
Compositional Neural Network Verification via
Assume-Guarantee Reasoning

Hai Duong
George Mason University

Fairfax, VA 22030
hduong22@gmu.edu

David Shriver
Carnegie Mellon University

Pittsburgh, PA 15213
dshriver@andrew.cmu.edu

ThanhVu Nguyen
George Mason University

Fairfax, VA 22030
tvn@gmu.edu

Matthew B. Dwyer
University of Virginia

Charlottesville, VA 22904
matthewbdwyer@virginia.edu

Abstract

Verifying the behavior of neural networks is necessary if developers are to con-
fidently deploy them as parts of mission-critical systems. Toward this end, re-
searchers have been actively developing a range of increasingly sophisticated and
scalable neural network verifiers. However, scaling verification to large networks
is challenging, at least in part due to the significant memory requirements of verifi-
cation algorithms. In this paper, we propose an assume-guarantee compositional
framework, CoVeNN, that is parameterized by an underlying verifier to generate a
sequence of verification sub-problems to address this challenge. We present an iter-
ative refinement-based strategy for computing assumptions that allow sub-problems
to retain sufficient accuracy. An evaluation using 7 neural networks and a total of
140 property specifications demonstrates that CoVeNN can verify nearly 7 times
more problems than state-of-the-art verifiers. CoVeNN is part of the NeuralSAT
verification project: https://github.com/dynaroars/neuralsat.

1 Introduction

Machine learning (ML) techniques are advancing rapidly and have reached a level of performance
across a range of challenging tasks, e.g., in the medical [1, 2] and autonomous driving [3, 4, 5]
domains, that has led developers of critical systems to include ML models as components. To assure
that such systems are fit for deployment, researchers have developed a variety of formal verification
techniques to prove correctness properties of ML models, e.g., [6, 7, 8, 9, 10, 11, 12].

Advances in neural network verification (NNV) have been dramatic since the landmark paper by
Katz et al. [6] which verified properties of models comprised of 6 linear layers. VNN-COMP [13, 14,
15, 16] has chronicled those advances by documenting the growth of benchmarks and verifiers. The
largest benchmark in the competition, as measured by the number of layers, has grown from 6 to 21;
where all but 2–3 of those layers are convolutional. Although these networks present are challenging
for verifiers, they do not reflect the complexity of modern ML models.

While the number of layers in a network is not the only factor that contributes to the difficulty of
a verification problem, it is directly related to its exponential complexity [6]. For SoTA verifiers,
like αβ-CROWN [8], NeuralSAT [17], and PyRAT [18], the worst-case involves each layer generating
multiple states which each serve as the starting point for verification of the suffix of the network from

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/dynaroars/neuralsat

that state forward. These verifiers perform a variety of optimizations to mitigate such state splitting,
e.g., by tightening state encodings [19, 10], but complexity grows with the depth of the model.

This complexity is manifest both in increased runtime and, perhaps more importantly, in memory uti-
lization. SoTA NNV tools make use of GPUs to efficiently manipulate high-dimensional abstractions
of model states and GPU memory is generally more limited than CPU memory—in our evaluation (§4)
GPU VRAM is limited to 24 GB. If verification requires more GPU memory than is available, then
the verifier will abort with an out-of-memory (OOM) error. Fig. 1 shows the memory-consumption
of the two top performing verifiers in VNN-COMP’24: αβ-CROWN and NeuralSAT, as they check
10 randomly generated local robustness properties of ResNet models trained on CIFAR10, with an
increasing number of residual blocks in each model. The x-axis corresponds to the number of blocks
within the model (e.g., 16 corresponds to ResNet-50 [20]). The y-axis plots the maximum memory
consumed, as a percentage of 24 GB, by the verifier across the 10 verification problems. A point in
the plot is shown if the verifier returns normally on any problem, regardless of whether the result is
verified or unknown. αβ-CROWN and NeuralSAT are able to verify all problems up to 9 blocks,
but beyond that they exhaust memory. While GPU memory has grown slowly over time, the pace of
that growth cannot be relied on for scaling to large neural network verification problems.

0 5 10 15 20 25 30 35 40
#Blocks

25

50

75

100

M
em

or
y

(%
)

CoVeNNNS

NeuralSAT

αβ-CROWN

Fig. 1: Tools’ scalability on ResNet-based
instances. Maximum memory usage across
10 CIFAR10-based properties and ResNet-
based networks with increasing numbers of
blocks, comprised of 3 CNNs with ReLUs.

In this paper, we introduce a framework for Compositional
Verification of Neural Networks (CoVeNN) that can be pa-
rameterized by an underlying NNV tool, like αβ-CROWN
and NeuralSAT. CoVeNN works by decomposing a neural
network into subnetworks that are then verified indepen-
dently. As depicted in Fig. 1, this allows CoVeNN to scale
to larger networks than the underlying verifier.

The key to CoVeNN is the ability to encode the verification
of the subnetworks as a series of assume-guarantee rea-
soning steps. After verifying each subnetwork, CoVeNN
merges relevant verifier states, such as approximation
bounds, into a compact summary that serves as the as-
sumption for the next subnetworks. The corresponding
guarantee ensures that, under this assumption, the subnet-
work behaves correctly. Together, these assume-guarantee
pairs are composed to establish the correctness of the full
network.

State merging is a classic approach for managing the cost of analysis and verification [21], but it
risks introducing overapproximation that may prevent properties from being proven. To mitigate
this, CoVeNN incorporates multiple refinement strategies that sharpen the precision of assumptions.
As detailed in Tab. 4, CoVeNN matches the ability of underlying verifiers on problems for which
they complete and the refinement strategies allow it to prove properties when scaling to much larger
networks. CoVeNN does introduce overhead relative to the underlying verifier, but our evaluation (§4)
on a set of challenging verification problems shows that substantial reduction in memory consumption
translates to a significant increase in the ability to verify problems without an exorbitant time penalty.

Related Work NNV is still a relatively young field, and few lines of work have explored composi-
tional NN verification [22, 23]. However, no prior technique can handle the scale or complexity of
networks like RESNET36. We discuss these work and others in more detail in Apdx. D.

Contributions The primary contribution of this paper lies in the definition of a verifier-independent
framework for compositional assume-guarantee verification of neural network properties. We imple-
ment and evaluate CoVeNN’s ability to reduce verifier memory consumption and increase the number
of properties proven (§4) and assess overall performance of CoVeNN relative to SoTA DNN verifiers
on verification problems formulated over variants of neural network architectures.

2 Background

DNN Verification Verification of networks using piecewise-linear activation (e.g., ReLU) can be
represented as a satisfiability problem [6, 11, 24, 10]. For an L-layer ReLU-based network N with

2

Nl neurons in layer l, the formula:

α ≡
∧

i∈[1,L]; j∈[1,Nl]

vi,j = max
(∑

k∈[1,Nl]

(wi−1,j,k · vi−1,k) + bi,j , 0
)

defines the network. Given α and a property ϕ ≡ ϕin ⇒ ϕout a DNN verification problem is
formulated by checking the satisfiability: α ∧ ϕin ∧ ¬ϕout. If it is unsatisfiable, then ϕ is a valid
property of N . Otherwise, ϕ is not valid and a counterexample—a witness that ϕ is not valid—-is a
satisfying assignment to the input variables in ϕin.

DNN Verifiers Modern DNN verifiers [18, 12, 11, 9, 10, 8, 24, 17, 19] adopt techniques from
abstract interpretation [25] for efficiency. Since most properties studied in previous work can be
expressed as a Boolean expression over a linear equation of N ’s outputs, where ϕout can be merged
as the last layer of N to produce an objective function f := ϕout ◦ N [19, 9], the final goal reduces
to prove: ∀x ∈ ϕin : f(x) ≥ 0. Solving minx∈ϕin

f(x) is challenging due to the non-linearity of
DNNs. Modern DNN verifiers overapproximate nonlinear computations of N to efficiently estimate
the lower bound of f(x), denoted as lb, i.e., ∀x ∈ ϕin : lb ≤ f(x), then providing lb ≥ 0 is sufficient
to formally prove f(x) ≥ 0. This allows abstraction-based DNN verifiers to side-step the disjunctive
splitting that is the performance bottleneck of constraint-based DNN verifiers.

