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Abstract. Medical image segmentation is a critical component of clin-
ical practice, and the state-of-the-art MedSAM model has significantly
advanced this field. Nevertheless, critiques highlight that MedSAM de-
mands substantial computational resources during inference. To address
this issue, the CVPR 2024 MedSAM on Laptop Challenge was estab-
lished to find an optimal balance between accuracy and processing speed.
In this paper, we introduce a quantization-aware training pipeline de-
signed to efficiently quantize the Segment Anything Model for medical
images and deploy it using the OpenVINO inference engine. This pipeline
optimizes both training time and disk storage. Our experimental results
confirm that this approach considerably enhances processing speed over
the baseline, while still achieving an acceptable accuracy level. The train-
ing script, inference script, and quantized model are publicly accessible
at https://github.com/AVC2-UESTC/QMedSAM.
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1 Introduction

Drawing inspiration from the remarkable achievements of foundation models in
natural language processing, researchers at Meta FAIR introduced a versatile
foundation model for image segmentation, termed the Segment Anything Model
(SAM) [3]. It is widely recognized that foundation models in any domain often
confront challenges stemming from limited data diversity. Despite the consider-
able scale of the dataset utilized to train SAM (referred to as the SA-1B dataset),
comprising over one billion masks, the model’s performance fell short in med-
ical image segmentation tasks [10]. This shortfall can be attributed in part to
the composition of the SA-1B dataset, which primarily comprises photographs of
natural scenes captured by cameras, thus lacking the nuanced features character-
istic of medical images. In response to this challenge, Ma et al. curated a diverse
and extensive medical image segmentation dataset encompassing 15 modalities,
upon which they fine-tuned SAM [10]. Their refined model, dubbed MedSAM,
represents a significant step forward in addressing this discrepancy. However,

https://github.com/AVC2-UESTC/QMedSAM


2 Lu et al.

despite its advancements, MedSAM still grapples with several unresolved chal-
lenges. For instance, the training dataset suffers from extreme modality im-
balances, the model encounters difficulties in accurately segmenting vessel-like
branching structures, and the practicality of text prompts remains limited.

The focus of the CVPR 2024 MedSAM on Laptop Challenge is on enhancing
the inference speed of MedSAM. The Segment Anything Model comprises three
core components: an image encoder responsible for transforming input images
into image embeddings, a prompt encoder that converts prompts into prompt
embeddings, and a mask decoder tasked with generating low-resolution masks
from image embeddings and prompt embeddings. Notably, in the initial proto-
type of MedSAM, the image encoder is notably more resource-intensive than the
other two components. Consequently, various alternative backbones have been
proposed to replace the original image encoder, such as the ViT-Tiny archi-
tecture adopted by MobileSAM [15] and EfficientViT in EfficientViT-SAM [17].
The challenge’s baseline model (LiteMedSAM) incorporates a distilled ViT-Tiny
image encoder, albeit with slight adjustments compared to MobileSAM. A sum-
mary of the parameters of the different submodules is provided in Table 1.

Table 1. Parameters of different submodules in LiteMedSAM and MedSAM

Parameters Image Encoder Prompt Encoder Mask Decoder
LiteMedSAM 5.7M 6.2K 4.1MMedSAM 89.7M

In addition to optimizing the backbones of SAM, we pursued an alterna-
tive approach to expedite inference: quantization. Quantization offers several
benefits, including reducing parameter sizes, increasing inference speed, and de-
creasing power consumption during inference. There are two primary paradigms
for quantizing neural networks: post-training quantization (PTQ) [16] [8] [1]
and quantization-aware training (QAT) [2] [13]. PTQ involves converting a pre-
trained floating-point model directly into a low-precision one by calibrating the
model using a batch of calibration data. This method is generally faster since
it does not require re-training, and the precision of the quantized model largely
depends on the calibration process. On the other hand, QAT integrates quan-
tization and de-quantization nodes into the computational graph, enabling the
training of the model while preserving its accuracy after quantization. To ensure
prediction accuracy, we chose QAT to quantize SAM.

