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Abstract

Improving the generalization ability of modern deep neural networks (DNNs) is a fundamental
challenge in machine learning. Two branches of methods have been proposed to seek
flat minima and improve generalization: one led by sharpness-aware minimization (SAM)
minimizes the worst-case neighborhood loss through adversarial weight perturbation (AWP),
and the other minimizes the expected Bayes objective with random weight perturbation
(RWP). While RWP offers advantages in computation and is closely linked to AWP on
a mathematical basis, its empirical performance has consistently lagged behind that of
AWP. In this paper, we revisit the use of RWP for improving generalization and propose
improvements from two perspectives: i) the trade-off between generalization and convergence
and ii) the random perturbation generation. Through extensive experimental evaluations,
we demonstrate that our enhanced RWP methods achieve greater efficiency in enhancing
generalization, particularly in large-scale problems, while also offering comparable or even
superior performance to SAM. The code is released at https://github.com/nblt/mARWPL

1 Introduction

Modern deep neural networks (DNNs) are commonly characterized by their over-parameterization, boasting
millions or even billions of parameters. This extensive model capacity empowers DNNs to explore a vast
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hypothesis space and achieve state-of-the-art performance across various domains (Tan & Lel 2019} [Kolesnikov
et al) 2020; |Liu et al., |2021; Radford et al., [2021]). However, this abundance of parameters relative to the
number of training samples makes DNNs prone to memorizing the training data, leading to overfitting issues.
Consequently, it becomes crucial to develop effective training algorithms that facilitate generalization beyond
the training set (Neyshabur et al.l [2017)).

Numerous studies have been dedicated to improving the generalization ability of DNNs (Szegedy et all 2016;
Izmailov et al., 2018} [Zhang et al., 2018; |2019; [Foret et al., [2020)). Building upon the notion that flat minima
are better suited to adapt to potential distribution shifts between training and test data, leading to improved
generalization (Hochreiter & Schmidhuber} |1997; [Dinh et al [2017; [Li et al., 2018)), two prominent branches of
methods have emerged to identify and exploit such flat minima for effective generalization improvement. The
first branch formulates the optimization objective as a min-max problem, aiming to minimize the training loss
under the worst-case adversarial weight perturbation (AWP). This approach, also known as sharpness-aware
minimization (SAM) (Foret et al., [2020)), seeks to find flat minima that reside in neighborhoods characterized
by consistently low loss values. The second branch, exemplified by LPF-SGD (Bisla et al.l 2022), aims to
recover flat minima by minimizing the expected training loss through random weight perturbation (RWP).
Notably, these two approaches share similarities in their formulations and can be mathematically connected
(Mollenhoff & Khanl [2023).

Despite achieving state-of-the-art generalization performance, AWP, represented by SAM ([Foret et al., 2020)),
suffers from a significant drawback in terms of computation and training time. This is due to the involvement
of two gradient steps, which doubles the computational requirements. Consequently, applying AWP to
large-scale problems becomes a prohibitive challenge. On the other hand, RWP offers a more computationally
efficient alternative, requiring only negligible additional computational overhead compared to regular training.
However, it is commonly believed that RWP exhibits inferior empirical performance when compared to AWP
(Zheng et al., 2021; [Liu et al.l |2022b)). This discrepancy can be attributed to the fact that RWP perturbs the
model with less intensity than AWP, which benefits from leveraging precise gradient information.

In this paper, we revisit the use of RWP for improving generalization and aim to bridge the performance gap
between these two types of perturbations. We start by illustrating a trade-off between generalization and
convergence in RWP: it requires perturbations with orders of magnitude larger than those needed in AWP,
to effectively enhance generalization; however, this can lead to convergence issues in RWP. To tackle this
challenge, we propose a simple approach called mixed-RWP, or m-RWP, which incorporates the gradient
of the original loss objective to improve convergence and simultaneously guide the network towards better
minima. Notably, although both SAM and m-RWP require two gradient steps per iteration, m-RWP is
more efficient in improving generalization, which lies in two aspects: 1) in m-RWP, these two steps are
separable and can be efficiently computed in parallel, enabling the same training speed as regular SGD.
In contrast, the two gradient steps in SAM are successive, resulting in a doubling of the training time. 2)
the two separable gradient steps in m-RWP allow simultaneous use two different batches of data, further
accelerating the convergence, especially on large-scale datasets. In contrast, SAM does not allow for using two
different batches and may even negatively impact generalization performance. The improved convergence of
m-RWP also allows for a larger perturbation variance to confer a better trade-off between generalization
performance and convergence. Furthermore, we improve the generation of random weight perturbation by
incorporating historical gradient information as guidance. This improvement enables more stable and adaptive
weight perturbation generation, leading to enhanced performance. As a result, we significantly boost the
generalization performance of RWP and introduce two improved RWP approaches: 1) ARWP which achieves
competitive performance to AWP but requires only half of the computation and 2) m-ARWP which achieves
comparable or even superior performance while benefiting from parallel computing of the two gradient steps.

In summary, we make the following contributions:

e We analyze the convergence properties of SGD with RWP in non-convex settings and identify a
potential trade-off between generalization and convergence in RWP. We then propose a simple method
to enhance such trade-off and improve the generalization performance of RWP.
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o We propose an improvement to the generation of random weight perturbation by utilizing historical
gradient information. This enhancement enables more stable and adaptive generation of weight
perturbations, leading to improved performance.

o We present a comprehensive empirical study showing that our improved RWP approaches can achieve
more efficient generalization improvements compared to AWP, especially on large-scale problems.

