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ABSTRACT

Dataset distillation aims to generate compact synthetic datasets that enable mod-
els trained on them to achieve performance comparable to those trained on full
real datasets, while substantially reducing storage and computational costs. Early
bi-level optimization methods (e.g., MTT) have shown promising results on small-
scale datasets, but their scalability is limited by high computational overhead. To
address this limitation, recent decoupled dataset distillation methods (e.g., SRe2L)
separate the teacher model pre-training from the synthetic data generation process.
These methods also introduce random data augmentation and epoch-wise soft
labels during the post-evaluation phase to improve performance and generaliza-
tion. However, existing decoupled distillation methods suffer from inconsistent
post-evaluation protocols, which hinders progress in the field. In this work, we
propose Rectified Decoupled Dataset Distillation (RD3), and systematically in-
vestigate how different post-evaluation settings affect test accuracy. We further
examine whether the reported performance differences across existing methods
reflect true methodological advances or stem from discrepancies in evaluation
procedures. Our analysis reveals that much of the performance variation can be
attributed to inconsistent evaluation rather than differences in the intrinsic quality
of the synthetic data. In addition, we identify general strategies that improve the
effectiveness of distilled datasets across settings. By establishing a standardized
benchmark and rigorous evaluation protocol, RD3 provides a foundation for fair
and reproducible comparisons in future dataset distillation research. Our code is
available at https://github.com/ndhg1213/RD3.

1 INTRODUCTION

Deep learning has rapidly advanced in recent years, with large-scale models trained on extensive
datasets achieving impressive performance across diverse domains—most notably in computer
vision He et al. (2016); Dosovitskiy et al. (2020) and natural language processing Devlin et al. (2018);
Brown et al. (2020). However, training models on large-scale datasets typically incurs prohibitive
computational and memory costs, posing significant challenges for deployment, especially in resource-
constrained environments. Dataset distillation (DD) Wang et al. (2018) has emerged as a promising
direction to address this issue by enabling the creation of compact synthetic datasets that retain
the utility of the original data. Early information-matching methods Zhao & Bilen (2021b; 2023);
Cazenavette et al. (2022) have achieved reliable performance on small-scale datasets Krizhevsky
(2009), but their nested optimization structures imposed substantial time consumption, thereby
limiting applicability to larger datasets Deng et al. (2009).
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Recently, decoupled dataset distillation methods Yin et al. (2024); Su et al. (2024); Sun et al. (2024a)
have been proposed to address this issue by separating model pre-training from data synthesis,
significantly reducing computational costs. They further enhance performance by incorporating
epoch-wise soft labels from teacher models during post-evaluation, achieving state-of-the-art re-
sults on large-scale benchmarks such as ImageNet-1K Deng et al. (2009). Existing decoupled
approaches Yin et al. (2024) can be categorized into three paradigms based on their synthetic
data generation mechanisms: optimization-based, selection-based, and generation-based meth-
ods. All these approaches share the common requirement of pre-training teacher models (either
classifiers or generative models like diffusion models Song et al. (2021)) to achieve decoupling.

SRe2L CDA G-VBSM DWA EDC Minimax D4M RDED
Distillation Method
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Figure 1: Performance comparison of various
distillation methods evaluated by ResNet-18 on
ImageNet-1K under IPC=10. Previous methods
achieve a significant 27.3% performance improve-
ment being influenced by multiple factors. After
fairly reevaluating all methods under a unified set-
ting, we obtained a rectified 6.7% performance
enhancement.

Specifically, optimization-based methods Yin
et al. (2024); Shao et al. (2024a); Yin & Shen
(2024); Du et al. (2024); Shao et al. (2024b)
perform pixel-level optimization of synthetic
datasets using pre-trained classifiers, guided
by cross-entropy loss and Batch Normalization
(BN) layer statistics. In contrast, selection-based
methods Sun et al. (2024a); Zhong et al. (2024b)
utilize classifiers or generative models to ex-
tract class-relevant visual regions directly from
original images. On the other hand, generation-
based methods Su et al. (2024); Gu et al. (2024)
fine-tune generative models or optimize visual-
textual embeddings to synthesize new images.
Unfortunately, current research faces several sig-
nificant challenges: First, inconsistent evalua-
tion settings across various compression ratios,
target datasets, and cross-architecture models
pose substantial comparability barriers for re-
searchers. Second, existing studies often over-
look methodological commonalities, leading to
incomplete comparisons that consider only subsets of the three aforementioned paradigms. More im-
portantly, the inherent evaluation setting sensitivity in the post-evaluation phase results in performance
comparisons being conducted under inconsistent settings, giving rise to confounded performance
gains and significantly hindering the structured progress of this field. As shown in Figure 1, the
performance gap reported by previous methods exceeds 27%. However, under unified and simplified
settings, the actual improvements drop to less than 7%. This observation underscores a key challenge
in dataset distillation: Claimed performance gains must be carefully disentangled to assess whether
they arise from the core distillation mechanism or from auxiliary enhancements unrelated to the
distillation process itself.

To tackle these challenges, we introduce Rectified Decoupled Dataset Distillation (RD3), a unified
and comprehensive baseline framework under consistent post-evaluation settings that ensures fairness.
Specifically, we conduct an in-depth investigation of the varied post-evaluation settings employed
by prior methods, focusing on key parameters such as batch size and learning rate decay. Moreover,
we establish a standardized evaluation protocol for decoupled dataset distillation, covering three
critical dimensions: target datasets, compression ratios, and cross-architecture generalization. We
then systematically replicate and re-evaluate the true performance and generalization capabilities of
synthetic datasets generated by various methods. Our findings reveal that simply aligning evaluation
settings suffices to eliminate substantial performance differences among synthetic datasets. The
rectified results demonstrate that some reported performance gains primarily stem from improved
post-evaluation settings rather than genuine enhancements in the quality of synthetic datasets.

Building upon RD3, we highlight additional evaluation dimensions (e.g., time consumption) beyond
test accuracy that are of greater importance. In addition, we identify several simple yet impactful
techniques, such as using alternative initialization for optimization-based methods, that substan-
tially influence test accuracy and may inadvertently introduce unfair advantages in future studies.
This systematic exploration enables us to quantify and mitigate performance variations induced
by implementation-specific modifications. To the best of our knowledge, this work represents the
first exhaustive evaluation of representative decoupled dataset distillation methods under fully
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standardized experimental conditions. We anticipate that RD3 will provide a robust foundation for
meaningful comparisons and accelerate methodological advancements in this emerging field.

2 RELATED WORKS

2.1 BI-LEVEL DATASET DISTILLATION

Given a large-scale dataset T = {(xi, yi)}|T |
i=1, dataset distillation aims to generate a compact yet

informative synthetic dataset S = {(si, yi)}|S|
i=1, which preserves as much class-relevant information

as possible while ensuring |S| ≪ |T |. With S , one can train a model from scratch with parameters θ :

θS = argmin
θ

E(x,y)∈S (l(fθ(x), y)) . (1)

where l(·, ·) represents the loss function and fθ represents a classifier parameterized by θ. Similarly,
we define θT for the original dataset T . The primary objective can be formulated as:

sup
(x,y)∈T

|l(fθT (x), y)− l(fθS (x), y)| ≤ ϵ. (2)

To achieve this, DD Wang et al. (2018) introduced a meta-learning approach based on a nested
computation graph. However, the unrolled computation process incurs significant time costs. As
an alternative, recent studies adopt a bi-level optimization framework that matches various proxy
statistics between S and T formulated as:

S∗ = argmin
S

D(fθ′ (S), fθ′ (T )), (3)

where D(·, ·) represents different distance metrics used for matching, and fθ′ denotes the correspond-
ing feature extractor. DC (Zhao et al., 2021) and DCC (Lee et al., 2022) minimize the distance
between gradients in a progressively trained network, while DM (Zhao & Bilen, 2021a), CAFE (Wang
et al., 2022), and DataDAM (Sajedi et al., 2023) focus on matching feature embeddings. Similarly,
MTT (Cazenavette et al., 2022), TESLA (Cui et al., 2023), and DATM (Guo et al., 2023) align
training trajectories to enhance learning consistency. Despite the significant achievement on small
datasets (e.g., CIFAR10), bi-level distillation methods could not scale to the large-scale datasets (e.g.,
ImageNet-1K) due to prohibitive computational cost (Cui et al., 2022).

2.2 DECOUPLED DATASET DISTILLATION

Recent decoupled methods have significantly reduced computational complexity by decoupling the
training processes of proxy models from synthetic dataset generation, while still achieving robust
performance on large-scale datasets. Based on the different generation mechanisms, we categorize
decoupled dataset distillation methods into three primary paradigms as follows.
Optimization-based. SRe2L first introduced the decoupled optimization method by minimizing cross-
entropy loss on synthetic datasets through pre-trained classifiers and aligning batch normalization
(BN) statistics between synthetic and original datasets, which can be formulated as:

si = argmin
si

[l(fθT , si) + λLBN(fθT , si)], (4)

where λ denotes the weighting factor for the BN loss LBN. Building upon this, CDA Yin & Shen
(2024) integrates curriculum learning into the optimization process and dynamically adjusts hyper-
parameters during the post-evaluation phase. DWA Du et al. (2024) adopts real data initialization
while further decomposing LBN, significantly enhancing the diversity of the synthetic dataset through
pre-trained model perturbation. G-VBSM Shao et al. (2024a) utilizes multiple pre-trained models
as teacher networks, simultaneously matching class-wise BN and convolutional statistics, and in-
corporates ensemble soft-labels and MSE loss during evaluation. EDC Shao et al. (2024b) further
smooths the loss landscape in synthetic datasets and employs specialized evaluation-phase settings,
positioning itself as the state-of-the-art (SOTA).
Generation-based. With the advancement of generative diffusion models, several methods have been
developed to produce synthetic datasets by optimizing different components of the diffusion process.
Minimax Gu et al. (2024) employs a DiT model Peebles & Xie (2023) pre-trained on ImageNet-1K,
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fine-tuning it with a “minimax” criterion. Then the diffusion model is used to directly generate
images. However, DiT has the limitation of only generating class label-conditioned images. As a
result, Minimax cannot be applied to datasets that are Out-of-Distribution (OOD), such as CIFAR-10.

In contrast, D4M Su et al. (2024) uses Stable Diffusion (SD) pre-trained on LAION Schuhmann et al.
(2022) as the backbone. It first performs k-means clustering on visual embeddings to obtain class
centroids. These centroids are then combined with text prompts to generate synthetic datasets. D4M
substantially enhances synthetic dataset diversity through SD and overcomes the OOD issue.
Selection-based. Subsequent studies have proposed generating synthetic datasets by identifying
and cropping class-relevant visual regions, thereby reducing redundancy in large-scale datasets.
RDED Sun et al. (2024a) performs random cropping on randomly sampled images and then ranks
all patches in ascending order based on classification loss from a pre-trained classifier. Additionally,
RDED concatenates multiple patches to form a single image to improve representativeness.

Subsequent methods have extended this paradigm by focusing on increasing the diversity of selected
patches to improve generalization. FocusDD Hu et al. (2025) utilizes a pre-trained ViT Dosovitskiy
et al. (2020) as the selector and incorporates class-irrelevant background patches. DPS Zhong et al.
(2024b) employs SD as the selector, identifying class-relevant regions via differential text prompts
(with and without class labels). Please refer to Appendix B for more detailed literature reviews.

