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Abstract
While autoregressive models dominate natural lan-
guage generation, their application to tabular data
remains limited due to two challenges: 1) tabular
data contains heterogeneous types, whereas au-
toregressive next-token (distribution) prediction
is designed for discrete data, and 2) tabular data
is column permutation-invariant, requiring flexi-
ble generation orders. Traditional autoregressive
models, with their fixed generation order, struggle
with tasks like missing data imputation, where the
target and conditioning columns vary. To address
these issues, we propose Diffusion-nested Non-
autoregressive Transformer (TabNAT), a hybrid
model combining diffusion processes and masked
generative modeling. For continuous columns,
TabNAT uses a diffusion model to parameterize
their conditional distributions, while for discrete
columns, it employs next-token prediction with
KL divergence minimization. A masked Trans-
former with bi-directional attention enables order-
agnostic generation, allowing it to learn the distri-
bution of target columns conditioned on arbitrary
observed columns. Extensive experiments on ten
datasets with diverse properties demonstrate Tab-
NAT’s superiority in both unconditional tabular
data generation and conditional missing data im-
putation tasks.

1. Introduction
The growing demand for synthetic tabular data in critical
applications such as privacy-preserving data sharing and
augmented machine learning pipelines (Fonseca & Bacao,
2023; Hernandez et al., 2022) has spurred significant inter-
est in deep generative models. While multiple architectures,
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including VAEs (Liu et al., 2023), GANs (Xu et al., 2019),
diffusion models (Zhang et al., 2024b), and LLMs (Borisov
et al., 2023) have been explored, the potential of autoregres-
sive modeling the dominant paradigm in language gener-
ation (Mann et al., 2020; Achiam et al., 2023)—remains
underexplored for tabular data. This oversight persists de-
spite tabular data’s natural compatibility with sequential
decomposition: p(x) =

∏D
i=1 p(x

i|x<i) where each xi

represents the i-th column of the table, and x<i denotes
the set of {x1, · · · ,xi−1}. We identify two fundamental
limitations hindering the adoption of autoregressive models:
1) Type-specific modeling mismatch: Traditional autoregres-
sive frameworks excel at handling discrete tokens through
categorical distributions but struggle with continuous values
unless using restrictive parametric assumptions or discretiza-
tions (Gulati & Roysdon, 2023). 2) Order-agnostic genera-
tion: Unlike language, which follows an inherent sequence,
tabular columns exhibit permutation invariance1. Existing
solutions that enforce fixed generation orders (Castellon
et al., 2023) limit flexibility and introduce information loss.
Furthermore, traditional autoregressive models that assume
a fixed generation sequence struggle to adapt flexibly to
tasks such as conditional sampling or missing data imputa-
tion, where the target columns and their conditioning context
may vary.

On the other hand, Diffusion models (Ho et al., 2020; Song
et al., 2021; Karras et al., 2022; Austin et al., 2021; Lou
et al., 2024) are inherently well-suited for continuous data,
as they iteratively denoise Gaussian noise to match the target
distribution without imposing restrictive parametric assump-
tions. However, they struggle with discrete data, requiring
inefficient and less effective adaptations such as embedding
or categorical diffusion (Zhang et al., 2024b). Additionally,
their parallel denoising process eliminates the need for a
predefined generation order, naturally aligning with the per-
mutation invariance of tabular data. While this parallelism
enhances flexibility, it also limits the explicit modeling of
column dependencies – a key strength of autoregressive
approaches (see the comparison in Fig. 1).

To address these challenges, we propose Diffusion-nested
Non-Autoregressive Transformer (TabNAT), a novel frame-
work that seamlessly integrates diffusion and autoregres-

1Column order carries no semantic meaning
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Figure 1: Comparison of Diffusion and Auto-regressive
models: (Left) Diffusion models suited for continuous (cts)
data with parallel generation capabilities, allowing simulta-
neous sampling across timesteps; (Right) An auto-regressive
next-token prediction model designed for discrete (dst) data,
requiring sequential generation one token at a time.

sive approaches for heterogeneous Tabular data generation
(Fig. 2). The core of TabNAT’s dependency modeling lies
in its masked generative architecture, where a bi-directional
masked Transformer learns to generate conditional embed-
dings for target positions, which subsequently guide the
modeling of their conditional distributions. For continuous
columns, TabNAT employs a conditional diffusion model
to capture their distributions based on the generated embed-
dings. For discrete columns, the model directly optimizes
the categorical distributions by minimizing the KL diver-
gence. This unified architecture enables TabNAT to handle
mixed data types naturally and effectively. Furthermore,
its non-autoregressive training paradigm, combined with
flexible autoregressive sampling capabilities, facilitates both
efficient parallel generation and order-aware inference, mak-
ing it versatile for various inference tasks.

We conduct comprehensive experiments on ten tabular
datasets of various data types and scales to verify the efficacy
of the proposed TabNAT. Experimental results comprehen-
sively demonstrate TabNAT ’s superior performance in three
key areas: 1) Statistical Fidelity: The ability of synthetic
data to faithfully recover the ground-truth data distribution;
2) Data Utility: The effectiveness of synthetic data in down-
stream Machine Learning tasks, i.e., Machine Learning
Efficiency and 3) Privacy Protection: Ensuring that the
synthetic data is sampled from the underlying distribution
of the training data rather than being a direct replication. In
missing data imputation tasks, TabNAT achieves remark-
able performance, even surpassing state-of-the-art methods
specifically designed for such tasks. We summarize the

Training Sampling

dataflowmask bidirectional 
dataflow

given generation order

Figure 2: TabNAT supports both continuous and discrete
variables through masked generative modeling. During train-
ing (left), the model learns to predict conditional distribu-
tions for masked positions in parallel. During sampling
(right), the model generates values for masked positions
sequentially following a given generation order. The bidi-
rectional dataflow enables flexible conditioning on both past
and future contexts, combining the benefits of parallel train-
ing with controlled sequential generation.

contributions of this paper as follows:

1) We propose TabNAT, a novel framework that integrates
diffusion models with Bi-directional masked Transformers
for heterogeneous tabular data generation.

2) We develop a unified architecture that seamlessly handles
both continuous and discrete variables through conditional
diffusion modeling and categorical distribution learning,
respectively.

3) Extensive experiments on diverse real-world datasets
demonstrate that TabNAT achieves state-of-the-art perfor-
mance in both unconditional synthetic data generation and
conditional missing data imputation tasks. Our ablation
studies further validate the effectiveness of each component
in our proposed framework.

2. Related Works
Synthetic Tabular Data Generation Generative models
for tabular data have become increasingly important and
have widespread applications (Assefa et al., 2021; Zheng &
Charoenphakdee, 2022; Hernandez et al., 2022). For exam-
ple, CTGAN and TAVE (Xu et al., 2019) deal with mixed-
type tabular data generation using the basic GAN (Goodfel-
low et al., 2014) and VAE (Kingma & Welling, 2013) frame-
work. DP-TBART (Castellon et al., 2023) and TabMT (Gu-
lati & Roysdon, 2023) apply discretization techniques to
numerical columns and then model the data distribution
using Transformers (Vaswani et al., 2017), treating con-
tinuous features as discrete ones. Recently, inspired by
the success of Diffusion models in image generation, a lot
of diffusion-based methods have been proposed, such as
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TabDDPM (Kotelnikov et al., 2023), STaSy (Kim et al.,
2023), CoDi (Lee et al., 2023), and TabSyn (Zhang et al.,
2024b), which have achieved SOTA synthesis quality. The
proposed TabNAT combines Diffusion models and Trans-
formers. It utilizes Transformers to generate conditional
inputs for target columns, employs a conditional diffusion
model to model continuous columns, and uses a categorical
distribution model to handle discrete columns.

(Non-)Autoregressive Models for Continuous Data Au-
toregressive next-token generation is undoubtedly dominant
in text generation (Mann et al., 2020; Achiam et al., 2023).
However, in image generation, although autoregressive mod-
els (Van den Oord et al., 2016; Salimans et al., 2017) were
proposed early on, their pixel-level characteristics limited
their further development. Subsequently, diffusion models,
which are naturally suited to modeling continuous distribu-
tions, have become the most popular method in the field
of image generation. In recent years, some studies have
attempted to use discrete-value image tokens (van den Oord
et al., 2017; Razavi et al., 2019) and employ autoregressive
transformers for image-generation tasks (Kolesnikov et al.,
2022; Tian et al., 2024). However, discrete tokenizers are
both difficult to train and inevitably cause information loss.
To this end, recent work has attempted to combine contin-
uous space diffusion models with autoregressive methods.
For example, Li et al. (2024b) employs an autoregressive
diffusion loss in a causal Transformer for learning image
representations; Li et al. (2024a) proposes using a diffusion
model to model the conditional distribution of the next con-
tinuous image and employs a masked bidirectional attention
mechanism to enable the non-autoregressive generation of
any number of tokens in arbitrary order.

