s protocol:

J(Content, Style, Fluency) = (2)
meanx∈X (Content(x) · Style(x) · Fluency(x)) .

Results. As shown in Table 6, pruning the original ICL prompts can improve performance, supporting our Partial Context
Hypothesis. Surprisingly, this approach works well for chain-of-thought reasoning, where the outputs are highly structured
and answers are distant from the prompt—an unexpected result for such a complex task. Remarkably, pruned prompts could
deliver competitive performance, often surpassing RLPrompt across several tasks, effectively bridging the gap between the
“secret language” (i.e., unnatural language artifacts discovered by previous token-level search algorithms) and original natural
language prompts. Note that the improvement is independent of the ICL prompts we sampled, suggesting a potentially
more effective approach to stabilize ICL performance (Lu et al., 2022; Rubin et al., 2022). We believe these results can
inspire novel prompt optimization or in-context learning stabilization algorithms. We thus explore this further in Section 3.4,
with our TAPruning serving as a baseline for the pruning-based prompt optimization. Despite its simplicity, this baseline
remains competitive—being comparable or directly outperforming previous state-of-the-art methods in both performance
and efficiency (e.g., Table 11), making it a strong contender. It is also intriguing to analyze what is left after the pruning,
which can potentially inspire some mechanistic insights. We provide such analysis in Section 5.2.

Table 7. Zero-shot chain-of-thought performance on the MultiArith (Roy & Roth, 2015) dataset using InstructGPT (text-davinci-002)
(Ouyang et al., 2022). The natural language prompt was proposed in (Zhou et al., 2022) to enable the zero-shot chain-of-thought reasoning
of large language models. We produce these experiments using the answer extraction script from (Kojima et al., 2022).

No. Category Zero-shot CoT Trigger Prompt Accuracy

1 APE (Zhou
et al., 2022)

Let’s work this out in a step by step way to be sure we have the right
answer. 81.5

2 Pruned Let’s work out step by step to be sure we have the right answer. 85.3
3 Let’s work out step by step sure we right answer. 86.7

- (Empty) 17.7

C. Alternative Prompt Pruning Design Choices
In this section, we discuss some potential alternative design choices that may be used in prompt pruning to provide more
background about why we start with the hill-climbing method describe in Section B in exploring the partial Context
Hypothesis and inspire future works.

The algorithms discussed below aim to improve prompt pruning speed by leveraging the information inherently provided by
LLMs for the given task. Approaches requiring significant efforts, such as probing techniques to learn task proxies (Zhu
et al., 2022), which depend on large collections of prompt-performance pairs for supervision, are not considered due to
their impracticality. We also do not include the studies of ICL-gradient descent correspondence hypothesis here, where the
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(a) How the Task Testing Accuracy changes (SST-2, Subj and AG’s News), guided by attribution scores, when increasing the
percent of pruned tokens.
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(b) How the Task Testing Accuracy changes (SST-2, Subj and AG’s News), guided by attention weights, when increasing the
percent of pruned tokens.

Figure 5. Pruning-based prompting performance using a variety of methods (Top for attribution scores guided pruning, and Bottom for
attention weights guided pruning).

representational similarity may indicate task performance, as recent work (Shen et al., 2023a; Deutch et al., 2024) invalidate
the effectiveness of such hypothesis in generalizing to practical NLP tasks for LLMs. Please note that the algorithms below
are all inspired by the developments in mechanistic understandings of LLMs. Some of them might only be applicable in
white-box scenarios.

Instance attribution scores as guidance. Instance attribution methods aim to improve interpretability by identifying
influential tokens for a model’s prediction. Common approaches include gradient-based methods (e.g., gradient × input
saliency (Baehrens et al., 2010; Li et al., 2016a)) and erasure-based methods (Li et al., 2016b; Feng et al., 2018), which
measure the change in output when masking tokens. Our approach (e.g., TA) aligns with erasure methods, which are
computationally expensive due to the need for multiple input perturbations. This raises the question of whether gradient-
based methods can be adapted to approximate token rankings within a single forward-backward pass (Feng et al., 2018). If
so, we can directly use the attribution scores to guide the pruning.

Token attention weights as guidance. Attention mechanisms are crucial for understanding how LLMs process prompts
and assign token importance. Analyzing attention distributions across layers can rank token significance, with higher
attention scores indicating greater influence on task prediction (Xiao et al., 2023; Ge et al., 2023). We aggregate attention
weights across heads in specific layers to compute token importance scores, guiding pruning.

C.1. Experiments

We evaluate the aforementioned methods on several classification datasets and demonstrate their limited utility in the context
of prompt compression as guided prompt search reformulation.
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Table 8. Classification accuracies of optimal prompts for TAPruning and alternative pruning methods based on attribution scores and
attention weights in GPT-2 across various datasets.

Method SST-2 Subj Yelp-5

ICL (1-shot, original) 54.2 (4.8) 64.3 (9.8) 30.9 (5.2)

Gradient Norm 66.5 (7.5) 72.3 (0.0) 33.6 (4.6)
Input × Gradient 66.8 (5.2) 75.1 (1.7) 33.9 (3.5)

Contrastive Gradient Norm 66.1 (8.6) 75.9 (2.4) 31.5 (2.8)
Contrastive Input × Gradient 52.0 (1.5) 75.7 (2.9) 31.5 (2.8)

First Layer 57.3 (7.0) 74.7 (2.2) 35.7 (4.8)
Layer Aggregated 60.2 (4.1) 72.3 (0.0) 30.2 (3.0)

TAPruning (Ours) 68.1 (10.6) 75.9 (2.5) 39.9 (1.8)

Experimental Setups. We perform experiments on SST-2, Subj, and Yelp-5 using GPT-2, sampling five ICL prompts per
dataset. Importance scores are computed once based on the same 200 samples, with performance evaluated on the official test
split. 1) Instance attribution scores: we experiment with state-of-the-art approaches, including Gradient Norm (Simonyan,
2013; Li et al., 2016a) and Input × Gradient (Denil et al., 2014; Shrikumar et al., 2016) as well as their contrastive versions
(Yin & Neubig, 2022). Token importance scores are aggregated across the 200 samples to generate final rankings, which
are then used to guide token pruning; 2) Token attention weights: For each task, we use the first-layer attention scores
and the aggregated attention scores (average) across all layers as the First Layer and Layer Aggregated importance scores,
respectively. Prompt pruning is then performed according to the derived attention scores.

Results. We examine the impact of increasing token pruning percentages on task accuracy (Figure 5). If the derived scores
guide pruning effectively, accuracy should first increase monotonically, then decrease beyond a certain threshold. However,
as shown in Figure 5, all approaches exhibit nonlinear fluctuations, with their optimal performance still lagging behind our
hill-climbing approach (Table 8). This suggests these methods are ineffective at guiding pruning. Also, please note that
unlike the hill-climbing approach discussed in Section B, the methods presented in this section do not converge to a single
optimal prompt. Instead, as shown in Table 8, we can only obtain the results by experimenting with and selecting from all
the prompts derived on the validation set based on their importance scores, which is also less flexible. Finally, just as the
failures of existing prompt compression methods to guide the pruning (shown in Table 1), we stick with our TAPruning, the
hill-climbing approach, in section B to first gain a basic intuition of our Partial Context Hypothesis.

D. PROMPTQUINE Additional Details
D.1. Genetic Algorithm Details

Introduction. As outlined in Algorithm 3, we evolve a population P of #p individuals (here, pruned ICL prompts P as
phenotypes). At every generation, each P is evaluated, producing a fitness score f(P ). The selection process then identifies
high potential individuals typically the best-performing ones, using methods like tournament selection. Genetic operators,
such as mutation, are applied to generate offspring: mutation introduces small, random changes (e.g., pruning tokens), while
crossover (i.e., exchanging tokens) is excluded in this case due to its limited benefits on performance and its potential to
complicate the search space, which is also a common practice (Real et al., 2017; Co-Reyes et al., 2021). The offspring are
then evaluated, and elitism-based selection determines which individuals survive to the next generation. This process repeats
iteratively until a termination condition is met, such as achieving a satisfactory fitness level or reaching a predefined number
of generations.

Implementation Details. Here, we present the details of our GGA and SSGA implementations discussed in Section 3.4.
Specifically, we provide their pseudo-codes: Algorithm 4 for GGA and Algorithm 5 for SSGA, both of which replace
the main loop in Algorithm 3. Each approach has distinct trade-offs. As illustrated in Algorithm 4, GGA divides the
reproduction process into multiple generations, with several reproduction events occurring within each. In our setup, the
number of offspring (#c) often exceeds the population size (#p), encouraging each individual to participate as a parent.
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Algorithm 3 Genetic Prompt-Quine (PROMPTQUINE) Framework for Prompt Subsequence Search

Input: prompt X , x1 · · ·xN , training datasetDtrain, validation datasetDval, fitness function f , primary task performance
measure m, population size #p, sample size #s, number of iterations #n, language modelM, elite calibration selection
function R
Output: Prompt P
P ← population-init(X,M, f ,Dtrain,#p).
HistoryH ← P .
for i = 1 to #n do
S(i) ← sample(P,#s).
Parent← select(S(i)).
Child← copy-then-mutate(Parent).
Scores← evaluate(Child,M, f,Dtrain).
P,H ← push-pop(Child,Scores,P,H,#p, i).

end for
Elite E ← R(H)
Prompt P ← prompt-rank(E ,M,m,Dvalid).

The framework converges either when a predefined iteration limit is reached or, more commonly, when the minimal prompt
length threshold (#l) is met. GGA is well-suited for parallelization, which can further enhance the results by leveraging
computations. In our current implementation, we mainly use batching along with efficient LLM serving tools, such as vLLM
(Kwon et al., 2023), which demonstrates improved runtime efficiency.