The attention blocks of transformers serve as the principal components in the
backbone of SAM. Several methods have been proposed to enhance the accu-
racy of quantized transformers. Li et al. introduced an information rectification
module and a distribution-guided distillation scheme tailored for fully quantized
vision transformers [5]. Liu et al. discovered that incorporating fixed uniform
noise into the values being quantized can significantly mitigate quantization er-
rors under provable conditions [6]. In this study, we have chosen to leverage the
Xilinx Brevitas framework [11]. This framework offers an excellent workflow,
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encompassing quantization-aware training through to development on inference
engines.

The main contributions of this paper are listed as follows:

1. We propose a quantized LiteMedSAM model with comparable average ac-
curacy, and alleviate the imbalance across different modalities.

2. An optimized online dataset is proposed to replace the offline baseline, yield-
ing a significant reduction in disk storage requirement.

3. Experiments have been proposed to prove that a small subset of the training
dataset can maintain the accuracy of the quantized model, making it more
efficient in training.

4. The quantized model is deployed on the OpenVINO inference engine, en-
abling it to compete effectively with other models in the challenge.

2 Method

2.1 Preprocessing

The dataset comprises three types of medical images: grayscale images, RGB
images, and 3D images. 3D images are split into individual 2D clips along the
z-axis, with each clip treated as a grayscale image. To standardize the grayscale
format with the RGB format, grayscale images are duplicated across the red,
green, and blue channels. Subsequently, RGB images are resized, padded to
dimensions of 256 × 256, and finally normalized. It’s important to note that in
the baseline approach, RGB images undergo normalization before padding with
zeros. In this case, the padded value is equivalent to the minimum value of the
image instead of zero.

We’ve implemented some optimizations in the dataloader to enhance effi-
ciency during both training and inference. For the training process, in the base-
line approach, all compressed 3D npz files are decompressed along the z-axis,
which demands approximately 10TB of disk storage. This overhead is signifi-
cantly disproportionate to the size of the original dataset, which is only around
160GB. To mitigate this inefficiency, we propose indexing each 3D clip along
the z-axis and employing a binary search algorithm to locate the target 2D clip
when necessary. By adopting this strategy, we distribute the decompression time
across each batch of training data, resulting in substantial savings in disk stor-
age. Additionally, considering that our machine typically processes one batch
of data in approximately one second, the computational cost of decompression
becomes negligible.

In terms of inference, the baseline method iterates through each 3D prompt
box individually. However, when 3D boxes intersect along the z-axis, the base-
line recalculates image features. Given that the image encoder constitutes the
most computationally intensive aspect of SAM, we propose to preprocess all the
3D boxes into 2D boxes corresponding to 2D clips. This approach ensures that
the image embedding of each 2D clip is computed only once, optimizing com-
putational resources. In addition, the challenge has an 8GB limit on the Docker
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running memory. Experiments show that LiteMedSAM will exceed the memory
limit when the number of boxes approaches 100. Since the maximum number
of boxes is 255, we propose a block partition algorithm along the batch axis of
boxes. This algorithm allows users to specify the maximum running batch size
to prevent exceeding the memory limit.

2.2 Proposed method

We propose to quantize the baseline model LiteMedSAM using QAT. While neu-
ral networks consist of various components beyond just matrix multiplications,
it’s within these operations that the peak of computational complexity resides.
Therefore, nearly every QAT method focuses on quantizing inputs and weights
during matrix multiplications, such as in linear layers, convolution layers, and
attention blocks. In contrast, operations involving biases, activation layers, and
normalization layers are typically performed per element. While the quantiza-
tion of these layers can be selective, in our proposed quantized model, we opt to
retain all these layers as floating-point, with only matrix multiplications in the
image encoder and the mask decoder being quantized. The reason we choose not
to quantize the prompt encoder lies in the fact that its parameter size is over
1000 times smaller than the other two modules, as indicated in Table 1. Some
of the most common quantized sub-structures are illustrated in Figure 1.

Since quantization is non-differentiable, we employ the straight-through es-
timator (STE) methodology, as demonstrated in previous works [7]. In STE,
incoming gradients are directly passed through a threshold operation to become
outgoing gradients. For each quantization node, we propose an 8-bit symmetric
per-tensor signed integer activations quantizer with a learned floating-point scale
factor. This scale factor is initialized from runtime statistics.

2.3 Model Inference and Post-processing

Upon completion of quantization-aware training, Brevitas provides exceptional
toolchains for exporting quantized models to diverse backends.