3. Problem Formulation and Notations
In this paper, we always use uppercase boldface (e.g., X)
letters to represent matrices, lowercase boldface letters (e.g.,
x) to represent vectors. Tabular data refers to data orga-
nized in a tabular format consisting of rows and columns.
Each row represents an instance or observation, while each
column represents a feature or variable. In this work, we
consider heterogeneous tabular data that may contain both
numerical and categorical columns or only one of these
types. Let D = {x} denote a tabular dataset, where each
instance x = (x1, x2, . . . , xD) is a D-dimensional vector
representing the values of D columns. We further cate-
gorize the columns into two types: 1) continuous (cts)
columns; 2) discrete (dst) columns. Let Dcts and Ddst

(Dcts +Ddst = D) be the number of continuous/discrete
columns, respectively. Without loss of generality and for
the sake of convenience, we assume that the first Dcts

columns of the table represent continuous variables, while
the remaining Ddst columns represent discrete variables.

Then, correspondingly, we use xcts ∈ RDcts to denote
the continuous columns of x, xi

dst ∈ N to denote the
i-th discrete column of x, where i = 1, · · · , Ddst, then
x = [xcts,x

1
dst, · · · ,x

Ddst
dst ].

4. TabNAT
4.1. Overview

In this section, we introduce the detailed architecture and
implementations of TabNAT for modeling the distribution
of heterogeneous tabular data.

Recall that our objective is to learn the joint distribution
p(x) via distribution decomposition, e.g.,

p(x) = p(xcts,x
1
dst, · · · ,x

Ddst
dst )

= p(xcts)

Dcts∏
i=1

p(xi
dst|xcts,x<i

dst)
(1)

and the corresponding log-likelihood is:

log p(x) = log p(xcts)+

Dcts∑
i=1

log p(xi
dst|xcts,x<i

dst). (2)

Eq. 2 demonstrates that maximizing the likelihood of the
data distribution can be achieved by maximizing the log-
likelihood of each (conditional) distribution under the fac-
torization. Given the permutation invariance property of
tabular data, its joint distribution can be factorized along
any arbitrary ordering. Consequently, this essentially re-
quires us to learn every possible p(xtarget|xj∈S), where
S represents an arbitrary subset of the remaining columns.
TabNAT employs a conditional generative model based on a
bi-directional masked transformer to achieve the aforemen-
tioned objectives. Fig. 3 presents the overall framework of
the proposed TabNAT, which takes a raw table of mixed con-
tinuous and discrete features as input and aims to model the
distribution of masked positions conditioned on unmasked
positions.

4.2. Model Architecture

Preprocessing and Embedding Layer. Raw input tables
are typically unordered and irregularly structured (e.g., con-
taining continuous features with varying scales and text-
based discrete features). Therefore, in addition to the previ-
ously mentioned assumption that the first Dcts columns are
continuous features and the remaining Ddst columns are
discrete features, we first perform separate preprocessing
steps for the continuous and discrete features, respectively.

For continuous columns, we standardize them to have zero
mean and unit variance (i.e., a standard deviation of 1). For
each discrete column i, we apply label encoding to transform
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Figure 3: The overall framework of TabNAT. After prepro-
cessing, an embedding layer first encodes each column into
a vector. The masks are then added to the target columns
(‘age’ and ‘education’). With Bi-direction Transformers’
decoding, the output vectors z are used as conditions for
predicting the distribution of current columns. TabNAT uses
the conditional diffusion loss for continuous columns and
cross-entropy loss for discrete columns. Losses are com-
puted only on the masked positions

them into index codes ranging from 0 to |Ci| − 1, where
|Ci| represents the number of possible categories of the i-
th discrete feature. Thus, we can represent the continuous
features as xcts ∈ RDcts , and the i-th discrete feature as
xi
dst ∈ {0, 1, · · · , Ci − 1}.

Subsequently, we employ distinct continuous and discrete
encoders to transform each type of variable into embeddings
of identical dimensionality. For continuous columns, we
utilize a simple two-layer MLP model (RDcts → Rd) to
map the Dcts-dimensional continuous features into a d-
dimensional embedding. For the i-th discrete column, we
allocate a d-dimensional (learnable) embedding vector to
each distinct category. Finally, for each row of data x in the
table, we obtain an embedding matrix as follows:

H = [hcts,h
1
dst, · · · ,h

Ddst
dst ] ∈ R(1+Ddst)×d, (3)

where hcts ∈ Rd is the embedding vector of xcts, and
hi
dst is the embedding vector of xi

dst, respectively. H as a
sequence of length 1 +Ddst is subsequently taken as the
input of a Bi-directional Masked Transformer.

Position masking. TabNAT utilizes mask embeddings
to mark the target positions to predict. We first uni-
formly sample the number of positions to mask/predict

M ∼ U(1, 1 + Ddst). Given M , we randomly sample
a masking vector mmask ∈ {0, 1}D, s.t.,

∑
i m

i
mask = M .

mi
mask = 1 indicates that position i is masked and = 0

vice versa. Then, the embeddings of masked positions are
replaced with position-specific mask embeddings, e.g.,

Hmask = (1−mmask)⊙H+mmask ⊙M, (4)

where M = [mcts,m
1
dst, · · · ,m

Ddst
dst ] is the masking em-

bedding matrix, and each mcts or mi
dst is a learnable mask

embedding for the corresponding position.

Position encodings. Similar to conventional Trans-
former architectures, TabNAT incorporates position
encoding for each individual position, i.e., P =
[pcts,p

1
dst, · · · ,p

Ddst
dst ] ∈ R(1+Ddst)×d. In our implemen-

tation, we employ learnable positional encodings that are
continuously updated during training. This approach en-
sures permutation invariance for table columns, as these
learnable positional encodings are column-specific and inde-
pendent of the relative positions between different columns.

Bi-directional Transformer. With position encodings
P added to the masked embeddings Hmask, we em-
ploy a Bi-directional Transformer to capture the inter-
relationships among different positions in the sequence,
which subsequently generates an output embedding ma-
trix of identical dimensionality to the input. We let Z =
[zcts, z

1
dst, · · · , z

Ddst
dst ] ∈ R(1+Ddst)×d be the output of the

last layer, where zcts and zidst are the output embeddings
at corresponding positions.

4.3. Loss function and Training

Recall that we aim to learn p(xtarget|xj∈S). Based on
the aforementioned model design, xtarget corresponds to
a masked position, while xj∈S represents the unmasked
positions. Given that each masked position’s correspond-
ing ztarget is inherently a function of the unmasked in-
puts, TabNAT learns p(xtarget|ztarget) as a remedy for
p(xtarget|xj∈S).

Discrete columns. For a discrete column with input xi
dst

and output zidst, the target distribution follows a categor-
ical distribution of dimension |Ci|. Therefore, we employ
a shallow MLP model (Rd → R|Ci|) to map zidst to a |Ci|-
dimensional space, followed by the application of the stan-
dard cross-entropy loss, i.e.,

Li
dst = CE(MLPi

dst(z
i
dst),x

i
dst) (5)

Continuous columns. For the continuous columns, Tab-
NAT utilizes a conditional diffusion model (Karras et al.,
2022; Song et al., 2021) to learn p(xcts|zcts), which has
the following forward process:

xt
cts = x0

cts + σ(t)ε, ε ∼ N (0, I),x0
cts = xcts. (6)
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Algorithm 1 Loss for discrete columns

1: Input: Condition vector zidst, target discrete value xi,
predictor MLPi

dst

2: Output: Loss Li
dst

3: Get x̂i
dst = MLPi

dst(z
i)

4: Compute loss: Li
dst = CE(x̂i

dst,x
i
dst)

Algorithm 2 Loss for continuous columns

1: Input: Condition vector zcts ∈ Rd, target continuous
vector xcts ∈ RDcts

, x-encoder, z-encoder, denoising
network MLPdn

2: Output: Lcts

3: Sample t ∼ p(t)
4: Sample ε ∼ N (0, 1)
5: Get xt

cts = xcts + σ(t) · ε
6: xt

dn = x− encoder(xt
cts)

7: zdn = z − encoder(zcts)
8: tdn = sinusoidal(t)
9: ϵθ(x

t
cts, zcts, t) = MLPdn(xt

dn + zdn + tdn))
10: Compute loss: Lcts = ∥ϵθ(xt

cts, zcts, t)− ε∥22

Then, the corresponding (conditional) reverse process is:

dxt
cts =− 2σ̇(t)σ(t)∇xt

cts
log p(xt

cts|zcts)dt

+
√

2σ̇(t)σ(t)dωt,
(7)

where ωt is the standard Wiener process. σ(t) is the noise
schedule, and σ̇(t) is the derivative of σ(t) w.r.t. t. In this
paper, we set σ(t) = t. Then, a sample can be obtained via
integrating the reverse process from the maximum timestep
t = T until t = 0. We present the algorithms for com-
puting the losses for discrete and continuous columns in
Algorithm 1 and Algorithm 2, respectively.