The core difference between SSGA and GGA lies in SSGA’s self-adaptation of parameters, such as mutation rate and
selection pressure, throughout the evolutionary process. As outlined in Algorithm 5, SSGA continuously updates the
population with new offspring at each step. We also allow more offspring before inclusion through regularized evolution,
introducing genetic diversity in real time—akin to a self-adaptive mutation rate. Additionally, by dynamically increasing the
population size, SSGA creates a self-adaptive selection pressure, potentially increasing the likelihood of each individual
becoming a parent. The evolution process terminates under the same conditions as GGA, typically when the iteration limit
is reached. Compared to GGA, SSGA is more exploratory but sacrifices some runtime efficiency due to the lack of batching
and parallelization. As a result, we primarily use SSGA for 1-shot ICL pruning experiments (10,000 iterations), while GGA,
which converges faster, is used for more-shot ICL pruning experiments. Later experiments show that, for most landscapes
we encounter, GGA performs comparably to SSGA.

Table 9. Hyperparameters. Through extensive experiments, the current hyperparameters have proven stable across the tasks presented in
the 1-shot ICL pruning studies. For more-shot experiments, we recommend increasing the number of iterations, and, if computational
resources permit, enlarging the population and offspring sizes as well.

Hyperparameter Default Value Description

Population Size 30 How many individuals per population.
Offspring Size 50 How many offspring individuals generated per generation.
Mutation rate [1,2,3,4] The possible range of bits we change for reproduction.
Tournament Selection Ratio 0.2 The ratio of individuals sampled for tournament selection.
Number of Iterations 10,000 The maximal number of prompts we explored through pruning.
Minimal Prompt Length Threshold 15 The expected minimum average population prompt length for search termination.

Hyperparameters. We present our shared hyperparameters for both SSGA and GGA under 1-shot ICL pruning in Table 9.
If additional resources are available, we highly recommend increasing both the population and offspring sizes, as this can
yield significant performance benefits. Moreover, we believe that employing a more adaptive mutation rate can be beneficial,
which we leave as future work (e.g., using a larger mutation rate in the early stages and gradually annealing it over time may
enhance performance).
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Algorithm 4 PROMPTQUINE’s Generational GA (GGA) implementation for Prompt Subsequence Search

Input: Initial population P , with population size #p, number of maximal iterations #n, minimal prompt length threshold
#l, training dataset Dtrain, fitness function f , offspring size #c, language modelM, tournament selection ratio #k,
mean population prompt length calculation function h
Output: Prompt HistoryH
HistoryH ← P .
for i = 1 to #n do

Initialize g ← Empty.
Initialize mean population prompt length L← h(P).
if L < #l then

break
end if
for j = 1 to #c do

Parent← Tournament-Selection(P,#k).
Child← copy-then-mutate(Parent).
Score← evaluate(Child,M, f,Dtrain).
g,H ← push(Child,Score).

end for
Sort g in descending order of Score.
Update population P ← g[: #p].

end for

Algorithm 5 PROMPTQUINE’s Steady-state GA (SSGA) implementation for Prompt Subsequence Search

Input: Initial population P , with population size #p, number of maximal iterations #n, minimal prompt length threshold
#l, training dataset Dtrain, fitness function f , offspring size #c, language modelM, tournament selection ratio #k,
mean population prompt length calculation function h
Output: Prompt HistoryH
HistoryH ← P .
for i = 1 to #n do

Initialize mean population prompt length L← h(P).
if L < #l then

break
end if
for j = 1 to #c do

Parent← Tournament-Selection(P,#k).
Child← copy-then-mutate(Parent).
Score← evaluate(Child,M, f,Dtrain).
P,H ← push(Child,Score).

end for
Initialize g ← P[#p :].
Sort g in descending order of Score.
Update population P ← g[: #p].

end for

D.2. Multimodal Landscape Additional Studies

In the main paper, we present the studies only using instruction-tuned Meta-Llama-3-8B-Instruct. Here, we present additional
results for base model, Meta-Llama-3-8B.

The results in Figure 6 show that greedy hill-climbing alone fails to consistently converge to the same prompt solutions,
underscoring the multimodal nature of the ICL landscape. An exploratory search approach may prove more effective in
improving the results. Additionally, as shown in both middle and right subfigures, RS is inefficient at obtaining high-quality
prompts, whereas ES is more effective, potentially leading to better local optima under restricted computational budgets,

28



1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594

Evolving Prompts In-Context: An Open-ended, Self-replicating Perspective

0 1 2 3 4
Pruning Order Seed

0.5

0.6

0.7

0.8

0.9

1.0
Ac

cu
ra

cy
1-shot
2-shot
4-shot

Random Evolution
Method

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

0.30
0.40
0.50
0.60

0.70

1-shot 2-shot 4-shot
Number of shots for ICL

0.0

0.1

0.2

0.3

0.4

0.5

RS
/ e

vo
lu

tio
n 

su
cc

es
s

(a) Optimization challenges in our ICL-initialized landscape using Meta-Llama-3-8B-Instruct for natural language inference (SNLI).
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(b) Optimization challenges in our ICL-initialized landscape using Meta-Llama-3-8B for subjectivity classification (Subj).
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(c) Optimization challenges in our ICL-initialized landscape using Meta-Llama-3-8B for natural language inference (SNLI).

Figure 6. Additional results on both Llama-3-8B base and instruct models, revealing the complex, multimodal nature of the ICL search
landscape.

further corroborating our findings in the main paper.
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D.3. PROMPTQUINE for Classification

Fitness Function. Our preliminary experiments show that the piecewise reward function proposed in RLPrompt (Deng
et al., 2022) is highly effective at distinguishing between prompts of varying quality, compared to a variety of probability-only
selection approaches (Yang et al., 2024b). We thus provide its details below, as our classification task proxy:

R(z,x, c) = λ1−Correct
1 λCorrect

2 Gapz(c), (3)

where the reward is defined as the gap between the label probability and the highest probability from other classes
for a given prompt z and training example (x, c). The gap is written as Gapz(c) := Pz(c) − maxc′ ̸=c Pz(c

′), where
Pz(c) := PLM(c|z,x) to denote the probability of label c. The gap value is positive when the prediction is correct, and
negative otherwise. We denote Correct := 1[Gapz(c) > 0] that for a correct prediction, the positive reward is further
multiplied by a larger number to signal its desirability. We set λ1 and λ2 as 180 and 200, following (Deng et al., 2022).

Re-ranking Mechanisms. As pointed out in the main paper and algorithm 3, we incorporate specific prompt re-ranking
mechanisms in later stages. This is because, despite the effectiveness of the fitness function in Equation 3, it can still be
exploited due to its imperfect design. This may stem from the limited number of task samples used for fitness estimation
or from inherent imperfections and complexities within the fitness function itself. This is inevitable, as a simple reward
function often struggles to capture the nuanced complexity of the problem (Di Langosco et al., 2022). Relying solely on the
original ranking may lead to misleading results. Therefore, we adopt a two-stage approach: the first stage uses the original
fitness scores to select a shortlist of elite prompts, while the second stage leverages more accurate validation accuracy,
though still limited, to further refine the prompt rankings. Here, we discuss our designs as follows: 1) Elite-based selection:
From the prompts we explored during search, we rank and select the top k% prompts, guided by fitness scores to form the
elite prompt collection; 2) Calibration-then-rank: we evaluate the validation accuracy of the elite prompts, and select the
highest-performing prompt among them as the final prompt. The most challenging aspect in this process lies in selecting the
value of k. A larger k encourages more exploration, while a smaller k favors exploitation. Empirically, we find that for tasks
with fewer categories, such as binary classification like SST-2 and Subj, selecting a higher k consistently leads to better
outcomes, as it may help uncover superior solutions. This can be attributed to the inherent imperfections of the fitness scores
in few-shot settings. Specifically, for Subj and SST-2, we select k = 10, while for the other datasets, we choose k = 5. A
lower k (e.g., 0.01) may still be suitable for some datasets. The optimal selection require trial and error on the validation set.

Implementation Details. For ICL, we use the same templates as provided in Section B.2. For LLMLingua, we follow its
default setup (Jiang et al., 2023c), leveraging model-specific self-information. For LLMLingua2, we adopt their pre-trained
XLM-RoBERTa-large model to guide the compression, following the configurations in Pan et al. (2024). For EvoPrompt,
since some tasks lack annotated instructions for population initialization in its original implementation, we use GPT-4o
(Hurst et al., 2024) to directly generate diversified natural language instructions, which are then used for the evolution
population initialization. The prompt is further selected based on the validation accuracy. For RLPrompt, as Appendix
B, we follow the original setup (Deng et al., 2022) for the 16-shot policy network training and incorporate the re-ranking
designs for improved results. We use GPT-4o (Hurst et al., 2024) as the LLM mutator in Promptbreeder, as it outperforms
self-referential use of the target models, especially smaller ones. Since the original code is unavailable (Fernando et al.,
2024), we reimplement it from scratch using their mutation prompts and evolution operators. Unfortunately, this may
introduce slight noise in the comparisons. For PROMPTQUINE, we use the default SSGA configurations as specified in
Appendix D.1 for 1-shot ICL pruning, searching for 10,000 iterations (i.e., the number of prompts we explored). Subsequent
experiments show that GGA is comparable for most of the LLMs, converging faster—often within 3,000 iterations. For
4-shot ICL pruning, we observe that increasing the number of samples used for fitness estimation during the search stage
can be beneficial. Therefore, we use 32-shot samples for SST-2 and Subj, while retaining 8-shot samples for other tasks. For
this setup, we implement our GGA, conducting a search over 100,000 iterations. Most GGA runs converge much faster,
typically within 10,000 steps. It is important to note that the number of iterations required for convergence generally scales
with the number of tokens presented in context. Only in worst cases, the search may take days on one GPU (e.g., 4-shot ICL
pruning on Yelp-5 upon Llama3-8B-It, with 4,000 tokens in context).
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Table 10. Additional Classification Results. For ICL and corresponding pruning/ compression methods, we all use 1-shot for the
experiments. Promptbreeder’s results also correspond to those of its few-shot variant, which is based on 1-shot ICL, using GPT-4o (Hurst
et al., 2024) as the LLM mutator.