2 Related Work

Flat Minima and Generalization. The connection between the flatness of local minima and generalization
has been extensively studied (Dinh et al., [2017; Keskar et al., [2017; Izmailov et al., 2018} |Li et al., 2018;
[Jiang™ et al., [2020)). Hochreiter et al. (Hochreiter & Schmidhuber, 1994; 1997) are among the first to reveal
the connection between flat minima and the generalization of a model. Keskar et al. (Keskar et al., [2017))
observe that the performance degradation of large batch training is caused by converging to sharp minima.
More recently, Jiang et al. (Jiang™ et al, [2020]) present a large-scale study of generalization in DNNs and
demonstrate a strong connection between the sharpness and generalization error under various settings
and hyper-parameters. Keskar et al. (Keskar et al., [2017) and Dinh et al. (Dinh et al., [2017) state that
the flatness can be characterized by Hessian’s eigenvalues and provide computationally feasible method to
measure it.

Sharpness-aware Minimization (SAM). SAM (Foret et all [2020) is a recently proposed training scheme
that seeks flat minima by formulating a min-max problem and utilizing adversarial weight perturbation (AWP)
to encourage parameters to sit in neighborhoods with uniformly low loss. It has shown power to achieve
state-of-the-art performance. Later, a line of works improves the SAM’s performance from the perspective of
the neighborhood’s geometric measure (Kwon et al 2021} [Kim et al. |2022} Liu et al., |2022b)) or surrogate
loss function (Zhuang et all [2022). Several methods have been developed to improve training efficiency
let al [2022aibt [Liu et al., |2022a} |Mi et al.| 2022; Zhao et al.l [2022bib; |Jiang et all [2023} |Li et al.l [2024]).

Random Weight Perturbation (RWP). RWP is widely used in deep learning. Multiple weight noise
injection methods have been shown to effectively escape spurious local optimum (Zhou et al.| 2019) and saddle
points 2021). Upon generalization, Zhang et al. (Zheng et al., [2021) discuss that RWP is much
less effective for generalization improvement than AWP. Wen et al.. (Wen et al] [2018)) propose SmoothOut
framework to smooth out the sharp minima. [Wang & Mao| (2021) propose Gaussian model perturbation
(GMP) as a regularization scheme for SGD training, but it remains inefficient due to the need of multiple
computation budgets for noise sampling. Bisla et al. (Bisla et all [2022) connect the smoothness of the loss
objective to generalization and adopt filter-wise random Gaussian perturbation generation to improve the
performance. However, the performance of RWP still lags behind that of AWP (Bisla et al., 2022 Liu et al.|
2022b)). Notably, recent Méllenhoff et al. (Mollenhoff & Khanl [2023) mathematically connect the expected
Bayes loss under RWP with the min-max loss in SAM and suggest that RWP can be viewed as a ‘softer’
version of AWP. We significantly lift the performance of RWP from the convergence perspective and fill the
performance gap to that of AWP.

3 Preliminary

Let f(x;w) be the neural network function with trainable parameters w € R?, where d is the number of
parameters. The loss function over a pair of data point (x;,y;) is denoted as L(f(x;;w),y;) (shorted for
L;(w)). Given the datasets S = {(x;,¥;)}"; drawn from data distribution D with i.i.d. condition, the
empirical loss can be defined as L(w) = 1 37" | L;(w).

n

Two branches of methods are proposed to pursue flat minima and better generalization ability. The first,
known as sharpness-aware minimization (Foret et al., [2020), tries to minimize the worst-case loss in a
neighborhood (defined by a norm ball) to bias training trajectories towards flat minima, i.e.,

LSM(w) = max L(w + €,), (1)
lleslla<p
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where p is the radius that controls the neighborhood size. Instead of posing the strict ‘max-loss’ over the
neighborhood, the second, represented by LPF-SGD (Bisla et al. |2022), adopts ‘expected-loss’ and minimizes
the posterior (typically an isotropic Gaussian distribution) of the following Bayes objective (Mollenhoff &
Khan| [2023)):

LBayes(w) = IEerw./\/(O,a?I)L('w + €, (2)

where o2 is the variance that governs the magnitude of the random weight perturbation. Such expected loss
objective can effectively smooth the loss landscape and thereby recover flat minima (Bisla et al. 2022]).

The above two objectives resemble in formulation except that the maximum in Eqn. is replaced by an
expectation in Eqn. . Intuitively, the expectation could be viewed as a ‘softer’ version of the maximum.
Mollenhoft & Khan| (2023) demonstrates that the above two objectives can be bridged mathematically,
leveraging the tools of Fenchel biconjugate in convex optimization (Hiriart-Urruty & Lemaréchal, 2004).
Specifically, let Lr'#%¢d(qp) be the Fenchel biconjugate of LB%°(w) defined in the dual spaces of exponential-
family distributions (Wainwright et al., [2008), which is a convex relaxation w.r.t. original Bayes objective.
There exists an equivalence such that

arg min LM (w) = arg min L™ (), (3)
w w

assuming the SAM-perturbation satisfies ||es|| = p at a stationary point.

Assumptions. Before delving into our analysis, we first make some standard assumptions in stochastic
optimization which are typical as in |Duchi et al| (2012)); |Ghadimi & Lan| (2013); Karimi et al.| (2016));
Andriushchenko & Flammarion| (2022)); |Jiang et al.| (2023) that will be used in our theoretical analysis.