While the standard QuantizeLinear-DeQuantizeLinear (QCQ) representation
for quantization in ONNX exists, Brevitas has extended this to QuantizeLinear-
Clip-DeQuantizeLinear (QCDQ). With this extension, researchers can confine
the range of quantized values. Therefore, we propose exporting the quantized
LiteMedSAM to ONNX in the QCDQ representation.

While numerous inference engines support the ONNX format, not all of them
are compatible with QCDQ. Given that the challenge mandates CPU inference,
we narrow down the options to ONNX Runtime and OpenVINO. An experiment
on inference speed between these two inference engines is detailed in Section 4.1.
Based on the results, we ultimately opt for OpenVINO. Model caching is also
supported by OpenVINO. This strategy can reduce the resulting delays at appli-
cation startup, making it considerably suitable for accelerating in this challenge
[4] [12].
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Fig. 1. Common quantized sub-layers. (a) quantized linear layer; (b) quantized convo-
lutional layer; (c) quantized attention block. Circles in the figure represent correspond-
ing calculations: M stands for matrix multiplication, C stands for convolution, and T
stands for transpose. Operations involving quantization are represented by round rect-
angles in the figure. The inputs and output of all the sub-layers depicted in the figure
are floating-point tensors.
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SAM generates a 256 × 256 mask for the provided image and prompt. We
binarize the floating-point values to either 0 or 1, crop the padding, and subse-
quently resize the low-resolution mask to the original dimensions of the input
image.

3 Experiments

3.1 Dataset and sampler

We employed the challenge dataset for training, while the evaluation dataset
was obtained by partitioning it at a ratio of one-tenth. The dataset comprises
11 modalities, and their sizes (prior to partitioning into training and evaluation
datasets) are summarized in Table 2. An evident issue arises from the significant
imbalance in sample numbers across modalities.To address this imbalance and
prevent bias or overfitting in the quantized model, as well as to expedite training,
we propose randomly sampling Ns 2D clips from each modality in each epoch.
Additionally, these samples undergo random horizontal and vertical flips for data
augmentation.

Table 2. Samples of modalities in the training dataset (including the additional
datasets released in the post-challenge task). 3D modalities are counted with the num-
ber of 2D clips on the z-axis.

3D Modalities CT MR PET
Samples 1218411 236804 89059

2D Modalities Endoscopy X-Ray Dermoscopy US
Samples 43443 34893 3694 1646

2D Modalities OCT Mammography Fundus Microscopy
Samples 1436 1233 1057 1000

3.2 Metrics and loss functions

The accuracy of the model is evaluated using the Dice Similarity Coefficient
(DSC) and the Normalized Surface Distance (NSD), while efficiency is measured
through running time analysis. These metrics are collectively utilized to compute
the ranking. In the training phase, we mainly employ a combination of the
Dice loss and focal loss. This decision is based on the robustness demonstrated
by compound loss functions in various medical image segmentation tasks, as
evidenced in prior research [9].

3.3 Training protocols

The training procedure includes three stages.
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In stage one, our goal is to train the quantized image encoder while keeping
the floating-point prompt encoder and the mask decoder frozen. Apart from
the loss function mentioned in section 3.2, we further distill the image encoder
from MedSAM and introduce the distillation loss. This loss is calculated as the
product of the mean squared error and the intersection over union ratio across
the image embeddings generated from the teacher and student models.

In stage two, we propose to train the quantized mask decoder by concate-
nating it with the best-trained quantized image encoder from stage one and the
floating-point prompt encoder.

In the final stage, the whole model undergoes an end-to-end fine-tuning for
further fitting with the dataset.

For each stage, we propose employing linear learning rate warm-up for Nw

epochs, commencing at 1% of the initial learning rate. Additional training details
are summarized in Table 3. This warm-up period is followed by a cosine anneal-
ing scheduler for Na epochs. The minimum learning rate of the cosine annealing
scheduler is set to 0.1% of the initial learning rate, and the half-period of the
cosine function is determined as Na − 1. Once the quantization-aware training
process is completed, we evaluate the checkpoint of each epoch on the evalua-
tion dataset and select the best-performing one. Additional training details are
summarized in Table 3.