2.3 EPOCH-WISE LABEL MATCHING

Early information-matching methods like MTT and subsequent improvements achieved superior
performance using hard labels under extreme data compression scenarios, primarily applied to small-
scale datasets. Recent studies Qin et al. (2024) suggest epoch-wise soft labels can better facilitate
student model learning from synthetic datasets in large-scale settings, which can be formulated as:

θt+1
S = argmin

θ∈Θ
LKL(fθT (A(S)), fθt

S
(A(S))), (5)

where f t
θ represents the classifier at training epoch t, A(·) denotes the random data augmentation,

and LKL represents the Kullback–Leibler (KL) divergence. However, current distillation methods’
epoch-wise soft-label implementations involve substantial misalignment: CDA employs smaller batch
sizes, RDED utilizes a smoothed learning rate with stronger data augmentation, while G-VBSM and
EDC generate hybrid soft labels through multiple teacher models. These implementation variances
create significant obstacles for fair performance comparisons that urgently require resolution.

3 UNIFIED EVALUATION FRAMEWORK

We select well-known and state-of-the-art (SOTA) methods as baselines and categorize them into
three groups: (1) Optimization-based methods Yin et al. (2024); Yin & Shen (2024); Shao et al.
(2024a); Du et al. (2024); Su et al. (2024); (2) Generation-based methods Shao et al. (2024b); Gu
et al. (2024); (3) Selection-based methods Sun et al. (2024a). Notably, although Minimax Gu et al.
(2024) originally employs hard labels for evaluation, we include it in our consideration due to its
applicability to large-scale datasets.

All subsequent methods adjust several evaluation-phase settings on the basis of SRe2L, including
(1) reduced training batchsize and increased training epochs, (2) carefully selected optimizer, (3)
incorporation of extra loss function regularization, (4) hybrid soft labels , and (5) various data
augmentations. Based on current knowledge, We are the first to make a thorough investigation across
different methods. The difference with related works are shown in Appendix A.

3.1 DATASETS AND NETWORKS

Datasets. We adopt six standard image datasets: (1) CIFAR-10/100 Krizhevsky (2009), both of which
have 50K 32×32 training images and 10K testing images from 10 and 100 classes. (2) ImageNet-
1K Deng et al. (2009), consisting over 1,200,000 training images with various resolution from 1,000
classes. (3) TinyImageNet Le & Yang (2015), a subset of the ImageNet-1K with 200 classes. The
training split contains 100K images, while the validation and test set include 10K images, All the
images possess a resolution of 64×64. (4) ImageNette and ImageWoof Cazenavette et al. (2022), two
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widely used coarse-grained and fine-grained subsets of ImageNet-1K, including 10 classes derived
from ImageNet-1K. For all datasets, we conduct a comprehensive evaluation with IPC (image per
class) from 1 to 100, which previous methods have not fully evaluated.

Network Architectures. We follow the settings used in previous works Yin et al. (2024); Sun
et al. (2024a), employing ResNet-18 He et al. (2016) as the backbone network and applying soft
labels across all settings. For the ResNet series, we additionally utilize ResNet-50/101 as more
complicated evaluation models. For generalization evaluation, while employing CNN architectures
like EfficientNet Tan & Le (2019) and MobileNet Howard (2017), we introduce Swin-T Liu et al.
(2021) and ViT-B Dosovitskiy et al. (2020) from the ViT series as evaluation models, providing a
timely and comprehensive assessment.

3.2 POST-EVALUATION SETTINGS

Simplified Batch Size Epoch Augmentation Scheduler
Incremental Post-evaluation Settings
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Figure 2: Performance comparison between SRe2L
and RDED on ImageNet-1K under IPC=10 evalu-
ated by ResNet-18 with the same post-evaluation
settings. The incremental techniques added from
left to right lead to different performance impact.

We adopt a standard setting with a single pre-
trained ResNet-18 and KL divergence to gener-
ate soft labels and optimize the student model
for simplification and fairness Yin et al. (2024);
Yin & Shen (2024); Du et al. (2024); Sun et al.
(2024a); Su et al. (2024). We summarize the
unified settings in comparison to previous works
and explain their motivations. Incremental post-
evaluation impacts are presented in Figure 2,
please refer to Appendix C for more detailed im-
plementations and Appendix D for more results.

Training Epoch. Early information-matching
methods Zhao et al. (2021); Zhao & Bilen
(2023); Cazenavette et al. (2022) typically train
on synthetic datasets for around 1,000 epochs
and evaluate the performance under overfitting,
yet this setting is impractical for large-scale
dataset applications. While most decoupled dataset distillation methods adopt 300 training epochs
as widely used evaluation protocol, our preliminary experiments reveal that certain methods Sun
et al. (2024a); Shao et al. (2024b) accelerate model convergence, which introduces bias in absolute
performance comparisons. Therefore, we implement 400 training epochs during evaluation. As
shown in Figure 2, the impact on performance remains minimal yet align the converge iterations.

Batch size. For few-shot learning tasks like dataset distillation, batch size (BS) exerts intriguing and
significant impacts on experimental outcomes. SRe2L employs BS=1024, while CDA uses BS=128
and demonstrates that smaller batch size yields notable improvements. Building upon this, RDED
adopts varying BS sizes under different conditions. CV-DD Cui et al. (2025) further explore an
extreme setting with BS=16. We further simplify and propose an optimized setting to balance the
performance and efficiency: when evaluating synthetic datasets with ResNet-18, we uniformly set
BS=50 across all settings unless |S| < 50, leading to nearly a 10% performance improvement across
various methods as shown in Figure 2. For generalization tasks, we increase BS to 100 to mitigate
gradient fluctuations induced by small batch sizes.

Smoothing Learning Rate (LR) Scheduler. For large-scale datasets like ImageNet-1K, existing
methods employ Adam optimizer with an initial learning rate of 0.001 and a cosine annealing
scheduler for optimization. RDED and EDC further implement smoothing LR scheduler to enhance
the performance. Recent work CV-DD manually selects the scheduler smoothing factor ζ across
different settings. Through preliminary experiments, we establish a universal yet competitive setting:
using ζ = 1 with ResNet-18 as evaluation model for finer-grained tuning as shown in Figure 2, while
adopting ζ = 2 for different architectures. Please refer to Appendix K for a intuitional comparison.

Data Augmentation. Under the premise of ensuring teacher-student model alignment through
soft labels, previous methods universally enhanced synthetic dataset diversity via CutMix, Random
Resized Cropped and Random Horizontal Flipped, achieving substantial performance gains. Building
upon this, RDED and its optimized variant EDC introduce additional augmentation by exchanging
patches with patch-concatenated images and expanding the crop ratio from 0.08 to 0.5. These
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modifications collectively yield positive performance impacts as shown in Figure 2. Consequently, we
adopt RDED’s data augmentations as the universal standard and apply it across all methods. Detailed
analysis are shown in Appendix M.

4 EXPERIMENTAL RESULTS AND ANALYSIS

4.1 DO METHODOLOGICAL DIFFERENCES TRANSLATE TO PERFORMANCE DISCREPANCIES?

Under the unified and fair settings provided by the RD3 framework, we systematically reevaluated all
decoupled dataset distillation methods, with the results presented in Table 1 and Table 2. Among
optimization-based methods, EDC consistently demonstrates superior performance across all datasets
and compression ratios, establishing itself as the representative method for this category. We
subsequently compare EDC with generation-based and selection-based methods.

ResNet-18

Dataset IPC Optimization Generation Selection

SRe2L CDA G-VBSM DWA EDC Minimax D4M RDED

1 16.2 ±0.7 16.4 ±0.6 17.5 ±0.7 18.3 ±0.3 26.6 ±0.5 - 13.4 ±0.8 22.5 ±0.7

CIFAR10 10 29.7 ±0.8 30.6 ±0.6 31.5 ±0.4 33.1 ±0.4 40.5 ±0.6 - 34.7 ±0.4 37.3 ±0.4
50 53.9 ±0.5 54.5 ±0.7 55.6 ±0.4 59.9 ±0.4 64.8 ±0.3 - 61.9 ±0.4 63.3 ±0.2
100 69.2 ±0.3 68.8 ±0.6 71.2 ±0.4 72.3 ±0.1 74.4 ±0.2 - 77.7 ±0.2 75.7 ±0.4

1 6.9 ±0.6 6.7 ±0.5 7.6 ±0.8 7.5 ±0.6 15.4 ±0.3 - 6.6 ±0.8 11.8 ±0.7

CIFAR100 10 32.6 ±0.5 33.5 ±0.5 38.9 ±0.6 41.3 ±0.5 46.6 ±0.4 - 47.8 ±0.5 44.4 ±0.5
50 54.4 ±0.7 56.2 ±0.4 58.2 ±0.4 62.1 ±0.6 65.2 ±0.6 - 64.3 ±0.4 64.1 ±0.4

100 59.6 ±0.4 60.7 ±0.3 63.3 ±0.4 64.2 ±0.4 69.1 ±0.5 - 68.9 ±0.2 67.5 ±0.2

1 6.1 ±0.8 7.1 ±0.5 6.2 ±0.3 6.8 ±0.8 10.2 ±0.6 9.8 ±0.7 3.9 ±0.8 11.1 ±0.9

TinyImageNet 10 34.2 ±0.9 37.5 ±0.6 37.3 ±0.3 38.3 ±0.5 42.1 ±0.6 39.4 ±0.4 36.7 ±0.6 44.2 ±0.4
50 52.5 ±0.7 53.0 ±0.6 53.7 ±0.6 54.2 ±0.3 57.1 ±0.4 54.4 ±0.4 53.8 ±0.4 58.7 ±0.4

100 55.5 ±0.5 55.7 ±0.3 56.5 ±0.4 56.8 ±0.5 61.5 ±0.3 56.1 ±0.3 57.6 ±0.4 61.8 ±0.2
1 26.6 ±0.7 25.4 ±0.6 28.9 ±0.6 29.7 ±0.9 33.6 ±0.5 28.8 ±0.5 27.7 ±0.6 31.4 ±0.6

ImageNette 10 56.7 ±0.6 54.6 ±0.4 61.6 ±0.4 64.3 ±0.4 70.6 ±0.4 66.6 ±0.5 66.3 ±0.5 63.8 ±0.5
50 79.0 ±0.3 77.8 ±0.3 81.4 ±0.7 83.2 ±0.5 86.7 ±0.3 85.2 ±0.3 86.5 ±0.2 86.8 ±0.6

100 85.2 ±0.2 84.7 ±0.5 87.7 ±0.3 87.1 ±0.1 90.3 ±0.4 89.3 ±0.2 90.7 ±0.1 89.6 ±0.4

1 12.2 ±0.9 14.6 ±0.6 14.4 ±0.4 16.5 ±0.5 24.4 ±0.3 23.8 ±0.5 19.7 ±0.6 20.3 ±0.5

ImageWoof 10 26.8 ±0.5 25.7 ±0.5 34.5 ±0.5 36.1 ±0.5 42.3 ±0.6 45.5 ±0.6 35.4 ±0.5 46.5 ±0.6
50 61.3 ±0.5 59.7 ±0.5 65.5 ±0.5 67.8 ±0.7 72.6 ±0.4 72.2 ±0.4 69.8 ±0.4 72.0 ±0.5

100 69.5 ±0.4 68.7 ±0.4 71.4 ±0.5 75.2 ±0.8 79.3 ±0.2 79.2 ±0.1 80.3 ±0.3 78.6 ±0.4

1 4.1 ±0.1 4.2 ± 0.8 4.2 ± 0.8 4.5 ± 0.9 7.0 ± 0.5 6.8 ± 0.3 5.4 ± 0.4 7.6 ± 0.5

ImageNet-1K 10 40.2 ± 0.3 41.2 ± 0.5 41.5 ± 0.6 42.5 ± 0.7 46.9 ± 0.6 45.9 ± 0.7 45.4 ± 0.6 46.3 ± 0.2
50 55.2 ± 0.2 56.7 ± 0.6 56.6 ± 0.2 57.7 ± 0.5 60.1 ± 0.3 60.4 ± 0.2 60.2 ± 0.4 58.9 ± 0.7
100 59.7 ± 0.4 60.6 ± 0.2 61.5 ± 0.4 62.1 ± 0.5 63.2 ± 0.1 62.2 ± 0.5 63.5 ± 0.2 61.5 ± 0.4

Table 1: Performance comparison across various datasets with well-known decoupled distillation
methods. The highlight results denote the best performance achieved under different settings within
our fair framework. “ ” denotes the second performance, and “-" denotes the results could not obtained
with certain settings.
On CIFAR-10/100, EDC achieves dominant performance advantages in most scenarios, underper-
forming D4M in only two specific compression ratio settings. However, the performance superiority
diminishes when EDC is applied to higher-resolution datasets and more complex data domains.
In contrast, Generation-based methods exhibit competitive performance on both ImageNette and
ImageWoof, D4M particularly benefits from its image diversity advantages in large IPC settings.
While Minimax maintains stable performance across all settings, it is limited by its label space
and cannot be applied to datasets other than ImageNet-1K and its subsets. Notably, in a low IPC
setting(e.g., IPC=1), D4M shows severe limitations, especially on the representative fine-grained
dataset Image-Woof, while other methods maintain stable performance, showing that D4M cannot
effectively condense class-relevant features under extreme settings.