Assumption 1 (Bounded variance) There exists a constant M > 0 for any data batch B such that

E[|VLs(w) — VL(w)|j3] < M, Yw e R~ (4)

Assumption 2 (a-Lipschitz continuity) Assume the loss function L : R — R to be a-Lipschitz continu-
ous. There exists o > 0 such that

|L(w) — L(v)||2 < a||lw — vz, Yw,v € R?. (5)

Assumption 3 (3-smoothness) Assume the loss function L : R% — R to be 3-smooth. There exists 3 > 0
such that

IVL(w) = VL(v)[|l2 < Bllw — v[l2, Yw,v € R (6)
4 Random Weight Perturbation v.s. Adversarial Weight Perturbation

Despite the theoretical connection established between the ‘max-loss’ and ‘expected-loss’ objectives, the
performance of the latter still empirically lags behind the performance of the former, as the biconjugate
function could not be attained in real neural network functions and there are gaps between the original
objectives and its approximation. In this section, we work on a practical analysis for solving the above two
objectives through the lens of weight perturbation.

Adversarial Weight Perturbation (AWP). To optimize LM (w), we first have to find the worst-case
perturbations € for the max problem. Foret et al. (Foret et al.,2020) practically approximate Eqn. via
the first-order expansion:

VwL(w)
* T w
€; ~argmax €, Vo, L(w) = pre0i—. (7)
le-ll2<p IV L(w)]2
Then the gradient at the perturbed weight w + €% is computed for updating the model:
VLM (w) ~ VL(W)|w+e: - (8)

Due to the two sequential gradient calculations involved for each iteration, the training speed of SAM is 2x
that of regular SGD training.
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Method  Perturbation Radius Gradient Information Computation Time Accuracy (%)

AWP Small Yes 2% 2x 77.15
RWP Medium No 1x 1x 76.77
ARWP Medium Yes 1x 1x 77.02
m-RWP Large No 2% 1x 77.82
m-ARWP Large Yes 2% 1x 78.04

Table 1: An overall comparison of different methods. RWP and ARWP utilize much larger perturbation radius
than AWP, while m-RWP and m-ARWP can utilize even larger perturbation radius due to the improved
convergence. The “gradient information” denotes whether utilizing gradient information for generating weight
perturbation. RWP and ARWP requires only half of computation budget than AWP, while m-RWP and
m-ARWP are able to paralleling the computation of the two gradient steps to half the training time. For
performance comparison on ImageNet with ResNet-50, RWP and variants can achieve much more efficient
generalization improvement than AWP.

Random Weight Perturbation (RWP). For optimizing L2 (w), we similarly sample a random
perturbation €, from a given distribution for each iteration and calculate the gradient at the perturbed weight
w + €, for updating the model:

VLE (w) & VL(W)|w-e, - 9)

Note that the selection of the distribution plays an crucial role in the effectiveness of RWP. For modern DNNs,
the loss function does not change with parameter scaling when ReLU-nonlinearities and batch normalization
(Toffe & Szegedyl [2015) are applied. Hence, it is essential to consider the filter-wise structure. Following the
approach in (Bisla et al. [2022), we practically generate the RWP from a filter-wise Gaussian distribution,

ie., € ~N (0, JQdiag({Hw(j) ||2}j:1)>, with o controlling the perturbation magnitude.

RWP requires much larger magnitude. As the precise
gradient direction is known, AWP is much more “effective’
at perturbing the model compared to RWP. Consequently,
in order to achieve a similar level of perturbation strength,
the magnitude of RWP needs to be considerably larger
than that of AWP. We carry out comparative experiments
using a model w* that has been well-trained with SGD and
apply different perturbation magnitudes for both RWP and
AWP. As dipicted in Figure[l] to attain a similar expected 00055162 10*  10° 1ot
perturbed training loss E [L(w* + €)] (we calculate the mean Perturbation radius
perturbed loss over the entire training set with a batch size Figure 1: Expected training loss E[L(w* + €)]
of 256), the perturbation radius of RWP would need to be under different perturbation radii ||€|[z. The
roughly two orders of magnitude larger than that of AWP. experiments employ a well-trained model w*
Such large perturbations can introduce instability in training using SGD on CIFAR-10 with ResNet-18. Note
and cause convergence issues that degrade the performance. that the x-axis is in logarithmic coordinates.

)

=
wn

— RWP
AWP

=
o

o
wn

Expected training loss

5 Improving Random Weight Perturbation

In this section, we propose to improve the performance of random weight perturbation from two primary
perspectives. Firstly, we integrate the original loss objective to facilitate the trade-off between generalization
and convergence. This enables enhanced convergence and meanwhile allows for larger perturbation magnitudes
with improved generalization performance. Secondly, we focus on refining weight perturbation generation
by incorporating historical gradient information. This enables a more adaptive and effective perturbation
generation process.
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5.1 Trade-off between Generalization and Convergence

In this subsection, we showcase that there exists a trade-off between convergence and generalization for RWP.
We first analyze the smoothness properties of the expected loss function under RWP.

Theorem 1 (Smoothness of RWP, Bisla et al.| (2022)) With Assumption [§ and [3 the function
LB (w) defined in Eqn. @) is min{ %, B}-smooth.

The above theorem indicates that a larger variance o for RWP will provide a better guarantee for smoothness,
consequently leading to a smaller generalization error (Bisla et al.l [2022]). A minor observation is that a small
magnitude of perturbation may not effectively contribute to the enhancement of smoothness when o is small,
as in such cases ¢ > 3.

We then investigate the convergence properties of the following SGD optimization under RWP:
wip1 = wp — 7 Vig(w + €), (10)

where B denotes the mini-batch data.