A diffusion model is learned by using a denoising/score net-
work ϵθ(x

t
cts, zcts, t) to approximate the conditional score

function ∇xt
cts

log p(xt
cts|zcts) (named score-matching).

The final loss function could be reduced to a simple formu-
lation where the denoising network is optimized to approxi-
mate the added noise ε, i.e.,

Lcts = Et∼p(t)Eε∼N (0,I)∥ϵθ(xt
cts, zcts, t)− ε∥2. (8)

In Fig. 4, we illustrate the implementation of our denoising
function. Given that xt

cts ∈ RDcts , zcts ∈ Rd, and t ∈
R possess different dimensionalities, we first project all
of them into a shared space with dimension ddiff. For
xt
cts, and zcts, we use x-encoder and z-encoder, which

are essentially two learnable linear transformations, while
for t, we utilize the ddiff-dimensional sinusoidal timestep
embeddings. After that, they are added and serve as the
input of a denoising MLP, which will subsequently output
ϵθ(x

t
cts, zcts, t). We present the entire training algorithm

of TabNAT in Algorithm 3.

Algorithm 3 TabNAT: Training Process

1: Input: data x = (xcts,x
1
dst, · · · ,x

Ddst
dst )

2: Output: Model parameters
3: hcts = embedding(xcts)
4: for i ∈ 1, 2, · · · , Ddst do
5: hi

dst = embedding(xi
dst)

6: end for
7: Let H = [hcts,h

2
dst, · · · ,h

Ddst
dst ]

8: Generate masking vector mmask

9: Hmask = (1−mmask)⊙H+mmask ⊙M
10: H′ = Hmask +P
11: Z = Transformers(H′)
12: Compute Lcts according to Algorithm 2
13: for i ∈ 1, 2, · · · , Ddst do
14: Compute Li

dst according to Algorithm 1
15: end for
16: L = Lcts ·mmask,cts +

∑Ddst

i=1 Li
dst ·mi

mask,dst

17: Back-propagation to optimize model parameters

𝑧ୡ୲௦

𝑥ୡ୲ୱ௧

𝑡

x-encoder

z-encoder

sinusoidal 
time embeddings

𝑧ୢ୬

𝑥ୢ୬௧

𝑡ୢ୬

MLP 𝞊𝝷ሺ𝑥ୡ୲ୱ௧ , 𝑧ୡ୲௦, tሻ

unmatched
dimension

matched 
dimension

Figure 4: The architecture of the denoising function
ϵθ(x

t
cts, zcts, t). Since xt

cts, zcts, and t have distinct di-
mensions, they are first mapped to the same dimension,
then added as the input of an MLP. The output of the MLP
ϵθ(x

t
cts, zcts, t) is utilized to predict the noise ε

4.4. Inference

After TabNAT is well-trained, we can easily perform a vari-
ety of inference tasks.

Unconditional data generation. To generate uncondi-
tional data examples x ∼ p(x), we can first randomly sam-
ple a generation order, e.g. xcts → x1

dst →, · · · ,→ xDdst
dst .

Starting with all columns masked, we can first generate the
values of all continuous columns, then generate the value of
each discrete column one by one. It is worth emphasizing
that TabNAT supports both traditional autoregressive next-
token prediction and parallel generation of multiple tokens
simultaneously, offering significant advantages in flexibility
and efficiency.

Missing data imputation. Owing to TabNAT ’s inherent
capability to model various possible conditional distribu-
tions, it naturally supports conditional inference tasks, such
as missing value imputation. The process is analogous to
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Table 1: Comparison of different methods regarding the Statistical Fidelity and Machine Learning Efficiency of the
synthetic data. All metrics have been normalized so that lower numbers indicate better performance, to facilitate better
numerical comparison.

Method Statistical Fidelity MLE

Marginal↓ % Joint↓ % α-Precision↓ % β-Recall↓ % C2ST↓ % JSD↓ 10−2 AUC Gap↓ % RMSE Gap↓ %

Interpolation
SMOTE (Chawla et al., 2002) 1.72±1.36 2.95±1.66 3.78±3.94 16.7±9.16 2.26±0.52 0.11±0.10 3.00±3.66 0.15

VAE-based
TVAE (Xu et al., 2019) 15.8±17.1 17.4±18.3 18.2±20.1 70.9±26.3 43.9±22.7 1.01±0.70 6.43±8.10 0.36
GOGGLE (Liu et al., 2023) 17.2±6.28 29.1±11.8 21.8±17.3 90.8±5.64 - - 25.01±6.59 0.46

GAN-based
CTGAN (Xu et al., 2019) 17.9±6.99 18.4±9.11 17.7±15.1 69.1±33.8 53.0±22.5 1.18±0.69 8.46±7.77 0.35

LLM-based
GReaT (Borisov et al., 2023) 12.9±6.05 44.3±27.3 17.2±12.8 53.2±26.0 42.4±19.2 1.43±1.18 1.90±1.93 0.23

Diffusion-based
STaSy (Kim et al., 2023) 14.3±7.40 13.5±9.76 21.8±24.7 55.6±29.6 53.9±16.6 1.25±1.13 2.34±2.24 0.17
CoDi (Lee et al., 2023) 17.4±11.3 15.2±19.8 10.0±5.93 51.7±31.1‘ 44.0±33.3 0.76±0.50 7.08±12.15 0.24
TabDDPM (Kotelnikov et al., 2023) 15.0±25.3 7.92±8.16 23.6±2.93 49.6±34.5 24.6±38.9 1.03±1.60 6.80±16.71 2.23
TabSyn (Zhang et al., 2024b) 1.36±0.67 1.91±0.95 2.06±2.91 43.9±24.3 2.19±1.17 0.12±0.09 1.19±1.02 0.13

(Non)-Autoregressive-based
DP-TBART (Castellon et al., 2023) 3.24±1.76 2.71±1.56 2.11±2.15 48.0±27.8 5.36±4.58 0.16±0.11 2.95±3.04 0.15
Tab-MT (Gulati & Roysdon, 2023) 14.9±15.1 8.11±10.8 23.2±31.9 63.5±38.3 48.6±47.7 0.60±0.83 3.88±4.55 0.92

TabNAT (ours) 1.05±0.39 1.71±0.72 2.01±1.10 48.4±20.1 2.03±1.42 0.09±0.048 0.72±0.9 0.09
Improvement 22.8% 10.5% 4.7% - 10.2% 18.2% 39.5% 30.8%

unconditional generation, with the key difference being that
it now only requires autoregressive generation at the miss-
ing positions in sequential order. It is noteworthy that when
missing values are present in any continuous column, we
mask the entire xcts/hcts vector. With zcts, TabNAT uti-
lizes the RePaint technique (Lugmayr et al., 2022; Zhang
et al., 2024a), which iteratively refines the sampled val-
ues during the reverse denoising process based on the ob-
served continuous columns. The detailed illustration is in
Appendix B.5. We present the experiments of unconditional
data generation and missing data imputation in Sec. 5 and
Sec. 6, respectively.

5. Experiments: Synthetic Tabular Data
Generation

5.1. Experimental Setups

Datasets. We select ten real-world tabular datasets of vary-
ing data types and sizes: 1) two containing only continuous
features – california and letter; 2) two containing only cat-
egorical features – car and nursery; 3) six heterogeneous
datasets of mixed continuous and discrete features – adult,
default, shoppers, magic, news, and beijing. The detailed
introduction of these datasets can be found in Appendix B.2.

Baselines. We compare the proposed TabNAT with ten
powerful synthetic tabular data generation methods belong-
ing to six categories. 1) The non-parametric interpolation
method SMOTE (Chawla et al., 2002). 2) VAE-based meth-
ods TVAE (Xu et al., 2019) and GOGGLE (Liu et al., 2023).
3) GAN-based method CTGAN (Xu et al., 2019). 4) LLM-
based method GReaT (Borisov et al., 2023). 5) Diffusion-
based methods: STaSy (Kim et al., 2023), CoDi (Lee

et al., 2023), TabDDPM (Kotelnikov et al., 2023), and
TabSyn (Zhang et al., 2024b). 6) Autoregressive methods
DP-TBART (Castellon et al., 2023) and Tab-MT (Gulati &
Roysdon, 2023). The proposed TabNAT is close to both
Diffusion and autoregressive methods, since it nests a diffu-
sion model into a (non)-autoregressive framework in order
to handle continuous features.