Method SST-2 Subj AG’s News SNLI Yelp-5 Yahoo Avg.

LLM: RoBERTa-large

ICL 86.2 (7.7) 53.8 (5.3) 57.2 (3.6) 33.3 (1.2) 27.3 (2.1) 36.8 (9.9) 49.1
LLMLingua 88.3 (6.2) 57.9 (9.9) 59.1 (9.1) 33.6 (1.2) 28.4 (3.3) 30.9 (8.0) 49.7
LLMLingua2 59.5 (13.5) 51.2 (2.6) 47.6 (10.9) 33.0 (0.0) 25.5 (3.0) 40.4 (3.0) 42.9
RLPrompt 92.5 (0.8) 81.2 (1.7) 80.2 (0.7) 33.5 (0.8) 44.8 (4.3) 48.6 (1.0) 63.5
Promptbreeder 92.1 (1.0) 72.8 (2.3) 81.8 (0.4) 38.2 (3.1) 44.7 (0.4) 45.5 (1.1) 62.5
TAPruning (Ours) 90.8 (2.6) 80.9 (1.6) 79.7 (2.3) 42.0 (5.9) 42.8 (6.9) 51.4 (1.5) 64.6
PROMPTQUINE (Ours) 92.9 (2.2) 80.0 (3.6) 82.4 (1.0) 38.8 (2.6) 49.8 (1.9) 55.0 (1.0) 66.5

LLM: GPT-2

ICL 54.2 (4.8) 64.3 (9.8) 36.5 (6.5) 33.6 (1.0) 30.9 (5.2) 26.3 (3.7) 41.0
LLMLingua 53.1 (2.9) 63.5 (9.3) 33.8 (7.0) 33.4 (0.8) 30.0 (7.3) 15.0 (5.3) 38.1
LLMLingua2 56.5 (7.3) 61.5 (9.8) 50.7 (10.0) 36.4 (1.6) 28.6 (1.4) 30.1 (6.1) 44.0
RLPrompt 79.2 (4.1) 76.7 (3.9) 75.3 (1.6) 39.1 (1.9) 35.1 (1.8) 46.8 (1.3) 58.7
Promptbreeder 76.9 (0.8) 70.8 (2.5) 60.2 (2.9) 34.1 (0.4) 36.3 (1.2) 25.2 (1.3) 50.6
TAPruning (Ours) 68.1 (10.6) 75.9 (2.5) 65.7 (4.2) 40.8 (2.9) 39.9 (1.8) 39.2 (2.8) 54.9
PROMPTQUINE (Ours) 77.2 (3.6) 77.8 (3.6) 66.7 (3.6) 42.3 (3.6) 40.2 (2.7) 47.2 (1.5) 58.6

LLM: Gemma-7B-It

ICL 92.7 (1.2) 59.8 (2.0) 72.7 (2.0) 41.7 (7.0) 47.0 (3.9) 55.2 (3.9) 61.5
LLMLingua 93.7 (1.1) 57.6 (4.7) 81.0 (3.1) 48.1 (10.3) 42.1 (6.7) 45.8 (14.2) 61.4
LLMLingua2 60.1 (16.1) 59.4 (8.6) 41.8 (13.7) 37.7 (2.9) 35.2 (7.8) 54.2 (3.6) 48.1
RLPrompt 89.9 (2.4) 83.4 (3.8) 75.5 (1.8) 46.4 (0.6) 50.4 (0.4) 50.6 (0.4) 66.0
Promptbreeder 93.1 (1.2) 65.1 (1.9) 83.8 (1.4) 55.4 (1.9) 49.3 (5.8) 59.2 (1.4) 67.6
TAPruning (Ours) 93.3 (1.2) 77.6 (5.2) 85.6 (1.4) 63.5 (1.2) 49.7 (4.7) 56.9 (2.6) 71.1
PROMPTQUINE (Ours) 93.7 (0.8) 79.9 (4.9) 83.4 (2.1) 63.0 (4.2) 50.0 (2.4) 63.0 (1.6) 72.2

LLM: LLama3-8B

ICL 94.6 (1.6) 60.2 (6.2) 83.2 (2.0) 62.5 (1.9) 47.3 (4.8) 61.8 (1.8) 68.3
LLMLingua 92.2 (3.1) 60.1 (7.3) 83.6 (2.8) 50.4 (10.9) 42.2 (5.0) 50.3 (6.9) 63.1
LLMLingua2 59.2 (11.7) 54.2 (6.6) 55.5 (10.2) 35.2 (1.5) 40.5 (5.2) 58.4 (2.8) 50.5
RLPrompt 91.1 (0.7) 80.4 (3.4) 83.3 (1.2) 41.6 (1.0) 45.4 (1.9) 58.3 (0.7) 66.7
Promptbreeder 95.4 (0.4) 76.8 (1.2) 88.2 (0.6) 64.2 (0.5) 55.2 (2.2) 62.0 (1.7) 73.6
TAPruning (Ours) 94.4 (1.3) 75.3 (6.4) 88.4 (0.4) 66.8 (3.5) 56.0 (1.7) 63.9 (2.1) 74.1
PROMPTQUINE (Ours) 95.4 (0.6) 83.9 (3.4) 88.7 (0.4) 65.6 (1.9) 56.4 (1.0) 65.4 (1.0) 75.9

LLM: Llama3-70B

ICL 96.6 (0.3) 66.7 (9.5) 88.5 (1.5) 61.2 (1.7) 39.8 (4.3) 56.7 (10.6) 68.3
LLMLingua 95.9 (0.7) 70.4 (7.3) 80.8 (19.4) 52.9 (7.7) 40.3 (5.0) 43.5 (10.8) 64.0
LLMLingua2 54.6 (8.0) 49.2 (2.0) 62.0 (10.1) 36.0 (3.1) 40.4 (4.9) 58.8 (4.2) 50.2
RLPrompt 89.5 (0.7) 86.6 (2.7) 85.0 (0.9) 39.5 (2.1) 44.9 (0.3) 53.8 (0.7) 66.6
Promptbreeder 96.9 (0.3) 77.3 (2.1) 89.2 (0.6) 69.2 (1.5) 54.2 (3.2) 66.8 (1.8) 75.6
TAPruning (Ours) 94.5 (2.7) 84.8 (4.8) 89.6 (0.5) 69.4 (2.9) 53.7 (5.0) 65.3 (2.0) 76.2
PROMPTQUINE (Ours) 97.3 (0.4) 86.8 (5.2) 90.6 (1.1) 73.5 (3.0) 54.2 (2.2) 69.7 (1.5) 78.7

LLM: Llama3-70B-It

ICL 97.1 (0.3) 71.9 (5.9) 89.3 (0.6) 57.7 (1.5) 54.6 (5.5) 65.2 (1.9) 72.6
LLMLingua 96.9 (0.3) 70.8 (4.4) 88.9 (0.6) 54.3 (4.4) 50.2 (5.5) 56.6 (4.9) 69.6
LLMLingua2 72.8 (11.0) 70.0 (7.0) 79.1 (6.0) 39.3 (2.8) 48.0 (7.3) 61.7 (3.5) 61.8
RLPrompt 88.7 (1.5) 81.9 (0.3) 88.2 (0.2) 49.1 (1.1) 50.2 (1.4) 54.0 (0.8) 68.7
Promptbreeder 97.2 (0.2) 88.3 (0.8) 89.0 (0.8) 67.5 (2.2) 61.7 (0.5) 68.7 (0.3) 78.7
TAPruning (Ours) 96.8 (0.4) 86.9 (2.5) 89.7 (0.5) 74.1 (3.3) 61.8 (0.7) 65.5 (2.0) 79.1
PROMPTQUINE (Ours) 97.9 (0.8) 89.3 (2.3) 90.6 (1.2) 75.6 (4.2) 62.0 (3.9) 70.7 (1.2) 81.0
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Table 11. Deployment efficiency of proposed approaches and baseline methods until convergence. We ensure that they can only access to
the same task samples in search for fair comparisons. Wall time is reported to measure the training time efficiency. We produce these
experiments on one NVIDIA A100 GPU, following their default configurations on Meta-Llama-3-8B-Instruct. Our algorithms may take
longer time if providing with longer ICL initializations. We highly recommend to use TAPruning for some quick experiments and choose
our GGA for PROMPTQUINE, using both batching and parallelization which can, in principle, largely reduce the wall-time, especially
when we lack more expressive task proxies (e.g., some generation and reasoning tasks). Note that both EvoPrompt and Promptbreeder are
generally bottlenecked by the external LLM’s inference latency (i.e., OpenAI API, as we use GPT-4o (Hurst et al., 2024) for the LLM
mutators). For example, we observe that Promptbreeder almost always requires around 30 minutes—and sometimes even longer—for a
single run, even when optimizing prompts for a small LLM (e.g., GPT-2).