The most challenging dataset ImageNet-1K reveals a distinct phenomenon: each of the four methods
achieves the best performance under different IPC settings. RDED exhibits performance degradation
with increasing IPC due to its limited diversity, mirroring trends observed in Image-Nette and Image-
Woof. D4M and Minimax still demonstrate better scalability in high-IPC settings. Surprisingly, EDC
maintains a competitive performance across all settings. We provide an additional qualitative analysis
in Appendix O and visualizations in Appendix P.
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ImageNet-1K

IPC Rectified Optimization Generation Selection

SRe2L CDA G-VBSM DWA EDC Minimax D4M RDED

1 - - - - - 12.8 ± 0.1 - - 6.6 ± 0.2
! 4.1 ±0.1 4.2 ± 0.8 4.2 ± 0.8 4.5 ± 0.9 7.0 ± 0.5 6.8 ± 0.3 5.4 ± 0.4 7.6 ± 0.5

∆ - - - - (5.8 ↓) - - (1.0 ↑)

10 - 21.3 ± 0.6 33.5 ± 0.3 31.4 ± 0.5 37.9 ± 0.2 48.6 ± 0.3 44.3 ± 0.5 27.9 ± 0.0 42.0 ± 0.1
! 40.2 ± 0.3 41.2 ± 0.5 41.5 ± 0.6 42.5 ± 0.7 46.9 ± 0.6 45.9 ± 0.7 45.4 ± 0.6 46.3 ± 0.2

∆ (18.9 ↑) (7.7 ↑) (10.1 ↑) (4.6 ↑) (1.5 ↓) (1.6 ↑) (17.5 ↑) (4.3 ↑)

50 - 46.8 ± 0.2 53.5 ± 0.3 51.8 ± 0.4 55.2 ± 0.2 58.0 ± 0.2 58.6 ± 0.3 55.2 ± 0.0 56.5 ± 0.1
! 55.2 ± 0.2 56.7 ± 0.6 55.7 ± 0.4 59.2 ± 0.3 60.1 ± 0.3 60.4 ± 0.2 60.2 ± 0.4 58.9 ± 0.7

∆ (8.4 ↑) (3.2 ↑) (3.9 ↑) (4.0 ↑) (2.1 ↑) (1.8 ↑) (5.0 ↑) (2.4 ↑)

100 - 52.8 ± 0.3 58.0 ± 0.2 56.6 ± 0.2 57.7 ± 0.5 - - 59.3 ± 0.0 -
! 59.7 ± 0.4 60.6 ± 0.2 61.5 ± 0.4 62.1 ± 0.5 63.2 ± 0.1 62.2 ± 0.5 63.5 ± 0.2 61.5 ± 0.4

∆ (6.9 ↑) (2.6 ↑) (4.9 ↑) (4.4 ↑) - - (4.2 ↑) -

Table 2: Comparison of reported accuracy obtained from original papers and re-evaluated by RD3 on
ImageNet-1K. “-” denotes the missing values in previous works.

Summary: The observed performance differences among distillation methods are primarily at-
tributable to inconsistencies in post-evaluation settings rather than inherent differences in data
quality, and no individual method consistently outperforms the others.

4.2 WHAT METRICS BEYOND TEST ACCURACY MATTER FOR EVALUATING QUALITY?
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Figure 3: Comparison of the effectiveness and
efficiency of all the decoupled distillation meth-
ods. Upper-left quadrant representing optimal
effectiveness-efficiency balance.

Effectiveness vs Efficiency. Another critical
evaluation metric that has been systematically
overlooked in previous studies is the time con-
sumption for dataset generation. Existing per-
formance comparisons remain incomplete due
to their limitations within specific method cate-
gories (e.g., optimization-based). Given the min-
imal performance variations observed under our
RD3 framework, efficiency emerges as a crucial
evaluation criterion that needs comprehensive
comparison.

For optimization-based and selection-based
methods, total time consumption equals per-
image processing cost multiplied by total im-
age count. Generation-based methods require
additional computation cost for diffusion model
fine-tuning Gu et al. (2024) or category centroid calculation Su et al. (2024) beyond basic generation
time. To establish an intuitive and equitable efficiency comparison, we measured generation time
under the most challenging IPC=100 setting. Notably, our evaluation excludes classifier training
time required by optimization and selection methods, meaning their actual deployment costs would
be substantially higher than the results we reported. All the experiments are conducted on a single
Nvidia RTX-3090. The visualization shown in Figure 3 reveals that while performance differences
remain marginal, time consumption varies by orders of magnitude (i.e., up to 100×).

Generalization Ability. To systematically investigate the intrinsic differences among different
methods, we evaluate the corresponding synthetic datasets using diverse evaluation architectures.
Unlike G-VBSM and EDC utilizing ensemble models to generate hybrid soft labels, we exclusively
employ a single ResNet-18 for soft label generation to ensure maximum fairness in evaluation. Table 3
presents the experimental results of IPC=50 on ImageNet-1K. The performance variance across
the ResNet family remains within 5%, with discrepancies decreasing as network depth increases.
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Method ResNet-18 ResNet-50 ResNet-101 MobileNet-V2 EfficientNet-B0 Swin-V2-T ViT-B-16

SRe2L 55.2 ± 0.2 62.8 ± 0.1 63.6 ± 0.4 48.1 ± 0.5 55.3 ± 0.4 55.3 ± 0.5 53.4 ± 0.3
CDA 56.7 ± 0.6 63.1 ± 0.2 64.2 ± 0.3 50.2 ± 0.2 56.0 ± 0.3 56.6 ± 0.3 53.9 ± 0.3
G-VBSM 56.6 ± 0.2 63.3 ± 0.4 63.8 ± 0.3 48.7 ± 0.1 56.1 ± 0.1 58.2 ± 0.7 57.8 ± 0.4
DWA 57.7 ± 0.5 63.3 ± 0.2 64.1 ± 0.4 52.1 ± 0.2 57.3 ± 0.4 57.9 ± 0.2 55.5 ± 0.5
EDC 60.1 ± 0.3 66.4 ± 0.3 66.0 ± 0.2 54.9 ± 0.3 59.6 ± 0.4 62.4 ± 0.3 61.6 ± 0.2
Minimax 60.4 ± 0.2 65.0 ± 0.3 64.6 ± 0.5 53.8 ± 0.1 59.9 ± 0.3 61.2 ± 0.3 62.3 ± 0.2
D4M 60.2 ± 0.4 66.0 ± 0.3 66.5 ± 0.5 55.8 ± 0.2 61.4 ± 0.3 62.2 ± 0.3 63.7 ± 0.3
RDED 58.9 ± 0.7 65.2 ± 0.3 65.9 ± 0.2 53.5 ± 0.3 58.7 ± 0.4 61.3 ± 0.6 61.4 ± 0.3

Table 3: Generalization ability of synthetic dataset on ImageNet-1K under IPC=50. All the soft labels
are generated by a single pre-trained ResNet-18 to ensure fairness.Init SRe2L CDA G-VBSM DWA EDC

Noise 40.2 41.2 41.5 38.6 36.5
∆ - - - (3.9 ↓) (9.1 ↓)

Random 41.8 42.6 46.4 42.5 45.6
∆ (1.6 ↑) (1.4 ↑) (4.9 ↑) - (1.3 ↓)

RDED 41.5 42.0 46.1 43.1 46.9
∆ (1.3 ↑) (0.8 ↑) (4.5 ↑) (0.6 ↑) -

D4M 40.9 41.8 44.8 42.2 45.4
∆ (0.7 ↑) (0.6 ↑) (3.3 ↑) (0.3 ↓) (1.5 ↓)

Table 4: Performance comparison of optimization-
based methods with different initialization on
ImageNet-1K under IPC=10. ↓ and ↑ indicate
the change direction of ∆ compared to the default
settings “-” of various distillation methods.

Hybrid SRe2L G-VBSM EDC D4M RDED

- 4.1 4.2 7.0 5.4 7.6
IPC=1 ! 12.2 12.8 15.5 13.9 15.6
∆ (8.1 ↑) (8.6 ↑) (8.5 ↑) (8.5 ↑) (8.0 ↑)

- 40.2 41.5 46.9 45.4 46.3
IPC=10 ! 40.9 42.3 47.9 46.1 47.5
∆ (0.7 ↑) (0.8 ↑) (1.0 ↑) (0.7 ↑) (1.2 ↑)

- 55.2 56.6 60.1 60.2 58.9
IPC=50 ! 51.2 52.4 57.1 56.3 56.4
∆ (4.0 ↓) (4.2 ↓) (3.0 ↓) (3.9 ↓) (2.5 ↓)

Table 5: Performance impact of using multiple
teacher models to generate hybrid soft label on
ImageNet-1K. The highlight results denote the best
performance achieved across methods under differ-
ent settings.

Performance divergences become more pronounced when testing other CNN-based models, with all
methods achieving the poorest performance on MobileNet-B0.

Our extensive experiments conducted on transformer-based architectures reveal that most methods
outperform the ResNet-18 baselines, demonstrating effective knowledge transfer. However, we
observe that substantial performance degradation for SRe2L, CDA, and DWA on ViT-B-16, potentially
attributable to their limited image diversity, which hinders ViTs’ learning capacity. In contrast, the
superior diversity of D4M enables it to achieve SOTA performance across most settings. More
experimental results about generalization are shown in Appendix E and Appendix F.

Summary: In comparison to marginal differences in test accuracy, computational efficiency should be
considered a more critical criterion for evaluating different methods. Furthermore, generalization
capability which often exhibits more pronounced variation offers a more informative metric.

4.3 WHAT SUBTLE FACTORS INFLUENCE THE FIDELITY OF DISTILLED DATASETS?

Alternative Initialization. As thoroughly demonstrated in early information matching studies Zhao
& Bilen (2021b); Liu et al. (2023), the initialization of synthetic datasets often plays a critical role
in the field of dataset distillation. However, for existing optimization-based decoupled distillation
methods, the use of superior initialization has become an underacknowledged practice. We systemati-
cally investigate the impact of initialization on optimization-based methods and explore potential
combinations of different distillation methods by different initializations.