Compositional Verification For more than four decades researchers have been investigating
compositional methods to scale verification of complex systems [26]. One widely used compositional
approach, termed rely-guarantee or assume-guarantee reasoning, was introduced by Stark [27]. For a
system M with a specification ϕ, the goal is to prove ϕin,M |= ϕout—we denote such a proof goal
with the triple ⟨ϕin,M, ϕout⟩. Compositional reasoning divides a system into parts, {M1, . . . ,Mk},
and formulates a set of local verification problems ⟨Ai,Mi, Gi⟩ such that the guarantees of one
component implies the assumptions of another and ϕin and ϕout are the assumption of the first and
guarantee of the final components, respectively.

The promise of compositional methods is that they can reduce the complexity of verification by
replacing reasoning about the product of the Mi with reasoning about their sum. However, realizing
such a framework is non-trivial: it requires suitable rules to relate the guarantees of one component
to the assumptions of another, careful selection of decomposition strategies to achieve cost-effective
verification [28], and the identification of appropriate assumptions Ai [29]. CoVeNN addresses these
challenges by exploiting the inherent sequential structure of neural architectures to define composi-
tional proof rules tailored to layer-wise reasoning, adaptively selecting the degree of decomposition
to maximize proof completion, and iteratively refining assumptions to support verification. Our
approach builds on recent work in neural network verification by leveraging modern verifiers’ ability
to compute tight overapproximations of intermediate outputs, which we then use as assumptions for
verifying subsequent layers.

3 Compositional Verification of Neural Networks

Alg. 1 shows the CoVeNN algorithm, which takes as input the DNN N , the formulae ϕin ⇒ ϕout

representing the property to be proven, the factor P indicating the number of generating assumptions,
the scale factor F for constructing assumptions, and the number of iterative rounds r. CoVeNN returns
unsat if ϕ is a valid property of N , and unknown otherwise.

CoVeNN consists of three main phases: (i) decomposing the original network into subnetworks (line 1),
(ii) computing a coarse overapproximation of intermediate assumptions (line 2–line 4), then checking
the last subnetwork (line 5) , and (iii) refining the assumptions iteratively until the problem can be
verified (line 12–line 18). The following sections describe each phase in detail.

3.1 Decomposition

CoVeNN starts by splitting the original network into K subnetworks (N 1, ...,NK) (line 1), where K
is internally inferred by CoVeNN using the heuristics described below. This step reduces verification
complexity by enabling the sequential verification of smaller, more manageable subnetworks.

More formally, decomposition works as follows. A network, N , is defined by a computation graph,
GN , whose nodes define computations, e.g., matrix multiplication, and whose edges describe data flow
between computations. We restrict our attention to acyclic computation graphs, which are common

3

Alg. 1: CoVeNN algorithm.
input :Verifier V , DNNN , property ϕin ⇒ ϕout, number of neurons P , scale factor F and rounds r
output :unsat if the property is valid and unknown otherwise

1 (N 1, ...,NK)← decomposeNetwork(N) // automatically split N into K subnetworks
2 γover ← [ϕin]
3 for i ∈ [1, ...,K] do // initialize coarse overapproximation for each subnetwork
4 γover.append(overApproximate(N i, γover[i− 1]))

5 lb← V.check(γover[K], ϕout) // check last subnetwork overapproximation w.r.t. output property
6 if all(lb ≥ 0) then // check if last subnetwork is verified
7 return unsat // ⟨ϕin,N , ϕout⟩ is valid

8 while r > 0 do
9 for i ∈ [1, ...,K − 1] do // attempt to verify first K − 1 subnetworks

10 γassume ← generateAssumption(N i, γover[i− 1], γover[i], P, F) // see (Apdx. C)
11 lb← V.verify(N i, γover[i− 1], γassume) // verify assumptions ⟨γin,N i, γassume⟩
12 (Lover, Uover)← γover[i] // extract bounds to refine (tighten)
13 for {(i, rhs, direction), li} ∈ zip(γassume, lb) do // refine assumption for each neuron i-th
14 if direction = “ ≥” then // assume Yi ≥ rhs, guarantee Yi − rhs ≥ li

15 Lover[i]← rhs+ li

16 else // assume Yi ≤ rhs, guarantee −Yi + rhs ≥ li

17 Uover[i]← rhs− li

18 γover[i]← (Lover, Uover) // update refined (tightened) bounds

19 lb← V.verify(NK , γover[K − 1], ϕout) // verify last subnetwork
20 if all(lb ≥ 0) then // check if last subnetwork is verified
21 return unsat // ⟨ϕin,N , ϕout⟩ is valid

22 r ← r − 1

23 return unknown

in many classes of ML models. Our approach supports any decomposition into k subnetworks such
that: N := N k ◦ N k−1 ◦ . . . ◦ N 1, and the input nodes of each N i define a cut of GN [30]. Given
such a decomposition a simple proof rule for sequential composition can be defined:

⟨A,N i, I⟩
⟨I,N i+1, G⟩

⟨A,N i+1 ◦ N i, G⟩
(1)

For a k-way decomposed network, the rule is applied k times with carefully chosen intermediate
assumptions I , each serving as the guarantee of one step and the assumption of the next. If the first
assumption is A = ϕin and the final guarantee is G = ϕout, then verifying all subnetworks implies
that the original network satisfies ϕin ⇒ ϕout.

Decomposing Heuristics A neural network can be decomposed into k subnetworks in various ways,
and the success of compositional reasoning depends largely on how it is decomposed [28]. CoVeNN
uses four heuristics to automatically guide this choice. We prioritize (1) cuts that define the inputs
of layers in the network, because this leads to subnetworks that have input/output shapes that are
well-supported by existing verifiers; (2) minimum cuts, because these reduce the dimensionality of
the intermediate assumption, I; (3) cuts that are later in the network – a cut, c2, is later than cut, c1, if
all vertices in c2 are dominated by some node in c1, because this reduces imprecision in computation
of I; and (4) cuts that yield the largest subnetworks that are amenable to verification by existing
verifiers, because this minimizes the number of subnetworks that need to be verified.

3.2 Bound Approximations and Verification

CoVeNN next performs an initial, coarse overapproximation for each subnetwork sequentially
(line 2–line 4). This is done using an off-the-shelf verifier V—typically a modern BaB-based
tool such as αβ-CROWN[8] or NeuralSAT[24]—which returns conservative output bounds based
on the current property. CoVeNN leverages the computed bounds to verify properties and guide the
iterative refinement discussed in §3.3.

4

Once the overapproximations are computed, CoVeNN simply checks whether the approximation of
the last subnetwork satisfies the output property (line 5). As described in §2, if V returns a lower
bound lb ≥ 0 (line 6), the property is verified and CoVeNN concludes unsat. Otherwise, it proceeds
with refinement to sharpen the result.

Although only the last subnetwork is being verified (since it directly relates to the original output
property), this verification depends on the approximations computed for the earlier K−1 subnetworks.
These serve as assumptions in a chain of assume-guarantee obligations. Each intermediate bound acts
as both a guarantee for its originating subnetwork and an assumption for the next. We will discuss
more about these assumptions and their refinement in the next section.

3.3 Iterative Refinement

In most cases, the initial approximation in §3.2 is too coarse to verify the property of interest. Thus,
CoVeNN enters the refinement phase (line 9-line 18), which iteratively tightens the approximations until
the problem can be verified (e.g., returns unsat) or CoVeNN exceeds the maximum predefined rounds
r (e.g., returns unknown). CoVeNN’s refinement has three main steps: (1) generating assumptions, (2)
verifying assumptions, (3) refining assumptions. The algorithm makes up to r iterations comprised of
sequentially verifying each subnetwork.

Generate Assumptions For each subnetwork N i, assumptions γassume are generated (line 10)
based on its input conditions and pre-computed overapproximation following the procedure in Alg. 2.
CoVeNN automates the generation of assumptions by systematically interpolating between coarse
overapproximations and tight sample-driven bounds on subnetwork outputs, as detailed in Apdx. C.
These assumptions reflect the possible output behavior of N i given the input property γin.

Verify Assumptions CoVeNN attempts to verify γassume of the subnetwork N i, or
⟨γin,N i, γassume⟩, using the verifier V (line 11). As described above, CoVeNN extracts the lower
bound lb from the verifier to facilitate this task. If verify an assumption fails (i.e., lb < 0), γassume is
invalid and CoVeNN refines them using verified lb (line 12-line 18).

Refine Assumptions This refinement adjusts the assumptions to eliminate unverified regions,
making them hold for the current preconditions and subnetwork. Refined assumptions then are
propagated forward serving as input property for the next subnetwork.