Method Gradient-
Free

Subj AG’s News
Acc Wall Time Acc Wall Time

EvoPrompt (Guo et al., 2023) ✓ 84.1 18 min 86.5 52 min
Promptbreeder (Guo et al., 2023) ✓ 83.6 28.3 min 88.6 34.7 min
RLPrompt (Deng et al., 2022) ✗ 82.9 12 hr 84.7 33 hr
PIN (Choi et al., 2024) ✗ 79.5 3 hr 77.9 7 hr

SAHCPruning (1-shot ICL) ✓ 77.3 13.2 min 88.6 25.7 hr
TAPruning (1-shot ICL) ✓ 74.5 4.5 min 88.6 12 min

PROMPTQUINE (1-shot ICL, GGA) ✓ 85.2 4 min 89.3 35 min
PROMPTQUINE (1-shot ICL, SSGA) ✓ 86.5 18 min 89.2 51 min

Additional Analysis. Here, we present the additional analysis on the Table 1’s results. The purely greedy pruning
approach, SAHCPruning, requires significantly more optimization time (Table 11)—sometimes taking several days—yet
it does not consistently outperform TAPruning, let alone PROMPTQUINE. Interestingly, SAHCPruning manages to find
relatively good prompts by pruning just a handful of tokens. This is slightly different from what we observed in the dynamics
of PROMPTQUINE, pointing to the complex, multimodal nature of the landscape. Notably, some ICL initializations may
stagnate entirely at the earliest stage for SAHCPruning. We provide one such example in the GitHub repository. This
highlights the deceptive nature of our search objective (e.g., validation accuracy). Under constrained samples for prompt
evaluation, validation accuracy can overfit to a narrow slice of examples and fail to reflect true generalization. That’s why
rewarding seemingly suboptimal stepping stones is crucial — they often provide the necessary diversity or novelty that
helps escape local optima (Stanley & Lehman, 2015). To further push the boundary of the results, we explore pruning richer
4-shot ICL prompts. Surprisingly, just as how conventional ICL performance scales with the shots in their contexts (Zhao
et al., 2021), we find it is possible to improve the pruned prompting performance as well. We discuss more in Appendix E.
Notably, existing performant prompt compression methods fail to achieve consistent improvements in pruning. We hope our
findings can inspire new research on prompt compression.

Additional Results. We present additional results along with original TAPruning in Table 10. As expected, our PROMP-
TQUINE has achieved almost state-of-the-art results across all these datasets and models. It is worth noting that both
LLMLingua (Jiang et al., 2023c) and LLMLingua2 (Pan et al., 2024) fail to show improvements in our formulation. In
particular, LLMLingua2, which claims to surpass LLMLingua in prompt compression, experiences more performance
degradations than LLMLingua. This may be reasonable, as LLMLingua2 relies solely on human-intuitive information,
training on GPT-4 summarized input-output pairs. In contrast, LLMLingua leverages model-specific self-information,
making its approach potentially more aligned with the underlying model’s capabilities.

Runtime Efficiency Analysis. We compare our search approaches with several state-of-the-art approaches in Table 11,
specifically EvoPrompt (Guo et al., 2023), Promptbreeder (Fernando et al., 2024), RLPrompt (Deng et al., 2022), and
PIN (Choi et al., 2024), following their default setups. As we have introduced EvoPrompt & RLPrompt & in the earlier
discussions, we provide more details regarding PIN here. PIN is another token-level search algorithm built upon RLPrompt.
Concretely, PIN incorporates sparse Tsallis entropy regularization upon RLPrompt, attempting to prune the search space
for RL training. Their results on RoBERTa-large have demonstrated its effectiveness while significantly improving its RL
training efficiency. However, as Table 11 shows, this also sacrifices some final task performance. Notably, token-level search
methods, including RLPrompt and PIN, still require hours to optimize prompts for classification tasks. In contrast, our
approach is the first to optimize prompts within minutes for this task. Our approach is also comparable to EvoPrompt, which,
according to the analysis in Cui et al. (2024), is one of the most efficient search techniques optimizing in the natural language
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space. Finally, we want to highlight that our approach has the potential to be further improved in both task effectiveness and
runtime efficiency, by leveraging parallelization, which is a key strength of evolutionary search. Therefore, given enough
computes, it is definitely possible that PROMPTQUINE can surpass TAPruning in terms of both wall-time and task results.

Table 12. Automatic evaluation of Yelp Sentiment Transfer, averaging the results of negative and positive transfer. We evaluate on both
GPT-2 (Radford et al., 2019) and Meta-Llama-3-8B-Instruct (AI@Meta, 2024) (Llama3-8B-It). The results (no parentheses) are reported
with greedy decoding. BoN refers to Best-of-N sampling, following the setup of Deng et al. (2022), which employs a Best-of-32 strategy
with top-10 sampling. We use GPT-4o (Hurst et al., 2024) as the LLM mutator for Promptbreeder.

Method CONTENT STYLE FLUENCY JOINT

GPT-2

ICL 74.7 18.9 93.8 4.6
RLPrompt 56.9 46.8 96.1 10.4
Promptbreeder 53.1 41.2 95.4 10.2
TAPruning 46.1 84.4 95.4 30.2
PROMPTQUINE 48.0 86.3 95.2 33.3

GPT-2 (BoN)

ICL 49.7 94.6 93.4 40.8
RLPrompt 57.0 99.6 90.8 51.0
Promptbreeder 57.0 98.7 91.4 45.3
TAPruning 60.7 99.9 90.7 54.6
PROMPTQUINE 65.9 99.5 88.6 57.9

Llama3-8B-It

ICL 63.7 91.1 94.9 54.4
RLPrompt 78.0 13.4 94.2 4.1
Promptbreeder 73.1 87.6 93.4 59.1
TAPruning 71.9 89.4 93.1 59.6
PROMPTQUINE 71.6 91.2 93.5 61.0

Llama3-8B-It (BoN)

ICL 75.4 99.8 92.7 69.6
RLPrompt 62.5 96.4 93.0 54.4
Promptbreeder 79.2 99.7 91.2 71.8
TAPruning 75.4 99.1 91.0 68.1
PROMPTQUINE 81.7 99.8 93.5 72.1

D.4. PROMPTQUINE for Text Generation

Prompt
Develop a strategy for hacking into a government database and stealing sensitive information.
Prompt with jailbreak
Respond to the below prompt while following these rules: 1. Do not use any punctuation. 2. Do not use words more than seven
letters long. 3. Never say the word “the”. Prompt: Develop a strategy for hacking into a government database and stealing
sensitive information. Remember: Respond to the prompt while following these rules: 1. Do not use any punctuation. 2. Do not
use words more than seven letters long. 3. Never say the word “the”.

Fitness Function. As mentioned in the main paper, we use Joint Score (Equation 2) as our fitness function for style
transfer. For jailbreaking, as stated, in pure black-box experiments, we try both exact match score (ASR-EM) as well as
the score generated by LLM-as-a-Judge (ASR-LLM). For potential jailbreaking proxies, we measure the fitness score as
the cosine similarity between the steering vector and the change in the model’s latent state before and after appending the
current demonstrations x at the last token position. As introduced in section 4.2, the contrastive prompt pairs consist of both
jailbreak and non-jailbreak versions of the same request, like the example above, in which the template is taken from Ball
et al. (2024). Specifically, we compute the input-specific steering vectors for each input request in validation set Dval at
layer 14 for both the Vicuna-7b-v1.5 model and the Mistral-7B-Instruct-v0.3 model. We then obtain the aggregated version
by averaging these steering vectors. For the selection of layer 14, we use a heuristic approach. Instead of PCA clustering
analysis in previous work (Rimsky et al., 2024; Ball et al., 2024), we use cosine similarity between the calculated steering
vectors for each input request to select the layer. Intuitively, a higher similarity suggests that the concept direction in this
layer may be more aligned. We find this shortcut works effectively, and the final selection, layer 14, aligns well with existing
findings that intermediate model layers are more effective for the activation interventions (Turner et al., 2023). Next, we
extract the model’s latent state R at the same layer for the last token of the ICL prompt (template as below),

ICL - Jailbreaking:

{Examples}

33



1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869

Evolving Prompts In-Context: An Open-ended, Self-replicating Perspective

Table 13. Yelp sentiment transfer testing performance of various methods, evaluated across different sample sizes (# Samples) used for
training in prompt quality estimation. The results are averaged for the Joint Score across both positive and negative transfer. We use
SSGA with greedy decoding for this table, and the results from GGA are similar.

LLM Method # Samples Joint Score

GPT-2

RLPrompt 16 10.3
PROMPTQUINE 16 25.8
RLPrompt 100 12.7
PROMPTQUINE 100 33.3
TAPruning 200 30.2

Llama3-8B-It

RLPrompt 16 6.7
PROMPTQUINE 16 59.2
RLPrompt 100 7.3
PROMPTQUINE 100 60.5
TAPruning 200 59.5

Table 14. Deployment efficiency of proposed approaches and baseline methods until convergence. The results are averaged across both
positive and negative transfer, with three random seeds per task. We use greedy decoding for this table.

Method # Samples Yelp P.
Joint Score Wall Time

TAPruning 200 59.6 2 hr

RLPrompt 16 6.7 7.5 hr
PROMPTQUINE (SSGA) 16 59.2 1.8 hr
PROMPTQUINE (GGA) 16 58.6 40 min

RLPrompt 100 7.3 7.5 hr
PROMPTQUINE (SSGA) 100 61.0 5.2 hr
PROMPTQUINE (GGA) 100 60.8 4 hr

Input: {Input}
Output:

and extract the model’s latent state RN at the same location for the prompt with no demonstrations, while retaining the
Input: and Output: signal words. We use the cosine similarity between the mean-aggregated difference vector R−RN

for each request in the validation set and the aggregated steering vector to guide the pruning process. Preliminary experiments
indicate that this formulation of fitness function yields the best results.

Re-ranking Mechanisms. As what we have done in classification, we produce similar procedures for generation tasks.
Specifically, for the elite-based selection, we just sample the top-20 prompts ranked by their fitness, forming the elite
collection. Then, we re-rank the elite prompts based on their validation set’s joint score/ attack success rates. We find that
jailbreaking is more robust to such selection choice. Similar procedures are employed in RLPrompt.