Theorem 2 (Convergence of RWP in non-convex setting) Assume Assumption [1] and [ hold. Let
€. ~ N(0,0%I4xq) be the random perturbation and b be the batch size. Consider the sequence (w;)ien

generated by Eqn. @), with a stepsize satisfying v¢ = % and v < % Then we have

(E[L(wo)] — E[L(w")])
70\/T

log T

VT

T
1 2
T > E|VL(w)|? < + (28M + B302d) +26%0%d. (11)
t=1

We provide the proof in Appendix [A|and make several remarks: (1) Different from prior theoretical analysis
(Andriushchenko & Flammarion, 2022; Mi et al., 2022) in SAM that assumes a decreasing magnitude
on perturbation strength for achieving good convergence properties (e.g. p; = % in [Andriushchenko &
Flammarion| (2022))), we consider a more realistic setting with a non-decreasing o that is adopted in practice.

(2) There are three terms that upper bound the expected training loss. The first two terms decrease at a rate

of (’)(%) and 0(105%) ), respectively, which is consistent with the convergence rate of regular SGD. 3302d
is the additional variance term introduced by random weight perturbation. It can remain large when the
perturbation radius (||€,||) is large, of which the expected radius is E[||e,||?] = 02d, thereby slowing down
convergence. The third term is a positive constant proportional to the perturbation variance o2, which
prevents the effective reduction of the gradient norm beyond a certain point.

A trade-off. Based on the above two aspects, we can conclude that there exists a trade-off between
generalization and convergence: for the sake of good smoothness properties and smaller generalization error,
we need to increase the variance o2 for random weight perturbation. However, this can significantly increase
the magnitude of the perturbation, and on the contrary, pose a convergence challenge.

5.2 Improving the Trade-off by Incorporating Original Loss

From the analysis in the last subsection, we know that there exists a trade-off between generalization and
convergence in RWP. To achieve good generalization ability brought by large perturbation variance while
enjoying a good convergence property, we propose to combine the original loss with the expected Bayes loss
to improve the convergence of RWP, resulting in our mized-RWP (m-RWP) loss objective:

L™(w) = ALB% (w) + (1 — \) L(w), (12)

where A € [0, 1] is a pre-given balance coefficient. The two loss terms in our m-RWP objective are complemen-
tary to each other: the first LB (w) provides a smoothed landscape that biases the network towards flat
region, while the second L(w) helps recover the necessary local information and better locates the minima
that contributes to high performance. These two together could provide a both “local” and “global” viewing
of the landscape — by optimizing L™ (w), a good solution can be expected.
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In practical implementation, we adopt a particular procedure for optimizing the objective function LB#°s(w)
using RWP, i.e., in each training iteration, we sample one single random weight perturbation vector denoted
as €. To enhance the optimization process, we utilize two distinct batches of data, namely B; and Bs, for
the two gradient steps involved. Note that this effectively enlarges the virtual batch size by a factor of two.
The optimization process of our m-RWP can be formulated as follows:

w1 = wy — 7 [AVLg, (Wi + €.) + (1 — A\)VLg, (w;)] . (13)

In the subsequent analysis, we examine the smoothness and convergence properties of m-RWP. The proofs
for these properties can be found in Appendix [B]and [C] respectively.

Theorem 3 (Smoothness of m-RWP) With Assumption [4 and [3, the function L™(w) defined in
Eqgn. is min{2% + (1 — )3, B}-smooth.

Theorem 4 (Convergence of m-RWP in non-convex setting) Assume Assumption[]] and[3 hold. Let
€. ~ N(0,0%I4xq) be the random perturbation and b be the batch size. Consider the sequence (w;)ien

generated by Eqn. , with a stepsize satisfying v¢ = % and v < % Then we have

(E[L(wo)] — E[L(w")])
VO\/T

logT

+28%2)\%52d.
JT T

T
1 2
7 > E|VL(wy)|* < + [2BM(2X* = 2X 4+ 1) + B*X?0%d] 1o
t=1

Improved convergence. Compared to the convergence properties of RWP as stated in Theorem [2| m-RWP
offers immediate improvements in two aspects. Firstly, it reduces the variance term introduced by random
weight perturbation (53)\2d7010%) and the positive constant term (23%02d) by a factor of A\2. Secondly,
m-RWP enables the use of two different data batches to compute the two gradient steps. This effectively
doubles the batch size for each iteration training and thus reduces the gradient variance term (28M 7010%)

by a factor of 2A2 — 2\ + 1. As a result, the convergence is significantly improved. The convergence of RWP
and m-RWP is compared in Figure

Better trade-off between generalization and convergence. With the significant enhancement in
convergence achieved by m-RWP, it becomes feasible to employ a larger perturbation variance. This allows
us to enjoy the benefits from the improved smoothness properties offered by the increased perturbation
variance while maintaining good convergence, potentially resulting in a better trade-off between generalization
and convergence. Specifically, for attaining a similar convergence condition, denoted as 320?d in Eqn. ,
the perturbation variance employed by m-RWP can be increased to ¢ = o/\. The subsequent lemma
demonstrates that, under certain conditions, the mixed loss function could provide better guarantees of
smoothness compared to the original Bayes objective under similar convergence properties.

Lemma 1 Assuming that o < fo < 2, with Assumption@ and@ we have the following conclusions: 1)
LB (w) with a perturbation variance o is smoother than L(w) and 2) L™(w) with a balance coefficient
S (ﬁ"a_o‘,l) and a perturbation variance o /) is smoother than LB (w).

Please refer to Appendix [D|for the proof. In practical scenarios where constants such as the Lipschitz constant
« and smoothness constant § are unknown, we thus further validate our findings empirically. In Figure [3] we
observe that m-RWP indeed achieves a better trade-off between generalization and convergence. Moreover, it
demonstrates significantly improved performance by utilizing larger perturbation variances.