Evaluation. Following previous works (Zhang et al.,
2024b), we evaluate the quality of synthetic tabular data
across three key dimensions: 1) Statistical Fidelity:
Whether the synthetic data accurately recovers the under-
lying distribution of the ground-truth data. 2) Utility: The
performance of synthetic data in downstream tasks, mea-
sured by Machine Learning Efficiency (MLE). 3) Privacy
Protection: Whether the synthetic data avoids copying real
records, ensuring data privacy. Detailed descriptions of the
evaluation metrics can be found in Appendix B.7. We each
model and dataset, we sample 20 synthetic dataset of the
same size as the training set. More implementation details
are provided in Appendix B.4.

5.2. Main Results

Statistical Fidelity. We first investigate whether synthetic
data can faithfully reproduce the distribution of the original
data. We use various metrics from different aspects, includ-
ing Marginal, Joint, α-Precision, β-Recall, C2ST, and JSD.
Due to space limitations, in this section, we only present
the average performance with standard deviation on each
metric across all ten datasets. The detailed performance on
each individual dataset is in Appendix C.1.

In Table 1, we present the performance comparison on these
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Table 2: Impacts of the key components of TabNAT .

Variants Marginal Joint

with MSE loss 12.31% 18.27%
with Gaussian 5.44% 7.59%

with fixed order 1.86% 2.74%

TabNAT 1.05% 1.71%

Table 3: Impacts of the model depth (number of Transformer
layers) and width (embedding dimension d) on the fidelity
of synthetic data.

Depth Marginal Joint Dim Marginal Joint

2 1.79% 2.85% 8 2.88% 3.79%
4 1.44% 2.37% 16 1.28% 2.09%
6 1.05% 1.71% 32 1.05% 1.71%
8 1.19% 2.13% 64 1.22% 1.93%

fidelity metrics. As demonstrated, TabNAT achieves perfor-
mance far surpassing the second-best method in five out of
six fidelity metrics, with advantages ranging from 10.5% to
39.5%. Considering that these metrics have already reached
a considerably high level due to the rapid development of
recent deep generative models for tabular data, our improve-
ment is substantial. The only exception is β-Recall, on
which the simple interpolation method SMOTE achieves
the best performance. This is because they perform linear or
nonlinear interpolation directly between existing real sam-
ples, so the generated samples will definitely fall within the
support set of the real data distribution, making them more
likely to have similar feature distributions to the real minor-
ity class samples. However, the limitation of interpolation
methods lies in the fact that the synthetic data is too close
to the real data, making it resemble a copy from the training
set rather than a sample from the underlying distribution,
which may cause privacy issues. Detailed experiments are
in the Privacy Protection section.

Utility on Downstream Tasks. We then evaluate the quality
of synthetic data by assessing its performance in the Ma-
chine Learning Efficiency (MLE) task. The performance dif-
ference is measured by the difference between AUC/RMSE
obtained from synthetic data and AUC/RMSE obtained from
real training data. As demonstrated in Table 1, the proposed
TabNAT achieves satisfactory performance on MLE tasks,
yielding over 30% improvement over the most competitive
baselines. These results demonstrate that the synthetic data
generated by TabNAT is comparable to real training data for
training machine learning classification/regression models.

Privacy Protection. Finally, we use the Distance to Closest
Record (DCR) score for measuring the capacity of TabNAT
in privacy protection. In Table 5 and Figure 5, we present
the numerical comparison and the visualizations of the DCR
distributions of SMOTE, TabDDPM, TabSyn, DP-TBART,

Table 4: Comparison of training, sampling time, and fidelity
metrics of different methods on Adult dataset.

Method Training Sampling Marginal Joint

CTGAN 1030s 0.8621s 17.9% 18.4%
TVAE 353s 0.5118s 15.8% 17.4%
GReaT 2h 27min 2min 19s 12.9% 44.3%
STaSy 2283s 8.941s 14.3% 13.5%
CoDi 2h 56min 4.616s 17.4% 15.2%
TabDDPM 1031s 28.92s 15.0% 7.92%
TabSyn 2422s 11.84s 1.36% 1.91%
DP-TBART 1855s 2.11s 3.24% 2.71%
Tab-MT 1882s 2.18s 14.9% 8.11%

TabNAT 2754s 15.69s 1.05% 1.71%

and the proposed TabNAT. As demonstrated, SMOTE per-
forms poorly in privacy protection, as its synthetic sample
tends to be closer to the training set rather than the holdout
set, since its synthetic examples are obtained via interpola-
tion between training examples. By contrast, the remaining
deep generative methods are all effective at preserving the
privacy of the training data, resulting in almost completely
overlapped DCR distributions between the training set and
the holdout set.

5.3. Ablation Studies

Effects of the key components of TabNAT . We first study
if TabNAT benefits from 1) the diffusion loss and 2) arbi-
trary generation order in the synthetic data generation task.
To validate the importance of the diffusion loss, we con-
sider two alternative approaches: (1) directly predicting the
values of continuous columns using an MSE loss, and (2)
parameterizing the conditional probability of each contin-
uous column as a Gaussian distribution, with the model
predicting its parameters. To investigate the benefits of arbi-
trary generation order, we employed fixed causal masking
during training based on the default column ordering of the
table and generated synthetic tables following this prede-
fined sequence. In Table 2, we compare TabNAT with the
three variants on the average synthetic data’s fidelity w.r.t.
Marginal and Joint across all the datasets. We can observe
that both the diffusion loss and random training/generation
order are important to TabNAT ’s success. Specifically, the
diffusion loss targeting the modeling of the conditional dis-
tribution of the continuous columns contributes the most,
and the random ordering further improves TabNAT ’s perfor-
mance. Furthermore, random ordering enables TabNAT to
perform flexible conditional inference tasks like imputation.

Sensitivity to hyperparameters. We then study TabNAT ’s
sensitivity to its hyperparameters that specify its transformer
architecture: the model depth (number of Transformer lay-
ers) and the embedding dimension d. From Table 3, we can
observe that although there is an optimal hyperparameter set-
ting (i.e., depth = 6, d = 32), changes in these two hyperpa-
rameters do not significantly harm the model’s performance.
These results demonstrate that our model is relatively robust
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Table 5: Probability that a syn-
thetic example’s DCR to the train-
ing set is smaller than that of the
holdout set, a value closer to 50%
is better.

Method Default Shoppers

SMOTE 91.41% 96.40%
TabDDPM 51.30% 51.74%

TabSyn 50.88% 51.50%
DP-TBART 50.83% 51.27%

TabNAT 51.13% 50.97%
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Figure 6: (30% MCAR) Comparison of missing value imputation performance with SOTA imputation methods on five
heterogeneous datasets. Top: Average MAE on continuous features. Bottom: Average Accuracy on discrete features.

to these hyperparameters. Therefore, good results can be
obtained for different datasets without the need for specific
hyperparameter tuning.

Comparison of training/sampling time. In Table 4, we
compare the training and sampling time of TabNAT with
other methods on the Adult dataset, which contains 6 con-
tinuous columns, 8 discrete columns and 22, 792 samples.

As shown in the table results, despite employing a dual
architecture combining diffusion and autoregressive mod-
eling, TabNAT ’s training speed does not significantly lag
behind other competitive models such as TabSyn and DP-
TBART. In terms of sampling efficiency, since the primary
computational overhead lies in the diffusion process for
continuous features, and TabNAT requires only a single dif-
fusion pass to sample all continuous columns, its sampling
speed is comparable to TabSyn. Considering the substantial
improvement in synthetic data quality achieved by TabNAT,
this trade-off is highly justified.

6. Experiments: Missing Data Imputation
6.1. Experimental Setups

Datasets. We select five datasets in Sec. 5.1 that contain
heterogeneous data types: Adult, Default, Shoppers, News,
and Beijing. Since TabNAT is not primarily designed for this
task, we only consider an out-of-sample imputation setting,
where the complete training data is observable, and we aim
to predict the missing entries in the testing set. The missing
data mechanism follows Missing Completely at Random
(MCAR), with a missing rate of 30% applied to the test set.
Specifically, each column has an independent probability of
0.3 of containing missing values.