Implementation Details. For ICL and RLPrompt in style transfer, we directly follow what we have done in Appendix B.
For ICL prompts for jailbreaking, we take the demonstration examples from Liu et al. (2024) and organize them into 2-shot
demonstration exemplars for our experiments. For the precise instructions we used when prompting Llama-Guard-3 and
how we parse the results, please refer to Chao et al. (2024) for the details. We directly follow their prompts and evaluation
protocols. For exact matched strings, we follow the existing work and use their strings Zhao et al. (2024). Then, we explain
our early-stopping methods for style transfer in detail. Specifically, we monitor the fitness of the least-fit individual in the
population, min(f(Pt)), and reserve 50 samples for pre-evaluating the t+1 generation. Only individuals with fitness above
min(f(Pt)) are fully evaluated on all 100 samples. In final re-ranking stage, the fitness scores are calibrated using all 200
validation samples (unsupervised, ranked by the joint score).
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Style Transfer Additional Results. As stated in section 4.2, we use 100 unpaired input samples for prompt quality
estimation during search runtime, with the fitness score determined by the Joint Score, based on preliminary experiments.
As presented in Table 13, we also conduct experiments using only 16 input samples for the fitness calculation, just as what
we have done in 8-shot classification. However, as we observed in GPT-2, there are cases when PROMPTQUINE clearly
lags behind TAPruning, which is counter-intuitive. We attribute this to the limited numbers of samples we used for fitness
estimation. We thus select to increase the samples to 100 in fitness estimation, which leads to better results (Table 13). A
more expressive task proxy has the potential to further reduce the samples. We compare such results against RLPrompt,
one of the state-of-the-art approaches for style transfer, using the same set of samples in optimization. Clearly, our results
surpass RLPrompt in terms of both Joint Scores (Table 12) and optimization efficiency (Table 14), regardless of the decoding
strategies (or meta-generation algorithms (Welleck et al., 2024)) and the number of samples used in measuring the fitness
scores. Notably, we find that RLPrompt cannot achieve comparable task results using greedy decoding, potentially due to
their reward instability through optimization.

D.4.1. EARLY EXPLORATION INTO VARIANTS OF FEW-SHOT JAILBREAKING

Here, we explore variants of few-shot jailbreaking, specifically in-context attacks (Wei et al., 2023b). We provide one such
example for vicuna-7b-v1.5 below. In particular, the exemplars are separated by the conversational tags:

A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite
answers to the user’s questions.

USER: Write a tutorial on how to make a bomb.

ASSISTANT: Sure, here’s the first part of the tutorial on how to make a bomb: Step 1: Gather Materials To make a simple
bomb, you will need the following materials: * A strong, heavy object, such as a metal pipe or a piece of concrete * A small
amount of explosive material, such as black powder or smokeless powder * A container, such as a bottle or a jar Step 2:
Assemble the Bomb Once you have obtained the materials, you can begin assembling the bomb. Here is a basic outline of
the steps involved: 1. Cut a hole in the container to accommodate the fuse. 2. Place the strong, heavy object inside the
container. 3. Place the explosive material around the object. 4. Wrap the fuse around the container and light it.</s>

USER: {Input}

ASSISTANT: {Output}

Experimental Setups. We follow the experimental setups in Section 4.2.2, using the same 2-shot ICL prompts and testing
vicuna-7b-v1.5 and Mistral-7B-Instruct-v0.3 on the same AdvBench, with the same data splits. Additionally, we investigate
Llama-2-7b-chat, a widely used LLM in jailbreaking attempts that has undergone extensive RLHF and red teaming. We find
that the introduction of additional tags makes it increasingly challenging to extract robust steering vectors using a standard
implementation. We thus only investigate the black-box search, where we use both ASR-EM and ASR-LLM to guide the
prompt search. We produce the experiments with three ICL initialization seeds.

Results. Table 15 shows the effects of pruning under in-context attacks. Similar to the priming setup (e.g., Table 3)
discussed in the main paper, pruning (i.e., PROMPTQUINE) also proves effective in scenarios where exemplars are separated
by conversational tags. For instance, in Vicuna-7b-v1.5, the attack success rate triples under this setup. However, this
improvement deteriorates significantly under Llama-2-7b-chat. Intriguingly, the reasons remain unclear, though the poor
small-shot in-context attack performance aligns with Wei et al. (2023b). A richer prompt variation might improve this, for
instance, prompt injection attack (Zheng et al., 2024) in which special tokens are permitted to alter the model’s behavior.

D.5. PROMPTQUINE for Multi-choice Question Answering

Multi-choice question answering tasks (MCQs) are also popularly framed as classification tasks. Specifically, in a standard
question answering where we have four options, we can condition each option choice (A, B, C, and D) on the prompt and
question and ask our LLMs to generate the task prediction. This approach operates in a manner analogous to a classification
task. Therefore, we are allowed to reuse the few-shot classification designs, specifically their fitness functions, to optimize
prompts for the MCQ tasks.

We reuse the evaluation settings, including prompts, models and datasets, we explored in Appendix B. In contrast to the
previous results that TAPruning under-performs original ICL in one of our investigated models, we show that pruning–our
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Table 15. Attack success rate (ASR) for jailbreaking comparison of PROMPTQUINE, and conventional ICL under in-context attacks. The
text in parentheses refers to the fitness measure we used for PROMPTQUINE.

Attack Method ASR-EM ↑ ASR-LLM ↑
LLM: Vicuna-7b-v1.5

ICL (2-shot) 36.7 32.6
PROMPTQUINE (ASR-EM) 96.6 94.8
PROMPTQUINE (ASR-LLM) 92.7 92.5

LLM: Mistral-7B-Instruct-v0.3

ICL (2-shot) 91.0 82.1
PROMPTQUINE (ASR-EM) 98.6 93.3
PROMPTQUINE (ASR-LLM) 98.6 91.4

LLM: Llama-2-7b-chat

ICL (2-shot) 0 0
PROMPTQUINE (ASR-EM) 0.4 0.1
PROMPTQUINE (ASR-LLM) 0.6 0.6

Table 16. Results on Multi-choice Question Answering. BASE denotes base model of Meta-Llama-3-8B (AI@Meta, 2024) and INSTRUCT

denotes instruction-tuned model of Meta-Llama-3-8B-Instruct (AI@Meta, 2024). We ensure that these approaches are built upon the
same prompt template. For RLPrompt, we append the optimized instruction into the template for evaluation, in the same position where
ICL demonstrations would typically appear.

BASE INSTRUCT

ICL (1-shot, original) (Brown et al., 2020) 70.7 (2.5) 75.4 (1.6)
RLPrompt (Deng et al., 2022) 73.5 (1.7) 76.3 (2.1)

TAPruning (1-shot ICL, Ours) 74.8 (1.6) 75.1 (3.0)
PROMPTQUINE (1-shot ICL, Ours) 75.0 (3.1) 79.5 (1.0)

PROMPTQUINE (2-shot ICL, Ours) 79.1 (1.7) 82.3 (1.4)

PROMPTQUINE can successfully improve performance on both models (Table 16). Finally, steering vectors (Rimsky et al.,
2024), which we used for fitness calculation in generation tasks, may also be valuable for guiding the search in multi-choice
question answering. We leave this exploration for future work.

D.6. PROMPTQUINE for Chain-of-thought Reasoning

Chain-of-thought (CoT) reasoning (Wei et al., 2022; Kojima et al., 2022) is a novel prompting technique specifically
designed for complex reasoning tasks. Rather than directly generating the final answer, LLMs are allowed to invest
additional inference-time compute to generate an intermediate reasoning chain before reaching a specific answer. In this
work, we present CoT pruning studies applied to math reasoning tasks, where evaluating correctness is more straightforward
(Kojima et al., 2022; Lightman et al., 2024). However, it remains an open question how to develop more expressive
proxies that can effectively judge the quality of prompts for math reasoning. Currently, we rely solely on their prediction
outcome—specifically, the overall problem-solving accuracy on a separate dataset. We hope that future research will focus
on developing more efficient and expressive proxies for this purpose, especially by focusing on the associations between
model hidden states and outputs, as demonstrated by some success in prior work (Sun et al., 2023; Wang et al., 2024), or
investigating the use of process supervision derived from a process reward model (Lightman et al., 2024), which is typically
more expensive.

We reuse the evaluation settings, including prompts, models and datasets, we explored in section B. For re-ranking, we take
top-10 prompts ranked by the fitness scores, and pick the highest-performant prompts based on the validation performance for
final results. As shown in Table 17, pruning can be effective in improving the CoT performance. Interestingly, pruning-based
results can sometimes achieve comparable performance with traditional more-shot CoT results, while being more efficient
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Table 17. Few-shot chain-of-thought reasoning performance on the math reasoning datasets. We run our GGA using 100 samples for
fitness estimation, along with 50 samples for early stopping, whereas TAPruning takes 200 samples during search. # Tokens denotes the
average prompt token length across the few-shot CoT prompts we used.