As shown in Table 4, different initializations exert substantial influence on specific methods. Notably,
both DWA and EDC, which primarily aim to enhance dataset diversity, exhibit significant performance
degradation when using Gaussian noise initialization.Conversely, G-VBSM demonstrates significant
performance improvements when initialized with random sampling or RDED-generated images,
occasionally outperforming EDC in certain settings. This is attributed to the inherent uncertainty
introduced by its multi-teacher model matching mechanism during optimization. We provide a
qualitative analysis in Appendix H.

Hybrid Soft Label. Despite G-VBSM and EDC emphasized that the involvement of multiple teacher
models in image optimization necessitates the use of hybrid soft labels generated by these models
during the relabel phase, the performance benefits of using hybrid soft label with other methods
has not been explored. We implement hybrid soft labeling across five representative methods and
evaluated them on ResNet-18. Experimental results shown in Table 5 reveal remarkable performance
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IPC Loss SRe2L G-VBSM EDC D4M RDED

1 KL 4.1 4.2 7.0 5.4 7.6
MSE-GT 3.6↓ 4.8↑ 6.8↓ 5.7↑ 7.8↑

10 KL 40.2 41.5 46.9 45.4 46.3
MSE-GT 40.9↑ 42.3↑ 47.9↑ 47.5↑ 46.8↑

50 KL 55.2 56.6 60.1 60.2 58.9
MSE-GT 56.4↑ 57.8↑ 60.8↑ 61.3↑ 60.2↑

100 KL 59.7 61.5 63.2 63.5 61.5
MSE-GT 59.5↓ 61.9↑ 64.1↑ 62.9↓ 62.7↑

Table 6: Performance impact of using different loss
functions on ImageNet-1K. ↓ and ↑ indicate the
change direction compared to KL divergence.
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Figure 4: Performance on ImageNet-1K under
IPC=10 with different smoothing factor ζ.

Label IPC CIFAR10 CIFAR100 TinyImageNet ImageNette ImageWoof ImageNet-1K

1 16.4 ± 0.4 3.7 ± 0.6 1.9 ± 0.7 18.2 ± 0.5 10.2 ± 0.2 0.7 ± 0.4

Hard 10 23.5 ± 0.3 10.6 ± 0.4 4.1± 0.3 43.7± 0.4 23.2± 0.5 6.1± 0.6
50 31.6± 0.3 23.1± 0.3 10.1± 0.5 65.0± 0.4 35.5± 0.2 25.8± 0.3
100 40.6± 0.3 36.9± 0.5 17.2± 0.2 72.8± 0.2 41.8± 0.1 40.3± 0.1

1 25.5± 0.4 11.3± 0.6 6.6± 0.7 23.2± 0.7 16.3± 0.4 5.2± 0.5

Soft 10 42.3± 0.3 50.5± 0.2 39.3± 0.5 64.5± 0.3 36.5± 0.4 45.8± 0.1
50 66.4± 0.1 68.3± 0.2 57.3± 0.4 88.5± 0.2 69.3± 0.5 61.8± 0.2
100 80.1± 0.5 70.9± 0.2 59.9± 0.2 90.8± 0.1 74.8± 0.3 64.1± 0.2

Table 7: Performance of random sampling with hard label and soft label. The random images show a
strong performance especially with soft label.
gains, SRe2L achieve a staggering twofold improvement with hybrid labels under IPC=1, while
RDED and D4M also demonstrate significant enhancements even though their generation processes
do not involve any other teacher models. Although the improvement magnitude decrease at IPC=10,
consistent performance gains were still observed. The full results are shown in Appendix I. This
evidence confirms that hybrid soft labeling is a universal and impactful technique.

Summary: There exist general techniques aimed at refining the quality of synthetic datasets along two
dimensions (i.e., the images and soft labels), which can lead to substantial performance variations
without changing existing methods.

4.4 WHICH OVERLOOKED VARIABLES UNDERMINE FAIR EVALUATION IN EVALUATION?

Optimization Objective. We investigate the impact of another previously misaligned loss function
selection across all methods. G-VBSM replaces the commonly used KL divergence DKL(·||·) in
other decoupled distillation methods Yin et al. (2024); Yin & Shen (2024); Su et al. (2024) with
MSE + γ × GT (i.e., combining mean squared error and ground truth alignment). This modification
draws from two insights: (1) The theoretical perspective proposed in Kim et al. (2021) that KL
divergence becomes equivalent to MSE as τ → ∞. (2) The standard knowledge distillation practice
of incorporating ground truth alignment as regularization.

To eliminate confounding variables, we systematically apply different loss function to all distillation
methods. We set γ=0.025, which is a value empirically validated as acceptable in G-VBSM’s original
paper. Experimental results shown in Table 6 demonstrate that under our RD3 framework, while the
new loss function does not guarantee consistent performance gains, it produces positive effects in most
settings. Moreover, these improvements could potentially be amplified through optimal γ selection.
A comprehensive results are provided in Appendix J and we provide the experimental results under
hard label setting in Appendix G and diverse knoledge distillation techniques in Appendix N. This
finding suggests that the impact of loss function requires proper ablation studies when comparing
against baselines in future research.

Optimization Scheduler. SRe2L first demonstrated that employing Adam optimizer with cosine
annealing on large datasets enhances stability and performance. Building upon this foundation,
RDED and EDC adopted smoothing learning rate. The mathematical formulation of this schedule is
given by ηi =

1+cos(πi/ζN)
2 , where ηi represents the learning rate at epoch i and N represents the
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total epoch number. However, recent work CV-DD Cui et al. (2025) achieved superior performance
through manual adjustment of ζ across different datasets, compression ratios, and evaluation model
architectures.

To isolate the influence of ζ, we first evaluate all methods using both ResNet-18 and ResNet-101 as
evaluation models. Our analysis visualized in Figure 4 reveals that with identical teacher and student
models, faster learning rate decay facilitates earlier entry into fine-tuning phases. While evaluating
with larger models (e.g., ViT-B-16), excessively small learning rates often hinder effective learning,
resulting in an unconverged solution at the end of optimization.

Summary: Consistent performance improvements can be achieved solely through adjustments to the
training protocol, even when the synthetic dataset is held fixed. To ensure fairness, all subsequent
methods should adopt a unified training setting, regardless of their specific motivations.

5 WHAT CONSTITUTES THE OVERLOOKED BASELINE IN PREVIOUS
COMPARISON?

Compared to traditional information-matching optimization methods, a significant performance
gain in decoupled dataset distillation methods arises from their use of multi-round soft labels. To
investigate the true efficacy of this method, we explored constructing the generated dataset using
directly sampled random images.

Experimental results as shown in Table 7 reveal a surprising observation: under the soft label
paradigm, simple random sampling outperforms all existing decoupled dataset distillation methods
on CIFAR-10/100, ImageNette, and ImageNet-1K. This outcome aligns with findings in existing
literature Xiao et al. (2025). Further analysis demonstrates that for coarse-grained datasets like
ImageNette and ImageNet-1K, randomly sampled images maximize diversity while maintaining
alignment with the teacher model’s learned knowledge, thereby achieving strong soft label consistency.
Conversely, on fine-grained datasets such as TinyImageNet and ImageWoof, existing decoupled
methods excel by generating highly representative images that facilitate student model learning,
whereas random sampling often introduces ambiguous patterns that degrade performance.

Under the hard label setting, Minimax and RDED surpass random sampling across most datasets and
compression ratios. This advantage stems from their ability to produce realistic and representative
images that align with category distributions, thereby aiding student model training. In contrast,
optimization-based methods and D4M, lacking explicit knowledge alignment via soft labels from
teacher models, generate images with weak correlations to hard labels. This limitation severely
hinders student models from learning accurate representations, resulting in performance far inferior
to random sampling.

The field of decoupled dataset distillation has historically overlooked the fact that randomly sampled
images with soft labels constitute a powerful baseline, which in some cases can even outperform
all existing distillation methods. Future work should pay greater attention to this phenomenon and
adopt random sampling as a strong comparative benchmark.

6 CONCLUSION

In this work, we revisit common inconsistencies in experimental settings used to compare decoupled
dataset distillation methods and highlight the importance of establishing fair and comprehensive
evaluation protocols. To this end, we introduce RD3, a systematic re-evaluation framework that
distinguishes true methodological improvements from performance gains driven by favorable hyper-
parameter tuning. Our empirical analysis reveals that many reported advances are largely attributable
to hyperparameter optimization rather than substantive algorithmic innovations. Building on these
insights, we further investigate the prevalence of evaluation inconsistencies and provide refined
performance assessments. Our findings offer actionable guidance for future work aimed at genuinely
improving the quality of synthetic datasets.

Acknowledgement. This work is supported in part by the National Natural Science Foundation
of China under grant 62576122, 62301189, and Shenzhen Science and Technology Program under
Grant KJZD20240903103702004.
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APPENDIX

A COMPARISON WITH EXISTING EVALUATION WORKS

A.1 DC-BENCH

At the time of its release, DC-BENCH Cui et al. (2022) did not include decoupled data distillation
methods, as such methods had not yet been proposed. Consequently, the benchmark only covered
basic bi-level distillation methods. Moreover, due to their substantial computational and memory
requirements, these methods are not scalable to large datasets or higher IPC settings, limiting the
coverage and applicability of DC-BENCH compared to our work.

A.2 PCA

PCA Xiao et al. (2025) re-evaluates existing optimization-based decoupled distillation methods
under the CDA setting on ImageNet-1K, revealing that their performance often falls below that
of random sampling and proposing data adjustment strategies to address this gap. In contrast, our
work establishes a more comprehensive definition of decoupled distillation methods, explicitly
incorporating generation-based methods. We further demonstrate that existing decoupled distillation
methods do not consistently underperform random sampling across all datasets, especially on fine-
grained datasets (e.g., ImageNet-Woof). Additionally, our study provides a deeper analysis of how
various evaluation settings influence the performance of all types of decoupled distillation methods,
offering insights that inform future improvements.

A.3 DD-RANKING

DD-Ranking Li et al. (2024) introduces a new evaluation metric by computing accuracy gaps between
distilled and randomly sampled datasets under different configurations to unify the evaluation of both
bi-level and decoupled distillation methods. However, it does not offer a standardized benchmark
framework nor investigate the performance discrepancies among different synthetic datasets. While
our method make an in-depth analysis on how the various settings influence the test accuracy of
different decoupled distillation methods.

B LITERATURE REVIEW

B.1 SR2L

SRe2L (Yin et al., 2024) first proposed the decoupled concept, drawing method from data-free knowl-
edge distillation Yin et al. (2020) to completely disentangle proxy model training from data optimiza-
tion processes, thereby reducing the substantial time overhead required by traditional information-
matching based optimization methods Wang et al. (2018); Zhao & Bilen (2021a;b); Cazenavette
et al. (2022); Wang et al. (2022); Shang et al. (2024); Zhong et al. (2024a). Since SRe2L inherits
the data-free distillation framework, it employs Gaussian noise initialization which poses significant
challenges for optimizing towards real data distribution. To address this, SRe2L simultaneously
aligns dynamic BN statistics from synthetic datasets with teacher network’s frozen BN information
during optimization, thereby further constraining the generated dataset’s distribution. Additionally,
to resolve parameter dependency issues caused by single proxy model usage, SRe2L pioneered the
introduction of epoch-wise soft labels during student model training to maximize knowledge transfer
and alignment. The method further incorporates data augmentation operations like CutMix and
RandomResizedCrop during alignment phases to enhance dataset diversity and boost performance.
Subsequent methods have expanded the pipeline to object detection (Qi et al., 2024) and video
classification (Gu et al., 2025) tasks.