When an estimated assumption γassume (line 10) cannot be verified, we need to refine it so that it
becomes valid. Particularly, line 12-line 18 outlines CoVeNN’s refinement method, which adjusts
γassume using the formally verified lower bounds lb. CoVeNN first identifies the direction of the
inequality to decide the appropriate refinement strategy. If the direction is “≥”, the assumption
being verified is of the form Yi ≥ rhs (line 14). The verifier V has only formally confirmed that
Yi − rhs ≥ li, where li < 0, meaning that Yi is greater than or equal to rhs adjusted by the lower
bound li. Therefore, to make that assumption valid, the right-hand side value is loosened as rhs+ li
(line 15). A dual of this process is used to refine the upper bounds.

3.4 Example

We illustrate CoVeNN by verifying that N , depicted in Fig. 2a, has the property:
ϕ ≡ ϕin =⇒ ϕout ≡ (−2 ≤ x1 ≤ 2 ∧ −1 ≤ x2 ≤ 1) =⇒ (y1 > y2) (2)

When given the network N and the property ϕ, CoVeNN first attempts to prove N |= ϕ, denoted by
the triple ⟨ϕin,N , ϕout⟩, using an underlying verifier V . Suppose V fails to verify the property due
to memory exhaustion.

CoVeNN now decomposes N into two subnetworks (line 1), N 1 and N 2, such that N = N 2 ◦ N 1

as shown in Fig. 2a. Next, CoVeNN uses V to compute an output overapproximation for the K − 1
subnetworks from the input condition ϕin (line 3–line 4). We call the computed constraint an
assumption and use γi to denote the assumption computed for network i. For this example, γ1 =
−5 ≤ n21 ≤ 5 ∧ −10 ≤ n22 ≤ 10. Since this assumption initially is an overapproximation, a
consequence of this is that V has produced proof of ⟨ϕin,N 1, γ1⟩ inherently.

Once CoVeNN reaches the final subnetwork, it uses V to check the last overapproximation w.r.t. the
output property (line 5), e.g., ϕout. If this succeeds then we have a proof that ⟨ϕin,N , ϕout⟩. In this
case, this does not succeed, so CoVeNN attempts to refine the assumption (line 8-line 22).

5

(a)

Over Approximation

Sampled Region

Interpolated Region

(b)

Fig. 2: (a) Example of a decomposed FC network with three hidden layers and (b) Regions of a hidden ReLU.

Refinement proceeds by sampling the behavior of N 1, subject to ϕin, and computes a hyperrectangle
that tightly approximates sampled outputs; Fig. 2b depicts this sampled region in red. In the example,
let this sampled assumption be σ1 = −2 ≤ n21 ≤ 2 ∧ −4 ≤ n22 ≤ 4. Since this is a tight
approximation of the sampled behavior the likelihood that it is a valid postcondition of N 1 is low.
We address this by interpolating between it and the overapproximating region to determine a new
assumption (line 10), γ′

1 such that γ1 ⊇ γ′
1 ⊇ σ1. With hyperrectangular constraints one approach is

to simply scale the sampled region,γ′
1 = s · (γ1 − σ1) + σ1, by some predefined factor, s ∈ [0, 1].

Fig. 2b depicts an interpolated region in green with a scaling factor of 0.5. In our example, this new
assumption is γ′

1 = −3 ≤ n21 ≤ 3 ∧ −5 ≤ n22 ≤ 5 and we use V to verify ⟨ϕin,N 1, γ
′
1⟩ (line 11).

If this succeeds, then CoVeNN uses V to attempt to verify ⟨γ′
1,N 2, ϕout⟩ (line 19). If it fails we

exploit the output bounds computed by V to generate a valid assumption (line 12–line 18): γ′′
1 =

(−4 ≤ n21 ≤ 4 ∧ −7 ≤ n22 ≤ 7) and CoVeNN then seeks to verify ⟨γ′′
1 ,N 2, ϕout⟩ (line 19). In

this example that verification succeeds, thereby completely the proof of ⟨ϕin,N , ϕout⟩ through a
sequence of simpler verification problems.

3.5 Formal Correctness

The correctness of CoVeNN is based on the soundness of the assume-guarantee decomposition (§3.1)
and the iterative refinement of the assumptions (§3.3). Note that we assume that the underlying
verifier V is sound, i.e., its overapproximations are valid (§3.2). Below we provide the theorems and
proof sketches for the soundness of CoVeNN, the full proofs are provided in Apdx. B.

Compositional Verification The following states that the chain of assumptions and guarantees of
subnetworks (§3.1) proves the original property ϕin ⇒ ϕout of the entire network N .

Thm. 1 (Compositional Verification via Assume-Guarantee Reasoning). Given a neural network
N : Rn → Rm decomposed into K subnetworks such that N = NK ◦ · · · ◦ N 1, a property
ϕ ≡ ϕin ⇒ ϕout, and intermediate predicates γ1, . . . , γK−1, where γ0 = ϕin and γK = ϕout, the
global specification holds whenever the every local property is valid:(

K∧
k=1

⟨γk−1,N k, γk⟩

)
=⇒ ⟨ϕin,N , ϕout⟩

Proof Sketch. For each pair of adjacent networks as shown in Eq. 1, assume-guarantee obligations are
proved, establishing that each intermediate predicate γk is preserved under corresponding subnetwork
N k. Composing these local guarantees forms a chain from the input property ϕin to the output
property ϕout, showing that the global specification holds for the entire network.

Refinement Process The following states that the refinement process (§3.3) states that each
refinement step always results in bounds that are formally valid, thereby ensuring that the iterative
tightening of assumptions preserves correctness throughout the verification chain.

Thm. 2 (Soundness of Iterative Bound Refinement). Suppose the base verifier V soundly establishes,
for a neuron Yi, a right-hand side rhs, a direction ≼∈ {≥,≤}, and a corresponding verifier bound

6

Tab. 1: Benchmark instances.

Benchmark Layers Neurons Parameters Instances (U/S/?)

VAE_BASE 20 43K 10K 20 / 0 / 0
VAE_WIDE 20 86K 39K 20 / 0 / 0
VAE_DEEP 28 44K 15K 7 / 0 / 13

RESNET6 20 283K 113K 11 / 0 / 9
RESNET12 38 627K 230K 9 / 0 / 11
RESNET18 56 700K 348K 18 / 0 / 2
RESNET36 110 1032K 706K 13 / 0 / 7

Total 98 / 0 / 42

δ (where δ < 0 for “≥” and δ > 0 for “≤”), that Yi − rhs ≼ δ. Then, the refined inequality

Yi ≼ (rhs+ δ)

is verified. Therefore, updating the right-hand side to rhs+ δ yields a verified assumption by V .

Proof Sketch. Given that the verifier soundly proves Yi − rhs ≼ δ, it follows that Yi ≼ (rhs+ δ)
holds. Updating the bound accordingly yields a refined assumption that remains sound.

Soundness of CoVeNN The following combines the previous two theorems to show that CoVeNN
is sound: if all local subproblems generated during decomposition are either formally verified or
refined, then the global property holds for the original network.
Thm. 3 (Soundness of CoVeNN). Let N be a neural network and ϕin, ϕout be input/output properties
such that CoVeNN verifies N satisfies ϕin =⇒ ϕout. CoVeNN applies Thm. 1 to decompose N and
assume all local subproblems are formally verified by a sound underlying verifier V or formally
refined as Thm. 2. Then N indeed satisfies ϕin =⇒ ϕout.

Proof Sketch. CoVeNN decomposes the network into subnetworks and verifies a sequence of assume-
guarantee obligations using a sound verifier. By composing these verified local implications, the
global property ϕin ⇒ ϕout follows.

Non-Linear Activations While our discussion has primarily focused on ReLU activations, CoVeNN
extends naturally to networks with other non-linear activations such as tanh and sigmoid. The support
for non-ReLU is specific to the underlying verifier that we use to obtain bounds, e.g., αβ-CROWN
and NeuralSAT both support non-ReLU activations via abstract interpretation techniques. CoVeNN
extracts interval bounds from these verifiers as intermediate assumptions rather than discrete neuron
status (e.g., on/off). These interval bounds remain valid regardless of the activation function and
preserve soundness during refinement.

4 Evaluation

We evaluate the scalability and cost-effectiveness of CoVeNN based on three research questions on
CoVeNN’s performance compared to state-of-the-art verifiers (RQ1); the effectiveness of refinement
(§3.3) (RQ2); CoVeNN’s robustness to variations in the underlying verifier (RQ3); and the impact of
parameter tuning on CoVeNN’s performance (RQ4).

Underlying Verifiers We experiment with two variants of CoVeNN, each configured with a different
underlying verifier: NeuralSAT and αβ-CROWN. Both tools are state-of-the-art in DNN verification1,
and allow us to extract the lower bound estimates needed for CoVeNN’s refinement process.