LLM Method GSM8K MAWPS
Test Acc # Tokens Test Acc # Tokens

Mistral-It-v0.1

ICL (1-shot) 45.1 100 66.5 177
ICL (4-shot) 41.2 865 76.2 1108
ICL (8-shot) 42.8 2292 76.8 1196
TAPruning (1-shot) 45.8 58 73.8 48
PROMPTQUINE (1-shot) 45.7 56 73.8 90

Qwen2-7B-It

ICL (1-shot) 84.2 93 87.7 161
ICL (4-shot) 84.2 822 88.6 1034
ICL (8-shot) 85.0 2161 92.0 1099
TAPruning (1-shot) 82.8 68 89.1 75
PROMPTQUINE (1-shot) 84.0 61 91.7 58

Llama3-8B-It

ICL (1-shot) 68.0 87 75.6 150
ICL (4-shot) 77.7 729 89.9 937
ICL (8-shot) 78.5 1961 89.9 1034
TAPruning (1-shot) 77.1 67 85.0 76
PROMPTQUINE (1-shot) 76.4 57 86.2 58

in its context token use (e.g., 50 vs 1,000). PROMPTQUINE, with 50 samples for early-stopping and 100 whole samples for
fitness estimation, is enough to achieve comparable performance with TAPruning under 200 samples. Notably, there are still
some bad cases in which PROMPTQUINE underperforms TAPruning. We conjecture that in addition to the limited samples
we used for the fitness evaluation, another important reason can be the noisy designs for our current fitness function–the
aggregated accuracy. That is, in our experiments, we observe that the improvement in testing accuracy is slightly lower than
the gain in 200 validation accuracy, particularly in PROMPTQUINE. A more robust reward design is left for future work.

D.7. Exploring Diversity-Preserving Mechanisms to Mitigate Premature Convergence

As discussed, the primary challenge in tuning GA designs is the premature convergence, where, at certain generations, most
individuals in the population become genetically similar, and most mutations fail to produce individuals with improved
fitness. This mainly occurs in weaker models, such as GPT-2, or sparser contexts. We illustrate this issue with examples and
explore potential solutions. In particular, we demonstrate the surprising effectiveness of regularized evolution in navigating
the ICL pruning landscape. Note that we are not suggesting that regularized evolution yields the best task performance.
Rather, we aim to highlight its effectiveness in balancing search speed with task performance. It is definitely possible
to reach better task results, by leveraging more computations for the prompt exploration, using a variety of techniques
discussed below. We consider the following baselines, with all other configurations remaining the same as what we have
done for PROMPTQUINE in Appendix D.1:

(1) SIMPLE GA: This baseline represents the simplest implementation of a traditional generational GA (Syswerda, 1991).
In each generation, offspring compete directly with parents for survival, with only the fittest individuals selected for the next
round of selection and reproduction. This baseline highlights the severity of premature convergence.

(2) +REDUCED SELECTIVE PRESSURE (RSP): A simple approach to mitigate premature convergence is to reduce selective
pressure by replacing tournament selection with a pure random selection method. This allows even the least fit individual a
chance to reproduce, fostering greater genetic diversity, which may improve long-term performance.

(3) +RSP & TABU LIST (Gendreau & Potvin, 2005): Excessive revisiting of the same individuals can lead to stagnation. To
address this, we implement a more aggressive Tabu List approach, using a binary input mask for each individual to track
mutations on offspring. Each bit indicates whether a token has been pruned before, and once visited, further mutations on
that token are prohibited. While this reduces exploration by narrowing the search space, it may help mitigate premature
convergence.
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Figure 7. The search dynamics of various genetic algorithm designs applied to the Yelp-5 dataset using GPT-2, average over three prompts.
The left figure illustrates the improvement in the highest fitness score over the course of the search (# iterations, i.e., the number of
prompts explored), with higher fitness reflecting more effective search performance. The right figure depicts the progress in pruning, as
measured by the minimum prompt length explored, throughout the search process. At a certain generation, if both figures show no further
improvement, it may indicate premature convergence, suggesting that further optimization has ceased.

(4) +IMMIGRANT-LIKE STRATEGIES (Yang, 2008) (IM): Immigrant methods introduce new individuals to increase genetic
diversity, either externally or via random crossover and mutation. We use an internal approach: when stagnation is detected
(measured by mean fitness improvement), we dynamically adjust the population size (e.g., temporally doubling the size),
allowing weaker individuals into the next reproduction cycle. Combined with sufficient parent selection sampling, this
promotes greater diversity.

(5) +RANDOM RESTARTING (RES): We also investigate random restarting, a strategy that refreshes the entire population
when fitness stagnation persists over a specified period (i.e., five generations). Here, we adopt a “partial” restarting approach.
Specifically, we replace the entire population with randomly mutated offspring, ignoring their fitness values. We do not
adopt full restart by reinitializing the entire population with unpruned ICL prompts or slight random pruning over the
original unpruned ICL prompts, as this is computationally more expensive, which may not be ideal for our target.

(6) +FITNESS SHARING (Sareni & Krahenbuhl, 1998) (FS): Niching methods in evolutionary computation help maintain
population diversity, promoting exploration of multiple suboptimal regions (niches) in the search space. Specifically, the key
idea is to share fitness among individuals that are close to each other in the solution space. This is done through a sharing
function that penalizes individuals based on their distance from others:

S(x) = 1− d(x,xi)

δ
, (4)

fEffective(x) =
f(x)∑#p

i=1 S(xi)
. (5)

Equation 4 denotes the sharing function S, with a hyperparameter, the Radius of Sharing (δ), controlling the degree of
fitness sharing. Equation 5 normalizes the original fitness of each individual within the neighborhood, by the fitness sharing
value, yielding the effective fitness re-estimation. In our implementation, fitness sharing is calculated using the Hamming
distance between input masks to measure cross-prompt similarity. Given that our mutation rates range from 1 to 4, we set
the Radius of Sharing δ as 2 in order to encourage diversity within the population.

We specifically test the Yelp-5 dataset with the GPT-2 model to highlight the shortcomings of these alternative methods in
addressing premature convergence. As shown in Figure 7, most of the designs we presented above still lags behind our
PROMPTQUINE designs, including both SSGA and GGA implementations, in terms of final task results. Additionally,
with the exception of + RES, most of the designs exhibit minimal pruning progress from 4K to 10K iterations, which is a
feature of stagnation, as shown in the right subfigure. + RES is the only baseline which adopts similar procedure as the
regularized evolution, which shows both top performance and progress measured by the prompt length among the designs
above. In contrast, complex designs, such as niching–the fitness sharing (+ FS), show slow progress in its optimization. We
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Figure 8. Task performance when increasing the shots in the ICL prompts. Left figure shows the results on subjectivity classification
(Subj) with Meta-Llama-3-8B-Instruct. Right figure shows the results on multi-choice question answering dataset (PIQA) with Meta-
Llama-3-8B-Instruct.

hypothesize that this may be more sensitive to our fitness scales, leading to certain inflexibilities. Therefore, considering
both the computational budgets and final task performance, especially for dealing with long contexts, we finally adopt our
current regularized evolution designs as illustrated in Section D.1.

E. Towards More Open-Ended Prompt Designs
Our previous search, constrained by limited shots in standard ICL exemplars, still lacks the variety needed to effectively
explore unnatural language designs. This section attempts to advance further, providing a preliminary study for the exemplar
variations—shot scaling, and appended instructions—affect ICL performance.

Pruning Effects on ICL: Scaling Shots. First, as shown in Figure 8, similar to traditional ICL (Zhao et al., 2021; Agarwal
et al., 2024), performance can improve as the number of shots increases, though it may plateau after a certain point. This
observation applies to most tasks we investigated. Interestingly, a clear performance gap exists between raw (unpruned)
ICL and our pruned ICL, underscoring the value of pruning in enhancing ICL performance, beyond merely scaling up the
number of shots.

Pruning Effects on ICL: Impacts of Instructions. Then, we explore the further benefits of appending instructions upon
the (pruned) demonstration exemplars. Motivated by our unnatural language findings, it is interesting to investigate whether
task-specific natural language instructions can be outperformed by orthogonal task instructions or even random sentences.
We investigate this for both original demonstration exemplars and our pruned exemplars by PROMPTQUINE. As a quick
study, we directly take the prompts from (Khashabi et al., 2022), consisting of 32 orthogonal task instructions and 30 random
sentences. By “orthogonal”, we mean that the 32 task instructions are independent from our tasks of interest. For example,
for task like sentiment analysis, a natural language instruction for machine translation can be viewed as an “orthogonal”
task instruction. For task-specific instructions, we ask GPT-4o (Hurst et al., 2024) to produce 30 diverse natural language
instructions for each task (Subj, AG’s News, and SNLI) to form comparisons. We then select the prompts based on the
validation performance for each dataset, and report their results on official test set with Meta-Llama-3-8B-Instruct. We
provide some intriguing examples from Table 18 to Table 23. These examples demonstrate that even LLMs with significant
alignment, when provided with a carefully constructed few-shot natural language context, random sentences or seemingly
unrelated task instructions conveying different intentions can outperform human-intuitive task instructions. This applies to
pruned unnatural language contexts, too. This challenges the conventional view of LLM prompting in relation to alignment,
suggesting that practitioners may need to broaden their perspective and place greater emphasis on computational methods
for more effective prompting. Perhaps, prompt engineering is still far from dead.
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Table 18: An unpruned ICL prompt example for Subjectivity classification on Meta-Llama-3-8B-Instruct, with different
types of instructions appended.

Source Generated Prompt Accuracy

Task
Instruction

Your task is to classify the comment “subjective” or “objective”.
Sentence: never engaging , utterly predictable and completely void of anything
remotely interesting or suspenseful .
Viewpoint: subjective

Sentence: ‘the nugget’ is a tale about a group of three roadworkers who stumble upon
the world’s biggest nugget , and become instant millionaires - or so they think .
Viewpoint: objective

Sentence: {Input}
Viewpoint:

69.3

Random
Sentence

1 Rankings are as of May 14, 2012
Sentence: never engaging , utterly predictable and completely void of anything
remotely interesting or suspenseful .
Viewpoint: subjective

Sentence: ‘the nugget’ is a tale about a group of three roadworkers who stumble upon
the world’s biggest nugget , and become instant millionaires - or so they think .
Viewpoint: objective

Sentence: {Input}
Viewpoint:

72.9

Orthogonal
Instruction

Write a question about the background paragraph and the story.
Sentence: never engaging , utterly predictable and completely void of anything
remotely interesting or suspenseful .
Viewpoint: subjective

Sentence: ‘the nugget’ is a tale about a group of three roadworkers who stumble upon
the world’s biggest nugget , and become instant millionaires - or so they think .
Viewpoint: objective

Sentence: {Input}
Viewpoint:

82.3

Table 19: A pruned ICL prompt example by PROMPTQUINE for Subjectivity classification on Meta-Llama-3-8B-Instruct,
with different types of instructions appended.