Efficient parallel training. Both SAM and m-RWP indeed involve two gradient steps for each iteration:
VL(w) and VL(w + €). However, the key distinction lies in the separability of these steps. In m-RWP,
they are separable, and can be calculated independently and in parallel, whereas, in SAM, they need to be
computed sequentially. This parallel computing capability of m-RWP allows for a halving of the training
time, making it a highly efficient approach for large-scale problems.
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Figure 2: Training performance comparison of RWP and m-RWP. m-RWP significantly improve the conver-
gence over RWP and leads to much better performance. The experiments are conducted on CIFAR-100 with
ResNet-18. The perturbation variance o is set to 0.01.
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Figure 3: The mixed loss objective achieves a better trade-off between generalization and convergence. In
(a), we conducted multiple runs of RWP and m-RWP with varying perturbation variances (o) and recorded
the final training losses and generalization errors (difference between training accuracy and test accuracy) for
each trial. Our observations reveal that m-RWP achieves an improved trade-off between generalization error
and convergence compared to RWP. In (b), m-RWP is capable of utilizing larger perturbation variances to

achieve better generalization performance. The experiments are performed on CIFAR-100 with ResNet-18
and the balance coefficient A is set to 0.5.

5.3 Adaptive Random Weight Perturbation Generation

One limitation of previous methods for generating RWP is their exclusive reliance on weight norm, without
utilizing any gradient information. This approach creates a disconnect between perturbation generation and
the actual loss objective, resulting in overly “rough” perturbations.

Despite that for the efficiency considerations, we can not adopt an additional gradient step to assist the
generation of RWP, the historical perturbed gradients are available and can be leveraged. We thus propose
to utilize the historical gradient to better guide the generation of RWP. To achieve this, we employ an
element-wise scaling of the gradient, taking into account the historical running sum of squares in each
dimension. It is important to note that this technique is widely used in adaptive gradient descent optimizers
such as Adam (Kingma & Ba, [2015) and RMSprop (Tieleman et all) 2012)). The generation form of our




Published in Transactions on Machine Learning Research (03/2024)

proposed method, called Adaptive Random Weight Perturbation (ARWP), is as follows:

oI
Jitasi) priig?

where 17 and § are two hyper-parameters. The rationale behind our generation approach is to move away from
assigning a uniform perturbation magnitude (o) to all parameters. Instead, we aim to introduce an adaptive
perturbation strength based on the historical perturbed gradients. If the historical gradients are large, we
want to assign a smaller perturbation magnitude, and vice versa. By incorporating such adaptability, we
can tailor the perturbation magnitudes to the specific characteristics of each parameter. This allows us to
account for variations in sensitivity and importance across different dimensions, leading to a more adaptive
and effective generation of random perturbations. In practice, the perturbation variance o is progressively
increasing (i.e., a cosine increasing strategy in Section ) during the training of RWP/ARWP for gradually
recovering the flat minima, as suggested by [Bisla et al.| (2022)). Therefore, the primary enhancement of
our ARWP lies in its adaptive generation of perturbations, rather than annealing the variance. Regarding
convergence, we note that the variance of ARWP in Eqn. is upper bounded by the corresponding variance
of RWP in Eqn. . Therefore, the convergence properties of RWP in Theorem [2| and [4] still hold for ARWP.

€t ™~ N[O

; (14)

Then combing with the filter-wise perturbation generation techniques from Bisla et al.| (2022), our generation
approach can be expressed as follows:

o diag({|w(”|*}5_,)
V10Xt g diag({ g2}y

Then combining the mixed loss objective in Eqn. , we propose our m-ARWP approach, which takes
the same computational cost as SAM while being capable of halving the training time through parallel
computation of the two gradient steps.

€pt ™~ N 0,

(15)

6 Experiments

In this section, we present extensive experimental results to demonstrate the efficiency and effectiveness of
our proposed methods. We begin by introducing the experimental setup and then evaluate the performance
over three standard benchmark datasets: CIFAR-10, CIFAR-100 and ImageNet. We also conduct ablation
studies on the hyper-parameters and visualize the loss landscape to provide further insights.

6.1 Results

Datasets & Models. We experiment over three benchmark image classification tasks: CIFAR-10, CIFAR-
100 (Krizhevsky & Hinton), 2009), and ImageNet (Deng et al., [2009). For CIFAR, we apply standard random
horizontal flipping, cropping, normalization, and Cutout augmentation (DeVries & Taylor} 2017 (except for
VIiT, for which we use RandAugment (Cubuk et al.,[2020))). For ImageNet, we apply basic data preprocessing
and augmentation following the public Pytorch example (Paszke et all [2017). We evaluate across a variety
of representative architectures, including VGG (Simonyan & Zisserman) 2014)), ResNet (He et al., 2016),
WideResNet (Zagoruyko & Komodakis, 2016|), and ViT (Dosovitskiy et al., |2021]).