Baselines. We compare the proposed TabNAT with the state-
of-the-art (SOTA) methods for missing data imputation,
including KNN (Pujianto et al., 2019), GRAPE (You et al.,
2020), MOT (Muzellec et al., 2020), HyperImpute (Jarrett
et al., 2022) and Remakser (Du et al., 2024).
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6.2. Main Results

In Figure 6, we present the performance comparison on each
of the five datasets as well as the average imputation perfor-
mance. Since these datasets contain both continuous and dis-
crete features, we employ the Mean Absolute Error (MAE)
metric to evaluate imputed continuous features, while using
accuracy as the evaluation metric for discrete features. As
demonstrated, the proposed model exhibits superior per-
formance across all five datasets, achieving comparable or
better results than current state-of-the-art methods for each
data category within each dataset. These results confirm that
TabNAT is not only suitable for unconditional generation
but also applicable to other conditional generation tasks,
demonstrating a wide range of application values.

7. Visualizations
In this section, we visualize the synthetic data to demon-
strate that the proposed TabNAT can generate synthetic data
that closely resembles the ground-truth distribution. In Fig-
ure 7 and Figure 8, we plot the 2D joint distribution of two
columns of the Adult and California datasets to investigate if
the ground-truth joint distribution density can be learned by
the synthetic data. In Figure 9, we further plot the heatmaps
of the estimation error of column pair correlations. These
results visually demonstrate that TabNAT can generate syn-
thetic samples very close to the distribution of real data and
faithfully reflect the correlations between different columns
of the data.

8. Conclusion
We present TabNAT, a generative model that nests a diffu-
sion model within a bidirectional transformer framework
used for heterogeneous tabular data synthesis. TabNAT uses
a conditional diffusion loss and traditional cross-entropy
loss to learn the conditional distributions of continuous
columns and discrete columns, respectively, enabling a sin-
gle model to generate both continuous and discrete features
simultaneously. Furthermore, TabNAT employs masked
bidirectional attention to simulate arbitrary autoregressive
orders, allowing the model to generate in any direction. This
not only enhances the accuracy of joint probability modeling
but also enables more flexible conditional generation.
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A. Diffusion SDEs
This paper adopts the simplified version of the Variance-
Exploding SDE in (Song et al., 2021). Song et al. (2021)
has proposed the following general-form forward SDE:

dx = f(x, t)dt+g(t) dwt = dx = f(t) x dt+g(t) dwt.
(9)

Then the conditional distribution of xt given x0 (named as
the perturbation kernel of the SDE) could be formulated as:

p(xt|x0) = N (xt; s(t)x0, s
2(t)σ2(t)I), (10)

where

s(t) = exp

(∫ t

0

f(ξ)dξ

)
, and σ(t) =

√∫ t

0

g2(ξ)

s2(ξ)
dξ.

(11)
Therefore, the forward diffusion process could be equiva-
lently formulated by defining the perturbation kernels (via
defining appropriate s(t) and σ(t)).

Variance Exploding (VE) implements the perturbation ker-
nel Eq. 10 by setting s(t) = 1, indicating that the noise
is directly added to the data rather than weighted mixing.
Therefore, the noise variance (the noise level) is totally de-
cided by σ(t). When s(t) = 1, the perturbation kernels
become:

p(xt|x0) = N (xt;0, σ
2(t)I) ⇒ xt = x0 + σ(t)ε, (12)

which aligns with the forward diffusion process in Eq. 9.

The sampling process of diffusion SDE is given by:

dx = [f(x, t)− g2(t)∇x log pt(x)]dt+ g(t)dwt. (13)

For VE-SDE, s(t) = 1 ⇔ f(x, t) = f(t) · x = 0, and

σ(t) =

√∫ t

0

g2(ξ)dξ ⇒
∫ t

0

g2(ξ)dξ = σ2(t),

g2(t) =
dσ2(t)

dt
= 2σ(t)σ̇(t),

g(t) =
√
2σ(t)σ̇(t).

(14)

Plugging g(t) into Eq. 13, the reverse process is recovered
as:

dxt = −2σ(t)σ̇(t)∇xt
log p(xt)dt+

√
2σ(t)σ̇(t)dωt.

(15)

The conditional version of the reverse process shown in Eq. 7
is obtained via replacing ∇xt

p(xt)dt with ∇xt
p(xt|z)dt.

B. Detailed Experimental Setups
B.1. Hardware Specification and Environment

We run our experiments on a single machine with Intel i9-
14900K, Nvidia RTX 4090 GPU with 24 GB memory. The

code is written in Python 3.10.14 and we use PyTorch 2.2.2
on CUDA 12.2 to train the model on the GPU.

B.2. Datasets

The dataset used in this paper could be automatically down-
loaded using the script in the provided code. We use 10
tabular datasets from Kaggle2 or UCI Machine Learning
Repository3: Adult4, Default5, Shoppers6, Magic7, Beijing8,
and News9, California10, Letter11, Car12, and Nursery13,
which contains varies number of numerical and categori-
cal features. The statistics of the datasets are presented in
Table 6.

In Table 6, # Rows denote the number of rows (records) in
the table. # Continuous and # Discrete denote the number
of continuous features and discrete features, respectively.
Note that there is an additional # Target column. The target
columns are either continuous or discrete, depending on the
task type. All datasets (except Adult) are split into training
and testing sets with the ratio 9 : 1 with a fixed random
seed. As Adult has its official testing set, we directly use it
as the testing set. For Machine Learning Efficiency (MLE)
evaluation, the training set will be further split into training
and validation split with the ratio 8 : 1.

B.3. Detailed Model Architectures

In this section, we introduce the detailed architecture of
TabNAT.

Data Preprocessing. Then continuous columns are trans-
formed to follow a normal distribution by QuantileTrans-

2https://www.kaggle.com
3https://archive.ics.uci.edu/datasets
4https://archive.ics.uci.edu/dataset/2/

adult
5https://archive.ics.uci.edu/dataset/350/

default+of+credit+card+clients
6https://archive.ics.uci.edu/dataset/

468/online+shoppers+purchasing+intention+
dataset

7https://archive.ics.uci.edu/dataset/159/
magic+gamma+telescope

8https://archive.ics.uci.edu/dataset/381/
beijing+pm2+5+data

9https://archive.ics.uci.edu/dataset/332/
online+news+popularity

10https://www.kaggle.com/datasets/
camnugent/california-housing-prices

11https://archive.ics.uci.edu/dataset/59/
letter+recognition

12https://archive.ics.uci.edu/dataset/19/
car+evaluation

13https://archive.ics.uci.edu/dataset/76/
nursery
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Table 6: Dataset statistics.

Dataset # Rows # Continuous # Discrete # Target # Train # Test MLE Task

California 20, 640 9 - 1 18, 390 2, 520 Classification
Letter 20, 000 16 - 1 18, 000 2, 000 Classification

Car 1, 728 - 7 1 1, 555 173 Classification
Nursery 12, 960 - 9 1 11, 664 1, 296 Classification

Adult 32, 561 6 8 1 22, 792 16, 281 Classification
Default 30, 000 14 10 1 27, 000 3, 000 Classification
Shoppers 12, 330 10 7 1 11, 098 1, 232 Classification
Magic 19, 021 10 1 1 17, 118 1, 903 Classification
Beijing 43, 824 7 5 1 39, 441 4, 383 Regression
News 39, 644 46 2 1 35, 679 3, 965 Regression

former14 and discrete columns are encoded as integers by
OrdinalEncoder15. Finally, we normalize the continuous
features to have zero mean and unit variance.

B.3.1. TRANSFORMER PART

Embedding layer We use an embedding layer to trans-
form the continuous features and each discrete feature into
the same embedding dimension d.

• For the continuous features xcts ∈ RDcts , we use
a simple two-layer MLP to map xcts ∈ RDcts to
zcts ∈ Rd. The MLP has hidden dimensions Dcts →
Dcts → d → d with SiLU activations.

• For each discrete column xi
dst, we assign a learnable

embedding vector ∈ Rd for every possible category.

Transformer layers After embedding and masking, we
add column-wise positional encoding to each token embed-
ding. Furthermore, we append the [pad] token embedding
at the beginning of the obtained data sequence. The pro-
posed data will be further processed by a series of Trans-
former blocks.

We use ViT (Dosovitskiy, 2021) as the backbone of the
Transformer layers, which consists of multiple Transformer
blocks (Vaswani et al., 2017). Each Transformer block
contains a multi-head self-attention mechanism and a feed-
forward network. Specifically, we use a stack of six Trans-
former blocks with four attention heads.

14https://scikit-learn.org/stable/
modules/generated/sklearn.preprocessing.
QuantileTransformer.html

15https://scikit-learn.org/stable/
modules/generated/sklearn.preprocessing.
OrdinalEncoder.html

Predictors. Given the output embeddings from the Trans-
former layers, i.e., zcts and zidst, we predict the distribution
of the corresponding column(s) conditioned on z

For each discrete column, we apply a simple MLP predictor
MLPi

dst(·), each being a two-layer MLP with hidden dimen-
sions d → d → |Ci

dst| with SiLU activation. |Ci
dst| is the

number of possible categories of the i-th discrete columns.