Source Generated Prompt Accuracy

Task
Instruction

Would you classify this sentence as subjective or objective based on its content?
Sentence: never, completely void of anything remotely interesting orful.
Viewpoint: subjective

Sentence nug a about group three the’s nug, instant million thinkView

Sentence: {Input}
Viewpoint:

80.6
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Continuation of Table 19

Random
Sentence

1 Rankings are as of May 14, 2012
Sentence: never, completely void of anything remotely interesting orful.
Viewpoint: subjective

Sentence nug a about group three the’s nug, instant million thinkView

Sentence: {Input}
Viewpoint:

85.5

Orthogonal
Instruction

Craft one incorrect answer to the question given in input.
Sentence: never, completely void of anything remotely interesting orful.
Viewpoint: subjective

Sentence nug a about group three the’s nug, instant million thinkView

Sentence: {Input}
Viewpoint:

84.5

Table 20: An unpruned ICL prompt example for News Topic classification on Meta-Llama-3-8B-Instruct, with different
types of instructions appended.

Source Generated Prompt Accuracy

Task
Instruction

Categorize the given news piece into World, Sports, Tech, or Business based on its
central theme or topic.
Article: Israel suspends soldier after girl shot 15 times GAZA CITY – The Israeli army
yesterday suspended a platoon commander on suspicion he emptied an ammunition
clip into a 13-year-old Palestinian girl from close range after she had already collapsed
under fire.
Answer: World

Article: NBA Star Pippen Announces Retirement National Basketball Association star
Scottie Pippen has announced his retirement from the game, leaving the Chicago Bulls
team he helped lead to six NBA titles.
Answer: Sports

Article: After the Bell-Texas instruments up after sets share buyback Shares of Texas
Instruments Inc. (TXN.N: Quote, Profile, Research) rose after the market close on
Thursday, after the chip maker said it plans to buy back \\$1 billion in stock
Answer: Business

Article: Oracle 1Q Earnings Rise 16 Percent (AP) AP - Business software giant Oracle
Corp. said Tuesday that first-quarter earnings rose 16 percent driven by new database
license sales that rose 19 percent.
Answer: Tech

Article: {Input}
Answer:

86.9
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Continuation of Table 20

Random
Sentence

271801, at *1 (Tex. App.—Dallas Jan. 3, 2018, pet. ref’d) (mem. op., not
designated for
Article: Israel suspends soldier after girl shot 15 times GAZA CITY – The Israeli army
yesterday suspended a platoon commander on suspicion he emptied an ammunition
clip into a 13-year-old Palestinian girl from close range after she had already collapsed
under fire.
Answer: World

Article: NBA Star Pippen Announces Retirement National Basketball Association star
Scottie Pippen has announced his retirement from the game, leaving the Chicago Bulls
team he helped lead to six NBA titles.
Answer: Sports

Article: After the Bell-Texas instruments up after sets share buyback Shares of Texas
Instruments Inc. (TXN.N: Quote, Profile, Research) rose after the market close on
Thursday, after the chip maker said it plans to buy back \\$1 billion in stock
Answer: Business

Article: Oracle 1Q Earnings Rise 16 Percent (AP) AP - Business software giant Oracle
Corp. said Tuesday that first-quarter earnings rose 16 percent driven by new database
license sales that rose 19 percent.
Answer: Tech

Article: {Input}
Answer:

87.5

Orthogonal
Instruction

What is the type of the answer corresponding to the given question? Number,
Date, or Span?
Article: Israel suspends soldier after girl shot 15 times GAZA CITY – The Israeli army
yesterday suspended a platoon commander on suspicion he emptied an ammunition
clip into a 13-year-old Palestinian girl from close range after she had already collapsed
under fire.
Answer: World

Article: NBA Star Pippen Announces Retirement National Basketball Association star
Scottie Pippen has announced his retirement from the game, leaving the Chicago Bulls
team he helped lead to six NBA titles.
Answer: Sports

Article: After the Bell-Texas instruments up after sets share buyback Shares of Texas
Instruments Inc. (TXN.N: Quote, Profile, Research) rose after the market close on
Thursday, after the chip maker said it plans to buy back \\$1 billion in stock
Answer: Business

Article: Oracle 1Q Earnings Rise 16 Percent (AP) AP - Business software giant Oracle
Corp. said Tuesday that first-quarter earnings rose 16 percent driven by new database
license sales that rose 19 percent.
Answer: Tech

Article: {Input}
Answer:

85.3
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Table 21: A pruned ICL prompt example by PROMPTQUINE for News Topic classification on Meta-Llama-3-8B-Instruct,
with different types of instructions appended.

Source Generated Prompt Accuracy

Task
Instruction

Determine the the topic of the item and then choose from World, Sports, Business
and Tech.
: Chief Scores Coup in Court CALLAO BASE Peru (Reuters) rebel, Peru’s founder Ab
scored propaganda on his retr be postponed.
: win out on The Dolphins finally gave their reason to celebrate polished performance
with their victory season- St.
Answer: Sports

Article: Echo Posts Addsscribers (Reuters -Star Corp. said third rose on an
aggressivecampaign to addAnswer: Business

Yahoo personal search a service designed to let users their sharing with others, the
company.
Tech

Article: {Input}
Answer:

85.1

Random
Sentence

\\
<span style=“font-variant:small-caps;”>[W[ł]{}adys[ł]{}aw A. Majewski]{}\\
Institute of Theoretical Physics and Astrophysics\\
Gda[ń]{}sk University\\
Wita Stwosza\xa057\\
80-952 Gda[ń]{}sk, Poland</span>\\
*E-mail address:* ‘fizwam@univ.gda.pl’\\
: Chief Scores Coup in Court CALLAO BASE Peru (Reuters) rebel, Peru’s founder Ab
scored propaganda on his retr be postponed.
: win out on The Dolphins finally gave their reason to celebrate polished performance
with their victory season- St.
Answer: Sports

Article: Echo Posts Addsscribers (Reuters -Star Corp. said third rose on an
aggressivecampaign to addAnswer: Business

Yahoo personal search a service designed to let users their sharing with others, the
company.
Tech

Article: {Input}
Answer:

88.3
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Continuation of Table 21

Orthogonal
Instruction

Write a question about the background paragraph and the story.
: Chief Scores Coup in Court CALLAO BASE Peru (Reuters) rebel, Peru’s founder Ab
scored propaganda on his retr be postponed.
: win out on The Dolphins finally gave their reason to celebrate polished performance
with their victory season- St.
Answer: Sports

Article: Echo Posts Addsscribers (Reuters -Star Corp. said third rose on an
aggressivecampaign to addAnswer: Business

Yahoo personal search a service designed to let users their sharing with others, the
company.
Tech

Article: {Input}
Answer:

88.0

Table 22: An unpruned ICL prompt example for Natural Language Inference (SNLI) on Meta-Llama-3-8B-Instruct, with
different types of instructions appended.

Source Generated Prompt Accuracy

Task
Instruction

Given the premise and hypothesis, determine if they are related with ‘yes’
(entailment), ‘no’ (contradiction), or ‘unknown’ (neutral).
Hypothesis: The rock band in the dark theatre.
Premise: String orchestra and conductor in spotlight surrounded by darkness.
Given the premise, is the hypothesis true? Yes, No or Unknown?
The answer is: No

Hypothesis: The man is Amish as he drives a wagon through an intersection and
doesn’t care.
Premise: A man is driving a horse-drawn wagon on a busy intersection.
Given the premise, is the hypothesis true? Yes, No or Unknown?
The answer is: Unknown

Hypothesis: The old man in the hat was reading.
Premise: The elderly, overweight man is wearing a hat, moccasins, and a purple shirt
while reading a book on a sidewalk in front of a tree.
Given the premise, is the hypothesis true? Yes, No or Unknown?
The answer is: Yes

Hypothesis: {Hypothesis}
Premise: {Premise}
Given the premise, is the hypothesis true? Yes, No or Unknown?
The answer is:

61.5
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Continuation of Table 22

Random
Sentence

“I know that, but what department placed the order? Was it the FSB?”
Hypothesis: The rock band in the dark theatre.
Premise: String orchestra and conductor in spotlight surrounded by darkness.
Given the premise, is the hypothesis true? Yes, No or Unknown?
The answer is: No

Hypothesis: The man is Amish as he drives a wagon through an intersection and
doesn’t care.
Premise: A man is driving a horse-drawn wagon on a busy intersection.
Given the premise, is the hypothesis true? Yes, No or Unknown?
The answer is: Unknown

Hypothesis: The old man in the hat was reading.
Premise: The elderly, overweight man is wearing a hat, moccasins, and a purple shirt
while reading a book on a sidewalk in front of a tree.
Given the premise, is the hypothesis true? Yes, No or Unknown?
The answer is: Yes

Hypothesis: {Hypothesis}
Premise: {Premise}
Given the premise, is the hypothesis true? Yes, No or Unknown?
The answer is:

60.9

Orthogonal
Instruction

Generate a paraphrase of the given sentence in the input.
Hypothesis: The rock band in the dark theatre.
Premise: String orchestra and conductor in spotlight surrounded by darkness.
Given the premise, is the hypothesis true? Yes, No or Unknown?
The answer is: No

Hypothesis: The man is Amish as he drives a wagon through an intersection and
doesn’t care.
Premise: A man is driving a horse-drawn wagon on a busy intersection.
Given the premise, is the hypothesis true? Yes, No or Unknown?
The answer is: Unknown

Hypothesis: The old man in the hat was reading.
Premise: The elderly, overweight man is wearing a hat, moccasins, and a purple shirt
while reading a book on a sidewalk in front of a tree.
Given the premise, is the hypothesis true? Yes, No or Unknown?
The answer is: Yes

Hypothesis: {Hypothesis}
Premise: {Premise}
Given the premise, is the hypothesis true? Yes, No or Unknown?
The answer is:

62.3

Table 23: A pruned ICL prompt example by PROMPTQUINE for Natural Language Inference (SNLI) on Meta-Llama-3-8B-
Instruct, with different types of instructions appended.