Benchmarks We use two scalable families of benchmarks (Apdx. E). Tab. 1 provides details on the
variants of the ResNet and VAE benchmarks used in our experiments. For each network, we generated
20 robustness properties. For ResNets these are local robustness classification properties and for
VAEs these are local reconstruction robustness properties (Apdx. A). Across the 140 combinations

1See results in the VNN-COMP’24 report [15, Tab. 35]. PyRAT is commercial and has no available code.

7

Tab. 2: Comparing CoVeNN to SoTA verifiers; most solved problems in bold.

Verifier VAE_BASE VAE_WIDE VAE_DEEP RESNET6 RESNET12 RESNET18 RESNET36 Overall
V % K V % K V % K V % K V % K V % K V % K V %

CoVeNNNS 20 100.0 1-2 19 95.0 2 5 25.0 2 11 55.0 1 9 45.0 2 18 90.0 2 13 65.0 3 95 67.9

CoVeNNαβ 4 20.0 2 - - - 6 30.0 2 10 50.0 1 9 45.0 2 17 85.0 2 13 65.0 3 59 42.1

CoVeNN���Refine 3 15.0 1 - - - - - - 11 55.0 1 9 45.0 2 9 45.0 2 13 65.0 3 45 32.1

NeuralSAT 3 15.0 1 - - - - - - 11 55.0 1 - - - - - - - - - 14 10.0

αβ-CROWN 1 5.0 1 - - - - - - 10 50.0 1 - - - - - - - - - 11 7.9

0 10 20 30 40 50 60 70 80 90 100

0

500

1000

1500

2000

2500

3000

3500

R
u

nt
im

es
(s

)

NeuralSAT

αβ-CROWN

CoVeNNNS

CoVeNN���Refine

CoVeNNαβ

(a) Solved problems sorted by runtime.

NeuralSAT αβ-CROWN CoVeNNNS

0

25

50

75

100

125

M
em

or
y

(%
)

ResNet

VAE

(b) Average memory usage per verifier.

Fig. 3: CoVeNN performance compared to SoTA verifiers.

of networks and properties: 98 are known to be unsat (U), none of them are sat (S), and of the
remaining 42 instances no verifier in our study was able to solve the problem (?). Note that robustness
properties can vary significantly in complexity based on the centerpoint and ϵ, e.g., [31, Fig. 2].

Setup Our experiments were run on a Linux machine with an AMD Ryzen Threadripper PRO
5975WX 32-Core, 128 GB RAM, and an NVIDIA GeForce RTX 4090 GPU with 24 GB VRAM.
Timeout for a single instance is set to 3600 seconds or the maximum number of rounds r is 4.
Note that our results are deterministic and no random process is involved. We describe detailed
configuration and model information for our experiments in Apdx. E.

4.1 RQ1: Comparing to Non-Compositional SoTA Verifiers

Tab. 2 presents the results of running both CoVeNN variants (CoVeNNNS and CoVeNNαβ), CoVeNN���Refine—
a naïve version of CoVeNN without refinement using the NeuralSAT backend, and the standalone
NeuralSAT and αβ-CROWN verifiers on the benchmarks. Column V shows the number of prob-
lems verified with the percentage solved shown in column %. Column K shows the number of
decompositions inferred by CoVeNN. Tools that run out of memory or time out on a benchmark are
indicated with a “-” (e.g., NeuralSAT cannot solve any instances of RESNET12 and VAE_DEEP,
etc.). Across the benchmarks CoVeNN solves more than 6 times the number of problems than the
best non-compositional solver. We note that neither NeuralSAT nor αβ-CROWN could solve any
instances of VAE_WIDE, VAE_DEEP, RESNET12 and beyond, which demonstrates the ability of
CoVeNN to scale verification beyond the state-of-the-art. RESNET36, which is comprised of 110
convolutional layers, requires the most aggressive decomposition (K = 3), but even for such a large
network CoVeNN is able to verify 65% of the properties. CoVeNN���Refine performs better than standalone
verifiers, but falls short of any CoVeNN variants, demonstrating the importance of refinement (§4.2).

Fig. 3a and Fig. 3b provide additional details on runtime and memory usage. Fig. 3a shows that
regardless of the underlying solver or whether CoVeNN uses its refinement strategy (§3.3) it can
solve many more problems than NeuralSAT and αβ-CROWN within the same time constraints. While
NeuralSAT and αβ-CROWN reach their limits after solving 14 problems, CoVeNN solves as many
as 95 instances. Fig. 3b shows that CoVeNN consumes significantly less memory2 than NeuralSAT

2Measured by the internal function torch.cuda.mem_get_info in PyTorch. Detailed calculation in Eq. 10.

8

VAE BASE VAE WIDE VAE DEEP RESNET12 RESNET18 RESNET36

0
10
20
30
40
50
60
70
80
90

100

P
er

ce
n
ta

ge
(%

)

90.6

31.2

80.7

21.0

7.6 5.3

18.6

5.9 6.0 5.2
1.1

5.8

Tightened Neurons

Neuron Output Reduction

Refinement Rounds

0

1

2

3

4

N
u

m
b

er

2.1
1.9

3.2

0.6 0.6 0.5

Fig. 4: Percentage of neurons tightened and percentage of their output range reduction.

and αβ-CROWN, which often encounter OOM errors. §4.4 reports on a more detailed parameter and
ablation study of CoVeNN on these benchmarks.

4.2 RQ2: On the Effectiveness of Assumption Refinement

Fig. 3a shows that even without refinement, CoVeNN���Refine solves nearly 4 times as many problems
as SoTA methods and that this rises to nearly 7 times with refinement enabled. To explore how
refinement achieves this we recorded additional data on the refinement process. Fig. 4 reports,
for each problem where K > 1, the percentage of neurons that were tightened in some round of
refinement (red); the percentage by which the output ranges of those neurons were reduced (blue);
and number of rounds of refinement performed (green - on the 2nd y-axis).

For the VAE benchmarks, 17 of the BASE problems and all of the other problems involved refinement.
There were more rounds of refinement and, except for the DEEP benchmark, this resulted in a high
percentage of tightened neurons and significant output range reduction. For the DEEP benchmark,
rounds of refinement continued until the timeout was reached on 15 of the 20 problems. For the
RESNET benchmarks, we observe a very different profile. Fewer rounds of refinement were needed,
especially for RESNET18 which was able to prove 18 of the 20 problems. This is more than
double the amount that could be proven with refinement disabled. The verification problems are
randomly sampled across all benchmarks which leads to different performance profiles. The data
for RESNET12 and RESNET36 demonstrate that for some problems the compositional nature of
CoVeNN alone can lead to verification improvements (see the CoVeNN���Refine row in Tab. 2), but the
additional effort of refinement does not yield further improvements.

4.3 RQ3: Robustness to Underlying Verifiers

Tab. 2 clearly indicates that CoVeNN significantly increase the number of solved problems regardless
of the underlying verifier. While CoVeNNNS outperforms CoVeNNαβ , our analysis suggests that this is
not a fundamental limitation of either CoVeNN or αβ-CROWN.

We analyzed the performance of CoVeNNαβ on VAE_BASE and VAE_WIDE, the cases where there
was a substantial performance gap. We found that αβ-CROWN does not support ConvTranspose
layers in several of its heuristics for applying optimizations. This means that its performance in both
verifying assumptions line 11 and verifying the final subnetwork line 19 suffer. We conjecture that
better support for this layer type could ameliorate this issue, but we acknowledge that αβ-CROWN has
numerous hyperparameters and we did not perform the type of expert tuning that the developers of
αβ-CROWN apply when running benchmarks. The reduced performance on VAE benchmarks could
be due to this as well.

The RESNET benchmarks show a clearer trend. αβ-CROWN comes with hyperparameter settings
for this architecture which we reuse, and we see very consistent degrees of improved scalability
regardless of the underlying verifier.

4.4 RQ4: CoVeNN’s Performance with Parameter Tuning

Fig. 5 compares CoVeNN’s performance across different parameter configurations using NeuralSAT
as the underlying verifier. We explore variations in P (number of assumptions per round) and F
(interpolation factor) against baselines including NeuralSAT, αβ-CROWN, and CoVeNN���Refine.