B.2 CDA

Building upon SRe2L’s foundation, CDA Yin & Shen (2024) introduces curriculum learning into
the image optimization process by implementing adaptive progressive cropping from small to large
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scales in generated datasets, thereby achieving difficulty-graduated optimization schemes. This
framework further modifies hyperparameters in SRe2L’s training evaluation procedures. Specifically,
reducing BS yields substantial performance improvements. However, CDA regrettably omits thorough
experimental analysis of these setting modifications while failing to isolate and validate the actual
performance contributions from the curriculum learning component through ablation studies.

B.3 G-VBSM

Although SRe2L significantly enhances student model performance by utilizing teacher-generated soft
labels during the relabel phase for knowledge transfer, it inadvertently causes generated datasets to
overfit to single teacher parameters, thereby compromising generalization capability. To address this
limitation, G-VBSM Shao et al. (2024a) introduces model pools comprising diverse architectures to
optimize generated datasets, effectively reducing dependency on specific parameters and architectural
settings. The method extends alignment objectives beyond Batch Normalization statistics to include
convolutional features during optimization, while shifting the optimization scale from IPC to category-
level for enhanced intra-class data diversity. G-VBSM further proposes more effective loss functions
during evaluation phases to constrain information-rich datasets, explicitly requiring soft labels to
be generated through collaborative predictions from architecturally heterogeneous teacher models.
Notably, while maintaining SRe2L’s original hyperparameter settings (e.g., batch size) in post-
evaluation phases, G-VBSM’s novel settings remain untested on datasets generated by SRe2L, leaving
unresolved whether these modifications specifically cater to its own optimization characteristics. And
the additional matching strategy introduced during recover phase leads to ten times time consumption.

B.4 DWA

Since SRe2L employs Gaussian noise initialization for generated datasets, the optimization process
must rely on the mean values in BN statistics to approximate the original data distribution, which
severely compromises the diversity of generated datasets. DWA Du et al. (2024) initially samples
from the original dataset as initialization, then decouples the mean and variance components in the
BN-based loss function while allocating greater optimization weights to the variance component.
Subsequently, it introduces weight perturbations to teacher models to further enhance dataset diver-
sity. Notably, DWA not only achieves substantial performance improvements by adopting CDA’s
parameter settings, but also significantly boosts computational efficiency through true initialization
that accelerates optimization convergence. Using better initialization has consequently emerged as a
simple yet effective performance enhancement technique in subsequent research.

B.5 EDC

Building upon G-VBSM, EDC Shao et al. (2024b) introduces systematic improvements across three
critical phases. During dataset generation, EDC advances beyond DWA’s random sampling initializa-
tion by employing RDED-generated images as starting points. This strategic initialization effectively
constrains redundant degrees of freedom arising from multi-teacher collaborative optimization while
dramatically accelerating convergence. The framework innovatively incorporates flatness regulariza-
tion through rigorous analysis of loss landscapes during optimization, achieving sharpness-aware
minimization. For relabeling phases, EDC implements refined settings including reduced batch sizes
as the same as RDED did and enhanced teacher model selection for improved soft label blending. The
changes during evaluation stage include Further batch size reduction, precision-tuned learning rate
schedulers, and EMA-based assessment mechanisms for performance refinement. Despite achieving
multi-fold performance gains in specific settings, EDC critically overlooks two crucial aspects: (1)
Systematic verification of proposed techniques’ generalizability beyond distillation contexts. (2)
Failure to disentangle performance improvements between dataset quality and evaluation protocol
enhancements. This methodological gap exacerbates existing inconsistencies in decoupled dataset
distillation frameworks, where performance metrics become confounded by optimized evaluation
hyperparameters.
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B.6 MINIMAX

With rapid advancements in diffusion models, these architectures have been successfully integrated
into dataset distillation frameworks. Unlike conventional parametric distillation approaches that
employ GANs Cazenavette et al. (2023); Zhong et al. (2025), diffusion-based methods directly
generate images through learned stochastic processes rather than pixel-level optimization, simulta-
neously enhancing generalization capabilities and reducing computational overhead. Minimax Gu
et al. (2024) utilizes DiT pretrained on ImageNet-1K as foundational models, implementing a novel
regularization strategy that expands feature distances to the most similar samples while contracting
distances to dissimilar counterparts during diffusion model fine-tuning. This optimization ensures
generated samples effectively approximate the original dataset distribution. Although Minimax
incorporates CutMix for performance enhancement, it intentionally omits epoch-wise soft labels.
Given its demonstrated scalability to large-scale datasets, we formally categorize Minimax within the
decoupled dataset distillation and conduct comprehensive performance re-evaluation with soft label.

B.7 D4M

While Minimax demonstrates notable performance on ImageNet and its subsets, the diffusion model
fine-tuning process incurs substantial temporal costs. This method employs DiT models and relies
on one-hot labels as categorical prompts, fundamentally restricting its applicability to other datasets
like CIFAR-10/100. D4M Su et al. (2024) addresses these constraints by building upon Stable
Diffusion (SD), a text-to-image generation diffusion model. The D4M pipeline processes datasets
through VAE encoders to obtain visual embeddings, conducts latent space clustering for class
centroid derivation, and finally synthesizes images by combining these centroids with corresponding
textual prompts. Although D4M surpasses SRe2L in generating semantically coherent images
through diffusion mechanisms, its performance remains inherently dependent on the generation-based
model’s capabilities. The unconstrained visual embeddings frequently deviate from SD’s latent data
distribution, resulting in category-irrelevant image generation. While such anomalies may enhance
dataset diversity when employing soft labels, they significantly impair performance on fine-grained
datasets where precise feature representation is crucial, ultimately leading to accuracy degradation.

B.8 RDED

For high-resolution datasets such as ImageNet-1K and its subsets, RDED Sun et al. (2024a) initially
performs random cropping on original images and subsequently employs a pre-trained classifier to
score and rank patches based on loss magnitude, ultimately stitching multiple high-scoring patches
into composite images. In contrast, for low-resolution datasets like CIFAR-10/100, the framework
directly scores and sorts original images through classifier evaluation while omitting cropping and
concatenation operations. Distinct from alternative methods, RDED achieves remarkable computa-
tional efficiency by eliminating the training process entirely, with its synthesized datasets maintaining
central positioning within the original data distribution. The framework further enhances synthetic
dataset performance through implementation of reduced batch sizes and optimized learning rate
decay schedules, demonstrating superior adaptability across varying resolution domains.

B.9 EMERGING METHODS

Recent advancements in decoupled dataset distillation continue to emerge with notable methodologi-
cal innovations. Here, we briefly summarize the subsequent methods.

DELT Shen & Xing (2022) addresses the trade-off between intra-class diversity and representational
fidelity inherent in optimization-based approaches by initializing with RDED-generated datasets and
selectively optimizing partial samples during training, thereby achieving enhanced performance with
improved efficiency.

CV-DD Cui et al. (2025) employs multi-teacher model classification losses for joint optimization
of synthetic datasets while establishing a strengthened baseline through our proposed universal
techniques integrated with SRe2L framework. Regrettably, these enhancements remain absent in
other baseline implementations, leading to suboptimal solutions. In generation-based approaches,
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IGD Chen et al. (2025) leverages DiT with influence function-guided optimization to amplify
dataset representativeness, complemented by gradient-informed strategies for diversity augmentation.
Regarding selection-based methods,

DDPS Zhong et al. (2024b) identifies RDED’s classification model-driven evaluation as severely
compromising diversity, instead adopting diffusion model-guided loss differentials calculated with
text prompt under labeled and unlabeled conditions to localize class-relevant regions.

FocusDD Hu et al. (2025) utilizes pre-trained ViT as patch extractors with attention-driven visual
saliency mapping, while incorporating irrelevant background images to further diversify synthetic
datasets.

MGD3 Chan-Santiago et al. (2025) introduces a plugin for diffusion model inference that guides
the denoising direction with mode signals, encouraging the generation process to focus on more
class-informative and prominent regions. During evaluation, MGD3 adopts hard-label settings from
Minimax and soft-label settings from D4M.

Although these methods collectively advance dataset distillation effectiveness, their comparative anal-
yses frequently neglect baseline setting alignment and essential ablation studies, thereby accentuating
the critical necessity of our proposed systematic evaluation framework.

C IMPLEMENTATION DETAILS

Since the generation process of different methods is extremely different, we do not report the
corresponding hyper-parameters for a simplified version. Overall, the re-generation of synthetic
dataset follows the consistent settings of previous works. The only variations occur during post-
evaluation phase, and we list the implementation details as follow.

Implementation Details for Post-Evaluation on ResNet-18

Optimizer Adamw
Learning Rate 0.001
Loss Function KL-Divergence
Batch Size 50 or |S| (|S| < 50)
Epochs 400
Scheduler Cosine Annealing
Smoothing Factor ζ = 1
Augmentation PatchShuffle,

RandomResizedCrop,
Horizontal Flip, CutMix

Table 8: Hyperparameters for post-evaluation
on ResNet-18 across various datasets.

Implementation Details for Post-Evaluation on Other Architectures

Optimizer Adamw
Learning Rate 0.001
Loss Function KL-Divergence
Batch Size 100 or |S| (|S| < 100)
Epochs 400
Scheduler Cosine Annealing
Smoothing Factor ζ = 2
Augmentation PatchShuffle,

RandomResizedCrop,
Horizontal Flip, CutMix

Table 9: Hyperparameters for post-evaluation task
on other architectures across various datasets..

C.1 RESNET-18

For ResNet-18, since the teacher and student models share identical architectures, specific hyperpa-
rameters must be employed during training to achieve optimal performance. As shown in Table 8,
using smaller BS enables the student model to acquire more precise knowledge through soft labels.
Simultaneously, employing smaller ζ values accelerates learning rate decay, allowing the student
model to enter fine-tuning phases faster for acquiring refined knowledge.

C.2 CROSS ARCHITECTURE

For other architectural settings where significant disparities exist between teacher and student models,
particularly for ViT-based architectures that are substantially larger than ResNet-18, knowledge
alignment through soft labels often proves challenging. Therefore, two complementary strategies
are required as shown in Table 9. Larger batch sizes mitigate gradient fluctuation effects to better
approximate the original dataset distribution. Larger ζ values maintain learning rates at higher ranges
during initial phases to facilitate effective convergence learning.
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C.3 DIFFERENT EVALUATION SETTINGS INTRODUCED BY PREVIOUS METHODS

For a clear comparison, we summarize the post-evaluation settings used for each method in Table 10.
This provides strong support for the necessity of our work. We acknowledge that adjusting evaluation
settings may lead to improved performance, and we encourage future work to design task-specific
enhancement techniques, it need to be emphasized that any changes made during the post-evaluation
phase must be tested across all baselines to assess their true impact on performance.

Config SRe2L CDA G-VBSM DWA EDC Minimax D4M RDED

Label Soft Soft Hybrid Soft Soft Hybrid Soft Soft Soft Soft
Loss KL KL MSE-GT KL MSE-GT CE KL KL
Batchsize 1024 128 1024 128 100 256 1024 100
LRS (ζ) 1 1 1 1 2 2 1 2

Data Augmentation CutMix CutMix CutMix CutMix CutMix CutMix CutMix CutMix
+ Patch Shuffle + Patch Shuffle

Table 10: Different evaluation settings introduced by previous methods. The genuine quality improve-
ment is conflicted by unaligned settings.