Training Settings. We compare the performance of six training methods: SGD, SAM, RWP, ARWP,
m-RWP, and m-ARWP. It is worth noting that SGD, RWP, and ARWP share the same computation (1x),
while SAM, m-RWP and m-ARWP require twice the computational resources (2x). For CIFAR experiments,
we set the training epochs to 200 with batch size 256, momentum 0.9, and weight decay 0.001 (Du et al.,
2022a; |Zhao et al. 2022al), keeping the same among all methods for a fair comparison (except for ViT, we
adopt a longer training schedule and provide the details in Appendix [E)). For SAM, we conduct a grid
search for p over {0.005,0.01,0.02,0.05,0.1,0.2,0.5} and find that for CIFAR-10, p = 0.05 gives the best
results for VGG16-BN, p = 0.1 suits best for ResNet-18 and WRN-28-10, while for CIFAR-100, p = 0.1
works best for VGG-16BN and p = 0.2 is optimal for ResNet-18 and WRN-28-10, which also coincides



Published in Transactions on Machine Learning Research (03/2024)

Table 2: Results on CIFAR-10/100. We set the computation (FLOPs) and training time of SGD as 1x. The
best accuracy is in bold and the second best is underlined.

Model | Method CIFAR-10 CIFAR-100 | FLOPs Time

SGD 94.96+0.15 75.4340.29 1x 1x

SAM 95.4340.11 76.7440.22 2X 2x

RWP 94.97+0.07 76.56+0.10 1x 1x

VGGI6-BN ARWP 95.0740.23 77.0740.21 1x 1x
m-RWP 95.4940.16 77.6840.14 2% 1x

m-ARWP  95.61+0.23 77.98+0.19 2% 1x

SGD 96.10+0.08 78.1040.39 1x 1x

SAM 96.5640.11 80.48+0.25 2x 2%

RWP 96.01+0.31 80.2140.14 1x 1x

ResNet-18 1 \pwp  96.304003  80.71%0.24 1x 1x
m-RWP 96.584-0.09 81.1840.09 2% 1x

m-ARWP  96.68+0.13 81.38+0.12 2x 1x

SGD 96.8540.05 82.5140.24 1x 1x

SAM 97.35+0.04 84.68+0.21 2% 2%

RWP 96.7340.12 83.67+0.14 1x 1x

WRN-28-10 ARWP 96.8940.11 83.96+£0.09 1x 1x
m-RWP 97.21+0.04 84.37+0.11 2% 1x

m-ARWP  97.27+0.09 84.62+0.15 2x 1x

Adam 86.60+0.03 63.66+0.28 1x 1x

SAM 87.48+0.28 64.83+0.24 2x 2%

VIiT-S RWP 86.5340.04 63.6740.41 1x 1x
ARWP 86.88+0.09 64.12+0.22 1x 1x

m-RWP 87.71+0.13 65.6740.09 2% 1x

m-ARWP  88.18+0.19 66.13+0.13 2X 1x

with the hyper-parameters reported by [Mi et al.| (2022); |[Li & Giannakis| (2023). For RWP and ARWP,
we search o over {0.005,0.01,0.015,0.02} and set ¢ = 0.01 for both CIFAR-10/100 as it gives the optimal
performance. We also adopt a cosine increasing schedule for o as described in (Bisla et al.,|[2022). For m-RWP
and m-ARWP, we use o = 0.015 and A = 0.5 as it gives moderately good performance across different models.
We set n = 0.1 and S = 0.99 as default choice. For ImageNet experiments, we set the training epochs to
90 with batch size 256, weight decay 0.0001, and momentum 0.9. We use p = 0.05 for SAM which aligns
with (Foret et al., 2020; [Kwon et al., 2021), ¢ = 0.003 for RWP and ARWP, and o = 0.005, A = 0.5 for
m-ARWP. We employ m-sharpness with m = 128 for SAM as in (Foret et al., |2020; Kwon et al.l [2021)). For
all experiments, we adopt cosine learning rate decay (Loshchilov & Hutter, 2016) with an initial learning rate
of 0.1 and record the final model performance on the test set. Mean and standard deviation are calculated
over three independent trials.

CIFAR. We begin by focusing on the CIFAR-10 and CIFAR-100 datasets. We evaluate the final test accuracy,
total computation (in FLOPs), and training time for different methods. Detailed comparisons are presented
in Table |2l We observe that ARWP consistently improves the performance RWP by 0.1-0.3% on CIFAR-10
and 0.3-0.5% on CIFAR-100, and m-ARWP consistently outperforms ARWP, improving performance by
1.6% on CIFAR-10 and 3.1% on CIFAR-100, confirming the effectiveness of our improvements on enhancing
generalization. It is also worth mentioning that ARWP can achieve competitive, and sometimes even better,
generalization performance compared to SAM, particularly with VGG16-BN (+0.3%) and ResNet-18 (40.5%)
models on CIFAR-100. Remarkably, ARWP achieves this with only half of the computation required by SAM.
Additionally, m-ARWP outperforms SAM in most cases on CIFAR-10, and achieves improvements ranging
from 0.1% to 1.3% on CIFAR-100. We can also observe that the mixing strategy alone contributes the most
to performance improvement, e.g. with a notable increase of +0.97 % on CIFAR-100 with ResNet-18, as it
entails a doubled computational overhead. In contrast, the adaptive perturbation strategy contributes an
increase of +0.50%. Lastly, it is important to note that although both SAM and m-ARWP require twice the
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Table 3: Results on ImageNet. We set the computation (FLOPs) and training time of SGD as 1x. The best
accuracy is in bold and the second best is underlined.