9

0 10 20 30 40 50 60 70 80 90 100

0

500

1000

1500

2000

2500

3000

3500

R
u

nt
im

es
(s

)

NeuralSAT

αβ-CROWN

CoVeNNNS (P=64, F=1/3)

CoVeNNNS (P=128, F=1/3)

CoVeNNNS (P=256, F=1/3)

CoVeNNNS (P=128, F=1/2)

CoVeNNNS (P=256, F=1/2)

CoVeNNαβ (P=128, F=1/3)

CoVeNN���Refine

Fig. 5: Ablation study on different parameters of CoVeNN.

CoVeNN exhibits dependencies on P , which determines how many neurons are selected for refinement
in each round. When P is small (P = 64), CoVeNN refines fewer neurons per iteration, limiting its
ability to tighten bounds and solving only 83 problems. Conversely, when P is large (P = 256),
CoVeNN attempts to refine many neurons simultaneously, increasing computational overhead and
often causing timeouts before properties can be proven. The optimal P = 128 strikes a balance
between refinement coverage and computational efficiency.

In contrast, CoVeNN demonstrates robustness to the interpolation factor F . The performance difference
between F = 1/3 and F = 1/2 is marginal (e.g., a single problem when P = 128), indicating that
CoVeNN’s iterative refinement process can effectively compensate for initially coarse assumptions
regardless of the interpolation strategy.

In summary, (RQ1) CoVeNN verifies over 6x more problems than SOTA verifiers and scales
to deeper networks with less memory, highlighting the effectiveness of decomposition. (RQ2)
Refinement significantly boosts performance: CoVeNN���Refine already outperforms SoTA by 4x, and
refinement raises this to nearly 7x. (RQ3) CoVeNN significantly improves verification regardless of
underlying solvers (performance gaps depend on the backends, not from CoVeNN itself). (RQ4)
CoVeNN’s performance depends on the number of neurons selected for refinement but is robust to
the interpolation factor.

5 Conclusion

NNV has scaled tremendously in recent years, but networks continue to grow in complexity which
limits the applicability of SoTA NNV techniques to real-world networks. Our work on CoVeNN is
a first step in realizing the promise of compositional neural network verification, and preliminary
results show that CoVeNN can scale significantly beyond SoTA verifiers.

Limitations This work focuses on compositional verification, not falsification. Compositional
falsification is more difficult because over-approximation favors verification rather than finding
counterexamples. However, CoVeNN can potentially incorporate backward analysis methods [32]
to compute under-approximations of inputs reachable from the violated output space. If the under-
approximated input region is a subset of the specified precondition, the violation can be confirmed.

CoVeNN supports acyclic networks, e.g., feedforward structures, by finding appropriate “cuts” in the
computation graph. For RNNs, CoVeNN can use unrolling [33] to create natural decomposition points
after each timestep. For general cyclic graphs, handling cycles requires more sophisticated circular
assume-guarantee proof rules [34].

Finally, CoVeNN does not use feedback from counterexamples, but we plan to use them to identify the
dimensions within an assumption that must be tightened to eliminate violations.

Potential Negative Societal Impact The techniques developed in this work can reveal flaws in
sensitive applications that may be exploited for malicious intent. However, these same methods also
allow developers to identify such attacks and fix them prior to model deployment.

10

Acknowledgments and Disclosure of Funding

We thank the anonymous reviewers for their helpful comments. This work was supported in part by
funds provided by the National Science Foundation awards 2129824, 2217071, 2501059, 2422036,
2319131, 2238133, and 2200621, and by an Amazon Research Award and an NVIDIA Academic
Grant.

References

[1] R. Wang, T. Lei, R. Cui, B. Zhang, H. Meng, and A. K. Nandi, “Medical image segmentation
using deep learning: A survey,” IET Image Processing, vol. 16, no. 5, pp. 1243–1267, 2022.

[2] B. Kovatchev, A. Castillo, E. Pryor, L. L. Kollar, C. L. Barnett, M. D. DeBoer, S. A. Brown,
and N. S. Team, “Neural-net artificial pancreas: a randomized crossover trial of a first-in-class
automated insulin delivery algorithm,” Diabetes Technology & Therapeutics, vol. 26, no. 6,
pp. 375–382, 2024.

[3] L. Zhang, A. J. Yang, Y. Xiong, S. Casas, B. Yang, M. Ren, and R. Urtasun, “Towards
unsupervised object detection from lidar point clouds,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9317–9328, 2023.

[4] P. Wu, X. Jia, L. Chen, J. Yan, H. Li, and Y. Qiao, “Trajectory-guided control prediction for
end-to-end autonomous driving: A simple yet strong baseline,” Advances in Neural Information
Processing Systems, vol. 35, pp. 6119–6132, 2022.

[5] H. Shao, L. Wang, R. Chen, H. Li, and Y. Liu, “Safety-enhanced autonomous driving using
interpretable sensor fusion transformer,” in Conference on Robot Learning, pp. 726–737, PMLR,
2023.

[6] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Reluplex: An efficient SMT
solver for verifying deep neural networks,” in International Conference on Computer Aided
Verification, pp. 97–117, Springer, 2017.

[7] R. Bunel, P. Mudigonda, I. Turkaslan, P. Torr, J. Lu, and P. Kohli, “Branch and bound for
piecewise linear neural network verification,” Journal of Machine Learning Research, vol. 21,
no. 2020, 2020.

[8] D. Zhou, C. Brix, G. A. Hanasusanto, and H. Zhang, “Scalable neural network verification with
branch-and-bound inferred cutting planes,” arXiv preprint arXiv:2501.00200, 2024.

[9] C. Ferrari, M. N. Mueller, N. Jovanović, and M. Vechev, “Complete Verification via Multi-
Neuron Relaxation Guided Branch-and-Bound,” in International Conference on Learning
Representations, 2022.

[10] H. Duong, D. Xu, T. Nguyen, and M. B. Dwyer, “Harnessing neuron stability to improve dnn
verification,” Proc. ACM Softw. Eng., vol. 1, no. FSE, 2024.

[11] H. Wu, O. Isac, A. Zeljić, T. Tagomori, M. Daggitt, W. Kokke, I. Refaeli, G. Amir, K. Julian,
S. Bassan, et al., “Marabou 2.0: a versatile formal analyzer of neural networks,” in International
Conference on Computer Aided Verification, pp. 249–264, Springer, 2024.

[12] S. Bak, “nnenum: Verification of ReLU Neural Networks with Optimized Abstraction Refine-
ment,” in NASA Formal Methods Symposium, pp. 19–36, Springer, 2021.

[13] C. Brix, M. N. Müller, S. Bak, T. T. Johnson, and C. Liu, “First three years of the international
verification of neural networks competition (VNN-COMP),” International Journal on Software
Tools for Technology Transfer, pp. 1–11, 2023.

[14] C. Brix, S. Bak, C. Liu, and T. T. Johnson, “The Fourth International Verification of Neural
Networks Competition (VNN-COMP 2023): Summary and Results,” 2023.

[15] C. Brix, S. Bak, T. T. Johnson, and H. Wu, “The fifth international verification of neural networks
competition (vnn-comp 2024): Summary and results,” arXiv preprint arXiv:2412.19985, 2024.

[16] S. Bak, C. Liu, and T. Johnson, “The Second International verification of Neural Networks
Competition (VNN-COMP 2021): Summary and Results,” arXiv preprint arXiv:2109.00498,
2021.

11

[17] H. Duong, T. Nguyen, and M. B. Dwyer, “Neuralsat: A high-performance verification tool for
deep neural networks,” in International Conference on Computer Aided Verification, pp. 409–
423, Springer, 2025.

[18] A. Lemesle, J. Lehmann, T. L. Gall, and Z. Chihani, “Verifying neural networks with pyrat,” in
International Static Analysis Symposium, pp. 11–33, Springer, 2025.

[19] H. Zhang, S. Wang, K. Xu, L. Li, B. Li, S. Jana, C.-J. Hsieh, and J. Z. Kolter, “General
cutting planes for bound-propagation-based neural network verification,” Proceedings of the
36th International Conference on Neural Information Processing Systems, 2022.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778,
2016.

[21] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program Analysis. Springer, 1999.

[22] D. Gopinath, H. Converse, C. Pasareanu, and A. Taly, “Property inference for deep neural net-
works,” in 2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 797–809, IEEE, 2019.

[23] R. Ivanov, K. Jothimurugan, S. Hsu, S. Vaidya, R. Alur, and O. Bastani, “Compositional learning
and verification of neural network controllers,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 20, no. 5s, pp. 1–26, 2021.

[24] H. Duong, T. Nguyen, and M. Dwyer, “A DPLL(T) Framework for Verifying Deep Neural
Networks,” arXiv preprint arXiv:2307.10266, 2024.

[25] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints,” in Proceedings of the 4th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, pp. 238–252, 1977.