ImageNet-1K

Model IPC Optimization Generation Selection

SRe2L CDA G-VBSM DWA EDC Minimax D4M RDED

1 4.7 ±0.2 4.3 ± 0.1 4.6 ± 0.2 4.8 ± 0.4 7.3 ± 0.3 7.7 ± 0.3 6.2 ± 0.4 8.2 ± 0.3

ResNet-50 10 48.5 ± 0.4 49.2 ± 0.3 49.5 ± 0.2 50.1 ± 0.4 53.9 ± 0.2 54.1 ± 0.2 53.3 ± 0.3 53.2 ± 0.2
50 62.8 ± 0.2 63.1 ± 0.5 63.3 ± 0.3 63.3 ± 0.2 65.2 ± 0.2 65.0 ± 0.1 66.0 ± 0.2 65.2 ± 0.1

100 64.9 ± 0.4 65.2 ± 0.2 65.5 ± 0.1 65.6 ± 0.5 66.9 ± 0.1 67.1 ± 0.2 67.4 ± 0.2 66.9 ± 0.4

1 3.4 ± 0.2 3.8 ± 0.1 3.6 ± 0.2 4.0 ± 0.4 6.2 ± 0.3 6.0 ± 0.3 4.7 ± 0.4 6.8 ± 0.3

ResNet-101 10 45.1 ± 0.2 49.6 ± 0.2 49.4 ± 0.4 48.7 ± 0.4 52.8 ± 0.2 54.8 ± 0.2 53.5 ± 0.4 53.6 ± 0.2
50 63.6 ± 0.2 64.2 ± 0.1 63.8 ± 0.4 64.1 ± 0.4 66.0 ± 0.5 65.6 ± 0.2 66.5 ± 0.4 65.9 ± 0.3

100 65.6 ± 0.1 66.1 ± 0.3 66.4 ± 0.3 66.5 ± 0.3 67.4 ± 0.5 67.6 ± 0.1 67.9 ± 0.2 67.5 ± 0.3

Table 11: Performance comparison on ImageNet-1K with decoupled distillation methods evaluated
by ResNet-50 and ResNet-101

D UNIFIED AND FAIR FRAMEWORK ACROSS VARIOUS METHODS

To investigate whether our proposed unified RD3 framework introduce potential bias, we provide the
performance variations of all methods under this gradual setting in the table below. It can be observed
that all methods exhibit similar patterns of performance improvement, which further supports the
fairness and consistency of our proposed evaluation protocol. The consistent patterns observed
across all methods under massive changeable settings, provide strong evidence for the fairness of our
proposed RD3 framework.

Config SRe2L CDA G-VBSM DWA EDC Minimax D4M RDED

Simplified 26.6 27.2 27.1 28.7 31.3 30.7 30.5 30.9
+ Aligned Batchsize 35.2 36.4 36.9 37.7 41.2 40.4 40.7 41.2
+ Aligned Data Augmentation 38.3 39.4 39.7 40.6 43.1 42.7 42.5 43.9
+ Aligned LRS (ζ) 40.2 41.2 41.5 42.5 46.9 45.9 45.4 46.3

Table 12: The performance across various distillation methods with incremental settings. All the
methods exhibit the same pattern on performance improvement.

E MORE PERFORMANCE ON RESNET SERIES

To systematically investigate the performance characteristics of synthetic datasets generated by
various methods, we conduct comprehensive evaluations using deeper architectures (i.e., ResNet-50
and ResNet-101) that share structural homology with teacher models, assessing performance across
multiple compression ratios on ImageNet-1K. Our empirical analysis shown in Table 11 reveals
that performance disparities across methods diminish proportionally with model depth escalation,
with maximum accuracy variance reduced to merely 2.3% under ResNet-101 evaluation, revealing
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that the substantial performance variations reported in existing literature predominantly stem from
inconsistent evaluation protocols, and making the efficiency more essential than the effectiveness.

Furthermore, when doubling image quantity to IPC=50 and IPC=100 settings, synthetic datasets
demonstrate negligible performance enhancements on ResNet-50/101 compared to ResNet-18 base-
lines, suggesting current synthesis techniques fail to adequately preserve the original data distribu-
tion’s topological characteristics. The conspicuous absence of challenging boundary samples and
failure in faithful reconstruction of class-discriminative features indicate that current generation-
based mechanisms cannot effectively capture distribution extremities. This fundamental limitation in
synthesizing distributionally faithful samples, particularly edge-case exemplars, highlights a critical
research direction for subsequent investigations in distillation methods.

Method ResNet-18 ResNet-50 ResNet-101 MobileNet-V2 EfficientNet-B0 Swin-V2-T ViT-B-16

SRe2L 55.2 ± 0.2 57.5 ± 0.2 59.5 ± 0.3 31.5 ± 0.4 44.8 ± 0.4 55.0 ± 0.2 51.3 ± 0.1
CDA 56.7 ± 0.6 58.8 ± 0.3 60.1 ± 0.3 33.6 ± 0.4 46.7 ± 0.3 57.1 ± 0.5 52.2 ± 0.2
G-VBSM 56.6 ± 0.2 58.2 ± 0.4 60.2 ± 0.4 33.0 ± 0.2 47.2 ± 0.3 58.6 ± 0.3 56.6 ± 0.4
DWA 57.7 ± 0.5 59.4 ± 0.1 61.2 ± 0.2 30.2 ± 0.4 47.7 ± 0.2 58.9 ± 0.5 54.7 ± 0.5
EDC 60.1 ± 0.3 62.2 ± 0.2 62.3 ± 0.3 38.9 ± 0.1 50.5 ± 0.2 62.0 ± 0.4 59.9 ± 0.3
Minimax 60.4 ± 0.2 62.2 ± 0.3 61.6 ± 0.3 37.8 ± 0.4 51.6 ± 0.1 61.9 ± 0.2 61.8 ± 0.2
D4M 60.2 ± 0.4 63.1 ± 0.2 62.5 ± 0.3 39.9 ± 0.3 52.0 ± 0.1 63.0 ± 0.3 62.6 ± 0.4
RDED 58.9 ± 0.7 62.3 ± 0.2 61.8 ± 0.4 39.2 ± 0.3 50.0 ± 0.3 61.8 ± 0.2 60.7 ± 0.3

Table 13: Generalization ability of synthetic dataset on ImageNet-1K under IPC=50 with 50 batch
size in post-evaluation phase. The performance degradation is obvious on certain model architectures.

F VARYING GENERALIZATION ABILITY

We conducted two supplementary experiments to further investigate the generalization capabilities
of synthetic datasets. First, under IPC=50 setting, we adjusted BS from 100 to 50. Experimental
results shown in Table 13 reveal significant architectural disparities in BS sensitivity: CNN-based
models exhibited 3%-4% performance degradation on ResNet-50/101, while MobileNet-V2 and
EfficientNet-B0 architectures suffered over 15% performance drop, indicating substantial variance in
gradient fluctuation tolerance across architectures, particularly in data-efficient learning scenarios
like dataset distillation. Conversely, ViT-based models demonstrated remarkable stability with merely
1% degradation on ViT-B-16 and even performance improvement on Swin-V2-T variants, confirming
ViT’s training stability given fixed dataset settings.

Subsequently, we evaluated cross-architecture generalization under IPC=10 as shown in Table 14. For
CNN-based models, performance degradation remained acceptable compared to IPC=50 baselines,
showing comparable decline patterns to ResNet-18 observations. However, ViT-based architectures
suffered catastrophic performance collapse, with both Swin-V2-T and ViT-B-16 variants experiencing
over 40% accuracy reduction. This phenomenon aligns with established observations regarding
Vision Transformers’ limited efficacy in low-sample regimes, simultaneously presenting critical
challenges for achieving successful knowledge transfer from CNN-optimized distilled datasets to ViT
architectures under high compression ratios.

Method ResNet-18 ResNet-50 ResNet-101 MobileNet-V2 EfficientNet-B0 Swin-V2-T ViT-B-16

SRe2L 40.2 ± 0.3 48.5 ± 0.3 45.1 ± 0.2 33.0 ± 0.3 43.3 ± 0.5 15.5 ± 0.2 11.2 ± 0.2
CDA 41.2 ± 0.6 49.2 ± 0.3 46.6 ± 0.3 33.4 ± 0.4 42.7 ± 0.4 16.3 ± 0.2 10.2 ± 0.2
G-VBSM 41.5 ± 0.6 49.5 ± 0.3 46.4 ± 0.2 34.5 ± 0.4 43.8 ± 0.4 19.4 ± 0.3 11.8 ± 0.3
DWA 42.5 ± 0.7 50.1 ± 0.3 48.7 ± 0.1 36.5 ± 0.5 45.4 ± 0.1 18.8 ± 0.2 13.6 ± 0.2
EDC 46.9 ± 0.6 53.9 ± 0.3 52.8 ± 0.4 39.8 ± 0.2 48.4 ± 0.3 27.7 ± 0.5 22.1 ± 0.2
Minimax 45.9 ± 0.7 54.7 ± 0.2 52.4 ± 0.4 38.1 ± 0.5 49.6 ± 0.2 28.4 ± 0.1 23.1 ± 0.3
D4M 45.4 ± 0.6 53.3 ± 0.2 53.5 ± 0.2 39.8 ± 0.4 47.9 ± 0.3 22.6 ± 0.1 22.1 ± 0.2
RDED 46.3 ± 0.2 53.2 ± 0.3 53.7 ± 0.2 40.2 ± 0.4 48.2 ± 0.4 28.1 ± 0.3 22.8 ± 0.1

Table 14: Generalization ability of synthetic dataset on ImageNet-1K under IPC=10. The ViT-based
models show extremely low performance with high compression ratio.
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ResNet-18

Dataset IPC Optimization Generation Selection

SRe2L CDA G-VBSM DWA EDC Minimax D4M RDED

1 10.5 ±0.5 10.3 ±0.4 9.7 ±0.6 9.2 ±0.5 18.8 ±0.7 - 17.1 ±0.5 12.2 ±0.6

CIFAR10 10 14.1 ±0.4 14.6 ±0.3 16.6 ± 0.3 18.1 ±0.2 23.1 ±0.5 - 24.2 ±0.4 22.8 ±0.3
50 15.6 ±0.4 13.7 ±0.4 17.2 ±0.5 22.2 ±0.5 29.2 ±0.4 - 30.8 ±0.5 35.3 ±0.3

100 18.2 ±0.4 18.5 ±0.4 20.3 ±0.3 27.5 ±0.2 39.4 ±0.3 - 38.5 ±0.3 41.6 ±0.5
1 1.8 ±0.4 1.6 ±0.4 1.6 ±0.3 2.1 ±0.5 3.7 ±0.4 - 4.3 ±0.4 4.4 ±0.7

CIFAR100 10 3.2 ±0.3 3.0 ±0.6 4.1 ±0.6 3.8 ±0.7 12.4 ±0.5 - 8.7 ±0.6 11.6 ±0.4
50 4.9 ±0.4 5.4 ±0.3 5.0 ±0.5 5.9 ±0.4 21.4 ±0.5 - 15.1 ±0.3 23.6 ±0.5
100 7.5 ±0.3 7.4 ±0.4 7.8 ±0.3 8.9 ±0.5 30.2 ±0.6 - 28.7 ±0.4 32.5 ±0.3
1 0.9 ±0.5 1.0 ±0.4 1.3 ±0.6 1.9 ±0.5 3.3 ±0.7 2.2 ±0.5 2.1 ±0.6 3.2 ±0.5

TinyImageNet 10 1.9 ±0.5 2.2 ±0.4 2.9 ±0.4 4.3 ±0.6 9.7 ±0.5 6.3 ±0.5 4.7 ±0.4 10.6 ±0.5
50 5.3 ±0.4 7.3 ±0.3 7.2 ±0.5 11.7 ±0.5 20.3 ±0.5 18.4 ±0.3 8.9 ±0.5 22.8 ±0.7