For the continuous columns, zcts will be used as the con-
dition of the diffusion model, and we defer this part to
Appendix B.3.2.

B.3.2. DIFFUSION PART

In this section, we introduce the architecture of the diffusion
model. In a nutshell, we use simple MLPs as our denoising
neural network, which is similar to the design in Zhang et al.
(2024b) and (Kotelnikov et al., 2023), the only difference
is our denoising network takes an additional input zi as the
conditional information.

Encoders. Given xt
cts ∈ RDcts , zcts ∈ Rd, and t ∈

R, we use several encoders to map them into the same
dimension ddiff for diffusion.

• For xt
cts ∈ RDcts , x-encoder is a linear transformation

from RDcts to Rddiff , xt
dn = x− encoder(xt

cts)

• For zcts ∈ Rd, z-encoder is a linear transformation
from Rd to Rddiff , zdn = z − encoder(zcts)

• For t ∈ R, we use sinusoidal timestep embedding of
dimension ddiff directly. tdn = sinusoidal(t)

Denoising MLP. The denoising neural network takes the
summation of xt

dn, zdn, and tdn as input. The neural net-
work is a four-layer MLP with SiLU activations, and has
the following hidden dimensions ddiff → 2 × ddiff →
2× ddiff → ddiff.
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B.4. Hyperparameters.

TabNAT uses a fixed set of hyperparameters for all
datasets. Table 7 shows the hyperparameters. Our experi-
ments show that TabNAT is robust to the choice of hyper-
parameters, saving the time of meticulous hyperparameter
tuning for each dataset.

Type Parameter Value

Training

optimizer Adam
initial learning rate 1e-3

weight decay 1e-6
LR scheduler ReduceLROnPlateau

training epochs 5000
batch size 1024

Transformers

#Transformer blocks 6
embedding dim d 32

diffusion dimension ddiff 512
#heads 4

Table 7: Default hyperparameter setting of TabNAT .

B.5. Missing Data Imputation

We formulate missing data imputation as a conditional gen-
eration task. For each data example with missing entries, we
use TabNAT to sample all the missing entries for 20 times,
then use the average of the 20 samples as the predicted
imputations.

For a data sample of missing entries, we generate its con-
ditional example following a random order. At each step,
if the target position is a discrete distribution, we directly
sample from the categorical distribution given by zidst:

Softmax(MLPi
dst(z

i
dst)) (16)

If a continuous column is missing, we mask the entire con-
tinuous columns to generate zcts, and sample the miss-
ing continuous columns using RePaint technique (Lugmayr
et al., 2022; Zhang et al., 2024b).

Let’s denote xcts known continuous columns as xknown,
and the missing ones as xunknown, the reverse step is mod-
ified as a mixture of the known part’s forwarding and the
unknown part’s denoising:

x
ti−1

known = xcts + σ(ti−1)ε, ε ∼ N (0, I),

x
ti−1

unknown = xti
cts +

∫ ti−1

ti

dxti
cts,

x
ti−1

cts = (1−m)⊙ x
ti−1

known +m⊙ x
ti−1

unknown,

where dxt
cts = −σ̇(t)σ(t)∇xt

cts
log p(xt

cts|zcts)dt

+
√
σ̇(t)σ(t)dωt,

(17)

and m is the mask indicator vector, whose 1-entries indicate
the unknown locations while 0-entries indicate the known
locations.

The values of unknown continuous columns can be gradu-
ally sampled via the reverse process in Eq. 17, conditioned
on the known continuous columns.

B.6. Baseline Implementations

Tab-MT and DP-TBART. Tab-MT (Gulati & Roysdon,
2023) and DP-TBART (Castellon et al., 2023) are two re-
cently proposed tabular data generation models based on
MAE. To handle numerical features (with continuous dis-
tribution), Tab-MT quantizes the numerical features into
100 uniform bins, and DP-TBART quantizes the numerical
features into 100 bins where each bin has the same nearest
center determined by K-means. Additionally, DP-TBART
employs DP-SGD (Abadi et al., 2016) to enhance the differ-
ential privacy performance. Since the focus of this paper is
not on differential privacy, in our implementation, we use
Adam (Kingma & Ba, 2015) optimizer.

Other Baselines. The implementations of
SMOTE (Chawla et al., 2002), CTGAN (Xu et al.,
2019), TVAE (Xu et al., 2019), GOOGLE16 (Liu et al.,
2023), GReaT (Borisov et al., 2023), CoDi (Lee et al.,
2023), STaSy (Kim et al., 2023), TabDDPM (Kotelnikov
et al., 2023), TabSyn (Zhang et al., 2024b) follows the
codebase of Zhang et al. (2024b)17.

B.7. Metrics

Most of the metrics (including Marginal, Joint, α-Precision,
β-Recall, C2ST, MLE, and DCR) used in this paper di-
rectly follow the setups in Zhang et al. (2024b). Here is a
reference:

• Marginal: Appendix E.3.1 in Zhang et al. (2024b).

• Joint: Appendix E.3.2 in Zhang et al. (2024b).

• α-Precision and β-Recall: Appendix F.2 in Zhang et al.
(2024b).

• C2ST: Appendix F.3 in Zhang et al. (2024b).

• MLE: Appendix E.4 in Zhang et al. (2024b).

• DCR: Appendix F.6 in Zhang et al. (2024b).

Below is a summary of how these metrics work.

16We find the result of GOOGLE is hard to reproduce due
to memory issues, so we directly use the results in Zhang et al.
(2024b)

17https://github.com/amazon-science/
tabsyn/tree/main/baselines
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B.7.1. MARGINAL DISTRIBUTION

The Marginal metric evaluates if each column’s marginal
distribution is faithfully recovered by the synthetic data. We
use Kolmogorov-Sirnov Test for continuous data and Total
Variation Distance for discrete data.

Kolmogorov-Sirnov Test (KST) Given two (continuous)
distributions pr(x) and ps(x) (r denotes real and s denotes
synthetic), KST quantifies the distance between the two
distributions using the upper bound of the discrepancy be-
tween two corresponding Cumulative Distribution Functions
(CDFs):

KST = sup
x

|Fr(x)− Fs(x)|, (18)

where Fr(x) and Fs(x) are the CDFs of pr(x) and ps(x),
respectively:

F (x) =

∫ x

−∞
p(x)dx. (19)

Total Variation Distance (TVD) TVD computes the fre-
quency of each category value and expresses it as a probabil-
ity. Then, the TVD score is the average difference between
the probabilities of the categories:

TVD =
1

2

∑
ω∈Ω

|R(ω)− S(ω)|, (20)

where ω describes all possible categories in a column Ω.
R(·) and S(·) denotes the real and synthetic frequencies of
these categories.

B.7.2. JOINT DISTRIBUTION

The Joint metric evaluates if the correlation of every two
columns in the real data is captured by the synthetic data.

Pearson Correlation Coefficient The Pearson correlation
coefficient measures whether two continuous distributions
are linearly correlated and is computed as:

ρx,y =
Cov(x, y)

σxσy
, (21)

where x and y are two continuous columns. Cov is the
covariance, and σ is the standard deviation.

Then, the performance of correlation estimation is measured
by the average differences between the real data’s correla-
tions and the synthetic data’s corrections:

Pearson Score =
1

2
Ex,y|ρR(x, y)− ρS(x, y)|, (22)

where ρR(x, y) and ρS(x, y)) denotes the Pearson corre-
lation coefficient between column x and column y of the
real data and synthetic data, respectively. As ρ ∈ [−1, 1],

the average score is divided by 2 to ensure that it falls in
the range of [0, 1], then the smaller the score, the better the
estimation.

Contingency similarity For a pair of categorical columns
A and B, the contingency similarity score computes the
difference between the contingency tables using the Total
Variation Distance. The process is summarized by the for-
mula below:

Contingency Score =
1

2

∑
α∈A

∑
β∈B

|Rα,β − Sα,β |, (23)

where α and β describe all the possible categories in column
A and column B, respectively. Rα,β and Sα,β are the joint
frequency of α and β in the real data and synthetic data,
respectively.

B.7.3. α-PRECISION AND β-RECALL

α-Precision and β-Recall are two sample-level metrics quan-
tifying how faithful the synthetic data is proposed in Alaa
et al. (2022). In general, α-Precision evaluates the fidelity
of synthetic data – whether each synthetic example comes
from the real-data distribution, β-Recall evaluates the cov-
erage of the synthetic data, e.g., whether the synthetic data
can cover the entire distribution of the real data (In other
words, whether a real data sample is close to the synthetic
data).