Table 3. Training protocols. Values separated by vertical bars in the table correspond
to stages 1 ∼ 3.

Pre-trained Model LiteMedSAM (the baseline)
Batch size 2 | 4 | 2
DDP world size 4
Samples of each modality (Ns) 900
Optimizer SGD (momentum=0.9)
Total epochs 14
Initial learning rate 0.01
Warm-up epochs (Nw) 5
Cosine annealing epochs (Na) 10
Training time 5 | 2.5 | 1 hours

3.4 Environment settings

The development environments and requirements are presented in Table 4.
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Table 4. Development environments and requirements.

System Ubuntu 20.04.3 LTS
CPU Intel(R) Xeon(R) Gold 5218R CPU@2.10GHz
RAM 16×32GB
GPU 4×NVIDIA GeForce RTX 3090
CUDA version 12.2
Programming language Python 3.11
Deep learning framework PyTorch 2.0.1
Specific dependencies Brevitas 0.10.3
Code https://github.com/AVC2-UESTC/QMedSAM

4 Results and discussion

4.1 Inference speeds of different engines

The challenge evaluates models on an Intel Xeon W-2133 CPU (6c12t@3.8GHz),
while we use an Intel Core i7-8750H CPU (6c12t@4.1GHz) that offers comparable
performance because we do not have an identical environment. We test each
variant with a single image and a prompt box. The inference speeds of various
methods are detailed in Table 5.

Table 5. Inference speed of different LiteMedSAM variants.

Method Inference time
LiteMedSAM inferenced on PyTorch 1.180s
LiteMedSAM exported to ONNX and inferenced on ONNX Runtime 0.787s
LiteMedSAM exported to ONNX and inferenced on OpenVINO 0.574s
Quantized LiteMedSAM inferenced on ONNX Runtime 0.769s
Quantized LiteMedSAM inferenced on OpenVINO 0.585s

The results indicate that the quantized model does not exhibit the fastest
runtime. This is because that our hardware is not optimized for quantized op-
erations, resulting in slower execution compared to standard floating-point op-
erations. For comparison purposes, the inference speeds of both floating-point
and quantized versions of MedSAM (which is substantially larger than LiteMed-
SAM) are provided in Table 6. Interestingly, in this case the quantized model
outperforms the floating-point model.

Given the comprehensive advantages of quantization, it is evident that de-
ploying the quantized LiteMedSAM on the OpenVINO inference engine effec-
tively addresses the requirement for medical image segmentation "on laptop".

4.2 Quantitative results on validation set

Table 7 presents the performance of the proposed three stages in comparison
with the baseline model on the public validation dataset.

https://github.com/AVC2-UESTC/QMedSAM


QMedSAM 9

Table 6. Inference speed of different MedSAM variants.

Method Inference time
MedSAM inferenced on PyTorch 10.181s
MedSAM exported to ONNX and inferenced on ONNX Runtime 5.707s
MedSAM exported to ONNX and inferenced on OpenVINO 4.202s
Quantized MedSAM inferenced on ONNX Runtime 4.531s
Quantized MedSAM inferenced on OpenVINO 3.558s

On average, the quantized model scores comparably on DSC and slightly
higher on NSD. We highlight the modalities with significant differences in their
accuracy. In particular, the quantized model has degraded performance by around
3% and 5% in MR and US, but shows gains of approximately 10% and 9% im-
provement in PET and Microscope. It is evident that, to a certain extent, the
proposed method has effectively addressed the performance imbalance of the
baseline model across various modalities, which was caused by the dataset’s
inherent imbalance.

Table 7. Quantitative evaluation results on the validation dataset.