[26] J. Misra and K. M. Chandy, “Proofs of networks of processes,” IEEE transactions on software
engineering, no. 4, pp. 417–426, 1981.

[27] E. W. Stark, “A proof technique for rely/guarantee properties,” in Foundations of Software
Technology and Theoretical Computer Science: Fifth Conference, New Delhi, India December
16–18, 1985 Proceedings 5, pp. 369–391, Springer, 1985.

[28] J. M. Cobleigh, G. S. Avrunin, and L. A. Clarke, “Breaking up is hard to do: An evaluation
of automated assume-guarantee reasoning,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 17, no. 2, pp. 1–52, 2008.

[29] C. S. Păsăreanu, D. Giannakopoulou, M. G. Bobaru, J. M. Cobleigh, and H. Barringer, “Learning
to divide and conquer: applying the l* algorithm to automate assume-guarantee reasoning,”
Formal Methods in System Design, vol. 32, pp. 175–205, 2008.

[30] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms. MIT
press, 2022.

[31] D. Xu, N. J. Mozumder, H. Duong, and M. Dwyer, “Training for verification: Increasing neuron
stability to scale DNN verification,” in Tools and Algorithms for the Construction and Analysis
of Systems - 30th International Conference, TACAS 2024, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS, p. to appear, Springer, 2024.

[32] X. Zhang, B. Wang, M. Kwiatkowska, and H. Zhang, “Premap: A unifying preimage approxima-
tion framework for neural networks,” Journal of Machine Learning Research, vol. 26, no. 133,
pp. 1–44, 2025.

[33] Y. Jacoby, C. Barrett, and G. Katz, “Verifying recurrent neural networks using invariant in-
ference,” in International Symposium on Automated Technology for Verification and Analysis,
pp. 57–74, Springer, 2020.

[34] K. Abd Elkader, O. Grumberg, C. S. Păsăreanu, and S. Shoham, “Automated circular assume-
guarantee reasoning,” Formal Aspects of Computing, vol. 30, no. 5, pp. 571–595, 2018.

[35] F. Toledo, D. Shriver, S. Elbaum, and M. B. Dwyer, “Deeper notions of correctness in image-
based dnns: Lifting properties from pixel to entities,” in Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 2122–2126, 2023.

12

[36] K. Ahmed, K.-W. Chang, and G. Van den Broeck, “A pseudo-semantic loss for autoregressive
models with logical constraints,” Advances in Neural Information Processing Systems, vol. 36,
2024.

[37] J. K. Christopher, S. Baek, and F. Fioretto, “Constrained synthesis with projected diffusion
models,” in The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024.

[38] D. P. Kingma, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114, 2013.
[39] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image

synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10684–10695, 2022.

[40] S.-i. Amari, “Backpropagation and stochastic gradient descent method,” Neurocomputing, vol. 5,
no. 4-5, pp. 185–196, 1993.

[41] D. Xu, D. Shriver, M. B. Dwyer, and S. Elbaum, “Systematic Generation of Diverse Benchmarks
for DNN Verification,” in International Conference on Computer Aided Verification, pp. 97–121,
Springer, 2020.

[42] A. Loquercio, A. I. Maqueda, C. R. Del-Blanco, and D. Scaramuzza, “Dronet: Learning to fly
by driving,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 1088–1095, 2018.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our claims match our theoretical and empirical results — CoVeNN solved more
problems than SoTA NNV tools across benchmarks.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are explicitly mentioned in §5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

13

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The theorems and their proof sketches are listed in §3.5 and detailed in Apdx. B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The model architectures and configurations used are provided in §4
and Apdx. E
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

14

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data and code with instructions to reproduce the results have been uploaded
to an anonymized repo.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental details have been provided in Apdx. E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Verification results are deterministic on the benchmarks, and no error bars
need to be provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Detailed hardware resources are provided in §4 and Apdx. E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have acknowledged the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

16

https://neurips.cc/public/EthicsGuidelines

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: They have been discussed in §5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No data or models are released.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

17

Answer: [Yes]

Justification: We cited both αβ-CROWN and NeuralSAT, and libraries used for experimental
evaluation.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are introduced in this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper paper does not involve crowdsourcing nor research with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

18

paperswithcode.com/datasets

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM was only used for revising writing and suggesting words.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A DNN Properties

For a neural network, N : Rn 7→ Rm, specifications of functional properties constrain the output of
N based on its input. Specifying such necessary conditions for DNN input-output relations is a topic
of great interest with applications as test oracles in DNN testing [35], training objectives to maximize
network property conformance [36], and biasing generative models to produce outputs that conform
to a property [37]. A broad class of properties can be formulated using pairs of half-space polytopes –
each specified as the conjunction of cutting planes – where one set defines the pre-condition, ϕin,
and another the post-condition, ϕout. A variety of different properties can be formulated using such
pre-post condition pairs but we focus on two popular classes of properties below.

Classification Robustness A well-studied class of properties express local robustness properties of
the form:

∀p ∈ [0, ϵ] : N (x) = N (x± p),

where x is a specific seed input, often chosen from the held out test dataset. These express that
network inference is invariant for perturbations within the convex ϵ-ball, x± p, for the seed input.
A variant of this, with a post-condition of the form ∥N (x) − N (x ± p)∥ ≤ β can be defined for
regression networks.

Reconstruction Robustness Generative models are formulated as neural networks, N : Rn 7→ Rn,
and are trained to approximate the identify function [38, 39]. For such, models one can adapt the
regression robustness property above, to define a local reconstruction robustness property of the form:

∀p ∈ [0, ϵ] : ∥N (x± p)− x∥∞ ≤ β,

for a seed input x. The β parameter expresses the expected agreement between an input and its
reconstruction.

B Correctness Proofs of CoVeNN

Let N : Rn → Rm denote a neural network, and let ϕin(x) and ϕout(y) be input and output property
of interest, respectively. The global verification objective is to prove:

∀x ∈ Rn : ϕin(x) =⇒ ϕout(N (x)) (3)

Chain of Proofs. Given N , we decompose into K sequential subnetworks: N = NK ◦ NK−1 ◦
· · · ◦ N 1, where each N k : Rdk−1 → Rdk , with d0 = n and dK = m.

Let γ0 := ϕin and γK := ϕout; we seek to synthesize K − 1 intermediate predicates (assumptions)
γ1, . . . , γK−1 over intermediate network states.

Following the classical assume-guarantee (sequential composition) proof principle, the global property
is entailed by the following chain of K local obligations:

∀ k = 1, . . . ,K : ⟨γk−1,N k, γk⟩ (4)

If all these obligations hold, we have:(
K∧

k=1

⟨γk−1,N k, γk⟩

)
=⇒ ⟨ϕin,N , ϕout⟩ (5)

Thus global verification is reduced to a finite sequence of smaller verification problems.

Automated Synthesis of Intermediate Assumptions. Given a subnetwork N k, input constraint
γin, an overapproximate output bound γover = (Lover, Uover), number of neurons P , and scale
factor F ∈ [0, 1], we synthesize the candidate assumption γassume as follows.

First, CoVeNN computes the sampled output region by solving:

Lsample = min
x∈γin

N k(x) Usample = max
x∈γin

N k(x) (6)

20

where each minimization and maximization is performed through backpropagation.

Next, CoVeNN interpolates between the overapproximate and sampled bounds to obtain:
Lint = Lsample − F · (Lsample − Lover) Uint = F · (Uover − Usample) + Usample (7)

Let Select(Lint, Uint, P) denote a selection of P neuron indices for which the interval
[Lint[i], Uint[i]] is top-P largest. The synthesized assumption γassume for N k is then the set
of inequalities:

γassume =

{
Yi ≥ Lint[i], Yi ≤ Uint[i]

∣∣∣∣ i ∈ Select(Lint, Uint, P)

}
(8)

where Yi denotes the i-th output of N k.

Iterative Refinement. For each refinement round r, and for each subnetwork N i (i = 1, . . . ,K−1),
let the current overapproximate bound for its output be denoted by (L

(r)
i , U

(r)
i). Given an assumption

γassume (constructed as above) and the formally verified lowerbounds lb extracted from the underlying
verifier, consider all neurons j selected for tightening. For each such j with assumption direction
(“≥” or “≤”) and associated right-hand side rhs, let lj be the corresponding lower bound from lb.
The refined bounds are updated by:

L
(r+1)
i [j] =

{
rhs+ lj , if direction is “≥”
L
(r)
i [j], otherwise

U
(r+1)
i [j] =

{
rhs− lj , if direction is “≤”
U

(r)
i [j], otherwise

(9)

All other coordinates are left unchanged. The updated tuple (L(r+1)
i , U

(r+1)
i) forms the new tightened

overapproximation for the next refinement round, and subsequent rounds proceed analogously unless
the verification succeeds or the allowed number of rounds is exhausted.