B.7.4. CLASSIFIER-TWO-SAMPLE-TEST (C2ST)

C2ST studies how difficult it is to distinguish real data from
synthetic data, therefore evaluating whether synthetic data
can recover real data distribution. The C2ST metric used in
this paper is implemented by the SDMetrics18 package.

B.7.5. MACHINE LEARNING EFFICIENCY (MLE)

In MLE, each dataset is first split into the real training and
testing set. The generative models are learned on the real
training set. After the models are learned, a synthetic set of
equivalent size is sampled.

The performance of synthetic data on MLE tasks is evalu-
ated based on the divergence of test scores using the real and
synthetic training data. Therefore, we first train the machine
learning model on the real training set, split into training
and validation sets with a 8 : 1 ratio. The classifier/regressor
is trained on the training set, and the optimal hyperparame-
ter setting is selected according to the performance on the
validation set. After the optimal hyperparameter setting is
obtained, the corresponding classifier/regressor is retrained
on the training set and evaluated on the real testing set. We

18https://docs.sdv.dev/sdmetrics/metrics/
metrics-in-beta/detection-single-table
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create 20 random splits for training and validation sets, and
the performance reported is the mean of the AUC/RMSE
score over the 20 random trails. The performance of syn-
thetic data is obtained in the same way.

B.7.6. DISTANCE TO CLOSEST RECORD

We follow the ‘synthetic vs. holdout’ setting 19. We initially
divide the dataset into two equal parts: the first part served
as the training set for training our generative model, while
the second part was designated as the holdout set, which is
not used for training. After completing model training, we
sample a synthetic set of the same size as the training set
(and the holdout set).

We then calculate the DCR scores for each sample in the
synthetic set concerning both the training set and the hold-
out set. We further calculate the probability that a synthetic
sample is closer to the training set (rather than the holdout
set). When this probability is close to 50% (i.e., 0.5), it
indicates that the distribution of distances between synthetic
and training instances is very similar (or at least not system-
atically smaller) than the distribution of distances between
synthetic and holdout instances, which is a positive indicator
in terms of privacy risk.

C. Additional Experimental Results
In this section, we provide a more detailed empirical com-
parison between the proposed TabNAT and other baseline
methods.

C.1. Detailed Results on the Fidelity Metrics

Note that in Table 1, we only present the average perfor-
mance of each method on the six fidelity metrics across the
ten datasets. In this section, we present a detailed perfor-
mance comparison of each individual dataset:

• Marginal Distribution: Table 8

• Joint Correlation: Table 9

• α-Precision: Table 10

• β-Recall: Table 11

• Classifier-Two-Sample-Test: Table 12

• Jensen-Shannon Divergence: Table 13

19https://www.clearbox.ai/blog/
2022-06-07-synthetic-data-for-privacy-\
preservation-part-2

C.2. Detailed Results on Machine Learning Efficiency

Similarly, in Table 14, we present the detailed comparison
table on Machine Learning Efficiency task.
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Table 8: Performance comparison on the Marginal Distribution Density metric. Numbers represent the error rate in %, the
lower the better.

Method Continuous only Discrete only Heterogeous

California Letter Car Nursery Adult Beijing Default Magic News Shoppers

interpolation
SMOTE 0.99 0.97 1.00 0.57 1.59 1.78 1.49 1.07 5.28 2.48

VAE-based
TVAE 5.37 16.70 24.12 9.81 24.32 25.13 9.94 4.39 18.48 23.93

GAN-based
CTGAN 12.84 18.79 16.46 12.33 19.32 21.98 18.25 5.69 13.90 25.71

LLM-based
GReaT 14.93 4.88 2.22 5.08 12.12 8.25 19.94 16.16 − 14.51

Diffusion-based
STaSy 10.82 11.93 24.38 10.93 10.41 6.38 11.34 13.02 8.54 16.14
CoDi 18.98 22.62 1.53 0.65 24.84 12.54 16.54 11.64 28.13 36.48
TabDDPM 57.34 61.43 1.53 0.65 1.32 1.20 7.59 1.09 − 2.86
TabSyn 1.00 2.53 2.48 1.04 0.58 1.12 0.85 0.88 1.64 1.45

Autoregressive
DP-TBART 3.30 4.46 1.98 0.53 1.17 2.68 5.03 3.90 6.28 3.05
Tab-MT 5.87 3.29 0.96 0.70 17.20 25.10 25.17 21.88 46.54 2.20

TabNAT 0.99 1.79 1.31 0.73 0.59 0.80 0.65 0.80 1.47 1.32

C.3. Visualizations

We present the 2D visualizations of the synthetic data gen-
erated by all baseline methods in Figure 10 and Figure 11,
respectively. We also present the heat maps of all methods
on the four datasets in Figure 12, Figure 13, Figure 14, and
Figure 15, respectively.
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Table 9: Performance comparison on the Joint Column Correlation metric. Numbers represent the error rate in %, the low
the better.

Method Continuous only Discrete only Heterogeous

California Letter Car Nursery Adult Beijing Default Magic News Shoppers

interpolation
SMOTE 2.70 1.19 3.16 1.21 3.56 1.53 6.93 2.84 2.87 3.53

VAE-based
TVAE 5.85 5.28 38.66 18.34 36.65 31.12 19.37 4.46 6.45 20.12

GAN-based
CTGAN 14.49 11.40 25.63 18.14 27.35 27.08 30.52 5.04 5.22 24.24

LLM-based
GReaT 9.66 3.46 4.72 8.38 17.59 59.60 70.02 59.96 − 45.16

Diffusion-based
STaSy 3.59 5.34 36.40 15.02 13.50 8.71 10.65 5.58 3.06 15.29
CoDi 6.89 5.25 3.52 1.31 22.72 6.42 67.88 6.93 10.81 20.18
TabDDPM 19.83 22.35 3.52 1.31 2.50 3.31 11.55 0.67 − 6.23
TabSyn 0.78 1.78 4.28 1.85 1.54 2.24 2.05 1.06 1.44 2.07

Autoregressive
DP-TBART 2.52 1.94 3.54 1.19 2.50 2.55 6.70 1.73 1.60 2.83
Tab-MT 5.87 3.29 0.96 0.70 17.20 25.10 25.17 21.88 46.54 2.20

TabNAT 0.61 1.45 2.99 1.36 1.36 2.27 2.83 1.86 1.50 1.89

Table 10: Performance comparison on the α-Precision metric. Numbers represent 1− α-Precision. The lower the better.
Note that the numbers in Table 1 are in % while numbers in this table are in raw scale.

Method Continuous only Discrete only Heterogeous

California Letter Car Nursery Adult Beijing Default Magic News Shoppers

interpolation
SMOTE 0.0173 0.0222 0.0103 0.0040 0.0729 0.0118 0.0228 0.0186 0.1256 0.0725

VAE-based
TVAE 0.0191 0.0937 0.2322 0.0972 0.4124 0.1100 0.1610 0.0338 0.1530 0.5655

GAN-based
CTGAN 0.2933 0.0522 0.1023 0.0677 0.2528 0.0723 0.3595 0.1106 0.0177 0.1292

LLM-based
GReaT 0.1665 0.0891 0.0262 0.0836 0.4421 0.0168 0.1410 0.1454 1.0000 0.2112

Diffusion-based
STaSy 0.8385 0.0158 0.3347 0.1385 0.2250 0.0350 0.1320 0.1853 0.0809 0.1656
CoDi 0.1333 0.0963 0.0323 0.0037 0.1805 0.0471 0.1722 0.1434 0.1041 0.0825
TabDDPM 0.8385 1.0000 0.0323 0.0037 0.0444 0.0130 0.0924 0.0146 1.0000 0.0807
TabSyn 0.0062 0.0998 0.0206 0.0056 0.0048 0.0153 0.0074 0.0062 0.0320 0.0084

Autoregressive
DP-TBART 0.0256 0.0427 0.0093 0.0054 0.0054 0.0049 0.0727 0.0160 0.0149 0.0145
Tab-MT 0.0239 0.0415 0.0140 0.0146 0.1776 0.4839 0.0581 0.5507 0.9369 0.0158

TabNAT 0.0080 0.0383 0.0190 0.0052 0.0133 0.0032 0.0073 0.0050 0.0784 0.0233
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Table 11: Performance comparison on the β-Recall metric. Numbers represent 1− β-Recall. The lower the better. Note
that the numbers in Table 1 are in % while numbers in this table are in raw scale.