100 10.1 ±0.3 12.7 ±0.4 13.3 ±0.4 15.1 ±0.2 27.8 ±0.4 25.3 ±0.4 12.1 ±0.6 30.7 ±0.3
1 18.2 ±0.4 18.7 ±0.5 18.3 ±0.5 16.3 ±0.7 26.7 ±0.6 18.9 ±0.4 22.4 ±0.3 22.5 ±0.3

ImageNette 10 20.2 ±0.4 21.5 ±0.5 21.2 ±0.5 29.3 ±0.3 38.6 ±0.7 39.1 ±0.4 40.4 ±0.3 34.6 ±0.6
50 25.4 ±0.1 27.8 ±0.4 28.3 ±0.5 32.5 ±0.5 46.4 ±0.4 57.6 ±0.5 61.6 ±0.7 50.7 ±0.64

100 30.0 ±0.4 31.5 ±0.3 31.2 ±0.4 37.3 ±0.5 52.7 ±0.5 68.5 ±0.6 66.4 ±0.3 59.4 ±0.5

1 11.7 ±0.6 12.2 ±0.8 11.3 ±0.6 12.5 ±0.7 12.6 ±0.5 16.8 ±0.4 13.6 ±0.5 19.0 ±0.7

ImageWoof 10 14.4 ±0.4 12.4 ±0.3 13.2 ±0.5 16.8 ±0.6 23.7 ±0.4 24.3 ±0.2 22.4 ±0.4 21.1 ±0.5
50 15.6 ±0.4 13.6 ±0.6 14.3 ±0.6 23.7 ±0.4 25.8 ±0.5 41.2 ±0.5 31.4 ±0.3 31.2 ±0.4

100 18.5 ±0.5 19.1 ±0.6 17.8 ±0.3 28.3 ±0.2 30.4 ±0.4 49.7 ±0.3 42.2 ±0.4 42.9 ±0.3

1 0.3 ±0.2 0.2 ± 0.6 0.2 ± 0.3 0.4 ± 0.5 0.6 ± 0.3 1.3 ± 0.7 0.7 ± 0.5 1.1 ± 0.4

ImageNet-1K 10 1.4 ± 0.6 1.5 ± 0.4 1.2 ± 0.3 1.9 ± 0.3 6.2 ± 0.4 9.2 ± 0.3 5.6 ± 0.2 12.4 ± 0.4
50 3.5 ± 0.3 5.9 ± 0.4 7.2 ± 0.5 6.1 ± 0.4 17.4 ± 0.5 33.4 ± 0.4 18.9 ± 0.5 31.7 ± 0.4
100 4.6 ± 0.2 7.3 ± 0.1 15.2 ± 0.2 16.9 ± 0.4 21.1 ± 0.3 42.1 ± 0.1 26.1 ± 0.2 40.1 ± 0.4

Table 15: Performance comparison across various datasets with well-known decoupled distillation
methods using hard label. All the methods exhibit significant performance degradation.

G HARD LABEL PERFORMANCE

To systematically investigate the role of soft labels in decoupled dataset distillation, we conducted
experiments replacing soft labels with one-hot labels during evaluation while keeping other settings
unchanged.

Experimental results shown in Table 15 reveal that optimization-based methods exhibit intolerable
performance degradation across all datasets. Due to their exclusive reliance on single teacher models
during optimization, the generated images tend to overfit to specific parameters. Simultaneously,
using only cross-entropy loss and matching BN statistics fails to effectively help randomly initialized
student models learn meaningful categorical information. This forces optimization-based methods
to completely depend on teacher-generated soft labels for knowledge transfer, creating significant
deployment challenges for lightweight and simplified distillation implementations.

For generation-based methods, while Minimax remains inapplicable to ImageNet and external
subsets, its integration with pretrained DiT models enables generation of near-photorealistic images
preserving substantial category-related features on ImageWoof, ImageNette, and ImageNet-1K
datasets. This facilitates effective learning of mapping relationships between generated images and
their labels in student models. However, D4M’s complete dependence on latent distributions in
Stable Diffusion results in significant divergence from target dataset distributions, especially on
TinyImageNet. Without soft label guidance, D4M’s excessive diversity hinders accurate student
learning. Both generation-based methods perform poorly on TinyImageNet datasets, indicating
resolution differences exacerbate distributional inconsistencies.

Selection-based method demonstrate superior performance across most datasets by preserving au-
thentic category-related visual features through real image selection. On fine-grained datasets like
ImageWoof, RDED enhances dataset representativeness through strategic simple image selection.
However, on coarse-grained datasets like ImageNette, oversimplified images impair student learning,
resulting in substantial performance gaps compared to generation-based methods. These findings
suggest future improvements should focus on developing automated mechanisms to identify dataset
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distribution characteristics and impose corresponding constraints, potentially enabling universal
algorithms adaptable to various dataset types.

          Noise                               Random                               RDED                              Minimax                               D4M

    (a) SRe2L

     (b) DWA

     (c) EDC

Figure 5: Visual comparison of class “ostrich" with different distillation methods using various
initialization.

H VISUAL COMPARISON OF INITIALIZATION

To visually demonstrate the impact of different initializations on optimization-based methods, we
present the corresponding visualizations in Figure 5. It is evident that varying initializations substan-
tially influence the final synthesized images.

For SRe2L, limited visual divergence across initializations arises because its optimization process
aligns closely with cross-entropy loss and BN statistics, prioritizing distributional alignment over
diversity. The modest performance improvement primarily stems from generated images better
matching the data distribution learned by the teacher model.

For DWA, initializing with real images imposes distributional constraints during optimization. While
this introduces perturbations to the teacher model and disentangles BN statistics to enhance diversity,
it also causes performance degradation when using noise or distribution-shifted D4M images, as the
teacher model struggles to transfer knowledge accurately under such conditions.

For EDC, the collaboration of multiple teacher models and fewer optimization iterations leads to
severe performance deterioration when noise-based initializations are employed. As shown in the
figure, images generated by EDC in this scenario resemble noise. However, when initialized with
more representative samples, EDC’s diversity becomes constrained. With fewer optimization steps,
the generated images closely resemble the initialization, preserving category-relevant details and
consequently improving performance.

With the qualitative and quantitative analysis above, We identify the utilization of more powerful
initialization should not be considered as a strong contribution.

I HYBRID LABEL EXTENSION

As shown in Table 16, we further investigate the impact of hybrid soft labels across additional datasets
and compression ratios. To align with the setting of EDC, we employ ResNet-18, ConvNet-W-
128, WideResNet-16-2, MobileNet-V2, and ShuffleNet-V2-X0-5 to generate hybrid soft labels for
TinyImageNet, while ResNet-18, MobileNet-v2, ShuffleNet-V2-X0-5, and AlexNet is utilized to
produce hybrid soft labels for ImageNet-1K. It is observable that, regardless of the target dataset’s
scale, hybrid soft labels yield substantial performance improvements under IPC=1 and IPC=10.
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IPC Hybrid SRe2L CDA G-VBSM DWA EDC Minimax D4M RDED

TinyImageNet

1 - 6.1 7.1 6.2 6.8 10.2 9.8 3.9 11.1
! 13.8 (7.7 ↑) 14.6 (7.5 ↑) 14.7 (8.5 ↑) 15.3 (8.5 ↑) 19.5 (9.3 ↑) 18.2 (8.4 ↑) 12.5 (8.6 ↑) 19.1 (8.0 ↑)

10 - 34.2 37.5 37.3 38.3 42.1 39.4 36.7 44.2
! 38.7 (4.5 ↑) 42.2 (4.7 ↑) 42.4 (5.1 ↑) 43.6 (5.3 ↑) 48.0 (5.9 ↑) 44.6 (5.2 ↑) 41.1 (4.4 ↑) 49.2 (5.0 ↑)

50 - 52.5 53.0 53.7 54.2 57.1 54.4 53.8 58.7
! 48.9 (3.6 ↓) 48.7 (4.3 ↓) 49.3 (4.4 ↓) 48.8 (5.4 ↓) 52.3 (4.8 ↓) 50.1 (4.3 ↓) 49.2 (4.6 ↓) 53.1 (5.6 ↓)

ImageNet-1K

1 - 4.1 4.2 4.2 4.5 7.0 6.8 5.4 7.6
! 12.2 (8.1 ↑) 12.5 (8.3 ↑) 12.8 (8.6 ↑) 13.6 (9.1 ↑) 15.5 (8.5 ↑) 15.7 (8.9 ↑) 13.9 (8.5 ↑) 15.6 (8.0 ↑)

10 - 40.2 41.2 41.5 42.5 46.9 45.9 45.4 46.3
! 40.9 (0.7 ↑) 42.1 (0.9 ↑) 42.3 (0.8 ↑) 43.7 (1.2 ↑) 47.9 (1.0 ↑) 46.8 (0.9 ↑) 46.1 (0.7 ↑) 47.5 (1.2 ↑)

50 - 55.2 56.7 56.6 57.7 60.1 60.4 60.2 58.9
! 51.2 (4.0 ↓) 54.3 (2.4 ↓) 52.4 (4.2 ↓) 54.9 (2.8 ↓) 57.1 (3.0 ↓) 56.8 (3.6 ↓) 56.3 (3.9 ↓) 56.4 (2.5 ↓)

Table 16: performance of using hybrid label on TinyImageNet and ImageNet-1k. The performance
gain decrease with the growing IPC.

Notably, even for methods devoid of proxy model involvement, such as Minimax and D4M, hybrid
soft labels consistently enhance performance. We hypothesize that at lower IPC levels, diverse teacher
models effectively augment dataset diversity through soft labels, thereby improving performance
despite architectural discrepancies with the student model.

However, under IPC=50, hybrid soft labels induce significant performance degradation. We attribute
this phenomenon to the fact that the generated images already ensure sufficient diversity, whereas
overly heterogeneous soft labels hinder the student model’s ability to learn precise categorical infor-
mation from the distilled dataset, leading to performance decline. Synthesizing these observations,
we emphasize that for dataset distillation tasks, the optimal selection of soft label formulations must
be adaptively tailored to specific settings. Furthermore, exploring superior strategies for teacher
model ensemble design across different methods remains a critical direction for future research.