Model | Method Accuracy (%) | FLOPs Time

SGD 73.11 1x 1x

SAM 74.65 2% 2%

RWP 74.01 1x 1x

VGGI6-BN ARWP 74.28 1x 1x
m-RWP 75.45 2% 1x

m-ARWP 75.79 2% 1x

SGD 70.32 1x 1x

SAM 70.77 2% 2%

RWP 70.46 1x 1x

ResNet-18 |\ pwp 70.71 1x 1x
m-RWP 71.42 2% 1x

m-ARWP 71.58 2% 1x

SGD 76.62 1x 1x

SAM 77.15 2% 2%

RWP 76.77 1x 1x

ResNet-50 |\ pwp 77.02 1x 1%
m-RWP 77.82 2% 1x

m-ARWP 78.04 2% 1x

AdamW 68.12 1x 1x

SAM 68.98 2% 2%

. RWP 68.40 1x 1x
ViT-5/32 ARWP 68.74 1x 1x
m-RWP 69.42 2% 1x

m-ARWP 69.76 2% 1x

computation of SGD, the training time of m-RWP can be reduced by half compared to SAM through parallel
computing. This reduction in training time is a valuable advantage of m-ARWP.

ImageNet. Next, we evaluate our proposed methods on ImageNet dataset, which has a substantially larger
scale than CIFAR. We evaluate over four different architectures, namely VGG16-BN, ResNet-18, ResNet-50,
and ViT-S/32, and present the results in Table [3l We observe that ARWP can achieve very competitive
performance against SAM. For instance, with ResNet-18, ARWP achieves an accuracy of 70.71% compared to
SAM’s 70.77%, while with ResNet-50, ARWP achieves 77.02% accuracy compared to SAM’s 77.15%. Notably,
ARWP accomplishes this while requiring only half of the computational resources. Furthermore, m-ARWP
significantly outperforms SAM, achieving 75.79% accuracy (41.14%) with VGG16-BN, 71.58% accuracy
(4+0.81%) with ResNet-18, 78.04% accuracy (4+0.89%) with ResNet-50, and 69.76% accuracy (+0.78%) with
ViT-S/32. We note that models trained on ImageNet are typically under-trained. Therefore, the improved
convergence of m-ARWP offers even more significant advantages over SAM. Moreover, the capability of
parallel computing in m-ARWP is especially advantageous as the 2x longer training time in SAM would be
prohibitively slow for large-scale problems.

6.2 Ablation Study and Visualization

Table 4: Effects of same/different data batches for
two gradient steps. The experiments are conducted
on CIFAR-100 with ResNet-18.

Impact of different data batches. We conducted a
further investigation into the impact of using the same
or different data batches for the two gradient steps in
m-ARWP and SAM. The results are presented in Table[4]
and we made the following observations. For m-ARWP,
both choices of using the same or different data batches SAM 80.48+0.25  78.30+0.11 (| 2.18)
yield comparable performance, with the use of different m-ARWP — 81.14+0.10  81.38+0.12 (1 0.24)

Training Same Different
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batches resulting in a slightly better performance. On the other hand, for SAM, the two approaches yield
starkly different results. Adopting different data batches for the adversarial attack and gradient propagation
in SAM would undesirably degrade its generalization performance to that of plain SGD. This finding suggests
that applying the same data batch for adversarial attack and gradient propagation is a crucial aspect for
SAM’s generalization improvement. We attribute this difference to the unique characteristic of AWP in
SAM, which is specific to a particular batch of data. The perturbation computed over one batch in SAM
can degenerate into meaningless noise when applied to another batch. In contrast, the perturbation used
in m-ARWP is not associated with specific data instances, allowing for the use of different data batches to
accelerate convergence with better efficiency.

Sensitivity of hyper-parameters. There are four hyper-parameters involved in our approaches, n and
in ARWP, and additionally A and ¢ in m-ARWP. We note that for the first three hyper-parameters, we use
default values as n =1, 8 = 0.99, A = 0.5 across different experiments and only ¢ needs to be tuned, thus
virtually having the same number of hyper-parameters as SAM and RWP. To better understand their effects on
performance, we test the performance under different choices of values. Specifically, we test on CIFAR-~10/100
datasets with ResNet-18, and vary » in {0.01,0.1,1}, 8 in {0.9,0.99,0.999}, o in {0.005,0.01,0.015,0.02} and
Ain {0.1,0.3,0.5,0.7,0.9}. The results are in Figure [df We observe that n = 0.1, 8 = 0.99, 0 = 0.015, and
A = 0.5 are a robust choice that achieves moderately good performance on both CIFAR-10 and CIFAR-100.

ResNet-18 on CIFAR-10 ResNet-18 on CIFAR-100 ResNet-18 on CIFAR-10 ResNet-18 on CIFAR-100
96.35 Iso.7 “ ~ . I81.0
o S <
L9630 ~ ° 5 ©
806 %64 -80.5
-96.25 3 S
hrt -80.5  © | e -80.0
9620 = S °_ 962 © _
o o
-96.15 (804 © e 795
. - - %.0
) S S 79.0
|96.10 ° |80.3 2 . I 3 . I
0.9 099  0.999 0.9 099 0999 01 03 05 07 09 01 03 05 07 09
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(a) ARWP (b) m-ARWP, n = 0.1, 8 = 0.99

Figure 4: Performance under various hyper-parameter configurations.

Loss landscape and Hessian spectrum. Finally, we compare the loss landscape and Hessian spectrum of
SGD, RWP, ARWP, SAM, and m-ARWP. Following the plotting technique in (Li et al.,2018), we uniformly
sample 50 x 50 grid points in the range of [—1, 1] from random “filter-normalized” direction (Li et al.| [2018]),

and for Hessian spectrum, we approximate it using the Lanczos algorithm (Ghorbani et al.| 2019). In Figure
we observe that RWP, ARWP, SAM, and m-ARWP all achieve flatter loss landscape and smaller dominant
eigenvalue (A1) compared to SGD. Additionally, ARWP demonstrates improved flatness and dominant
eigenvalue compared to RWP. Moreover, m-ARWP exhibits even better flatness and a smaller dominant
eigenvalue than SAM. Interestingly, from the perspective of the loss landscape, RWP and ARWP appear
to have flatter landscapes compared to SAM and m-ARWP. However, they exhibit much larger Hessian
dominant eigenvalues and worse generalization performance. This discrepancy may be attributed to the fact
that the minima found by RWP and ARWP may not converge well and are even “over-smoothed” due to the
large perturbation radius involved. Conversely, with the improved convergence of m-ARWP, we were able to
reach a more precise minimum with better generalization performance.