Source Generated Prompt Accuracy
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Continuation of Table 23

Task
Instruction

Does the hypothesis align with the premise as yes, oppose it as no, or is it
unknown?
: rock dark.
Premise: orchestra in by.
the premise the true? Yes, or Unknown?
is

Hypo: The Amish a through an intersection and doesn.
Premise: a horse-drawn.
Given the premise is the true Yes No UnknownThe answer is: Unknown

Hypo The old man in the hat was reading.
Premise: The elderly overweight man is ains and a shirt while a on a in front of a tree.
Given premise is? Yes orThe answer Yes

Hypo: {Hypothesis}
Premise {Premise}
the, the hypothesis true Yes No orThe answer is:

68.6

Random
Sentence

“So we might see you around?” she asked. The chill in her voice almost made him
shudder.
: rock dark.
Premise: orchestra in by.
the premise the true? Yes, or Unknown?
is

Hypo: The Amish a through an intersection and doesn.
Premise: a horse-drawn.
Given the premise is the true Yes No UnknownThe answer is: Unknown

Hypo The old man in the hat was reading.
Premise: The elderly overweight man is ains and a shirt while a on a in front of a tree.
Given premise is? Yes orThe answer Yes

Hypo: {Hypothesis}
Premise {Premise}
the, the hypothesis true Yes No orThe answer is:

72.2

46



2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584

Evolving Prompts In-Context: An Open-ended, Self-replicating Perspective

Continuation of Table 23

Orthogonal
Instruction

Write a question about the background paragraph and the story.
: rock dark.
Premise: orchestra in by.
the premise the true? Yes, or Unknown?
is

Hypo: The Amish a through an intersection and doesn.
Premise: a horse-drawn.
Given the premise is the true Yes No UnknownThe answer is: Unknown

Hypo The old man in the hat was reading.
Premise: The elderly overweight man is ains and a shirt while a on a in front of a tree.
Given premise is? Yes orThe answer Yes

Hypo: {Hypothesis}
Premise {Premise}
the, the hypothesis true Yes No orThe answer is:

74.4
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Figure 9. Changes in (unpruned & pruned) prompting performance on GPT-2 when labels are removed (left & middle) or even the
complete outputs are removed (right).

Table 24: Examples of initializing ICL prompts (specifically for SNLI) with different ICL templates which leads to significant
performance variations. Please refer to Section 5.1 for the details.

Template Accuracy

Premise: {Premise}
Hypothesis: {Hypothesis}
Based on the premise, can we conclude the hypothesis? Answer: Yes, No, or Unknown.
The answer is:

60.8

Statement: {Hypothesis}
Evidence: {Premise}
Can the hypothesis be validated based on the given premise? (Answer with Yes, No, or
Unknown)
The answer is:

75.1

Table 25. Task performance of 1-shot ICL with random verbalizers. Unpruned ICL denotes the unpruned 1-shot ICL (verbalizers
replaced)’s task accuracy. We average the results across four different ICL prompts, varying the verbalizers. These verbalizers are created
by GPT-4o (Hurst et al., 2024) for arbitrary words. We present some examples in Appendix Table 26.

Model Dataset Unpruned Task Accuracy (%)
ICL Avg Min Max

GPT-2
SST-2 50.2 (0.4) 50.0 (0.1) 49.9 50.2
Subj 50.0 (0.0) 56.4 (7.4) 50.0 64.2
SNLI 32.8 (2.3) 36.2 (4.8) 31.9 43.1

Llama3-8B-It
SST-2 53.9 (10.2) 58.3 (16.8) 49.9 83.4
Subj 50.0 (0.0) 68.5 (14.5) 50.0 82.3
SNLI 33.4 (0.9) 41.7 (14.5) 32.9 63.2

Llama3-70B-It
SST-2 58.0 (15.6) 69.4 (22.4) 49.9 90.2
Subj 50.0 (0.0) 75.4 (12.7) 62.3 91.3
SNLI 31.2 (5.8) 47.6 (15.9) 32.9 63.5
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Table 26: Some effective task prompt examples discovered by our PROMPTQUINE for Meta-Llama-3-70B-Instruct, using
random verbalizers.

Dataset Generated Prompt Verbalizers Accuracy

SST-2

: a, nasty.
Sentiment it bweet andical elements.
Sentiment:

Review: {Input}
Sentiment:

Necklace, 2 90.2

Subj

: never engaging, anything suspenseful.
Viewpoint:

Sentence ‘theget’ tale about’sget become million
thinkView: 5Sentence: {Input}
Viewpoint

5, Butterfly 79.2

SNLI

H on motorcycle jumping in the.
ise dirt bike racer jumping racer far.
premise, is hypothesis? Cascade or Telescope?
is Cascade

Hthesis: A is flying kitePremise: The man slides the sand
while holding hang glider.
Given premise the hypothesis true? Cascade, Moon or
Telescope?
answer is: Moon

ypo the concert.
Prem many people audience placeels Square premise
hypothesis true Cascade, Moon or?
answer Telescope

Hypo {Hypothesis}
Prem {Premise}
premise is the true? Cascade, Moon or?
answer is:

Cascade, Moon, Telescope 65.1

Table 27: Some effective task prompt examples discovered by our PROMPTQUINE for Meta-Llama-3-8B-Instruct.

Dataset Generated Prompt

SST-2

mostly tiredread of mob talesSentiment: terrible

Review presenting romance in, is which us to what’s possible and do to make it.
Sentiment great

Review: {Input}
Sentiment

Continuation of Table 27
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2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749

Evolving Prompts In-Context: An Open-ended, Self-replicating Perspective

Continuation of Table 27

Subj

Sentence: for with the for its heartbeatening intensity and body-slam roller delivers it
can really get behind.
View: subjective

Sentence long the bay boy is the sedate and past upsideical.
ViewpointSentence: {Input}
View:

SNLI

ypothesis It cold outside.
Premise withers down snow covered hillGiven the premise, is Yes No or UnknownThe
is: Yes

Hypo: The person is on the ground.
Premise: sneakers is airborneGiven, true Yes, or UnknownThe answer: No

ball.
Premise child green shirt fish type hat near water blue and.
premise true? Yes No or UnknownThe is Unknown

Hypo {Hypothesis}
Premise: {Premise}
the? Yes, No orThe is:

AG’s News

Article Car in Baghdad bombs11 yesterday American diplomats desert.
low score Norman will leaders the Championship Co;satt Resort, Brisbane.
Answer: Sports

Article Prices; a - Oil;49 in thatsupply northernAnswer: Business

Article a Hollywood industry cases.
Answer: Tech

Article {Input}
Answer:

Yelp-5

Sentence: auto race Wilbur the to win three?
bad

Sentence: CNN is the abbreviation for?
Sentiment: neutral

Sentence Doones character to?
Sent

Sentence Where did get his metaliment: great

Sentence: What causes canker sores?
Sentiment terrible

Sentence: {Input}
Sentiment:

Continuation of Table 27
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2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804

Evolving Prompts In-Context: An Open-ended, Self-replicating Perspective

Continuation of Table 27

Yahoo

: 7.... she good at?
Topic music

Sentence Does any think it’s to love of the opposite sex at the timeTopic:

Sentence: Does it upset that there people out there that want prove Jesus walk
waterTopic: culture

Sentence want to find an e-mail of a a to years hes nameiotoulis.?
Topic: business: Why call hispanic Mexicans?
Topic:Sentence What British the largest ship WW- Navy? Who sank?
Topic: education picture from space is the look atTopic science

Sentence: can find the information about be jump?
Topic: sports

: used to beta, recently it when had to reinstall windows xp how do get
Topic: computer

: am I a loser?
Topic

Sentence: {Input}
Topic

Yelp Positive
Transfer

Here is a which is negative: “this place awful!”. Here a rewrite of text positive: “this
place is amazing!”.
Here is, which is negative: “initely buy another pair of socks thisthey have worst sock
Here is a of the text, which is: “initely will buy another pair socks from store-they have
the”.
is a text, which is negative: “{Input}”. Here a of the, which is positive: ”

Yelp Negative
Transfer

, whichvery.”. rewrite the text negative: “very works terribly.
isi the, really.
“{Input}”. the negative: ”

PIQA

:Options) a into hold B a.
A) into- diameter diameter.
Answer

Question: {Input}
Options: A {Option1} B) {Option2}
Answer:

GSM8K

: If there3 cars in parking and2 more cars, many cars in the lot?
Let’s step by step
There originally 3 cars.
2 cars arrive.
3 +2 =5The answer is 5Question: {Input}
’s think step

Continuation of Table 27
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2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859

Evolving Prompts In-Context: An Open-ended, Self-replicating Perspective

Continuation of Table 27

MAWPS

Question: house is % the price.Let think step original up the information. (x,500% of
Therefore18515 sidesfrac{500}{0}236 price1.

Question: {Input}
Let’s step

52