Stage 3 Stage 2 Stage 1 Baseline
DSC NSD DSC NSD DSC NSD DSC NSD

CT 89.35% 92.84% 89.73% 93.23% 89.86% 93.27% 90.78% 93.08%
MR 82.41% 87.29% 82.73% 87.76% 82.91% 87.87% 86.43% 90.37%
PET 64.80% 56.33% 63.37% 49.52% 63.86% 48.75% 57.64% 43.05%
US 87.87% 92.41% 87.93% 92.50% 87.88% 92.39% 94.54% 96.62%
X-Ray 78.73% 84.19% 78.14% 83.80% 78.62% 84.31% 79.15% 84.46%
Dermoscopy 91.71% 93.31% 92.15% 93.75% 92.12% 93.70% 91.59% 93.21%
Endoscopy 93.37% 96.61% 93.56% 96.71% 94.08% 97.12% 94.81% 97.70%
Fundus 93.24% 94.66% 93.85% 95.19% 92.97% 94.30% 94.40% 95.77%
Microscope 70.11% 77.35% 71.77% 79.21% 72.77% 80.18% 60.54% 65.12%
Average 83.51% 86.11% 83.69% 85.74% 83.90% 85.76% 83.32% 84.38%

A comparison of inference speeds for specific cases between the baseline and
the proposed method is presented in Table 8. The results highlight a notable
acceleration achieved by the quantization method.

4.3 Qualitative results on validation set

Two sets of successful segmentation results are depicted in Figure 2. It can be
observed that the proposed quantized model performs better in matching the
ROI than the floating-point counterpart. Figure 3 illustrates two sets of chal-
lenging cases. In these cases, the segmentation results of the proposed quantized
model align more closely with the ground truth ROI compared to the baseline.
However, since the baseline prediction results were significantly distant from the
ground truth, the correction was unsuccessful.
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Table 8. Quantitative efficiency in terms of inference running time (seconds). MLE
stands for Memory Limit Exceeded.

Case ID Size Objects Baseline Proposed
3DBox_CT_0566 (287, 512, 512) 6 591.1 142.1
3DBox_CT_0888 (237, 512, 512) 6 168.7 51.0
3DBox_CT_0860 (246, 512, 512) 1 23.4 12.4
3DBox_MR_0621 (115, 400, 400) 6 245.6 51.5
3DBox_MR_0121 (64, 290, 320) 6 168.4 31.4
3DBox_MR_0179 (84, 512, 512) 1 22.5 11.9
3DBox_PET_0001 (264, 200, 200) 1 15.1 7.3
2DBox_US_0525 (256, 256, 3) 1 1.6 0.7
2DBox_X-Ray_0053 (320, 640, 3) 34 9.2 1.8
2DBox_Dermoscopy_0003 (3024, 4032, 3) 1 6.5 1.1
2DBox_Endoscopy_0086 (480, 560, 3) 1 2.3 0.6
2DBox_Fundus_0003 (2048, 2048, 3) 1 3.5 0.7
2DBox_Microscope_0008 (1536, 2040, 3) 19 15.6 1.6
2DBox_Microscope_0016 (1920, 2560, 3) 241 MLE 14.0

Fig. 2. Good segmentation results. (a) Image and box; (b) Ground truth; (c) Baseline;
(d) Proposed method.
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Fig. 3. Bad segmentation results. (a) Image and box; (b) Ground truth; (c) Baseline;
(d) Proposed method.

4.4 Ablation Study

Training a Segment Anything Model from scratch requires a huge mass of
data. However, the proposed quantization-aware training procedure starts with
a pre-trained model. Reducing the number of samples Ns from each modality,
especially from the larger modalities, certainly benefits in saving training time.
However, it still raises questions about its influence on the precision of the quan-
tized model. In this section we propose an ablation study to explore the balance
between efficiency and accuracy.

To describe the variation of samples from different modalities clearly, we
will use Ns(m) to represent the number of samples from modality m. The total
samples of modality m is denoted by Nm(m), and the complete set of modalities
is denoted by M . The strategy of the proposed method can be described as

Ns(m) = min
i∈M

Nm(i).

The ablation study introduces a strategy that enlarges Ns(m) to one-tenth of
Nm(m), in particular,

Ns(m) = max

{
Nm(m)

10
,min
i∈M

Nm(i)

}
.

The metrics of the three stages in the ablation study are summarized in
Table 9. Compared with Table 7 (we provide the average metrics of the pro-
posed method in the last row of Table 9), the results indicate that increasing Ns

does not result in a significant improvement, underscoring the efficiency of the
proposed QAT pipeline in terms of training time.
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Table 9. Evaluation results of the ablation study on the validation dataset.