IPC Loss SRe2L CDA G-VBSM DWA EDC Minimax D4M RDED

KL 4.1 4.2 4.2 4.5 7.0 6.8 5.4 7.6
1 GT 0.3 (3.8 ↓) 0.2 (4.0 ↓) 0.2 (4.0 ↓) 0.4 (4.1 ↓) 0.6 (6.4 ↓) 1.3 (5.5 ↓) 0.7 (4.7 ↓) 1.1 (6.5 ↓)

MSE-GT 3.6 (0.5 ↓) 4.6 (0.4 ↑) 4.8 (0.6 ↑) 5.2 (0.7 ↑) 6.8 (0.2 ↓) 7.5 (0.7 ↑) 5.7 (0.3 ↑) 7.8 (0.2 ↑)
KL 40.2 41.2 41.5 42.5 46.9 45.9 45.4 46.3

10 GT 1.4 (38.8 ↓) 1.5 (39.7 ↓) 1.2 (40.3 ↓) 1.9 (40.6 ↓) 6.2 (40.7 ↓) 9.2 (36.7 ↓) 5.6 (39.8 ↓) 12.4 (33.9 ↓)
MSE-GT 40.9 (0.7 ↑) 42.0 (0.8 ↑) 42.3 (0.8 ↑) 43.1 (0.6 ↑) 47.9 (1.0 ↑) 47.2 (1.3 ↑) 47.5 (2.1 ↑) 46.8 (0.5 ↑)

KL 55.2 56.7 56.6 57.7 60.1 60.4 60.2 58.9
50 GT 3.5 (51.7 ↓) 5.9 (50.8 ↓) 7.2 (49.4 ↓) 6.1 (51.6 ↓) 17.4 (42.7 ↓) 33.4 (27.0 ↓) 18.9 (41.3 ↓) 31.7 (27.2 ↓)

MSE-GT 56.4 (1.2 ↑) 58.2 (1.5 ↑) 57.8 (1.2 ↑) 59.1 (1.4 ↑) 60.8 (0.7 ↑) 61.5 (1.1 ↑) 61.3 (1.1 ↑) 60.2 (1.3 ↑)

KL 59.7 60.6 61.5 62.1 63.2 62.2 63.5 61.5
100 GT 4.6 (55.1 ↓) 7.3 (53.3 ↓) 15.2 (46.3 ↓) 16.9 (45.2 ↓) 21.1 (42.1 ↓) 42.1 (20.1 ↓) 26.1 (37.4 ↓) 40.1 (21.4 ↓)

MSE-GT 59.5 (0.2 ↓) 60.1 (0.5 ↓) 61.9 (0.4 ↑) 62.0 (0.1 ↓) 64.1 (0.9 ↑) 63.0 (0.8 ↑) 62.9 (0.6 ↓) 62.7 (1.2 ↑)

Table 17: performance of using different loss functions on ImageNet-1K. The performance could be
further enhanced with the appropriate loss fuction.

J LOSS FUNCTION CONSIDERATION

As shown in Table 17, we evaluate the performance of student models under different loss functions
across all methods, with experimental results presented in the table. When using only the cross-
entropy loss with ground-truth labels (equivalent to the hard label paradigm), all methods exhibit
significant performance degradation, as detailed in our analysis of hard label performance. In contrast,
when combining the cross-entropy losses between student outputs and both teacher outputs and hard
labels as a joint loss function, effective performance improvements are achieved across most settings.
For experimental simplicity, we did not extensively tune the weights of the two cross-entropy losses,
suggesting that optimized parameter settings could yield further enhancements. Future work should
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focus on designing more effective loss functions tailored to the characteristics of the distilled dataset,
thereby facilitating improved knowledge acquisition by student models.
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Figure 6: Comparison of the learning rate
decay with different post-evaluation epoch
and smoothing factor. Our PD3 framework
provide a more refined parameter selection.
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Figure 7: Comparison of the impact of using dif-
ferent data augmentation on ImageNet-1K under
IPC=10. CutMix and RandomCrop play an essential
role in enhancing performance.

K LR SCHEDULER ANALYSIS

The visual comparative analysis of learning rate decay strategies employed by RD3 across different
settings and those used in prior works is illustrated in the figure. Methods like SRe2L and CDA adopt
a cosine decay strategy with ζ=1, while RDED and EDC propose that using ζ=2 further enhances
performance. Recent work CVDD suggests adapting ζ based on dataset compression ratios and
evaluation models. Under extended training epochs, we implement refined ζ selection according to
evaluation models and visualized it as shown in Figure 6. for ResNet, ζ=1 is chosen, positioning
the learning rate curve between historical settings. This ensures faster decay without premature
optimization termination, thereby achieving additional performance gains. For other evaluation
models, we employ larger learning rates than all previous methods under equivalent training epochs.
Consequently, student models learn with larger step sizes despite imperfect knowledge alignment,
enabling escape from local optima while accelerating convergence. To maintain framework simplicity,
we did not exhaustively optimize ζ selection, suggesting that adjusting ζ in specific scenarios could
potentially achieve superior performance.

L SOFT LABEL TEMPERATURE
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Figure 8: The performance of ResNet-18 trained
on different temperature settings on ImageNet-1K
under IPC=10.

Under the unified setting provided by RD3,
we investigate whether the soft label tempera-
ture differentially impacts performance based
on variations in dataset generation processes
and data distributions. Experimental results, il-
lustrated in Figure 8, reveal consistent trends
across three representative methods. At exces-
sively low temperatures, all methods exhibit pro-
nounced performance degradation, attributed to
the over-concentrated output distribution of the
teacher model, which resembles hard labels and
fails to provide nuanced prior knowledge for the
student model. When temperatures exceed 20,
performance plateaus or even declines in certain
methods, as overly smoothed soft labels from
the teacher model obscure categorical discriminability. These observations align with phenomena
identified in our experiments with different loss functions, further substantiating that under the soft
label paradigm, variations in generated images do not fundamentally alter behavioral characteristics,
with soft labels predominantly governing the efficacy of knowledge transfer.
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M IMPACT OF DATA AUGMENTATIONS

To investigate the generalizability of data augmentation, we designed ablation studies on various
methods, with results illustrated in Figure 7. Without any data augmentation, all decoupled dataset dis-
tillation methods exhibit extremely poor performance. With CutMix and RandomResizedCrop added,
both augmentation strategies substantially enhance the performance of all methods. Cropping images
and compositing patches from different images significantly improve dataset diversity, enabling
teacher models to convey richer knowledge via soft labels. Further deploying RandomHorizontalFlip
yields an additional around 1% improvement, demonstrating that simple flipping operations still
contribute meaningfully. Finally, we tested the generalization of the PatchShuffle strategy proposed
in RDED. While PatchShuffle randomly replaces patches across images, specifically designed for
RDED’s patch-composed images, surprisingly, applying PatchShuffle to SRe2L whose optimization
process is patch-agnostic still achieves 1% performance gains. This confirms that diverse augmenta-
tion operations universally enhance dataset diversity and boost performance. Consequently, future
work should explicitly disclose whether additional data augmentations are employed and include
corresponding ablation analyses.

N IMPACT OF DIVERSE SOFT LABEL ENHANCEMENT TECHNIQUES

In the context of decoupled dataset distillation, the use of soft labels serves as the foundation for
applying data augmentation (e.g., CutMix) during the post-evaluation phase. Therefore, our intention
is to highlight that any absolute performance gain claimed by newly proposed methods over existing
baselines must be evaluated under identical post-evaluation settings, including the use of soft labels
and data augmentation strategies. To investigate the impact of different knowledge distillation tech-
niques to the dataset distillation, we have incorporated additional soft label augmentation techniques
during the post-evaluation phase. The experimental results on ImageNet-1K under IPC=10 are shown
in Table 18. As observed, soft label augmentation can act as a general performance booster. However,
when applied without proper constraints, it may lead to unfair comparisons. This observation further
exposes the problem we have identified in the current decoupled dataset distillation literature and
underscores the necessity of our proposed work.

Config SRe2L CDA G-VBSM DWA EDC Minimax D4M RDED

None 40.2 41.2 41.5 42.5 46.9 45.9 45.4 46.3
DKD (Zhao et al., 2022) 41.3 42.4 42.2 43.3 47.8 47.1 46.5 47.4
NKD (Yang et al., 2023) 41.1 42.7 42.6 43.0 48.5 47.9 46.9 48.0
LSKD (Sun et al., 2024b) 41.5 43.0 42.2 43.4 48.7 48.4 46.8 48.4
CRLD (Zhang et al., 2024) 41.8 43.2 42.5 43.7 45.1 48.8 46.2 48.2

Table 18: Impact of soft label enhancement techniques. It is clear to see that using the more powerful
knowledge distillation methods could lead to a consistent and significant performance improvement
across various distilled datasets.

O QUALITATIVE INTERPRETATION

O.1 TRAINING DYNAMIC ANALYSIS

Under our proposed framework, we observe significant performance differences in generated datasets
from various methods during student model training. The training accuracy and test accuracy curves
of student models during evaluation are shown in Figure 9. Using randomly sampled images as the
baseline, we note that the real training process achieves high generalization due to extensive data
augmentation, reflected in the large gap between the two curves.

For optimization-based methods, since the generated datasets are optimized through cross-entropy
loss and global BN statistics, the images tend to be overly simplistic for student models. This results
in high training accuracy but low test accuracy. The gap between training and test accuracy gradually
narrows as method performance improves. The only exception is G-VBSM, whose generated datasets
exhibit increased complexity but lack explicit guidance due to the introduction of auxiliary models
during optimization.
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(a) Random (b) SRe2L (c) CDA

(d) G-VBSM (e) DWA (f) EDC

(g) Minimax (h) D4M (i) RDED

Figure 9: Training dynamics comparison between various training datasets on ImageNet under
IPC=10. Different methods exhibit significant difference of gap between training and test accuracy.

Generation-based methods demonstrate training dynamics nearly identical to real datasets, confirming
that diffusion models can effectively approximate real data distributions while preserving categorical
information and generating diverse images. Future work should explore how to identify and produce
more beneficial data distributions based on this foundation.

In contrast, selection-based method prioritize images based on classifier accuracy, achieving the high-
est training accuracy. Despite this, RDED shows competitive performance under high compression
ratios, surpassing all methods except EDC. However, under lower compression settings, RDED’s
performance declines sharply due to insufficient dataset diversity, highlighting a critical direction for
future optimization.

O.2 T-SNE VISUAL ANALYSIS

We explore the differences in synthetic datasets produced by various distillation methods from another
perspective. By visualizing the feature distributions of generated datasets and the original dataset
using t-SNE, as shown in Figure 10, we can intuitively observe variations in data distributions across
methods.

For optimization-based methods, except for EDC, whose data distribution aligns closely with the
original dataset, other methods exhibit significant distribution shifts. In fine-grained categories,
images generated by SRe2L, CDA, and DWA become overly simplistic, preventing teacher models
from providing effective guidance. while for G-VBSM, although its generated dataset demonstrates
dispersed intra-class distributions, inter-class distances are inappropriately minimized in incorrect
directions.

Generation-based approaches (i.e., D4M and Minimax) show data distributions largely consistent with
the original dataset, confirming that diffusion models effectively approximate real data distributions,
thereby achieving competitive performance under low compression ratios.

The selection-based method RDED, which selects images based on classifier accuracy, generates
data distributions similar to optimization-based methods. However, since its dataset still comprises
original images, it maintains favorable intra-class diversity. Nevertheless, under low compression
ratios, RDED also faces challenges of distribution shifts.
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(a) Random (b) SRe2L (c) CDA

(d) G-VBSM (e) DWA (f) EDC

(g) Minimax (h) D4M (i) RDED

Figure 10: T-SNE visualizations of top 10 classes in ImageNet-1K from different synthetic datasets
under IPC=100. The dark dots and light dots denote the synthetic datasets and real dataset respectively.
For a clear comparison, we additionally provide the distribution of only real dataset shown in (a).
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P VISUALIZATION

We provide visualizations of the images sampled from real dataset and synthetic datasets from
different methods, as illustrated Figures 11 to 19.

Figure 11: Visualization of top 10 classes in ImageNet-1K from real dataset.
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Figure 12: Visualization of top 10 classes in ImageNet-1K from SRe2L under IPC=100.
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Figure 13: Visualization of top 10 classes in ImageNet-1K from CDA under IPC=100.
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Figure 14: Visualization of top 10 classes in ImageNet-1K from G-VBSM under IPC=100.
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Figure 15: Visualization of top 10 classes in ImageNet-1K from DWA under IPC=100.
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Figure 16: Visualization of top 10 classes in ImageNet-1K from EDC under IPC=100.
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Figure 17: Visualization of top 10 classes in ImageNet-1K from Minimax under IPC=100.
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Figure 18: Visualization of top 10 classes in ImageNet-1K from D4M under IPC=100.
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Figure 19: Visualization of top 10 classes in ImageNet-1K from RDED under IPC=100.
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