B.1 Chain of Proofs

Thm. 1 (Compositional Verification via Assume-Guarantee Reasoning) Given a neural network
N : Rn → Rm decomposed into K subnetworks such that N = NK ◦ · · · ◦ N 1, a property
ϕ ≡ ϕin ⇒ ϕout, and intermediate predicates γ1, . . . , γK−1, where γ0 = ϕin and γK = ϕout, the
global specification holds whenever every local property is valid:(

K∧
k=1

⟨γk−1,N k, γk⟩

)
=⇒ ⟨ϕin,N , ϕout⟩

Proof. Let N = NK ◦ NK−1 ◦ · · · ◦ N 1 denote the decomposition into K composed subnetworks.
Let the intermediate predicates be γ0, γ1, . . . , γK with γ0 = ϕin and γK = ϕout. We are given that
for every k = 1, . . . ,K,

∀z ∈ Rdk−1 : γk−1(z) =⇒ γk(N k(z)), or ⟨γk−1,N k, γk⟩
We show that:

∀x ∈ Rn : ϕin(x) =⇒ ϕout(N (x)), or ⟨ϕin,N , ϕout⟩
Let x ∈ Rn such that ϕin(x) holds. That is, γ0(x).

• Base case (k = 1): By the first obligation, γ0(x) =⇒ γ1(N 1(x)), so γ1(z1) holds for
z1 = N 1(x).

• Induction step: Assume for some 1 ≤ k < K that γk−1(zk−1) holds for some zk−1. Then,
by the k-th obligation, γk(N k(zk−1)) holds for zk = N k(zk−1).

By unrolling, starting from γ0(x), we obtain via repeated application:
γ1(z1), γ2(z2), . . . , γK(zK), where zk = N k(zk−1), z0 = x

In this case, zK = NK(· · · N 1(x)) = N (x) and γK(zK) means ϕout(N (x)).

Therefore, for any x satisfying ϕin(x), we have ϕout(N (x)). That is,
∀x : ϕin(x) =⇒ ϕout(N (x))

Thus, the global specification holds.

21

Alg. 2: Generate assumptions.
input :DNNN , input property γin, overapproximation γover , number of neurons P , and scale factor F
output :Assumptions γassume

1 (Lover, Uover)← γover
2 Lsample ← Minimize(N , γin) // minimize output of N for samples from γin

3 Usample ← Maximize(N , γin) // maximize output of N for samples from γin

4 Lint ← Lsample − F · (Lsample − Lover) // interpolate output lower bounds of N
5 Uint ← F · (Uover − Usample) + Usample // interpolate output upper bounds of N
6 γassume ← []
7 for i ∈ Select(Lint, Uint, P) do // select top-P neurons
8 γassume.append((i, Lint[i],≥)) // tighten assumption Yi ≥ Lint[i]

9 γassume.append((i, Uint[i],≤)) // tighten assumption Yi ≤ Uint[i]

10 return γassume

B.2 Soundness of Iterative Bound Refinement

Thm. 2 (Soundness of Iterative Bound Refinement) Suppose the base verifier V soundly establishes,
for a neuron Yi, a right-hand side rhs, a direction ≼∈ {≥,≤}, and a corresponding verifier bound
δ (where δ < 0 for “≥” and δ > 0 for “≤”), that Yi − rhs ≼ δ. Then, the refined inequality

Yi ≼ (rhs+ δ)

is soundly verified. Therefore, updating the right-hand side to rhs+ δ yields an assumption formally
verified by V .

Proof. Consider the case when the direction is “≥”. The assumption being verified takes the form
Yi ≥ rhs (line 14). V soundly verifies that Yi − rhs ≥ δ, where δ = li and δ < 0. This implies
Yi ≥ rhs+ δ. Therefore, to ensure this assumption is valid, we update the right-hand side to rhs+ δ
(line 15), confirming Yi ≥ rhs+ δ holds. Similarly, a dual of this process is used to refine the upper
bounds. In both cases, replacing the original bound rhs with rhs+ δ yields an assumption that is
formally validated by the verifier. Thus, the refinement procedure produces sound bounds.

This theorem formalizes the soundness of our bound refinement procedure, which is a critical
component of our iterative assumption generation. Specifically, it ensures that each refinement step,
guided by the verifier’s output, always results in bounds that are formally valid, thereby guaranteeing
that the iterative tightening of assumptions preserves correctness throughout the verification chain.

B.3 Soundness of CoVeNN

Thm. 3 (Soundness of CoVeNN) Let N be a neural network and ϕin, ϕout be input/output properties
such that CoVeNN verifies N satisfies ϕin =⇒ ϕout. Assume all local subproblems are formally
verified by a sound underlying verifier V or formally refined as Thm. 2. Then N indeed satisfies
ϕin =⇒ ϕout.

Proof. Follow the arguments in §B.1, for any x with ϕin(x), we have

ϕin(x) =⇒ γ1(N 1(x)) =⇒ γ2(N 2(N 1(x))) =⇒ · · · =⇒ ϕout(N (x)).

Thus, N satisfies ϕin =⇒ ϕout. The correctness of CoVeNN is thus relative to the soundness of
the underlying verifier: if the verifier establishes each local property, then the global specification
holds.

The algorithm terminates because only finitely many refinement rounds are permitted for each γi.
However, completeness is not guaranteed: the verifier may fail to establish some obligations or the
refinement limit may be reached, in which case CoVeNN may output unknown.

22

C Constructing Assumptions

We seek to automate the generation of assumptions for the second obligation in Eq. 1, I , by adapting
the verification of the first rule to approximate them. Alg. 2 outlines a systematic method to estimate
and construct these assumptions. We use γ to denote the values of intermediate steps in the process
of computing I – γin is the assumption for N , and γassume is the computed assumption for the
subsequent network. The underlying verifier is able to compute a sound overapproximation of a given
subnetwork’s output for γin, which we denote with γover. These bounds, (Lover, Uover), are often
too imprecise to allow verification of the overall problem.

We construct tighter assumptions, γassume, by interpolating between the overapproximation and a
space defined by sampling the behavior of N . Fig. 2b illustrates three distinct types of regions. The
solid red line represents the actual operational region of a hidden ReLU within a DNN. Due to the
inherent non-linearity of DNNs, calculating this exact region for hidden neurons is computationally
infeasible. Instead, verification processes commonly use sound overapproximations to capture the
behavior of each neuron, such as the triangular area bounded by (Lover, Uover). However, this
introduces imprecision which can accumulate during verification of the layers of a DNN.

We compute a sampling region by minimizing (maximizing) the output of N for a set of sample inputs
from γin (line 2-line 3). This process uses backpropagation which requires that the minimization
and maximization be performed separately [40]. These samples offer a tighter, more realistic
representation of the network output bounds by considering adversarial conditions. The sampled
region, (Lsample, Usample), is likely to disprove subsequent verification sub-problems, since there
is a high probability of counterexamples existing close to these bounds Lsample and Usample. To
mitigate this risk, we compute an interpolated region, (Lint, Uint), between the sampled region and
the overapproximation (line 4-line 5); the degree of interpolation can be controlled by F .

Rather than attempt to prove the full hypercube of an assumption, modern DNN verifiers [19, 8, 9, 10]
have been engineered to prove subsets of clauses of the DNF encoding of the negation of the
assumption – this is significantly faster in practice. We select the P neurons with the largest interval
size as determined by sampling to tighten (line 7). Selected constraints are then tightened by using
the upper/lower bounds from γint (line 8-line 9). Selective tightening allows us to mitigate the cost
of downstream verification, since after the initial verification pass, only assumptions for tightened
neurons need to be re-verified.

D Related Work

SoTA tools in DNN verification, such as those evaluated in VNN-COMP, integrating multiple
techniques to improve scalability and efficiency. Leading verifiers, including NeuralSAT [24, 10]
and αβ-CROWN [19, 8], split problems into smaller subproblems and refine bounds on subprob-
lems. NeuralSAT and αβ-CROWN leverage GPU-accelerated linear bound propagation alongside
advanced BaB techniques, such as cutting planes and neuron stabilizing, to handle harder networks.
Marabou [11] encodes verification as constraint problems and employs parallelized split-and-conquer
strategies to improve scalability. nnenum [12] achieves impressive performance on low dimensional
networks using star sets and zonotope abstractions. CoVeNN can be viewed as a meta-verifier that
decompose large verification problems into smaller subproblems, and leverage these existing SoTA
verifiers to solve them.