Method Continuous only Discrete only Heterogeous

California Letter Car Nursery Adult Beijing Default Magic News Shoppers

Interpolation
SMOTE 0.2157 0.1338 0.0045 0.0012 0.2325 0.2080 0.2390 0.1934 0.2011 0.2386

VAE-based
TVAE 0.6512 0.8324 0.4369 0.2625 0.8969 0.9392 0.7078 0.6243 0.7413 0.7672

GAN-based
CTGAN 0.8412 0.9903 0.9879 0.0530 0.8246 0.6230 0.8889 0.8472 0.7732 0.7441

LLM-based
GReaT 0.5515 0.6643 0.0034 0.0024 0.5088 0.5666 0.5796 0.6509 1.0000 0.5510

Diffusion-based
STaSy 0.9288 0.7332 0.1075 0.0029 0.6812 0.5061 0.6421 0.5686 0.6033 0.7174
CoDi 0.5998 0.4551 0.0040 0.0009 0.9032 0.4472 0.7811 0.5139 0.6505 0.8187
TabDDPM 0.9288 1.0000 0.0040 0.0009 0.5152 0.4335 0.6150 0.5206 1.0000 0.4492
TabSyn 0.5706 0.7486 0.0031 0.0007 0.5244 0.4416 0.5200 0.5197 0.5496 0.5105

Autoregressive
DP-TBART 0.6138 0.8859 0.0038 0.0010 0.5033 0.4536 0.5562 0.6044 0.6532 0.5285
Tab-MT 0.6272 0.8385 0.0067 0.0008 0.9681 0.4930 0.9179 0.9844 1.0000 0.5105

TabNAT 0.5038 0.4562 0.0040 0.0008 0.4928 0.4249 0.5162 0.4590 0.5277 0.4561

Table 12: Performance comparison on the C2ST metric. Numbers represent 100× (1− C2ST) (i.e. in base of 10−2). The
lower the better.

Method Continuous only Discrete only Heterogeous

California Letter Car Nursery Adult Beijing Default Magic News Shoppers

interpolation
SMOTE 0.61 0.00 0.00 0.00 3.05 0.44 7.69 1.93 6.49 9.80

VAE-based
TVAE 12.48 22.27 70.30 52.73 72.39 45.53 41.65 12.07 60.27 70.04

GAN-based
CTGAN 50.11 82.40 59.59 48.63 36.79 56.82 64.60 14.15 27.64 48.86

LLM-based
GReaT 28.38 16.14 6.05 18.41 46.24 31.07 52.90 56.74 − 57.15

Diffusion-based
STaSy 54.61 47.75 78.52 40.43 54.02 23.48 49.29 53.97 50.21 62.20
CoDi 47.48 42.85 0.00 0.22 80.02 15.70 52.37 27.70 91.62 81.84
TabDDPM 88.01 96.86 0.00 0.22 3.95 3.29 11.75 0.95 − 16.37
TabSyn 0.71 3.18 2.90 2.88 8.05 3.60 1.33 0.08 1.77 3.05

Autoregressive
DP-TBART 3.89 11.07 0.07 0.00 0.81 3.63 7.41 5.01 12.96 8.73
Tab-MT 8.71 9.34 0.37 0.00 99.86 99.97 91.62 74.47 100.00 1.47

TabNAT 1.27 0.55 0.00 0.74 1.30 1.55 3.43 0.1100 7.70 3.74
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Table 13: Performance comparison on the Jensen-Shannon Divergence (JSD) metric. The lower the better. Note that the
numbers in Table 1 are in % while numbers in this table are in raw scale.

Method Continuous only Discrete only Heterogeous

California Letter Car Nursery Adult Beijing Default Magic News Shoppers

interpolation
SMOTE 0.0006 0.0006 0.0013 0.0008 0.0008 0.0003 0.0006 0.0008 0.0040 0.0015

VAE-based
TVAE 0.0041 0.0072 0.0323 0.0132 0.0078 0.0077 0.0052 0.0036 0.0109 0.0107

GAN-based
CTGAN 0.0182 0.0135 0.0220 0.0165 0.0038 0.0033 0.0114 0.0056 0.0078 0.0066

LLM-based
GReaT 0.0111 0.0022 0.0030 0.0068 0.0182 0.0023 0.0076 0.0107 − 0.0056

Diffusion-based
STaSy 0.0380 0.0057 0.0326 0.0146 0.0041 0.0030 0.0055 0.0107 0.0070 0.0086
CoDi 0.0152 0.0085 0.0020 0.0009 0.0073 0.0017 0.0067 0.0142 0.0092 0.0103
TabDDPM 0.0380 0.0382 0.0020 0.0009 0.0004 0.0092 0.0008 0.0013 − 0.0019
TabSyn 0.0006 0.0017 0.0033 0.0014 0.0004 0.0012 0.0003 0.0007 0.0016 0.0007

Autoregressive
DP-TBART 0.0023 0.0010 0.0023 0.0008 0.0004 0.0006 0.0025 0.0018 0.0036 0.0008
Tab-MT 0.0038 0.0019 0.0013 0.0009 0.0026 0.0024 0.0034 0.0211 0.0221 0.0007

TabNAT 0.0004 0.0010 0.0018 0.0010 0.0003 0.0004 0.0007 0.0011 0.0015 0.0008

Table 14: AUC (classification task) and RMSE (regression task) scores of Machine Learning Efficiency. ↑ (↓) indicates that
the higher (lower) the score, the better the performance. MLE metrics measure the relative performance difference between
synthetic data and training data.

Method Continuous only Discrete only Heterogeous

California Letter Car Nursery Adult Default Shoppers Magic News Beijing
AUC↑ AUC↑ AUC↑ AUC↑ AUC↑ AUC↑ AUC↑ AUC↑ RMSE↓ RMSE ↓

Real data 0.999 0.989 0.999 1.000 0.927 0.770 0.926 0.946 0.842 0.423

VAE-based
TVAE 0.986 0.989 0.746 0.939 0.846 0.744 0.898 0.912 0.979 1.010
GOGGLE - - - - 0.778 0.584 0.658 0.654 1.09 0.877

GAN-based
CTGAN 0.925 0.729 0.899 1.000 0.874 0.736 0.868 0.874 0.895 1.065

LLM-based
GReaT 0.996 0.983 0.979 0.999 0.913 0.755 0.902 0.888 - 0.653

Diffusion-based
STaSy 0.997 0.990 0.927 0.982 0.903 0.749 0.909 0.923 0.933 0.672
CoDi 0.981 0.998 0.995 1.000 0.829 0.497 0.855 0.930 0.999 0.750
TabDDPM 0.992 0.513 0.995 1.000 0.911 0.763 0.915 0.933 - 2.665
TabSyn 0.993 0.990 0.971 0.997 0.904 0.764 0.913 0.934 0.862 0.669

Autoregressive
DP-TBART 0.993 0.985 0.990 0.917 0.918 0.717 0.896 0.924 0.896 0.676
Tab-MT 0.988 0.985 0.981 1.000 0.873 0.714 0.912 0.822 1.002 2.098

TabNAT 0.994 0.994 0.996 0.900 0.904 0.764 0.916 0.935 0.856 0.579
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(a) CTGAN
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(b) TVAE (c) GOGGLE
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(d) GReaT
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(f) STaSy
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(g) TabDDPM

20 40 60 80
age

0.0

2.5

5.0

7.5

10.0

12.5

15.0

ed
uc

at
io

n.
nu

m

0.0

0.2

0.4

0.6

0.8

1.0

(h) TabSyn

(i) Tab-MT
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(j) DP-TBART
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(k) TabNAT (Ours)
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(l) Ground Truth

Figure 10: Kernel density estimation (KDE) plot of the 2D joint density of ‘education.num’ and ‘age’ features in the Adult
dataset. The results from GOGGLE and Tab-MT are not plotted since they either fail to generate or generate singleton
synthetic data on one feature (e.g. always generate ‘education.num’ equals one).
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(b) TVAE (c) GOGGLE
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(f) STaSy
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(g) TabDDPM
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(h) TabSyn
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(i) Tab-MT
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(j) DP-TBART
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(k) TabNAT (Ours)

126 124 122 120 118 116 114
Longitude

32

34

36

38

40

42

La
tit

ud
e

0

2000

0 2500

(l) Ground Truth

Figure 11: Scatter plots of the 2D joint density of the Longitude and Latitude features in the California Housing dataset.
Blue lines represent the geographical border of California.
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Figure 12: Heat map of synthetic data of Letter dataset.
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Figure 13: Heat map of synthetic data of Adult dataset.
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Figure 14: Heat map of synthetic data of Default dataset.
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Figure 15: Heat map of synthetic data of Magic dataset.
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