Stage 3 Stage 2 Stage 1
DSC NSD DSC NSD DSC NSD

CT 88.71% 92.37% 87.02% 91.14% 88.81% 92.45%
MR 81.55% 86.48% 80.91% 86.18% 81.61% 86.40%
PET 64.41% 55.09% 64.35% 54.73% 65.21% 52.62%
US 86.93% 91.76% 86.09% 90.87% 87.43% 91.85%
X-Ray 79.07% 84.53% 76.44% 82.13% 76.18% 81.83%
Dermoscopy 91.65% 93.24% 92.63% 94.20% 91.75% 93.34%
Endoscopy 93.42% 96.65% 93.99% 97.09% 92.65% 95.84%
Fundus 93.18% 94.59% 96.05% 97.20% 92.93% 94.33%
Microscope 72.29% 79.64% 71.03% 78.52% 72.94% 80.40%
Average 83.47% 86.04% 83.17% 85.79% 83.28% 85.45%
Proposed 83.51% 86.11% 83.69% 85.74% 83.90% 85.76%

4.5 Results on final testing set

The testing results are summarized in Table 10. The proposed quantized model
exhibits a marginal decrease but much more balance in the average accuracy.
Additionally, the inference efficiency has been significantly optimized under the
same backbone. Compared with Table 7, we can observe that the model’s perfor-
mance on different modalities varies between the validation set and the testing
set. However, the trend of balance across modalities remains consistent.

Table 10. Evaluation results on the test dataset.

Proposed Baseline
DSC NSD RunTime DSC NSD RunTime

CT 69.74% 71.91% 11.78s 55.75% 58.48% 38.78s
MR 69.33% 61.77% 6.20s 64.80% 62.75% 18.57s
X-Ray 80.13% 89.56% 2.50s 85.51% 94.40% 9.95s
Endoscopy 89.81% 93.15% 2.18s 94.41% 96.95% 7.56s
Fundus 79.05% 81.28% 2.23s 87.47% 89.58% 8.77s
Microscope 79.68% 81.72% 2.58s 84.36% 86.15% 16.34s
OCT 72.72% 79.50% 2.24s 73.31% 80.20% 8.39s
PET 76.53% 67.52% 4.87s 76.94% 66.98% 14.90s
US 87.49% 92.09% 2.75s 85.24% 89.73% 8.96s
Average 78.28% 79.83% 4.15s 78.64% 80.58% 14.69s

4.6 Limitation and future work

Experimental results have shown a significant decrease in performance in certain
modalities with larger amounts of data, and the accuracy of the least accurate
modalities still lags far behind the average. Hence a more accurate and modality-
balanced quantization is expected. On the other hand, the floating-point model
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runs faster on the OpenVINO inference engine. We did explain a bit about this
above, but beyond that, Brevitas also provides an excellent workflow to export
the quantized model to FINN for dataflow acceleration on Xilinx FPGAs. Quan-
tized models promise faster and more energy-efficient inference on a customized
hardware platform.

5 Conclusion

In this paper, we present an efficient pipeline for quantizing LiteMedSAM and
deploying it on the OpenVINO inference engine. Objective experiments have
conclusively shown that our method significantly accelerates the baseline while
maintaining an acceptable level of accuracy. Future endeavors will focus on en-
hancing the speed of the floating-point backbone, further alleviating the im-
balance across different modalities, and deploying the quantized model on cus-
tomized hardware platforms.

Acknowledgements We express our gratitude to all the data owners for mak-
ing the medical images publicly available, and to CodaLab [14] for hosting the
challenge platform.
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Table 11. Checklist Table. Please fill out this checklist table in the answer column.

Requirements Answer
A meaningful title Yes
The number of authors (≤6) 4
Author affiliations and ORCID Yes
Corresponding author email is presented Yes
Validation scores are presented in the abstract Yes
Introduction includes at least three parts:
background, related work, and motivation Yes

A pipeline/network figure is provided Figure 1
Pre-processing Page 3
Strategies to data augmentation Page 6
Strategies to improve model inference Page 4
Post-processing Page 4
Environment setting table is provided Table 4
Training protocol table is provided Table 3
Ablation study Page 11
Efficiency evaluation results are provided Table 5 8
Visualized segmentation example is provided Figure 2 3
Limitation and future work are presented Yes
Reference format is consistent Yes
Main text >= 8 pages (not include references and appendix) Yes