There are two notable prior works addressing on compositional verification of DNNs. Ivanov et
al. [23] introduces a compositional framework to break a high-level task into subtasks or subcom-
ponents, such as breaking down car navigation task into track segment, each representing a distinct
system mode (e.g., going straight or turning). Unlike CoVeNN, which focuses on decomposing the
DNN itself, this work decomposes the task that may rely on DNNs.

Prophecy [22] uses an expensive decision tree algorithm to infer intermediate specifications. Their
approach (1) is exponentially with the number of neurons, (2) records only activation patterns for
ReLUs at one single layer (layer pattern) which is selected by hand, (3) does not support iterative
refinements, and (4) and depends on training data. CoVeNN addresses these by inferring specifications
by recording computed bounds for neurons which (1) scales along with DNN verifier algorithms, (2)
records richer intermediate specifications that record ranges of activation values–which is essential
for handling non-ReLU activations and automatically infers decompositions, (3) allows intermediate

23

specifications to be refined based on the property being checked, and (4) does not require training
data. Lastly, Prophecy explicitly does not support Resnet and reports results on a few samples of
small networks (e.g., ACAS Xu) which are not representative of modern DNNs.

E More Details on Experiments

E.1 Experimental Setup, Solver Selection, and Benchmarks

Setup Our experiments are conducted on a desktop with an AMD Ryzen Threadripper PRO
5975WX 32-Core, 128 GB RAM, and an NVIDIA GeForce RTX 4090 GPU with 24 GB VRAM. Our
implementation is based on the open-source NeuralSAT verifier3 with decomposition related code
added. For RQ1 and RQ2, NeuralSAT was used as the backend verifier, while both αβ-CROWN and
NeuralSAT were used in RQ3. Timeout for a single instance is set as 3600 seconds. The maximum
number of rounds r is set to 4. Note that these parameters can be changed easily by CoVeNN’s user.

Underlying Solver Selection We tried several CPU-based verifiers, such as nnenum [12] and
Marabou [11], but none of them could solve any instance of the benchmarks and their results would
be all “-” if added to Tab. 2. In addition, we also tried running αβ-CROWN and NeuralSAT on CPU
with instances that they got OOM errors and they all ended up being killed by the operating system
or took more than 30 minutes even for a single abstraction pass. This is not surprising as our work is
explicitly designed to solve problems that are beyond what can be solved by current NNV tools.

Benchmark Selection The VNN-COMP benchmark suite is a useful starting point, but prior
work [13, 41] notes that its benchmarks are often too easy for best verifiers. Our goal is to find
benchmarks that go beyond what can be solved. We approached this from two directions: (1) scaling
an existing VNN-COMP benchmark and (2) introducing a new challenging benchmark family.

Most VNN-COMP benchmarks lack a clear path for scaling, but the ResNet benchmark is an
exception: increasing the number of residual blocks aligns with real-world models like DroNet [42]
and ResNet-152 [20]. We used this scaling strategy, adapting the training setup from Pytorch Image
Models (timm)4.

To complement ResNet, we added a new benchmark family based on variational autoencoders (VAEs),
which are naturally decomposable at their latent bottleneck layer. We adapted the encoder/decoder
from Stable Diffusion5, reduced its complexity for tool compatibility, and trained it on CIFAR10
using the simplified version of the original training code.

Memory Usage We use information reported by CUDA to compute memory consumption, which
represents the total memory demand/available memory. When the verifier attempts to allocate more
memory than the system could provide, this exceeds 100% and causes OOM. In particular, we
extract 3 memory metrics: current memory usage (memcur), free memory (memfree), and memory
requested for the operation that caused the OOM (memreq). The memory usage calculation is:

memusage =
(memcur +memreq −memfree)

memtotal
(10)

E.2 Model architectures

We summarize the model structures in our experiments in Tab. 3. Let Conv(a, b, c) be a conven-
tional convolutional layer with a input channel, b output channels and a kernel size of c × c. Let
ConvTran(a, b, c) be a transposed convolutional layer with a input channel, b output channels and
a kernel size of c × c. The stride and padding sizes are intentionally omitted for simplicity. Let
Lin(a, b, c) be a fully-connected layer with a input features and b output features. Let ResBlock(a, b)
stands for a residual block that has a input channels and b output channels. A ResBlock is comprised
of 2 paths, where the main path contains 2 Conv and the residual path contains 1 Conv. All networks
use ReLU activation only.

3https://github.com/dynaroars/neuralsat
4https://github.com/huggingface/pytorch-image-models
5https://github.com/explainingai-code/StableDiffusion-PyTorch

24

https://github.com/dynaroars/neuralsat
https://github.com/huggingface/pytorch-image-models
https://github.com/explainingai-code/StableDiffusion-PyTorch

Tab. 3: Model architectures used in our experiments.

Network Architecture Params

VAE_BASE Encoder: Conv(3, 8, 3), ResBlock(8, 8), Conv(8, 8, 4), ResBlock(8, 8), Conv(8, 1, 3), Conv(1, 1, 1) 10KDecoder: Conv(1, 1, 1), Conv(1, 8, 3), ResBlock(8, 8), ConvTran(8, 8, 4), ResBlock(8, 8), Conv(8, 3, 3)

VAE_WIDE Encoder: Conv(3, 16, 3), ResBlock(16, 16), Conv(16, 16, 4), ResBlock(16, 16), Conv(16, 1, 3), Conv(1, 1, 1) 39KDecoder: Conv(1, 1, 1), Conv(1, 16, 3), ResBlock(16, 16), ConvTran(16, 16, 4), ResBlock(16, 16), Conv(16, 3, 3)

VAE_DEEP Encoder: Conv(3, 8, 3), ResBlock(8, 8), 2×
[
Conv(8, 8, 4), ResBlock(8, 8)

]
, Conv(8, 1, 3), Conv(1, 1, 1) 15K

Decoder: Conv(1, 1, 1), Conv(1, 8, 3), 2×
[
ResBlock(8, 8), ConvTran(8, 8, 4)

]
, ResBlock(8, 8), Conv(8, 3, 3)

RESNET6 Conv(3, 16, 3), ResBlock(16, 32), 05×ResBlock(32, 32), Lin(32, 10) 113K
RESNET12 Conv(3, 16, 3), ResBlock(16, 32), 11×ResBlock(32, 32), Lin(32, 10) 230K
RESNET18 Conv(3, 16, 3), ResBlock(16, 32), 17×ResBlock(32, 32), Lin(32, 10) 348K
RESNET36 Conv(3, 16, 3), ResBlock(16, 32), 35×ResBlock(32, 32), Lin(32, 10) 706K

Tab. 4: Number of completed jobs for each verifier (verified, unknown); “-” means that the verifier aborted with
an OOM error on all 10 properties.

#Blocks αβ-CROWN NeuralSAT CoVeNNNS

3 (6, 4) (6, 4) (6, 4)
6 (5, 5) (5, 5) (5, 5)
9 (8, 2) (9, 1) (9, 1)

12 - - (7, 3)
18 - - (8, 2)
36 - - (6, 4)

E.3 Tools Scalability

Tools’ scalability of the two top performing verifiers in VNN-COMP’24, αβ-CROWN and NeuralSAT,
and CoVeNN on ResNet-based instances is shown in Tab. 4. Number of completed jobs for each
verifier is (verified, unknown) where “-” means that the verifier aborted with an OOM error on all
10 properties.

As detailed in Tab. 4, CoVeNN matches the ability of underlying verifiers on problems for which
they complete and the refinement strategies allow it to prove properties when scaling to much larger
networks.

25

	Introduction
	Background
	Compositional Verification of Neural Networks
	Decomposition
	Bound Approximations and Verification
	Iterative Refinement
	Example
	Formal Correctness

	Evaluation
	RQ1: Comparing to Non-Compositional SoTA Verifiers
	RQ2: On the Effectiveness of Assumption Refinement
	RQ3: Robustness to Underlying Verifiers
	RQ4: CoVeNN's Performance with Parameter Tuning

	Conclusion
	DNN Properties
	Correctness Proofs of CoVeNN
	Chain of Proofs
	Soundness of Iterative Bound Refinement
	Soundness of CoVeNN

	Constructing Assumptions
	Related Work
	More Details on Experiments
	Experimental Setup, Solver Selection, and Benchmarks
	Model architectures
	Tools Scalability