7 Conclusion

In this work, we revisit the use of random weight perturbation for improving generalization performance. By
uncovering the inherent trade-off between generalization and convergence in RWP, we propose a mixed loss
objective that enables improved generalization while maintaining good convergence. We also introduce an
adaptive strategy that utilizes historical gradient information for better perturbation generation. Extensive
experiments on various architectures and tasks demonstrate that our improved RWP is able to achieve more
efficient generalization improvement than AWP, especially on large-scale problems.
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Figure 5: Loss landscape (Up) and the corresponding Hessian spectrum visualization (Down) of different
methods. Models are trained on CIFAR-10 with ResNet-18.
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A Proof of Theorem

Proof Denote w1/ = w; + €, ;. From Assumption 1, it follows that

L(Wt+l) SL(’UJt) + VL(’UJt)T(wt+1 — 'l.Ut) + §||'wt+1 — wt||2 (16)
2
:L(wt) — %VL(wt)TVLB(th/z) + %HVLB(’UJH»UQ)HQ (17)
=L(w;) — ’YtVL(wt)TVLB(wt+1/2)
2
+ 12 (19 Ls(awin2) — VL) ~ [V E(w)|> + 2V L(w) TV in(wiar ) (18)

2 2
=) ~ T2V L) P+ L2V L1 /2) — VL ()P

— (1= By)7VL(w,) "V Lg(wi 1)) (19)
2
<aw) ~ 2P VL) 2BV Lswir ) ~ VI o)
+ 7 BIVL(wit172) = VL(we)l* = (1= Bye)3 VL(we) " VLs(wyr1y2)- (20)
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For the last term, we have:
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where C = E [VL('wt)—r (VLB(wt+1/2) — VLB(wt))}. Using the Cauchy-Schwarz inequality, we have
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Plugging Eqn. and into Eqn. , we obtain:
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Taking summation over T iterations, we have:
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< Amin{*, BHw — vl + (1 = N)BJlw — o]
= min{AZ + (1= 1), 8} |w — v].
This shows that L™ (w) is min{2 + (1 — X)3, 3}-smooth. O
C Proof of Theorem 4
Proof
L(w1) <L(wy) + VL(w,) (w1 — w) + g”wtﬂ — w? (29)
=L(w;) =V L(w;) " [AVLg, (wy41/2) + (1 = A)VLg, (w;)]
2
4 T2 AT Lis, (wy12) + (1= V)V L, a0y (30)
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2
E[L(wi11)] <E[L(w;)] — %IIVL(’U%)II2 + 928 (WM + (1= N)*M) + 778N o%d

— (1= By)nl VL(w)[|* + (1~ 6%>%<§|IVL(wt>|l2 + %A%%Qd) (31)
=E[L(w;)] - %IIVL(wt) 12 +28M (23 —2X+1) + %(1 + By 1A Bo’d (32)
(33)

Taking summation over T iterations, we have:

T
fZEIIVL (won? <E[L(umn)] ~ ElL(wn) + (M@ - 20 +1) + 36%00%) 73}
1 . =t (34)
+ 552)\20261’7 ; \7
This gives:
1 & 2 (E[L(wo)] — E[L(w*))) log T
7 ;EHVL(wt)HQ < (;Oﬁ + (2BM(2X% — 21 + 1) + B\ ?02d) 7o 7 No2d.
O

D Proof of Lemma [

Proof From Theorem I and |3 I and the condition a@ < Bo < 2a, we can conclude that LB&(w)], is

%-smooth since o < Bo. Then leveraging A € (5” 2.1), we obtain
A Poze (35)
a
S aA+1) > fo (36)
saM?-1)<(A—1)B0 (37)
2

e a sl (38)

o o

The Eqn. is derived by multiplying both sides of the equation by (A —1). Note that L™(w)[,,/y is
rnin{AfT‘l + (1 = X)B, B}-smooth. Thus, we can conclude that L™ (w)|,/y is smoother than LB» (w)],. O

E ViT training

To train the vision transformer model (Dosovitskiy et al.l |2021)), we adopt Adam Kingma & Ba| (2015) as the
base optimizer and train the models on CIFAR-10/100 datasets from scratch with Adam, SAM, RWP, and
m-RWP. Specifically, we select the ViT-S model with input size 32 x 32, patch size 4, number of heads 8§,
and dropout rate 0.1. We train the models for 400 epochs with a batch size of 256, an initial learning rate of
0.0001, and a cosine learning rate schedule. For ARWP, we set 0 = 0.001, and for m-ARWP, we set o = 0.002
and a = 0.5. For SAM, we perform a grid search for p over [0.001,0.002, 0.005,0.01,0.05,0.1,0.2,0.5] and
finally select p = 0.05 for optimal. For ImageNet, we follow the implementation of |Du et al.| (2022b); |Li &
Giannakis| (2023), where we train the model for 300 epochs with a batch size of 4096. The baseline optimizer
is chosen as AdamW with weight decay 0.3. SAM relies on p = 0.05. We use o = 0.005 for RWP/ARWP and
o = 0.01 for m-RWP/m-ARWP.
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